EP0854389B1 - Process for the production of a coating of molecular thickness on a substrate - Google Patents

Process for the production of a coating of molecular thickness on a substrate Download PDF

Info

Publication number
EP0854389B1
EP0854389B1 EP98100274A EP98100274A EP0854389B1 EP 0854389 B1 EP0854389 B1 EP 0854389B1 EP 98100274 A EP98100274 A EP 98100274A EP 98100274 A EP98100274 A EP 98100274A EP 0854389 B1 EP0854389 B1 EP 0854389B1
Authority
EP
European Patent Office
Prior art keywords
substrate
group
compound
reactive
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98100274A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0854389A1 (en
Inventor
Alain Carre
William Birch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9700488A external-priority patent/FR2758480B1/fr
Application filed by Corning Inc filed Critical Corning Inc
Publication of EP0854389A1 publication Critical patent/EP0854389A1/en
Application granted granted Critical
Publication of EP0854389B1 publication Critical patent/EP0854389B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • B05D1/283Transferring monomolecular layers or solutions of molecules adapted for forming monomolecular layers from carrying elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/003Printing processes to produce particular kinds of printed work, e.g. patterns on optical devices, e.g. lens elements; for the production of optical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/161Coating processes; Apparatus therefor using a previously coated surface, e.g. by stamping or by transfer lamination
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett

