EP0856098B1 - Device and method for diagnosing the condition of a probe upstream from a catalytic converter - Google Patents

Device and method for diagnosing the condition of a probe upstream from a catalytic converter Download PDF

Info

Publication number
EP0856098B1
EP0856098B1 EP96934934A EP96934934A EP0856098B1 EP 0856098 B1 EP0856098 B1 EP 0856098B1 EP 96934934 A EP96934934 A EP 96934934A EP 96934934 A EP96934934 A EP 96934934A EP 0856098 B1 EP0856098 B1 EP 0856098B1
Authority
EP
European Patent Office
Prior art keywords
krich
value
upstream
signal
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96934934A
Other languages
German (de)
French (fr)
Other versions
EP0856098A1 (en
Inventor
Eric Marcheguet
Vasco Afonso
François RATINET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0856098A1 publication Critical patent/EP0856098A1/en
Application granted granted Critical
Publication of EP0856098B1 publication Critical patent/EP0856098B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to internal combustion engines injection type and having an exhaust pipe catalytic preceded by a probe and, more particularly in such motors, a device and a method for diagnosing the condition of the probe arranged upstream of the catalytic converter.
  • the diagnosis then consists in declaring the failure of the probe if one or more faults are detected.
  • Such a diagnostic method is based on the analysis of the behavior of the probe to deduce a state of the probe by presuming degradation modes.
  • an aged probe has a voltage dynamic reduced and / or extended switching times.
  • the disadvantage of such a diagnostic method is that it there is no perfect bijection between these measurements and pollutant emissions.
  • a reduced voltage dynamic probe may prove good vis-à-vis the emission of pollutants if alone this characteristic is affected.
  • An object of the present invention is therefore to operates a device and a method for diagnosing the state of a probe placed upstream of a pot catalytic associated with an internal combustion engine of the injection type which does not have the disadvantages above listed devices and methods of the art prior.
  • Another object of the present invention is also to implement a device and a method of diagnosis of the state of an upstream probe which does not call for measurements of intrinsic characteristics of the probe.
  • the method of the invention is based on monitoring characteristics of the wealth loop which have an influence on pollutant emissions, namely, the average period and the average wealth of the closure. In this way, the state of the upstream probe is evaluated at from the effects it produces on the closure of wealth, that is to say on pollutant emissions, and not from its own characteristics.
  • the invention proposes to implement a second non-linear probe which is arranged downstream of the catalytic converter and which is an integral part of a second feedback loop thanks to which the output voltage V downstream of the second probe, called the downstream probe, is slaved to a setpoint voltage VC downstream corresponding to the center of the window for correct operation of the catalytic converter.
  • the signal which is provided by this loop is used to modify the signal of the first feedback loop comprising the upstream probe.
  • the logic circuit determines that the upstream probe is defective if the filtered signal is greater than one maximum value or less than a minimum value or again if the average period is greater than one maximum value.
  • the maximum and minimum values of the filtered signal KRICH F are determined by calibration as a function of the value of the average period and are recorded in a memory. This memory is addressed by the value of the average period to provide the maximum and minimum values to which the value of the filtered signal is compared.
  • an internal combustion engine 10 is controlled, in a known manner, by a computer electronic 12.
  • the exhaust gases from this engine are filtered by a type 14 exhaust catalytic, from which they escape towards the open air.
  • a first probe 16 is disposed at the entrance of the pot exhaust and measures the content of one of main exhaust components, this component usually being oxygen.
  • This probe is of the non-linear type and is often called, like indicated above, "lambda" probe or EGO probe.
  • This probe provides on its output terminal an upstream electrical signal V ( Figure 2-A) which is applied to a comparator circuit 18 in which V upstream is compared with a threshold voltage VS upstream to determine the sign of V upstream with respect to this threshold.
  • the value of the upstream VS threshold depends on the characteristics of the probe and corresponds to the tilting voltage of the probe when the stoichiometric conditions are met.
  • the corrector circuit 20 supplies a signal KCL which has the form represented by the diagram of FIG. 2-B. It is this signal KCL which is supplied to the computer 12 to control the quantity of fuel to be injected.
  • V upstream is less than VS upstream , this means that the mixture is poor in fuel and that the quantity of fuel must be increased.
  • the correction value KCL, supplied by the corrector circuit 20, is modified by a second corrector circuit 22, which introduces a corrector term KRICH, before being applied to the computer 12.
  • This corrector term KRICH is determined by a circuit 24 from an output signal V downstream of a second lambda probe 26 which is disposed at the outlet of the catalytic converter 14.
  • This circuit 24 essentially consists of a comparator 28 to which the signal V downstream are applied and a so-called downstream VC setpoint signal and a third corrector circuit 30 to which the signal (V downstream - VC downstream ) supplied by the comparator circuit 28 is applied.
  • the third corrector circuit 30 is for example of the proportional and integral type and provides the KRICH signal which is applied to the second correction circuit 22.
  • the second corrector circuit 22 can introduce the KRICH correction in different ways, one of which will be explained in relation to the time diagrams of FIGS. 3-A and 3-B. These diagrams are plots of the signal KCL as modified by the second correcting circuit 22, the modified signal KCL being called KCL m .
  • the signal KRICH is applied during the lean-to-rich transitions which are detected by the first probe, which corresponds to the falling edge of the signal KCL.
  • KRICH> 0 enrichment
  • the course of KCL m is that of the figure 3-A while in the case where KRICH ⁇ 0 (depletion), the course of KCL m is that of the figure 3-B .
  • the device for diagnosing the state of the probe 16 comprises the elements represented inside the rectangle 40 of the diagram in FIG. 1. It is a filter 32 to which the output signal KRICH of the correcting circuit is applied. 24 of the second loop as well as a calculation circuit 34 of the average period T m of the upstream signal V of the upstream probe 16.
  • the output terminals of the filter 32 and of the calculation circuit 34 are connected to a logic circuit 36 which determine the good or bad state of the probe 16 as a function of the output signal KRICH F of the filter 32 and of the value T m of the mean period of the upstream signal V.
  • the binary signal 1 or 0 of the good or bad state of the probe 16 appears on the DIAG output terminal of the logic circuit 36.
  • REG min and REG max being respectively the minimum and maximum values of the REG engine speed between which the diagnosis can be carried out; P min and P max being respectively the minimum and maximum values of the pressure P of the inlet manifold between which the diagnosis can be carried out.
  • the calculation circuit 34 performs the calculation of the average period T m according to the algorithm of FIG. 5. This calculation is only carried out if the conditions listed above are met (step 50). This calculation of the average period T m consists in counting the transitions of the upstream voltage V from a value below the threshold VS upstream to a value above the threshold during a certain time interval T D and in dividing this interval T D by the number N of transitions that have been detected.
  • the algorithm for calculating the average period T m of the first loop is represented by the diagram in FIG. 5.
  • the first step (50) consists in checking whether the diagnostic conditions listed above are fulfilled. If the answer is "YES”, the step of counting 52 of the time T is started, that is to say that the calculation of the average period T m begins.
  • the counter for the duration T D of the diagnosis is increased by the value T of the counter 52.
  • the next step 68 resets the counter 52 to zero for a new measurement T of the current period.
  • the logic circuit 36 performs the steps of the algorithm of FIG. 7 so as to compare the value of KRICH F with values which have been determined to be limit values beyond which the probe is considered to be defective and this for a determined value T m of the average period.
  • KRICH max for too high richness
  • KRICH min for too much depletion
  • This calibration makes it possible to plot the KRICH max and KRICH min curves as a function of the period T m (FIG. 6), curves which can be stored in the form of two cartographic tables or of a single table grouping the two. These cartographic tables can be produced by memories which are addressed by the value of T m , and the values read are KRICH max and KRICH min for the value of T m (FIG. 6).
  • the diagnosis is complete (step 94) and a new diagnosis can be launched to obtain a new value of KRICH F and of T m .
  • KRICH F is compared with the two selected thresholds while the value T m of the average value is compared with the threshold T ' max . If KRICH F is greater than KRICH ' max , or less than KRICH' min or greater than T ' max , the probe is considered to be defective. Otherwise, the probe is considered good.
  • the algorithm of Figure 7 can be performed under the as software or as circuits electronics in which the comparison steps 80, 82 and 84 would be carried out by comparators of numbers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

