EP0853576B1 - Boat powered by means of a kite via a hinged arm - Google Patents

Boat powered by means of a kite via a hinged arm Download PDF

Info

Publication number
EP0853576B1
EP0853576B1 EP96934979A EP96934979A EP0853576B1 EP 0853576 B1 EP0853576 B1 EP 0853576B1 EP 96934979 A EP96934979 A EP 96934979A EP 96934979 A EP96934979 A EP 96934979A EP 0853576 B1 EP0853576 B1 EP 0853576B1
Authority
EP
European Patent Office
Prior art keywords
arm
kite
point
boat
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96934979A
Other languages
German (de)
French (fr)
Other versions
EP0853576A1 (en
Inventor
Pierre Chatelain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHATELAIN, PIERRE
DAL MOLIN DENIS
Original Assignee
Dal Molin Denis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dal Molin Denis filed Critical Dal Molin Denis
Publication of EP0853576A1 publication Critical patent/EP0853576A1/en
Application granted granted Critical
Publication of EP0853576B1 publication Critical patent/EP0853576B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/069Kite-sails for vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/069Kite-sails for vessels
    • B63H9/072Control arrangements, e.g. for launching or recovery

Definitions

  • the present invention relates to a ship using for move the traction of a kite.
  • wind powered ships use sails, which generally generates, on the one hand a roll torque due to height of center of thrust vélique and to the direction of this thrust on the other hand a couple of variable yaw due to the displacement of the velical center of thrust in depending on the speed of the ship.
  • the object of the ship according to the invention is to reduce the roll and yaw couples, using a kite at the places sails and an articulated arm as rigging, tilting and by orienting the articulated arm so as to approach the center of drift of the ship, the line representing geometrically the traction of the kite.
  • the vessel towed by kite includes a arm articulated by a first end with the ship, the point of traction of the connecting wires between the kite and the ship constituting the second end of the arm, the kite not being connected to the ship only by connecting wires comprising means for controlling the inclination of the arm allowing its lowering in relation to the direction of the wires liaison, characterized in that it comprises a means for controlling the azimuthal orientation of the arm by relation to the direction of the connecting wires, the connecting wires all passing through the single point of traction which constitutes the second end of the arm.
  • the ship can also have other characteristics separately or in combination.
  • the articulation of the arm is constituted by a rigid intermediate piece comprising two axes of rotation perpendicular, the first axis, vertical, serving as a link with the ship, the bound end of the arm adapting to the second axis, the arm and the vertical axis of rotation being coplanar.
  • the means control arm tilting favorably includes a rope adjustable length connecting a point on the arm to a point on the workpiece intermediate or at a mobile point on the ship, or it includes a jack connecting a point of the arm to a point of the intermediate piece or at a mobile point on the ship.
  • control means of the arm in orientation includes two ropes of adjustable lengths, the first line connecting the arm to a point on the ship located in front of the articulated end of the arm, the second cord connecting the arm indifferently to a point on the ship located aft left of the articulated end of the arm or at a point at the rear right of the articulated end of the arm.
  • control means of the azimuthal orientation of the arm is a means acting directly on the intermediate part to rotate it around its axis vertical.
  • the vessel includes a float located at the free end of the arm.
  • the kite is controlled by its three connecting wires, the first two allowing to rotate the kite, the third wire acting on the incidence of the kite.
  • a pulley is favorably attached to the arm, pulley by which passes a wire whose two strands on either side of the pulley constitute the first two wires, as well as a mechanism located on the arm to adjust the length of the third wire.
  • the vessel may favorably include a system presenting three winding hubs, one for each of the three connecting wires, this system being provided with three functions which can be activated independently each other, the first function allowing to wind or simultaneously unwind the three wires of the same variable length, the second function allowing to unwind (respectively to wrap) the first wire and to wind (respectively to unwind) simultaneously the second wire of the same variable length, the third function to unwind or wrap the third wire of variable length.
  • the ship includes a device from which all the connecting wires come and go out the same direction, this device being able to slide in the direction corresponding and being subjected to the pull of a rope in the direction opposite the connecting wires, this cable being connected to the arm so that raising the arm causes the rope to pull.
  • the ship includes a device articulated at the second end of the arm and profiled way to create an upward force when this second end of the arm is submerged, the ship under way.
  • the vessel may also include ballast capable of alternately be filled with the water surrounding the vessel or emptied, the ship under way.