Definitions

  • the invention relates to a process for the production of a coating of molecular thickness on a three-dimensional substrate by dry-transfer of a compound having an affinity for said substrate in order to selectively modify the properties of certain parts of which bear a coating produced by the process of the invention.
  • the silane is applied selectively using a stamping pad which bears a mask pattern in relief, produced by photolithography, so as to deposit a mask of silane on the surface treated. This surface is then subjected to chemical etching intended to attack the parts which are not protected by the silane mask.
  • the invention is thus aimed at providing such a process which is of great value for certain applications in which an accurate coating of the exposed parts is desired, in particular when one of the sizes of the exposed and/or recessed parts is less than 100 ⁇ m, preferably than 10 ⁇ m, even more preferably than 5 ⁇ m. Indeed, there is to date no known process, which is simple and economical to carry out, allowing the relatively high exposed parts of a substrate with three-dimensional microstructure to be coated selectively and with precision.
  • the invention thus relates to a process for the production of a coating of molecular thickness on a three-dimensional substrate by dry-transfer of a compound having an affinity for said substrate, wherein a surface of a transfer element is brought in contact with said substrate, said surface of said transfer element being at least partly impregnated with said compound, characterized in that a transfer element whose impregnated surface is flat and uniformly impregnated is placed in contact with a substrate containing relatively high exposed parts and relatively low recessed parts, so as to selectively apply the compound/coating onto the relatively high exposed parts of the substrate, leaving the relatively low recessed parts essentially free of compound.
  • uniformly impregnated surface it is meant that the surface of the transfer element is substantially uniformly impregnated without local discontinuities, in contrast with what would be the case if said surface was impregnated in a pattern.
  • the process of the invention may typically be carried out by performing the following steps:
  • the transfer element or stamping pad used in the process of invention may be prepared as follows:
  • the expression “compound having an affinity for the substrate” it is meant a compound which is capable of bonding to the substrate surface by any mechanism such as, by way of non-limiting examples: by chemical bonding, by attraction of opposite electrical charges, or by hydrogen bonding.
  • compound it is meant any kind of chemical molecules, including polymers and proteins.
  • the compound used in the present invention is a compound having a functional group that reacts with groups present on the substrate surface.
  • the invention has a very broad scope and can be practiced with various compounds and substrates, it will be described more particularly in connection with a substrate bearing a hydroxyl group on its surface and with a compound having a functional group reactive with the hydroxyl groups of the substrate and/or hydrolyzable into a group reaction with the hydroxyl group of the substrate, and forming a linkage bonding said compound to said substrate.
  • the compound includes groups of two different types; the second type of functional groups not being reactive with a hydroxyl group, in contrast with the first type.
  • the compound having a functional group reactive with the hydroxyl group of the substrate and/or hydrolyzable into a group reactive with said hydroxyl group can be, in particular, a silane.
  • the transfer element may be made of any solid or solid-like material capable of undergoing swelling under the action of an organic solvent.
  • This may be, for example, a rubber such as a silicone, polyisoprene, polybutadiene or polychloroprene rubber; butadienestyrene, butadiene-acrylonitrile, ethylene-propylene or ethylene-vinyl acetate elastomeric copolymers; butyl rubber, polysulfide rubber, etc.
  • a silicone rubber is preferred at the present time.
  • the organic solvent may be any solvent capable of dissolving the compound and of exerting a swelling effect on the material of the transfer element. Mention may be made, for example, of liquid alkanes such as hexane, heptane, octane, decane and hexadecane; halogenated alkanes such as chloroform, aromatic compounds such as benzene or toluene; petroleum fractions such as white spirit, diesel oil, gasoline and other solvents such as tetrahydrofuran, N-methylpyrrolidone, etc.
  • liquid alkanes such as hexane, heptane, octane, decane and hexadecane
  • halogenated alkanes such as chloroform, aromatic compounds such as benzene or toluene
  • petroleum fractions such as white spirit, diesel oil, gasoline and other solvents such as tetrahydrofuran, N-methylpyrrolidone, etc.
  • organic solvents may be suitable for the invention and a simple routine test, which is within the scope of a person skilled in the art, will make it possible to check the usefulness of a given solvent.