L'invention concerne les moteurs à combustion interne du type à injection et comportant un pot d'échappement catalytique précédé d'une sonde et, plus particulièrement dans de tels moteurs, un dispositif et un procédé pour diagnostiquer l'état de la sonde disposée en amont du pot catalytique.The invention relates to internal combustion engines injection type and having an exhaust pipe catalytic preceded by a probe and, more particularly in such motors, a device and a method for diagnosing the condition of the probe arranged upstream of the catalytic converter.

Il est connu d'utiliser des systèmes pour modifier la quantité du carburant qui est injectée dans un moteur en fonction de la composition des gaz d'échappement et, plus particulièrement, de la teneur en oxygène de ces gaz. A cet effet, la teneur en oxygène est mesurée à l'aide d'une sonde non linéaire dite sonde "lambda" ou sonde EGO, EGO étant l'acronyme anglo-saxon pour "Exhaust Gas Oxygen". Une telle sonde est disposée en amont du pot d'échappement catalytique et le signal fourni par cette sonde sert à modifier la quantité de carburant qui est injectée dans les cylindres du moteur par l'intermédiaire d'une première boucle de contre-réaction. Pour cette raison, cette sonde est aussi appelée sonde de régulation de richesse.It is known to use systems to modify the amount of fuel that is injected into an engine depending on the composition of the exhaust gases and, more particularly, the oxygen content of these gas. For this purpose, the oxygen content is measured at using a non-linear probe called a "lambda" probe or EGO probe, EGO being the acronym for "Exhaust Gas Oxygen". Such a probe is arranged in upstream of the catalytic converter and the signal supplied by this probe is used to modify the quantity of fuel which is injected into the engine cylinders via a first feedback loop. For this reason, this probe is also called the wealth control probe.

Il est clair que le mauvais état de cette sonde conduit à un mauvais fonctionnement du moteur et du pot catalytique, ce qui induit des émissions de polluants à des valeurs anormalement élevées. Il est donc important de déterminer l'état de cette sonde à tout moment de manière à diagnostiquer son mauvais fonctionnement lorsque son état s'est détérioré au-delà de certaines limites.It is clear that the poor condition of this probe leads engine and pot malfunction catalytic, which induces pollutant emissions to abnormally high values. It is therefore important to determine the state of this probe at any time way to diagnose its malfunction when his condition has deteriorated beyond certain limits.

Les solutions actuelles de diagnostic de l'état de la sonde amont consistent à analyser le comportement de la sonde en réponse à des excitations de richesse en boucle ouverte ou en boucle fermée et à surveiller les paramètres suivants :

  • la tension minimale fournie par la sonde : si elle est trop élevée, il y a défaut ;
  • la tension maximale fournie par la sonde : si elle est trop faible, il y a défaut ;
  • le temps de basculement pauvre-riche : s'il est trop long, il y a défaut ;
  • le temps de basculement riche-pauvre : s'il est trop long, il y a défaut ;
  • la période du signal fourni par la sonde en boucle fermée : si elle est trop longue, il y a défaut.
Current solutions for diagnosing the state of the upstream probe consist in analyzing the behavior of the probe in response to richness excitations in open loop or in closed loop and in monitoring the following parameters:
  • the minimum voltage supplied by the probe: if it is too high, there is a fault;
  • the maximum voltage supplied by the probe: if it is too low, there is a fault;
  • poor-rich changeover time: if it is too long, there is a fault;
  • the rich-poor changeover time: if it is too long, there is a fault;
  • the period of the signal supplied by the closed loop probe: if it is too long, there is a fault.

Le diagnostic consiste alors à déclarer la panne de la sonde si un ou plusieurs défauts sont détectés.The diagnosis then consists in declaring the failure of the probe if one or more faults are detected.

Un tel procédé de diagnostic est basé sur l'analyse du comportement de la sonde pour en déduire un état de la sonde en présumant des modes de dégradation.Such a diagnostic method is based on the analysis of the behavior of the probe to deduce a state of the probe by presuming degradation modes.

Par exemple, une sonde âgée a une dynamique de tension réduite et/ou des temps de basculement allongés. L'inconvénient d'un tel procédé de diagnostic est qu'il n'existe pas de bijection parfaite entre ces mesures et les émissions de polluants.For example, an aged probe has a voltage dynamic reduced and / or extended switching times. The disadvantage of such a diagnostic method is that it there is no perfect bijection between these measurements and pollutant emissions.

En outre, la calibration des seuils de détection des défauts s'avère très délicate et nécessite :

  • une connaissance parfaite des modes de vieillissement des sondes,
  • de nombreux essais pour établir un lien entre les dégradations mesurées des paramètres et leurs effets sur les émissions de polluants.
In addition, the calibration of fault detection thresholds is very delicate and requires:
  • a perfect knowledge of the aging modes of the probes,
  • numerous attempts to establish a link between the measured degradations of the parameters and their effects on pollutant emissions.

Par ailleurs, il n'est pas possible de garantir dans tous les cas la fiabilité du diagnostic. Par exemple, une sonde à dynamique en tension réduite peut s'avérer bonne vis-à-vis de l'émission de polluants si seule cette caractéristique est affectée.Furthermore, it is not possible to guarantee in in all cases the reliability of the diagnosis. For example, a reduced voltage dynamic probe may prove good vis-à-vis the emission of pollutants if alone this characteristic is affected.

Un but de la présente invention est donc de mettre en oeuvre un dispositif et un procédé de diagnostic de l'état d'une sonde disposée en amont d'un pot catalytique associé à un moteur à combustion interne du type à injection qui ne présente pas les inconvénients ci-dessus énumérés des dispositifs et procédés de l'art antérieur.An object of the present invention is therefore to operates a device and a method for diagnosing the state of a probe placed upstream of a pot catalytic associated with an internal combustion engine of the injection type which does not have the disadvantages above listed devices and methods of the art prior.