  • the arm is adjustable in length.
  • a kite comprises a means of control of the inclination 3 of the arm 1 allowing its lowering by relative to the direction 10 of the connecting wires 6, a control means the azimuthal orientation 4 of the arm 1 relative to the direction 10 connecting wires 6, the connecting wires 6 all passing through the single traction point which constitutes the second end 5 of the arm 1.
  • the arm 1 is, from the geometric point of view, assimilated to the segment formed by its first end 2, called end linked, and its second end 5, called the free end. Thereby, the free end 5 corresponds to the point of traction.
  • Point of traction 5 can be materialized, for example, by a pulley multiple, articulated on arm 1, through which the wires of link 6 towards the kite.
  • Direction 10 of the sons of link 6 is understood as the mean direction of the link wires 6, but also as the line of the same direction passing through the point of traction 5.
  • the vertical of the ship being identified by axis 9, the inclination 3 of the arm 1 is the angle between this axis 9 and the arm 1.
  • the longitudinal axis 7 and the transverse axis 8 of the ship being defined and both horizontal, the orientation 4 of the arm 1 is the angle between the projection of the arm 1 on the horizontal plane, and the longitudinal axis 7.
  • the three axes 7, 8, 9 are considered to be vectors, not lines of physical space. Tilt 3 and the orientation 4 of the arm 1 are controlled by means of any system adapted, non-limiting examples of which are presented below.
  • Figure 2 illustrates the value of the the inclination 3 of the arm 1. Indeed, this command allows, in tilting the arm 1, to lower its free end 5 which constitutes the point of traction of the kite, and therefore also the line of traction 10 of the kite. Sufficient lowering of the traction point 5, as in Figure 2, then allows to pass the right of traction 10 near the center of drift 11 of the projecting vessel on a vertical plane transverse to the ship, therefore to reduce or even to cancel the roll torque on the ship.
  • the point tension 5 when the kite is inclined so to create a horizontal component of traction on the ship, the point tension 5 must be capable of being lowered sufficiently to, as saw it previously, pass the traction line 10 close enough of the center of drift 11 so as to cause only a couple of rolls weak or even zero.
  • the required tilt 3 depends on parameters like the kite site, arm length 1, kinematics of the articulation of arm 1, the relative positions of the end articulated 2 of the arm 1 and of the center of drift 11.
  • the tilt 3 command arm 1 must, of course, be dimensioned structurally to allow lowering of arm 1 despite pulling in opposite direction exerted by the kite on the free end 5, on the other hand it the arm 3 tilt control 3 does not have to be designed also to raise arm 1. Indeed, we saw that it was the lowering of the free end 5 of the arm 1 which was the condition reduction or even cancellation of the roll torque. In these conditions, ropes pulling arm 1 down may be used to set a minimum tilt 3, as this is carried out in certain preferred embodiments indicated below.
  • a tilt 3 control allowing the raising of the arm 1, such as a jack, can be useful if you want to use the arm 1 to straighten the vessel, if it has capsized, using an optionally removable or inflatable float provided, for example, at the free end 5.
  • Figure 3 illustrates the value of the orientation 4 of arm 1. Indeed, this command makes it possible to make negligible, if not zero, the yaw torque exerted by the kite on the ship, whatever the speed of the latter, simply by orienting arm 1 so that line 10 is in the same plane vertical as the center of drift 11, as in Figure 3.
  • a additional use of the orientation control 4 can consist in modifying the orientation 4 of the arm 1 from the value which cancels the yaw couple, so as to create a yaw couple, negative or positive, which could cause the vessel to turn, which can be particularly interesting for tacking upwind.
  • arm 1 it is advisable to allow arm 1 to sweep a field of at least 160 degrees, distributed symmetrically to left and right of the ship's longitudinal axis 7 on the bow, so to be able to use kite traction in most paces of a ship, from close close to the large drop; more amplitude important orientation 4 of arm 1 beyond 80 degrees to the left and to the right can, however, facilitate tacking upwind.
  • a single point of traction 5 (this can be achieved in practice by a multiple pulley as we saw above) is very important, the example of the case of a kite controlled by its two connecting wires which can illustrate it; for this type of kite, in fact, the traction on one or the other wires to rotate the kite: so we use these two wires to direct the kite.
  • the articulation between the latter and the ship can be carried out various ways: for example and without limitation, flexible by means of ropes or chain links, or of the type mechanical with defined axes of rotation.