  • the organic solvent does not need to be a good solvent for the compound since only very dilute compound solutions are usually, but not always, used, for example millimolar solutions. The reason for this is that the amount of compound required to form a self-assembled monomolecular layer is very low, of the order of 1 g of compound per 1,000 m 2 of substrate surface. It therefore suffices to impregnate the transfer element with small amounts of compound and, for this, very dilute compound solutions are sufficient.
  • the compound may contain one or more functional groups of identical or different nature, the only condition being that at least one of these groups is reactive, and/or is hydrolyzable into a group which is reactive, with the hydroxyl groups present on the surface of the substrate.
  • R may be an alkyl, partially or totally fluorinated alkyl, alkenyl or substituted or unsubstituted aryl radical, an expoxide group or a radical containing the epoxide group, an acrylyl group or a radical containing the acrylyl group, a methacrylyl group or a radical containing the methacrylyl group, a mercaptan group or a radical containing the mercaptan group, inter alia.
  • X may be, for example, a chlorine atom or an alkoxy group, such as methoxy and ethoxy, inter alia.
  • silanes which can be used in the invention are, in particular, octadecyltrichlorosilane, phenyltrichlorosilane, phenyltriethoxysilane, perfluorodecyltrichlorosilane, triethoxyvinylsilane, mercaptopropyltrimethoxysilane and phenyltriethoxysilane, to mention only a few.
  • silane contains three hydrolyzable groups, such as halo or alkoxy groups, in its molecule, one of them reacts with an -OH group of the substrate and the other two are capable of forming, by hydrolysis and condensation, siloxane crosslinks between neighboring molecules in the coating. It should be noted, however, that it is thought that these crosslinks do not extend continuously throughout the coating but rather that a plurality of islets are formed in which the molecules are bonded to each other.
  • hydrolyzable groups such as halo or alkoxy groups
  • the substrate may be any material whose surface bears hydroxyl groups. Mention may be made, for example, of glass, silica, metals, or polymers whose surface has been modified to create hydroxyl groups thereon, for example by a chemical oxidizing treatment or with a plasma, or alternatively coated with a layer of glass, silica or metal by techniques such as sputtering, chemical deposition in the vapor phase, or sol gel.
  • the substrate may have varied three-dimensional forms, including complex forms such as a network of pins perpendicular to a support or a grid in relief. They may also bear a pattern produced, for example, by molding, etching through a mask, photolithography, x-ray lithography, etc. Also, the surface of the substrate may be smooth, coarse, modeled or porous.
  • the surface of the transfer element must be clean when step (c) is carried out. Similarly, the substrate to be treated must be clean at the moment of transfer. Many cleaning processes are known in the art and described in the published literature.
  • the surface of the transfer element may be cleaned, for example, by repeated ultrasonication in a bath of ethanol, whereas the substrate may be cleaned in an acidic oxidizing bath such as a sulfochromic bath. Another useful process, described in French patent application No.
  • 96/10627 filed by the Applicant on August 30, 1996 consists of immersing the article to be cleaned in concentrated aqueous hydrogen peroxide solution, for example a solution at a concentration of 30-50% by weight, which is destabilized or decomposed with a suitable catalyst (ferric chloride for example) to generate nascent oxygen which oxidizes the organic contaminants, and then in rinsing and drying the article.
  • a suitable catalyst ferric chloride for example
  • Yet another cleaning process, also described in the above-mentioned application consists of heating the article to be cleaned at a temperature of at least 300°C for a few tens of minutes. The latter process can, obviously, only be applied to articles which can withstand the treatment temperature. If the cleaned article has to be stored before the transfer operation, it is convenient to protect it from soiling, for example, with a protective film or layer.
  • the compound solution may be applied to the transfer element (also referred to as the stamping pad hereinbelow) in various ways, for example by rubbing an absorbent paper soaked with the solution onto the transfer element, by rubbing a porous material, such as a sponge, soaked with the solution onto the transfer element, by applying the solution using a doctor blade or an airblade, a sprayer or a coating roller.
  • a porous material such as a sponge
  • the process of the invention may be used to impart to the relatively high exposed parts of the surface of the substrate, containing hydroxyl groups, at least one property chosen from the group consisting of the properties of wettability with water (hydrophillie), nonwettability (hydrophobie), adhesion or anti-adhesion to a material or to particles, low friction, resistance to scratching, protection against contamination, capacity to bond chemically with other molecules, adhesion or anti-adhesion to proteins or biological cells, catalytic properties, and properties of biocompatibility, inter alia; the properties imparted depending, obviously, on the specific compound used and, where appropriate, on the other molecules which will be bonded to it thereafter.