Un autre but de la présente invention est aussi de mettre en oeuvre un dispositif et un procédé de diagnostic de l'état d'une sonde amont qui ne fait pas appel à des mesures des caractéristiques intrinsèques de la sonde.Another object of the present invention is also to implement a device and a method of diagnosis of the state of an upstream probe which does not call for measurements of intrinsic characteristics of the probe.

Le procédé de l'invention est basé sur la surveillance des caractéristiques du bouclage de richesse qui ont une influence sur les émissions de polluants, à savoir, la période moyenne et la richesse moyenne du bouclage. De cette manière, l'état de la sonde amont est évalué à partir des effets qu'elle produit sur le bouclage de richesse, c'est-à-dire sur les émissions de polluants, et non pas à partir de ses caractéristiques propres.The method of the invention is based on monitoring characteristics of the wealth loop which have an influence on pollutant emissions, namely, the average period and the average wealth of the closure. In this way, the state of the upstream probe is evaluated at from the effects it produces on the closure of wealth, that is to say on pollutant emissions, and not from its own characteristics.

Les effets de l'état de la sonde amont sont susceptibles d'engendrer des émissions de polluants par dépassement des limites de la "fenêtre" de bon fonctionnement du pot catalytique, ce dépassement étant dû à la dérive de la richesse moyenne de fonctionnement et/ou à la période moyenne de la boucle de richesse qui devient trop longue.The effects of the state of the upstream probe are likely to cause pollutant emissions by exceeding the limits of the "window" of good operation of the catalytic converter, this excess being due to the drift in the average operating wealth and / or the average period of the wealth loop which becomes too long.

Pour détecter la dérive de la richesse moyenne de fonctionnement, l'invention propose de mettre en oeuvre une deuxième sonde non-linéaire qui est disposée en aval du pot catalytique et qui fait partie intégrante d'une deuxième boucle de contre-réaction grâce à laquelle la tension de sortie Vaval de la deuxième sonde, dite sonde aval, est asservie à une tension de consigne VCaval correspondant au centre de la fenêtre de bon fonctionnement du pot catalytique. Le signal qui est fourni par cette boucle est utilisé pour modifier le signal de la première boucle de contre-réaction comprenant la sonde amont.To detect the drift in the average operating richness, the invention proposes to implement a second non-linear probe which is arranged downstream of the catalytic converter and which is an integral part of a second feedback loop thanks to which the output voltage V downstream of the second probe, called the downstream probe, is slaved to a setpoint voltage VC downstream corresponding to the center of the window for correct operation of the catalytic converter. The signal which is provided by this loop is used to modify the signal of the first feedback loop comprising the upstream probe.

Un tel système d'asservissement de la richesse à double boucle de commande est décrit dans US-A-5 337 555 et dans la demande de brevet déposée ce jour par la demanderesse et intitulée : "SYSTEME ET PROCEDE DE DOUBLE BOUCLE DE COMMANDE POUR MOTEUR A COMBUSTION INTERNE".Such a double wealth control system control loop is described in US-A-5,337,555 and in the patent application filed today by the plaintiff and entitled: "DUAL LOOP CONTROL SYSTEM AND METHOD FOR INTERNAL COMBUSTION ENGINE".

L'invention concerne un dispositif de diagnostic de l'état d'une sonde non linéaire disposée en amont d'un pot catalytique associé à un moteur à combustion interne du type à injection commandée par un ordinateur électronique, ledit moteur comprenant une première boucle de commande, incluant ladite sonde non linéaire, pour fournir à l'ordinateur un premier signal de correction KCL de la quantité de carburant injectée et une deuxième boucle de commande, incluant une deuxième sonde non linéaire disposée en aval dudit pot catalytique pour fournir un deuxième signal de correction KRICH de la quantité de carburant injectée, ledit dispositif de diagnostic étant caractérisé en ce qu'il comprend :

  • un circuit de filtrage auquel est appliqué le deuxième signal de correction KRICH pour fournir un signal filtré KRICHF,
  • un circuit de mesure auquel est appliqué le signal de sortie Vamont de la sonde amont pour déterminer la valeur moyenne Tm de la période de correction de la première boucle de commande, et
  • un circuit logique pour déterminer l'état DIAG bon ou défectueux de la sonde amont en fonction des valeurs du signal filtré KRICHF et de la période moyenne Tm.
The invention relates to a device for diagnosing the state of a nonlinear probe disposed upstream of a catalytic converter associated with an internal combustion engine of the injection type controlled by an electronic computer, said engine comprising a first loop of control, including said non-linear probe, to supply the computer with a first KCL correction signal of the quantity of fuel injected and a second control loop, including a second non-linear probe arranged downstream of said catalytic converter to provide a second signal KRICH correction of the quantity of fuel injected, said diagnostic device being characterized in that it comprises:
  • a filtering circuit to which the second correction signal KRICH is applied to supply a filtered signal KRICH F ,
  • a measurement circuit to which the upstream output signal V of the upstream probe is applied to determine the average value T m of the correction period of the first control loop, and
  • a logic circuit for determining the good or defective DIAG state of the upstream probe as a function of the values of the filtered signal KRICH F and of the average period T m .

Dans une forme de réalisation de l'invention, le circuit logique détermine que la sonde amont est défectueuse si le signal filtré est supérieur à une valeur maximale ou inférieur à une valeur minimale ou encore si la période moyenne est supérieure à une valeur maximale.In one embodiment of the invention, the logic circuit determines that the upstream probe is defective if the filtered signal is greater than one maximum value or less than a minimum value or again if the average period is greater than one maximum value.

Dans une autre forme de réalisation de l'invention, les valeurs maximales et minimales du signal filtré KRICHF sont déterminées par calibration en fonction de la valeur de la période moyenne et sont enregistrées dans une mémoire. Cette mémoire est adressée par la valeur de la période moyenne pour fournir les valeurs maximale et minimale auxquelles est comparée la valeur du signal filtré.In another embodiment of the invention, the maximum and minimum values of the filtered signal KRICH F are determined by calibration as a function of the value of the average period and are recorded in a memory. This memory is addressed by the value of the average period to provide the maximum and minimum values to which the value of the filtered signal is compared.

L'invention concerne également un procédé qui comprend les étapes suivantes :

  • filtrage du deuxième signal de correction KRICH pour obtenir un signal filtré KRICHF,
  • calcul de la valeur moyenne Tm de la période du signal de sortie Vamont de la sonde amont,
  • comparaison dudit signal filtré KRICHF à deux valeurs maximale KRICHmax et minimale KRICHmin pour déterminer l'état DIAG correct ou défectueux de ladite sonde amont selon que le signal filtré KRICHF est respectivement à l'intérieur des limites définies par les valeurs maximale et minimale ou à l'extérieur desdites limites pour la valeur de la période moyenne Tm.
The invention also relates to a method which comprises the following steps:
  • filtering of the second correction signal KRICH to obtain a filtered signal KRICH F ,
  • calculation of the average value T m of the period of the upstream output signal V of the upstream probe,
  • comparison of said filtered signal KRICH F with two maximum values KRICH max and minimum KRICH min to determine the correct or defective DIAG state of said upstream probe according to whether the filtered signal KRICH F is respectively within the limits defined by the maximum values and minimum or outside of said limits for the value of the average period T m .