  • the joint must be dimensioned to withstand the forces resulting from the traction of the kite on the free end 5 of the arm 1, efforts also dependent the tilt control means 3 of the arm 1. It is advisable, for a simple reason of symmetry, to position the articulation of the arm 1 so that it can move so symmetrical on the left and the right of the ship.
  • the vessel comprises as an articulation of the arm 1, a part rigid intermediate 12 comprising two axes of rotation 13, 14 perpendicular, the first axis 13, vertical, serving as a connection with the ship, the linked end 2 of the arm 1 adapting to the second axis 14, the arm 1 and the vertical axis of rotation 13 being coplanar.
  • This characteristic is a nonlimiting example of the joint existing between the end 2 of arm 1 and the ship.
  • the second axis 14 being perpendicular to the first axis 13 which is vertical, therefore remains horizontal.
  • the additional condition of coplanarity between the vertical axis 13 and the arm 1 allows better balance the forces in arm 1 and part 12.
  • Figure 4 gives a nonlimiting example of making such a joint : the linked end 2 of arm 1 has a fork appearance with two coaxial cylindrical recesses.
  • Axes 13 and 14 are each materialized by a cylindrical recess in part 12: the first recess, corresponding to axis 13, is vertical and receives the vertical cylinder 15 which is fixed on the ship, which achieves the articulation making it possible to vary the orientation 4 of the arm 1.
  • the second cylindrical recess is horizontal; he receives the rod 16 after positioning, in alignment at its two ends, of the two cylindrical recesses of the end 2 of the arm 1, which achieves the joint making it possible to vary the inclination 3 of the arm 1.
  • the horizontal axis 14 does not necessarily cut the vertical axis 13: it can, in fact, be interesting to deport end 2 for reasons structural or bulk.
  • the vertical axis 13 may not be materialized by an actual axis, metallic or other: the intermediate piece 12 can be widened and have carts on its edges, at least three, preferably traveling on a circular guide (or only a portion of a circle) horizontal and fixed on the ship, like carriages traveling on a listening rail; in this case, it is the axis of the circular guide which constitutes the vertical axis 13.
  • FIG. 11 illustrates an embodiment of this guy.
  • Figure 5 shows that the vessel may include as a means control arm 1 in inclination 3, a rope 17 of length adjustable connecting point 18 of arm 1 to point 19 of the workpiece intermediate 12.
  • Point 19 being integral with the part intermediate 12 and not of the ship itself, the traction of the rope 17 intended to tilt the arm 1 has a neutral effect on its orientation 4.
  • Point 19 must be located under arm 1 to lower it when you reduce the length of rope 17, filling thus the role of controlling the tilt 3 of the arm 1. It is advisable to position the points 18, 19 in the plane defined by the arm 1 and the vertical axis of rotation 13, and also so that the rope 17 works at a sufficient distance from the horizontal axis of rotation 14 so as not to cause undue stress in the line 17 and in room 12, when the kite is exercising traction.
  • the rope can, conventionally, be multiplied by means of multiple pulleys.
  • the ship has as control means of arm 1 in inclination 3, a jack 20 connecting a point 21 of arm 1 at a point 22 of the intermediate piece 12.
  • This means does not differ from the precedent only by the use of a jack instead of a rope adjustable length, which also allows control of the bearing arm 1.
  • Figure 7 illustrates another embodiment of the means arm control.
  • the ship has here as a means of controlling the arm 1 in inclination 3, a cord 23 of adjustable length connecting a point 24 of arm 1 to a point 25 mobile on the ship.
  • the difference resides in the fact that the attachment point 25 of the rope 23 is on the ship itself and not on intermediate piece 12.
  • this point 25 is a mobile carriage symbolized by a point on a rail type guide 26 sheet (symbolized by a line, Figure 7) fixed to the ship, shaped ⁇ of a circle centered on the vertical axis of rotation 13 of the joint, the rope 23 does not exert a vertical axis moment on the arm 1: the pulling the rope 23 intended to tilt the arm 1 a, in this case also, a neutral effect on its orientation 4.
  • the ship according to the invention comprises as control means of the arm 1 in inclination 3, a jack 27 connecting a point 28 of arm 1 to a point 29 movable on the ship. It does differ from the above only by the use of a jack instead of a rope adjustable length, which also allows you to control the raising the arm 1. However, it may be necessary to prevent inadvertent sliding of the movable point 29, during efforts in extension of the jack 27 to raise the arm 1.