  • nonwettable surfaces is a significant embodiment of the present invention.
  • the nonwettability may be obtained, in particular, using amphophilic silanes, such as, for example, an alkyltrichlorosilane, for instance octadecyltrichlorosilane; a perfluoroalkyltrichlorosilane for instance perfluorodecyltrichlorosilane; or on aryltrichlorosilane, for instance phenyltrichlorosilane.
  • amphophilic silanes such as, for example, an alkyltrichlorosilane, for instance octadecyltrichlorosilane; a perfluoroalkyltrichlorosilane for instance perfluorodecyltrichlorosilane; or on aryltrichlorosilane, for instance phenyltrichlorosilane.
  • microwell plates for cell cultures. These plates contain a plurality of microwells (relatively low recessed parts) formed in a glass plate and separated from each other by relatively high exposed parts. The transition between the wells and the surrounding parts may occur abruptly or, better still, be formed by intermediate zones with a curved profile, such as in the case of those sold under the brand name "Pixwell” by the Applicant.
  • the process of the present invention it is possible to form on the exposed upper separating zones and, possibly, on the high part of the intermediate zones of the plate, a coating of molecular thickness which makes these zones nonwettable with water while at the same time leaving the lower recessed zones (that is to say the microwells) and the low portion of the intermediate zones noncoated, by using a flat transfer element, for example one made of rubber, which, when pressed against the microwell plate, will transfer silane only onto the upper exposed zones of the plate surrounding and separating the microwells, and, where appropriate, an upper part of the intermediate transition zones.
  • a flat transfer element for example one made of rubber
  • the position of the boundary between the coated and noncoated zones may moreover be controlled by using, to form the transfer element, a more of less hard rubber and/or by applying a more or less large pressure to element during the transfer.
  • the silane deposited does not tend to migrate and a very sharp boundary is obtained between the coated zones and the noncoated zones.
  • An improved plate containing a plurality of microwells separated from each other by hydrophobic zones is thus obtained. Accordingly, when the plate is immersed vertically into an aqueous medium, the medium does not wet the coated zones and confines itself to the microwells.
  • Other applications of the invention are the production of a substrate capable of generating a controlled network of neurons, by using a three-dimensional network of wells connected by channels, the wells being intended to receive and grow cells, these cells propagating in the channels until they meet up and connect with each other.
  • the wells and channels are coated with a substance having affinity for the cells, whereas the upper parts separating the channels and surrounding the wells are coated with a hydrophobic coating by the process of the invention; this coating having no affinity for the cells.
  • the invention is also useful for the production of printing plates as described later.
  • Another class of compounds which can be used in the invention is that of thiols having the general formula R'-SH where R' is an alkoyl radical, for example, hexadecyl radical.
  • R' is an alkoyl radical, for example, hexadecyl radical.
  • This example describes the transfer of a silane onto a glass surface using a rubber stamping pad, in order to form a coating of molecular thickness which is chemically bonded to the glass surface and intended to impart properties of nonwettability with water to this surface.
  • the coated sheet was then placed horizontally in a chamber under vacuum and degassed for 3-5 hours. After degassing, the sheet coated with the degassed silicone composition was placed in an oven in order to cure the composition into an elastomer.
  • the heating program consisted in heating from 20 to 100°C for one hour and then in allowing the oven to cool to room temperature (about 2 hours).
  • the sheet bearing the cured layer was taken from the oven, cut at a distance of about 1 cm from the plastic edges (the layer was not suitably cured close to the edges), and the central part of the layer of silicone rubber was detached from the glass sheet and cut to the desired sizes for the transfer stamping pad, i.e. the size of the substrate.
  • the flat elastomer stamping pad was then rinsed in three successive baths of ethanol, with a 5 min. ultrasound treatment in each bath. After the final rinsing with ethanol, the stamping pad was dried with a jet of dry nitrogen and placed on a sheet of corrugated glass, with the side (referred to hereinbelow as side A), which had been in contact with the glass sheet, facing upwards (for reasons of cleanliness). The assembly was placed in an oven at 60°C for 30 minutes in order to dry the silicone elastomer stamping pad. After cooling to room temperature, the stamping pad was ready for the following operation, that is to say the impregnation of "inking" with the silane.