D'autres caractéristiques et avantages de la présente invention apparaítront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite en relation avec les dessins joints, dans lesquels :

  • la figure 1 est un schéma fonctionnel d'un système de double boucle de commande de richesse auquel s'applique l'invention ;
  • les figures 2-A et 2-B sont des diagrammes montrant comment s'effectue la correction de richesse avec une seule boucle de contre-réaction comportant une sonde en amont du pot catalytique ;
  • les figures 3-A et 3-B sont des diagrammes montrant une manière de corriger la richesse en utilisant une deuxième boucle de contre-réaction comportant une sonde en aval du pot catalytique ;
  • la figure 4 est un diagramme montrant la manière de filtrer le signal de correction KRICH pour obtenir un signal filtré KRICHF ;
  • la figure 5 est un diagramme montrant un algorithme de calcul de la période moyenne du signal de la sonde amont ;
  • la figure 6 est un diagramme montrant les courbes qui déterminent les zones de fonctionnement correct ou défectueux de la sonde amont, et
  • la figure 7 est un diagramme montrant un algorithme de décision pour déterminer l'état de la sonde amont.
Other characteristics and advantages of the present invention will appear on reading the following description of a particular embodiment, said description being made in relation to the accompanying drawings, in which:
  • Figure 1 is a block diagram of a double wealth control loop system to which the invention applies;
  • FIGS. 2-A and 2-B are diagrams showing how the richness correction is carried out with a single feedback loop comprising a probe upstream of the catalytic converter;
  • FIGS. 3-A and 3-B are diagrams showing a way of correcting the richness by using a second feedback loop comprising a probe downstream of the catalytic converter;
  • Fig. 4 is a diagram showing how to filter the KRICH correction signal to obtain a filtered KRICH F signal;
  • FIG. 5 is a diagram showing an algorithm for calculating the average period of the signal from the upstream probe;
  • FIG. 6 is a diagram showing the curves which determine the zones of correct or defective operation of the upstream probe, and
  • FIG. 7 is a diagram showing a decision algorithm for determining the state of the upstream probe.

Sur la figure 1, un moteur à combustion interne 10 est commandé, de manière connue, par un ordinateur électronique 12. Les gaz d'échappement de ce moteur sont filtrés par un pot d'échappement 14 de type catalytique, duquel ils s'échappent vers l'air libre. Une première sonde 16 est disposée à l'entrée du pot d'échappement et mesure la teneur de l'un des composants principaux des gaz d'échappement, ce composant étant habituellement l'oxygène. Cette sonde est du type non linéaire et est souvent appelée, comme indiqué ci-dessus, sonde "lambda" ou sonde EGO.In FIG. 1, an internal combustion engine 10 is controlled, in a known manner, by a computer electronic 12. The exhaust gases from this engine are filtered by a type 14 exhaust catalytic, from which they escape towards the open air. A first probe 16 is disposed at the entrance of the pot exhaust and measures the content of one of main exhaust components, this component usually being oxygen. This probe is of the non-linear type and is often called, like indicated above, "lambda" probe or EGO probe.

Cette sonde fournit sur sa borne de sortie un signal électrique Vamont (Figure 2-A) qui est appliqué à un circuit comparateur 18 dans lequel Vamont est comparé à une tension de seuil VSamont pour déterminer le signe de Vamont par rapport à ce seuil.This probe provides on its output terminal an upstream electrical signal V (Figure 2-A) which is applied to a comparator circuit 18 in which V upstream is compared with a threshold voltage VS upstream to determine the sign of V upstream with respect to this threshold.

La valeur du seuil VSamont dépend des caractéristiques de la sonde et correspond à la tension de basculement de la sonde lorsque les conditions de stoechiométrie sont remplies.The value of the upstream VS threshold depends on the characteristics of the probe and corresponds to the tilting voltage of the probe when the stoichiometric conditions are met.

La borne de sortie du circuit comparateur 18, qui fournit un signal binaire 1 ou 0, est connectée à la borne d'entrée d'un premier circuit correcteur 20 de régulation de richesse qui est du type proportionnel de gain P et intégral de gain I. Le circuit correcteur 20 fournit un signal KCL qui a la forme représentée par le diagramme de la figure 2-B. C'est ce signal KCL qui est fourni à l'ordinateur 12 pour commander la quantité de carburant à injecter. Ainsi, dès que Vamont est inférieur à VSamont, cela signifie que le mélange est pauvre en carburant et qu'il faut augmenter la quantité de carburant. C'est ce qui est réalisé par le saut +P (Figure 2-B) suivi d'une pente positive de valeur I jusqu'au moment où Vamont dépasse VSamont, ce qui signifie que le mélange devient riche en carburant et qu'il faut en diminuer la quantité. Ceci est réalisé par un saut -P suivi d'une pente négative de valeur I.The output terminal of the comparator circuit 18, which provides a binary signal 1 or 0 , is connected to the input terminal of a first correction regulator 20 for richness regulation which is of the proportional type of gain P and integral of gain I The corrector circuit 20 supplies a signal KCL which has the form represented by the diagram of FIG. 2-B. It is this signal KCL which is supplied to the computer 12 to control the quantity of fuel to be injected. Thus, as soon as V upstream is less than VS upstream , this means that the mixture is poor in fuel and that the quantity of fuel must be increased. This is what is achieved by the jump + P (Figure 2-B) followed by a positive slope of value I until the moment when V upstream exceeds VS upstream , which means that the mixture becomes rich in fuel and that 'the quantity must be reduced. This is achieved by a jump -P followed by a negative slope of value I.

La valeur de correction KCL, fournie par le circuit correcteur 20, est modifiée par un deuxième circuit correcteur 22, qui introduit un terme correcteur KRICH, avant d'être appliquée à l'ordinateur 12. Ce terme correcteur KRICH est déterminé par un circuit 24 à partir d' un signal de sortie Vaval d'une deuxième sonde lambda 26 qui est disposée à la sortie du pot d'échappement catalytique 14. Ce circuit 24 est essentiellement constitué d'un comparateur 28 auquel sont appliqués le signal Vaval et un signal dit de consigne VCaval et d'un troisième circuit correcteur 30 auquel est appliqué le signal (Vaval - VCaval) fourni par le circuit comparateur 28. Le troisième circuit correcteur 30 est par exemple du type proportionnel et intégral et fournit le signal KRICH qui est appliqué au deuxième circuit correcteur 22.The correction value KCL, supplied by the corrector circuit 20, is modified by a second corrector circuit 22, which introduces a corrector term KRICH, before being applied to the computer 12. This corrector term KRICH is determined by a circuit 24 from an output signal V downstream of a second lambda probe 26 which is disposed at the outlet of the catalytic converter 14. This circuit 24 essentially consists of a comparator 28 to which the signal V downstream are applied and a so-called downstream VC setpoint signal and a third corrector circuit 30 to which the signal (V downstream - VC downstream ) supplied by the comparator circuit 28 is applied. The third corrector circuit 30 is for example of the proportional and integral type and provides the KRICH signal which is applied to the second correction circuit 22.