  • the mobile painted 29 being as before, a carriage which can slide on a guide 30 in circle shape centered on the vertical axis of rotation 13 of the joint, part 31 of the intermediate piece 12 is secured to the carriage (movable point 29): the position of point 29 on the guide 30 is linked to the orientation 4 of the arm 1 and cannot be modify on its own when controlling the extension of the jack 27.
  • Figure 9 illustrates a ship according to the invention comprising as control means of the arm 1 in orientation 4, two ropes 32, 33 of adjustable lengths, the first rope 32 connecting the arm 1 to a point 34 of the ship located in front of the articulated end 2 of the arm 1, the second rope 33 connecting arm 1 indifferently to a point 35 of the ship located aft left of the hinged end 2 of arm 1 or at a point 36 located at the rear right of the end articulated 2 of the arm 1.
  • the coordinated traction of the two ropes 32, 33 on arm 1 in substantially opposite directions has the effect to impose on the arm 1 a given orientation 4.
  • single rope 32 limits the orientation 4 of arm 1 to a value maximum, in order to prevent arm 1 from moving backwards if touch the water when the ship is moving, or hold arm 1 to prevent it from possibly hitting the ship's superstructures during a close tack, the kite passing from one side to the other of the ship on the stern of the latter, thereby drawing arm 1 backwards.
  • Point 35 respectively point 36, is used to attach rope 33 to the ship, depending on whether arm 1 is oriented on the left (respectively on the right) of the ship: the work of the rope 33 is thus improved, in particular when this rope 33 is short.
  • the ship has a float 37 located at the free end 5 of the arm 1.
  • the function of this float 37 is increase the stability of the stationary vessel, arm 1 being oriented across the ship and its free end 5 lowered to the level of the water.
  • float 37 can touch the water under varied angles because orientation 4 of arm 1 is itself variable: it may be necessary that the connection between the float 37 and the arm 1 is articulated, in particular if the float 37 is profiled.
  • a second function of this float can be, if the control of the inclination 3 of the arm 1 allows it to be raised, for example if a cylinder is used, to participate in the recovery of the ship if it capsized: if arm 1 is raised (when the ship is returned, this consists, in fact, of lowering arm 1 in the water), the float 37 then exerts a righting torque on the ship.
  • This float 37 can also be removable, or inflatable.
  • Figure 11 represents a ship which comprises as a means for controlling the azimuthal orientation 4 of the arm 1 an acting means directly on the intermediate piece 12 to rotate it around its vertical axis 13; in the embodiment illustrated on the Figure 11, the intermediate part 12 has a part 38 which is can call orientation lever.
  • a second room, called a guide 39 and attached to the ship, is shown schematically as a circular part, in fact focused on the vertical axis of rotation 13 of the intermediate piece 12, and has a groove 40 on its part external; when the orientation 4 of the arm 1 changes, the end of the orientation lever 38 follows the orientation guide 39: to guide the rotation of part 12, three carriages of guide, of the type of carriage 60 (the only one of the three shown on the Figure 11), distributed on the orientation guide 39 and integral with the intermediate piece 12, could be used.
  • a electric motor 41 drives a hub 42 of vertical axis, located at the end of the orientation lever 38, which coils on one side and the other unwinds a belt 43, located in the groove 40 of the guide orientation 39; this belt 43 can go around several times of guide 39 to ensure good adhesion thereon, or to be notched.
  • the rotation in one direction or the other of the hub 42 controls thus the displacement of the orientation lever 38 along the guide of orientation 39 therefore, finally, controls the azimuthal orientation 4 of arm 1.
  • This example has no limiting character, in particular on the motorization of the control, which could be manual, a cable tied in the middle at the end of the lever orientation 38 replacing the belt 43 and sliding in the groove 40, the control in orientation 4 then consisting in pulling on this cable by its ends or use another type of motorization, or still use a meshing system such as a meshing pinion directly on the orientation guide.
  • the control can be located on arm 1 itself, which simplifies the path of the wires 6 to the free end 5 of the arm.
  • the kite is of the three-wire type
  • the first two wires 44, 45 allowing the kite to turn left or right
  • the third wire 46 acting on the incidence of the kite and allowing to modulate its traction.
  • Figure 12 thus illustrates a first system another kite, more sophisticated.