  • An inking solution was prepared by dissolving 50 microliters of octadecyltrichlorosilane (supplied by the company Fluorochem Ltd.) in 2 grams of hexane which had been dried beforehand using a molecular sieve. This solution, referred to hereinbelow as the "ink", should be used within 3 hours of preparation.
  • Side A of the stamping pad was then inked by covering it with a sheet of absorbent paper (Joseph paper, for example) folded into four, on which sheet were placed a few drops of ink. The folded sheet of absorbent paper was then rubbed on side A for about 10 seconds and was then removed. The stamping pad was left to dry in the air for about 20 minutes (drying time).
  • the coating obtained was chemically bonded to the "Pixwell” plate and was not soluble in most organic solvents and aqueous media, except for concentrated caustic soda solutions.
  • the plate was then immersed in a bath of aqueous polylysine solution. After removal from the bath, the plate was dried and examined.
  • the plate contained a coating of polylysine only on the walls of the microwells which had not been precoated. This polylysine coating is intended to impart a specific affinity for certain biological substances to the zones of the microwells. It should be noted that a coating of aminopropyltrichazisilane could be substituted for the polylysine coating.
  • Example 2 Following the general procedure of Example 1, except that the octadocyltrichlorosilane was replaced by phenyltrichlorosilane and the drying and printing times were 10 min. and 1 min. respectively, a coating was produced having a representation similar to that of the coating produced in Example 1.
  • alkoxysilanes were used, namely methacryloxypropyltrimethoxysilane (A 174 from Dow Corning), triethoxyvinylsilane, mercaptopropyltrimethoxysilane and phenyltriethoxysilane, to produce coating by a procedure similar to that of Example 1, except that the silane solution was prepared by adding 50 ml of silane to 2 g of a solution prepared by mixing 80 parts by weight of tetrahydrofuran and 10 parts by weight of aqueous 0.1 N hydrochloric acid solution, and then leaving to stand at room temperature for at least 10 hours so that the alkoxy groups are hydrolyzed into -OH groups.
  • methacryloxypropyltrimethoxysilane A 174 from Dow Corning
  • triethoxyvinylsilane mercaptopropyltrimethoxysilane
  • phenyltriethoxysilane phenyltriethoxysilane
  • the drying time was 45 min. and the printing time was 10 min.
  • the coatings obtained imparted to the substrates properties of wettability toward inks which can be polymerized by UV irradiation.
  • the dry-transfer of silane molecules is useful for improving the performance of an imaging plate for the printing of colored points by a typography process.
  • the printing shapes are in relief and during the step of inking of the typography plate, the ink sits at the top of the parts in relief representing the pattern to be printed.
  • the top of the parts in relief wettable with the ink the rest of the typography plate being made, in contrast, nonwettable by the ink.
  • the typography plate thus has two surfaces of different nature, one which is ink-wettable - the tope of the parts in relief, the other being nonwettable - bottom of the relief and side of the relief.
  • the ink naturally distributes itself at the tops of the printing zones.
  • the process described in the invention makes it possible to apply a coating of molecular thickness of octadecyltrichlorosilane (OTS) or of phenyltrichlorosilane (PTS), for example, only at the top of the printing parts of a typography plate intended to be inked with a solvent-free ink, which can be photopolymerized by UV rays, having a surface tension of 25-30 mN/m, and which is capable of wetting the OTS or PTS coating.
  • the rest of the plate is made nonwetting toward the ink by coating the plate by immersion into a solution of fluorodecyl-1H, 1II, 2H, 2H-trichlorosilane - (FDS).
  • the top of the printing parts consists of a coating of OTS or PTS, the rest being coated with FDS.
  • One of the functions of the OTS or PTS coating is also to prevent the grafting of the second nonwetting silane, the FDS, onto the top of the relief.
  • This method makes it possible to produce typography printing plates which have a printing pattern size of between 10 and a few hundred ⁇ m. Since the silanes used (OTS or PTS, FDS) have a high chemical affinity for silica, the technique is particularly suitable for imaging plates consisting of silica or coated with silica.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP98100274A 1997-01-17 1998-01-09 Process for the production of a coating of molecular thickness on a substrate Expired - Lifetime EP0854389B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9700488A FR2758480B1 (fr) 1997-01-17 1997-01-17 Procede de production d'un revetement d'epaisseur moleculaire sur un substrat tridimensionnel par transfert a sec d'un compose en vue de modifier selectivement les proprietes de certaines parties de la surface de ce substrat
FR9700488 1997-01-17
US3632497P 1997-01-29 1997-01-29
US36324P 1997-01-29