Le deuxième circuit correcteur 22 peut introduire la correction KRICH de différentes manières dont l'une sera expliquée en relation avec les diagrammes temporels des figures 3-A et 3-B. Ces diagrammes sont des tracés du signal KCL tel que modifié par le deuxième circuit correcteur 22, le signal KCL modifié étant appelé KCLm.The second corrector circuit 22 can introduce the KRICH correction in different ways, one of which will be explained in relation to the time diagrams of FIGS. 3-A and 3-B. These diagrams are plots of the signal KCL as modified by the second correcting circuit 22, the modified signal KCL being called KCL m .

Selon les diagrammes des figures 3-A et 3-B, le signal KRICH est appliqué lors des transitions pauvre-riche qui sont détectées par la première sonde, ce qui correspond au flanc descendant du signal KCL. Dans le cas où KRICH > 0 (enrichissement), le tracé de KCLm est celui de la figure 3-A tandis que dans le cas où KRICH < 0 (appauvrissement), le tracé de KCLm est celui de la figure 3-B.According to the diagrams of FIGS. 3-A and 3-B, the signal KRICH is applied during the lean-to-rich transitions which are detected by the first probe, which corresponds to the falling edge of the signal KCL. In the case where KRICH> 0 (enrichment), the course of KCL m is that of the figure 3-A while in the case where KRICH <0 (depletion), the course of KCL m is that of the figure 3-B .

Le dispositif de diagnostic de l'état de la sonde 16 comprend les éléments représentés à l'intérieur du rectangle 40 du schéma de la figure 1. Il s'agit d'un filtre 32 auquel est appliqué le signal de sortie KRICH du circuit correcteur 24 de la deuxième boucle ainsi qu'un circuit de calcul 34 de la période moyenne Tm du signal Vamont de la sonde amont 16. Les bornes de sortie du filtre 32 et du circuit de calcul 34 sont connectées à un circuit logique 36 qui déterminent l'état bon ou mauvais de la sonde 16 en fonction du signal de sortie KRICHF du filtre 32 et de la valeur Tm de la période moyenne du signal Vamont. Le signal binaire 1 ou 0 de l'état bon ou mauvais de la sonde 16 apparaít sur la borne de sortie DIAG du circuit logique 36.The device for diagnosing the state of the probe 16 comprises the elements represented inside the rectangle 40 of the diagram in FIG. 1. It is a filter 32 to which the output signal KRICH of the correcting circuit is applied. 24 of the second loop as well as a calculation circuit 34 of the average period T m of the upstream signal V of the upstream probe 16. The output terminals of the filter 32 and of the calculation circuit 34 are connected to a logic circuit 36 which determine the good or bad state of the probe 16 as a function of the output signal KRICH F of the filter 32 and of the value T m of the mean period of the upstream signal V. The binary signal 1 or 0 of the good or bad state of the probe 16 appears on the DIAG output terminal of the logic circuit 36.

Les informations qui sont fournies par l'ordinateur 12 sont les suivantes :

  • le régime moteur REG,
  • la pression du collecteur d'entrée P,
  • l'état de la première boucle : actif ou non,
  • l'état de la deuxième boucle : actif ou non.
The information which is provided by the computer 12 is as follows:
  • REG engine speed,
  • the pressure of the inlet manifold P,
  • the state of the first loop: active or not,
  • the state of the second loop: active or not.

Les circuits 32 et 34 traitent les informations énumérées ci-dessus et n'autorisent le filtrage et le calcul de Tm que si les conditions suivantes sont remplies simultanément :

  • REGmin < REG < REGmax
  • Pmin < P < Pmax
  • Première boucle à l'état actif,
  • Deuxième boucle à l'état actif,
Circuits 32 and 34 process the information listed above and only allow filtering and calculation of T m if the following conditions are met simultaneously:
  • REG min <REG <REG max
  • P min <P <P max
  • First loop in active state,
  • Second loop in active state,

REGmin et REGmax étant respectivement les valeurs minimale et maximale du régime moteur REG entre lesquelles le diagnostic peut être effectué ; Pmin et Pmax étant respectivement les valeurs minimale et maximale de la pression P du collecteur d'entrée entre lesquelles le diagnostic peut être effectué.REG min and REG max being respectively the minimum and maximum values of the REG engine speed between which the diagnosis can be carried out; P min and P max being respectively the minimum and maximum values of the pressure P of the inlet manifold between which the diagnosis can be carried out.

Le filtrage 32 réalise le calcul de la correction de richesse filtrée KRICHF selon l'algorithme de la figure 4. Ce calcul (étape 42) n'est effectué que si les conditions énumérées ci-dessus sont remplies (étape 44) et, dans ce cas, la richesse moyenne KRICHF est donnée par : KRICHF = KRICHF + K(KRICH - KRICHF) avec K un facteur de filtrage compris entre 0 et 1. Filtering 32 performs the calculation of the filtered richness correction KRICH F according to the algorithm of FIG. 4. This calculation (step 42) is only carried out if the conditions listed above are fulfilled (step 44) and, in in this case, the average wealth KRICH F is given by: KRICH F = KRICH F + K (KRICH - KRICH F ) with K a filtering factor between 0 and 1.

Le circuit de calcul 34 réalise le calcul de la période moyenne Tm selon l'algorithme de la figure 5. Ce calcul n'est effectué que si les conditions énumérées ci-dessus sont remplies (étape 50). Ce calcul de la période moyenne Tm consiste à compter les transitions de la tension Vamont d'une valeur inférieure au seuil VSamont à une valeur supérieure au seuil pendant un certain intervalle de temps TD et à diviser cet intervalle TD par le nombre N de transitions qui ont été détectées.The calculation circuit 34 performs the calculation of the average period T m according to the algorithm of FIG. 5. This calculation is only carried out if the conditions listed above are met (step 50). This calculation of the average period T m consists in counting the transitions of the upstream voltage V from a value below the threshold VS upstream to a value above the threshold during a certain time interval T D and in dividing this interval T D by the number N of transitions that have been detected.