Publications (2)

Publication Number Publication Date
EP0854389A1 EP0854389A1 (en) 1998-07-22
EP0854389B1 true EP0854389B1 (en) 2001-08-22

Family

ID=26233264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98100274A Expired - Lifetime EP0854389B1 (en) 1997-01-17 1998-01-09 Process for the production of a coating of molecular thickness on a substrate

Country Status (5)

Country Link
US (1) US6020026A (ja)
EP (1) EP0854389B1 (ja)
JP (1) JPH10323609A (ja)
CN (1) CN1196281A (ja)
DE (1) DE69801382T2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777355B1 (fr) * 1998-04-10 2000-05-12 Bio Merieux Procede de fixation d'une molecule biologique sur la surface d'un support constitue de silice ou d'oxyde metallique
DE19917366A1 (de) * 1999-04-16 2000-10-19 Inst Neue Mat Gemein Gmbh Mit einer mikrostrukturierten Oberfläche versehene Substrate, Verfahren zu ihrer Herstellung und ihre Verwendung
US6653151B2 (en) * 1999-07-30 2003-11-25 Large Scale Proteomics Corporation Dry deposition of materials for microarrays using matrix displacement
US6485785B1 (en) 1999-08-31 2002-11-26 Matsushita Electric Industrial Co., Ltd. Coating film, and method and apparatus for producing the same
US6364456B1 (en) * 1999-12-22 2002-04-02 Eastman Kodak Company Replenishable coating for printhead nozzle plate
US6296344B1 (en) * 1999-12-22 2001-10-02 Eastman Kodak Company Method for replenishing coatings on printhead nozzle plate
US6783735B2 (en) * 2000-09-15 2004-08-31 Agfa-Gevaert Web material having wells for combinatorial applications
US20060029955A1 (en) * 2001-03-24 2006-02-09 Antonio Guia High-density ion transport measurement biochip devices and methods
US20040018301A1 (en) * 2002-07-26 2004-01-29 Ackerman John F. Process for improved inorganic polymerization
US20060002234A1 (en) * 2004-06-30 2006-01-05 Lobe Henry J Anti-biofouling seismic streamer casing and method of manufacture
JP5464784B2 (ja) * 2005-10-05 2014-04-09 日本曹達株式会社 基材をオゾン水又は過酸化水素水で洗浄する工程を含む、有機薄膜の製造方法
JP5168805B2 (ja) * 2006-03-20 2013-03-27 凸版印刷株式会社 凸版反転オフセット印刷用凸版およびその製造方法、あるいはそれを用いた印刷物製造方法
US7740940B2 (en) * 2006-11-15 2010-06-22 Aculon, Inc. Coated substrates, organometallic films and methods for applying organometallic films to substrates
JP5286266B2 (ja) * 2007-07-24 2013-09-11 日本曹達株式会社 有機薄膜の基材への作製方法
US20130170322A1 (en) * 2009-12-10 2013-07-04 Westerngeco L.L.C. Systems and methods for marine anti-fouling
US8741432B1 (en) * 2010-08-16 2014-06-03 The United States Of America As Represented By The Secretary Of The Air Force Fluoroalkylsilanated mesoporous metal oxide particles and methods of preparation thereof
US8580027B1 (en) 2010-08-16 2013-11-12 The United States Of America As Represented By The Secretary Of The Air Force Sprayed on superoleophobic surface formulations
WO2013027220A2 (en) * 2011-08-24 2013-02-28 Digiflex Ltd. Process for dry-coating of flexogarphic surfaces
CN102569506B (zh) * 2011-12-29 2014-06-18 广东爱康太阳能科技有限公司 一种采用硅烷掩膜制备太阳能电池金属电极的方法
US9857487B2 (en) 2012-10-01 2018-01-02 Westerngeco Llc Solid marine seismic streamers
CN105198234B (zh) * 2014-06-30 2020-03-03 法国圣戈班玻璃公司 膜层结构及其制备方法、车窗
US11111398B2 (en) 2017-01-11 2021-09-07 International Business Machines Corporation Subsurface modified silica materials
CN107908075A (zh) * 2017-12-14 2018-04-13 信利(惠州)智能显示有限公司 一种预设边框的涂胶方法
CN114341235A (zh) * 2019-06-19 2022-04-12 德州系统大学董事会 具有液体与固体排斥性的半液体表面
DE102019220017A1 (de) * 2019-12-18 2021-06-24 Robert Bosch Gesellschaft mit beschränkter Haftung Aufnahmeeinheit zum Aufnehmen eines Fluids, Verfahren und Vorrichtung zum Herstellen einer Aufnahmeeinheit, Verfahren und Vorrichtung zum Betreiben einer Aufnahmeeinheit und Aufnahmeeinrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224362A (en) * 1978-12-22 1980-09-23 Ramsauer Larry R Method of enhancing an embossed translucent flexible sheet material
US4343837A (en) * 1980-03-27 1982-08-10 Dbs, Inc. Tipper for embossed cards and removable cassette for use therewith
US4443499A (en) * 1981-01-26 1984-04-17 Rca Corporation Method of making a focusing color-selection structure for a CRT
US4933120A (en) * 1988-04-18 1990-06-12 American Bank Note Holographics, Inc. Combined process of printing and forming a hologram
JPH07122055B2 (ja) * 1989-11-17 1995-12-25 富士写真フイルム株式会社 ポリペプチド薄膜
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5718456A (en) * 1994-01-26 1998-02-17 Michael F. Detwiler, Jr. Method for verifying authenticity of sales record
EP0812434B1 (en) * 1995-03-01 2013-09-18 President and Fellows of Harvard College Microcontact printing on surfaces and derivative articles