L'algorithme de calcul de la période moyenne Tm de la première boucle est représenté par le diagramme de la figure 5. La première étape (50) consiste à vérifier si les conditions de diagnostic énumérées ci-dessus sont remplies. Si la réponse est "OUI", l'étape de comptage 52 du temps T est démarré, c'est-à-dire que le calcul de la période moyenne Tm commence. Dès que Vamont > VSamont (étape 54) et que l'état ancien ETATA de la sonde correspondant à Vamont < VSamont (ETATA = 0), l'étape 58 consiste à mémoriser ce nouvel état de la sonde par ETATA = 1. L'étape suivante 60 consiste à vérifier si une transition (TRANS = 1) a été déjà détectée auparavant ; en cas de réponse positive, cela signifie qu'une période s'est écoulée et le comptage 62 du nombre N de périodes est augmenté d'une unité. Par la même occasion, le compteur de la durée TD du diagnostic est augmenté de la valeur T du compteur 52. Le calcul 66 de la période moyenne Tm = TD/N est alors effectué avec les nouvelles valeurs de N et TD. L'étape suivante 68 remet à zéro le compteur 52 pour une nouvelle mesure T de la période en cours.The algorithm for calculating the average period T m of the first loop is represented by the diagram in FIG. 5. The first step (50) consists in checking whether the diagnostic conditions listed above are fulfilled. If the answer is "YES", the step of counting 52 of the time T is started, that is to say that the calculation of the average period T m begins. As soon as V upstream > VS upstream (step 54) and the old state STATE A of the probe corresponding to V upstream <VS upstream (STATE A = 0), step 58 consists in memorizing this new state of the probe by STATE A = 1. The next step 60 consists in checking whether a transition (TRANS = 1) has already been detected before; in the event of a positive response, this means that a period has elapsed and the count 62 of the number N of periods is increased by one. At the same time, the counter for the duration T D of the diagnosis is increased by the value T of the counter 52. The calculation 66 of the average period T m = T D / N is then carried out with the new values of N and T D . The next step 68 resets the counter 52 to zero for a new measurement T of the current period.

Pour que le calcul exposé ci-dessus puisse s'effectuer correctement, il faut que les états suivants soient présents : TRANS = 0, ETATA = 1 et T = 0, ce qui est réalisé par les étapes 72, 74 et 76 en cascade qui sont initialisées par la vérification (étape 50) que les conditions de diagnostic ne sont pas remplies, ce qui est toujours le cas au démarrage du moteur. Ainsi, pour la première mesure de la période, le compteur 52 est à la valeur 0 mais comme ETATA = 1, le calcul ne peut commencer tant que cet état ne passe pas à ETATA = 0 de manière à être certain de détecter une transition dans le sens voulu. Ceci est obtenu par la détection que Vamont < VSamont, auquel cas on passe à ETATA = 0 (étape 78).For the above calculation to be performed correctly, the following states must be present: TRANS = 0, STATUS AT = 1 and T = 0, which is achieved by steps 72, 74 and 76 in cascade which are initialized by verification (step 50) that the diagnostic conditions are not fulfilled, which is always the case when starting the engine. Thus, for the first measurement of the period, the counter 52 is at the value 0 but as STATE A = 1, the calculation cannot begin until this state does not pass to STATE A = 0 so as to be certain to detect a transition in the desired direction. This is obtained by detecting that V upstream <VS upstream , in which case we go to STATE A = 0 (step 78).

Au démarrage, TRANS = 0 de sorte que la condition de l'étape 60 n'est pas remplie et il ne peut pas y avoir de calcul de la période. S'il n'en est rien, l'étape 70 impose TRANS = 1, ce qui remet à zéro le compteur 52 par l'étape 68 et un nouveau comptage de T peut commencer.At startup, TRANS = 0 so that the condition of step 60 is not completed and there cannot be for calculating the period. If not, step 70 impose TRANS = 1, which resets counter 52 to zero by step 68 and a new count of T can to start.

Au démarrage, ETATA = 1 de sorte que la condition de l'étape 56 n'est pas remplie, auquel cas les étapes de l'algorithme sont recommencées.At startup, STATE A = 1 so that the condition of step 56 is not fulfilled, in which case the steps of the algorithm are repeated.

Le circuit logique 36 réalise les étapes de l'algorithme de la figure 7 de manière à comparer la valeur de KRICHF à des valeurs qui ont été déterminées comme étant des valeurs limites au-delà desquelles la sonde est considérée comme défectueuse et ceci pour une valeur déterminée Tm de la période moyenne.The logic circuit 36 performs the steps of the algorithm of FIG. 7 so as to compare the value of KRICH F with values which have been determined to be limit values beyond which the probe is considered to be defective and this for a determined value T m of the average period.

Ces valeurs limites, appelées KRICHmax pour une richesse trop élevée et KRICHmin pour un appauvrissement trop important, sont déterminées par une calibration en utilisant une série de sondes dont on connaít les caractéristiques de vieillissement.These limit values, called KRICH max for too high richness and KRICH min for too much depletion, are determined by a calibration using a series of probes whose aging characteristics are known.

Cette calibration permet de tracer les courbes KRICHmax et KRICHmin en fonction de la période Tm (figure 6), courbes qui peuvent être mémorisées sous la forme de deux tables cartographiques ou d'une seule table regroupant les deux. Ces tables cartographiques peuvent être réalisées par des mémoires qui sont adressées par la valeur de Tm, et les valeurs lues sont KRICHmax et KRICHmin pour la valeur de Tm (figure 6).This calibration makes it possible to plot the KRICH max and KRICH min curves as a function of the period T m (FIG. 6), curves which can be stored in the form of two cartographic tables or of a single table grouping the two. These cartographic tables can be produced by memories which are addressed by the value of T m , and the values read are KRICH max and KRICH min for the value of T m (FIG. 6).

La première étape 80 de l'algorithme de diagnostic consiste à comparer la durée TD du calcul de la période Tm à une durée minimale TDmin au-dessous de laquelle un diagnostic ne serait pas fiable. Si TD > TDmin, l'étape suivante 82 consiste à comparer KRICHF à une valeur KRICHmax qui est lue dans la table cartographique 88 donnant KRICHmax = S(Tm). Cette table est adressée par la valeur de Tm pour donner une valeur de KRICHmax qui est comparée à KRICHF. Si la condition n'est pas vérifiée, la sonde est considérée comme défectueuse (étape 92).The first step 80 of the diagnostic algorithm consists in comparing the duration T D of the calculation of the period T m with a minimum duration T Dmin below which a diagnosis would not be reliable. If T D > T Dmin , the next step 82 consists in comparing KRICH F with a value KRICH max which is read in the cartographic table 88 giving KRICH max = S (T m ). This table is addressed by the value of T m to give a value of KRICH max which is compared to KRICH F. If the condition is not checked, the probe is considered to be defective (step 92).

Si la condition est vérifiée, l'étape suivante 84 est de comparer KRICHF à la valeur de KRICHmin pour Tm telle que lue dans la table 86 dans laquelle sont enregistrées les valeurs de la courbe KRICHmin = S(Tm). Si la condition KRICH > KRICHmin n'est pas vérifiée, la sonde est considérée comme défectueuse (étape 92) avec DIAG = 0. Dans le cas contraire, la sonde est considérée comme correcte (étape 90) avec DIAG = 1.If the condition is satisfied, the next step 84 is to compare KRICH F with the value of KRICH min for T m as read in table 86 in which the values of the curve KRICH min = S (T m ) are recorded. If the condition KRICH> KRICH min is not checked, the probe is considered to be defective (step 92) with DIAG = 0. Otherwise, the probe is considered to be correct (step 90) with DIAG = 1.

Dès que la sonde est considérée comme correcte ou défectueuse, le diagnostic est terminé (étape 94) et un nouveau diagnostic peut être lancé pour obtenir une nouvelle valeur de KRICHF et de Tm.As soon as the probe is considered to be correct or defective, the diagnosis is complete (step 94) and a new diagnosis can be launched to obtain a new value of KRICH F and of T m .

Avec les courbes de la figure 6 qui sont mises sous la forme de tables et en mettant en oeuvre l'algorithme de la figure 7, les sondes qui sont considérées comme mauvaises (DIAG = 0) sont dans la partie hachurée à l'extérieur des deux courbes, les sondes qui sont considérées comme bonnes (DIAG = 1) correspondent à la surface à l'intérieur des courbes.With the curves of figure 6 which are placed under the form of tables and by implementing the algorithm of Figure 7, the probes that are considered to be bad (DIAG = 0) are in the hatched part at the outside of the two curves, the probes that are considered good (DIAG = 1) correspond to the surface inside the curves.

Au lieu des deux courbes de la figure 6, il est possible de se limiter à choisir des seuils fixes pour KRICH'max, KRICH'min et T'max et il n'est donc plus nécessaire d'avoir deux tables cartographiques. Dans ce cas simplifié, la valeur de KRICHF est comparée aux deux seuils choisis tandis que la valeur Tm de la valeur moyenne est comparée au seuil T'max. Si KRICHF est supérieure à KRICH'max, ou inférieure à KRICH'min ou supérieure à T'max, la sonde est considérée comme défectueuse. Dans le cas contraire, la sonde est considérée comme bonne.Instead of the two curves in Figure 6, it is possible to limit oneself to choosing fixed thresholds for KRICH ' max , KRICH' min and T ' max and it is therefore no longer necessary to have two cartographic tables. In this simplified case, the value of KRICH F is compared with the two selected thresholds while the value T m of the average value is compared with the threshold T ' max . If KRICH F is greater than KRICH ' max , or less than KRICH' min or greater than T ' max , the probe is considered to be defective. Otherwise, the probe is considered good.

L'algorithme de la figure 7 peut être réalisé sous la forme d'un logiciel ou sous celle de circuits électroniques dans lesquels les étapes de comparaison 80, 82 et 84 seraient réalisées par des comparateurs de nombres.The algorithm of Figure 7 can be performed under the as software or as circuits electronics in which the comparison steps 80, 82 and 84 would be carried out by comparators of numbers.

Claims (8)

  1. A diagnostic apparatus for the state of a non-linear sensor (16) disposed upstream of a catalytic converter (14) associated with an internal combustion engine (10) of the type involving injection controlled by an electronic computer (12), said engine comprising a first control loop including said non-linear sensor (16) for supplying the computer (12) with a first correction signal (KCL) for the amount of fuel injected and a second control loop including a second non-linear sensor (26) disposed downstream of said catalytic converter (14) to supply a second correction signal (KRICH) for the amount of fuel injected, the diagnostic apparatus being characterised in that it comprises:
    a filter circuit (32) to which the second correction signal (KRICH) is applied to supply a filtered signal (KRICHF),
    a measuring circuit (34) to which the output signal (Vupstream) of the upstream sensor is applied to determine the mean value (Tm) of the correction period of the first control loop, and
    a logic circuit (36) for determining the good or defective state (DIAG) of the upstream sensor (16) in dependence on the values of the filtered signal (KRICHF) and the mean period (Tm).
  2. A diagnostic apparatus according to claim 1 characterised in that the filter circuit (32) implements first-order filtering.
  3. A diagnostic apparatus according to claim 1 or claim 2 characterised in that the filter circuit (32) is of digital type.
  4. A diagnostic apparatus according to one of preceding claims 1 to 3 characterised in that the circuit (34) for calculating the mean value (Tm) of the correction period of the first control loop is of the digital type.
  5. A diagnostic apparatus according to any one of preceding claims 1 to 4 characterised in that the logic circuit (36) comprises three comparators of which the first compares the value of the filtered signal (KRICHF) to a maximum value (KRICHmax) in a first comparator, the second the value of the filtered signal (KRICHF) to a minimum value (KRICHmin) and the third the value of the mean period to a maximum value Tmax, the upstream sensor (16) being considered as defective when the value of the filtered signal (KRICHF) is higher than the maximum value (KRICHmax) or lower than the minimum value (KRICHmin) or higher than the maximum value (Tmax) of the mean period.
  6. A diagnostic apparatus according to claim 5 characterised in that the logic circuit (36) comprises at least one table or memory in which are recorded the maximum and minimum values (KRICHmax and KRICHmin respectively) of the filtered signal (KRICHF) in dependence on the value of the mean period (Tm) and two comparators of which the first compares the value of the filtered signal (KRICHF) to a maximum value (KRICHmax) which is read in the table and the second the value of the filtered signal (KRICHF) to a minimum value (KRICHmin) which is read in the table. reading in the table being implemented by means of the mean period (Tm).
  7. A diagnostic process for the state of a non-linear sensor (16) disposed upstream of a catalytic converter associated with an internal combustion engine (10) of the type involving injection controlled by an electronic computer (12), said engine comprising a first control loop including said non-linear sensor (16) for supplying the computer (12) with a first correction signal (KCL) for the amount of fuel injected and a second control loop including a second non-linear sensor (26) disposed downstream of said catalytic converter (14) to supply a second correction signal (KRICH) for the amount of fuel injected, the diagnostic process being characterised in that it comprises the following steps:
    filtration (32) of the second correction signal (KRICH) to obtain a filtered signal (KRICHF),
    calculation (34) of the mean value (Tm) of the period of the output signal (Vupstream) of the upstream sensor (16), and
    comparison of said filtered signal (KRICHF) to two maximum and minimum values (KRICHmax and KRICHmin respectively) to determine the correct or defective state (DIAG) of said upstream sensor (16) according to whether the filtered signal (KRICHF) is respectively within the limits defined by the maximum and minimum values or outside said limits for the value of the mean period (Tm).
  8. A diagnostic process according to claim 7 characterised in that it further comprises the following steps:
    calibration to determine the maximum and minimum values (KRICHmax and KRICHmin respectively) for a plurality of values of the mean period (Tm),
    recording of said maximum and minimum values and values of the mean period (Tm) in a memory addressable by its content, and
    reading of said memory by means of the mean value (Tm) of the period to obtain the maximum and minimum values (KRICHmax and KRICHmin respectively).
EP96934934A 1995-10-18 1996-10-18 Device and method for diagnosing the condition of a probe upstream from a catalytic converter Expired - Lifetime EP0856098B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9512238 1995-10-18
FR9512238A FR2740173B1 (en) 1995-10-18 1995-10-18 DEVICE AND METHOD FOR DIAGNOSING THE CONDITION OF A PROBE PROVIDED UPSTREAM OF THE CATALYTIC POT
PCT/FR1996/001631 WO1997014876A1 (en) 1995-10-18 1996-10-18 Device and method for diagnosing the condition of a probe upstream from a catalytic converter