Also Published As

Publication number Publication date
DE69801382D1 (de) 2001-09-27
US6020026A (en) 2000-02-01
EP0854389A1 (en) 1998-07-22
DE69801382T2 (de) 2002-05-23
CN1196281A (zh) 1998-10-21
JPH10323609A (ja) 1998-12-08

Similar Documents

Publication Publication Date Title
EP0854389B1 (en) Process for the production of a coating of molecular thickness on a substrate
US6518168B1 (en) Self-assembled monolayer directed patterning of surfaces
EP2527048B1 (de) Verfahren zum Herstellen dünner Schichten und entsprechende Schicht
CN1863853B (zh) 薄膜的沉积
EP1941075B1 (en) Polymeric organometallic films
EP2130878B1 (en) Double layer coating, its preparation and its use for rendering ultra water-repellent and antireflective the surfaces to which it is applied
US6673287B2 (en) Vapor phase surface modification of composite substrates to form a molecularly thin release layer
DE69304252T2 (de) Verfahren zur Herstellung eines chemisch adsorbierten Filmes
US20040231781A1 (en) Methods of creating patterns on substrates and articles of manufacture resulting therefrom
US20160032146A1 (en) Organic/inorganic transparent hybrid films and a process for producing the same
US20120107614A1 (en) Method of coating a substrate surface, and coated substrates prepared thereby
DE10100383A1 (de) Verfahren zur Aufbringung einer fluoralkylfunktionellen Organopolysiloxan-Beschichtung mit beständigen Wasser und Öl abweisenden Eigenschaften auf polymere Substrate
JP2009509026A5 (ja)
WO2008115530A2 (en) Polymer composition for preparing electronic devices by microcontact printing processes and products prepared by the processes
US5948476A (en) Method and apparatus for producing molecular film
KR20080058350A (ko) 오가노보란 아민 착물을 사용하는 주변 조건하의리소그래피 방법
EP3037267B1 (en) Method for the surface treatment of a semiconductor substrate
WO2019131872A1 (ja) ポリマーブラシ形成用基体及び該基体の製造方法並びに該方法に用いる前駆液
Kohli et al. Nanostructured crosslinkable micropatterns by amphiphilic dendrimer stamping
EP0783464A1 (de) Mischung zum behandeln von siliciumhaltigen substraten
EP3749623B1 (en) Process for modification of a solid surface
FR2758480A1 (fr) Procede de production d'un revetement d'epaisseur moleculaire sur un substrat tridimensionnel par transfert a sec d'un compose en vue de modifier selectivement les proprietes de certaines parties de la surface de ce substrat
JP3396951B2 (ja) 薄膜形成方法
WO2000026311A1 (fr) Solution pour former un film de revetement au silice, procede de production de cette solution, et film de revetement au silice et son procede de production
Tormen Microcontact printing techniques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981021

AKX Designation fees paid

Free format text: DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 19990923

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 69801382

Country of ref document: DE

Date of ref document: 20010927

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051216

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060228

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070109

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070519

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060104

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080109