Publications (2)

Publication Number Publication Date
EP0856098A1 EP0856098A1 (en) 1998-08-05
EP0856098B1 true EP0856098B1 (en) 1999-12-22

Family

ID=9483660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96934934A Expired - Lifetime EP0856098B1 (en) 1995-10-18 1996-10-18 Device and method for diagnosing the condition of a probe upstream from a catalytic converter

Country Status (7)

Country Link
US (1) US6192310B1 (en)
EP (1) EP0856098B1 (en)
JP (1) JP3993891B2 (en)
KR (1) KR100425426B1 (en)
DE (1) DE69605816T2 (en)
FR (1) FR2740173B1 (en)
WO (1) WO1997014876A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769985B1 (en) * 1997-10-17 1999-12-31 Renault METHOD AND SYSTEM FOR MONITORING THE OPERATION AND AGING OF A LINEAR OXYGEN SENSOR
US6311680B1 (en) 2000-03-21 2001-11-06 Ford Global Technologies, Inc. Active adaptive bias for closed loop air/fuel control system
DE10128969C1 (en) * 2001-06-15 2002-12-12 Audi Ag Method for diagnosing guide probe fitted downstream from catalytic converter in system for controlling engine, involves detecting oxygen content in exhaust system for an internal combustion engine.
JP4802116B2 (en) * 2007-02-21 2011-10-26 日本特殊陶業株式会社 Gas sensor abnormality diagnosis method, gas sensor abnormality diagnosis device
JP4874918B2 (en) * 2007-10-01 2012-02-15 日本特殊陶業株式会社 Gas sensor abnormality diagnosis method, gas sensor abnormality diagnosis device
US9606160B2 (en) * 2014-03-05 2017-03-28 GM Global Technology Operations LLC Detection of stuck in range sensor and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747265A (en) * 1985-12-23 1988-05-31 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
DE4125154C2 (en) * 1991-07-30 2001-02-22 Bosch Gmbh Robert Method and device for lambda probe monitoring in an internal combustion engine
DE4139561A1 (en) * 1991-11-30 1993-06-03 Bosch Gmbh Robert Monitoring ageing state of oxygen probe connected before catalytic converter for combustion engine -
US5337555A (en) * 1991-12-13 1994-08-16 Mazda Motor Corporation Failure detection system for air-fuel ratio control system
JP3303981B2 (en) * 1991-12-20 2002-07-22 株式会社日立製作所 Diagnosis device for engine exhaust gas purification device
JP2978960B2 (en) * 1992-07-31 1999-11-15 本田技研工業株式会社 Oxygen sensor deterioration detection device for internal combustion engine
DE4331153C2 (en) * 1992-09-26 2001-02-01 Volkswagen Ag Method for obtaining error-specific evaluation criteria of an exhaust gas catalytic converter and a control lambda probe
US5656765A (en) * 1995-06-28 1997-08-12 General Motors Corporation Air/fuel ratio control diagnostic

Also Published As

Publication number Publication date
KR19990064350A (en) 1999-07-26
US6192310B1 (en) 2001-02-20
FR2740173A1 (en) 1997-04-25
DE69605816T2 (en) 2000-07-27
FR2740173B1 (en) 1997-12-05
DE69605816D1 (en) 2000-01-27
JP2000508035A (en) 2000-06-27
WO1997014876A1 (en) 1997-04-24
JP3993891B2 (en) 2007-10-17
KR100425426B1 (en) 2004-07-15
EP0856098A1 (en) 1998-08-05

Similar Documents

Publication Publication Date Title
FR2929650A1 (en) METHOD AND DEVICE FOR ADAPTING A DYNAMIC MODEL OF AN EXHAUST GAS PROBE.
EP1568863A1 (en) Method to diagnose a catalyst for exhaust gases of an internal engine and a vehicle using said method
FR2857410A1 (en) SYSTEM FOR MONITORING COMBUSTION NOISE OF A DIESEL ENGINE OF A MOTOR VEHICLE
EP1766213A1 (en) System for evaluating the charge state of an exhaust line depollution means
FR2767198A1 (en) METHOD FOR CHECKING THE OPERATING CAPACITY OF A LAMBDA PROBE
EP0856098B1 (en) Device and method for diagnosing the condition of a probe upstream from a catalytic converter
FR2780447A1 (en) PROCEDURE FOR CORRECTING THE DURATION OF INJECTION IN AN INTERNAL COMBUSTION ENGINE WITH SECONDARY AIR SYSTEM
FR2871849A1 (en) METHOD AND DEVICE FOR MANAGING THE OPERATION OF A NITROGEN OXIDE TRAP AND DIAGNOSING ITS AGING CONDITION
WO1999043939A1 (en) Method and device for fast automatic adaptation of richness for internal combustion engine
EP2427643A1 (en) Method and device for diagnosing the operational state of a fuel supply system of an automobile internal combustion engine
FR2864145A1 (en) Exhaust gas treatment system e.g. particle filter, presence determining method for motor vehicle, involves determining absence of exhaust gas treatment system if measured time period is less than threshold time period
FR2927174A1 (en) METHOD FOR DETECTING ELECTRIC MICROCOUPURES AND MANAGING THE OPERATION OF AN ENGINE
WO2022018332A1 (en) Method for correcting a richness measurement drift
EP0856099B1 (en) Dual control loop system and method for internal combustion engines
EP3511543B1 (en) Method for estimating the ageing of a catalyst for a heat engine
EP0909888B1 (en) Method for monitoring the operability and ageing of a linear oxygen sensor
EP3008315B1 (en) Method for diagnosing the operating condition of fuel injectors in an internal combustion engine, internal combustion engine and motor vehicle using such a method
FR2907169A1 (en) SYSTEM AND METHOD FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE WITH COMPENSATION OF DERIVATIVES AND DISPERSIONS OF THE ADJUSTED AIR FLOW MEASUREMENT
FR2840356A1 (en) Method of determining the parameters of an exhaust gas purification system containing at least one NOx storage catalyst and associated with an internal combustion engine
FR2851788A1 (en) METHOD FOR DETERMINING THE GAIN OF A FUEL INJECTOR
FR3096085A1 (en) Lambda probe control method
WO2022084067A1 (en) Calculator for diagnosing fouling of a vehicle probe
FR2755185A1 (en) DEVICE FOR CONTROLLING THE OPERATION OF A DIESEL ENGINE IN PARTICULAR OF A MOTOR VEHICLE
EP2650516A1 (en) Method for estimating the fuel-to-air ratio in an internal combustion engine of a motor vehicle
WO2021052808A1 (en) Method for adjusting richness in a controlled-ignition internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19991222

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991222

REF Corresponds to:

Ref document number: 69605816

Country of ref document: DE

Date of ref document: 20000127

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19991222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69605816

Country of ref document: DE

Effective date: 20130501