  • the ship has a pulley 47 attached to the arm 1 and through which a wire passes, the two strands of both on the other side of the pulley 47, constitute the two steering wires 44, 45 of the kite, as well as a mechanism 48 (a simple blocker on the Figure 12) located on arm 1 and used to adjust the length of the bearing wire 46.
  • This kite control system is suitable small vessels.
  • Two handles 49, 50 can be attached on the steering wires 44, 45, thus allowing a team member to command the direction of the kite; it is then interesting to locate the pulley 47 far from the traction point 5, which consists, by example, in a triple pulley articulated on arm 1 to provide maximum amplitude of movement of these handles 49, 50 and, if the kinematics of arm 1 allows it, it is practical for the team member concerned, that the handles 49, 50 are, in the middle position, close of the axis of the boat.
  • Blocker 48 can be replaced by a system winding.
  • a safety system if the ship's pilot falls to the sea, can be achieved by acting automatically due to the distance of the pilot, on the third wire 46; if a pull on this reduces the incidence of the kite, we can connect the pilot at the end of the third wire 46, which will be pulled when the ship will move away from the fallen pilot. If on the contrary the elongation of the third wire 46 which decreases the incidence, one can providing a system for unlocking or releasing the third wire 46, controlled by the remoteness of the pilot (a line connecting the latter to release system, one carabiner with opening under load, by example).
  • Figure 13 illustrates a ship with a system having three winding hubs 51, 52, 53, one for each of three connecting wires 44, 45, 46, this system being provided with three functions can be activated independently of each other, the first function allowing the three to be rolled up or unrolled simultaneously wires 44, 45, 46 of the same variable length, the second function allowing the first wire 44 to be unwound or wound respectively and to wind, respectively to unwind, simultaneously the second wire 45 of the same variable length, the third function allowing unwinding or winding the third wire 46 of variable length.
  • the three hubs 51, 52, 53 are located on the arm 1: the hub 51 controls the first steering wire 44, the hub 52 the second steering wire 45, and the hub 53 the bearing wire 46.
  • the three requested functions can be performed, for example, at by means of three electric motors driving the hubs 51 52, 53 (one motor for each hub).
  • Each motor must be slaved to the winding speed or the winding length of the wire it ordered ; to this end, it is advisable to plan, at the exit of winding hubs 51, 52, 53, speed sensors or length, because in practice the same rotation of two hubs, as those 51, 52 of the direction wires 44, 45, does not wind (does not unwind) necessarily the same length of wire, this being due both to variations in the actual winding on the hubs, tension of the wires, this problem being all the more present as the wire lengths are important.
  • the three motors are synchronized for the first function, so that ensure identical winding speeds; for the second function, the first two motors operate to ensure opposite winding speeds, the third motor being stopped; for the third function, only the third motor is used.
  • a particular interest of such a motorization lies in the possibility of rapidly winding all the connecting wires 44, 45, 46 in case of kite winding due to an error as well to a sudden and momentary drop in wind: the rapid winding of the connecting wires 6 allows, like the kite-flyer backing up, recreating relative wind and continuing to control the kite.
  • the ship has a device 54 from which all the connecting wires 6 come from and come out in the same sense, this device 54 being able to slide in the direction corresponding and being subjected to the traction of a rope 55 in the opposite direction to the connecting wires 6, this rope 55 being connected to the arm 1 so that raising the arm 1 causes traction on the rope 55.
  • the advantage of this embodiment is to provide assistance to the means for controlling the inclination 3 of the arm 1, proportional to the kite pulling. In fact, the more the kite pulls via its connecting wires 6, plus the effort to be provided by the control means of the inclination 3 to lower the arm 1 is important. We use this tensile force of the connecting wires 6 to help lowering of the arm 1.
  • the device 54 comprises, where appropriate, the control system for connecting wires 6; for example, in the case illustrated in Figure 12, it could be a chassis, supporting both the pulley 47 and the blocker 48, sliding along the arm 1. In the case illustrated in Figure 13, it could be the system of control itself sliding along arm 1. In the example illustrated in Figure 14, the center of drift 11 is located vertically under the linked end 2 of arm 1, and the wires of link 6 exit the device 54 towards the free end 5 of arm 1; the device 54 therefore slides along the arm 1.
  • the rope 55 passes through the linked end 2 of the arm 1, bypasses point 56 located at the third of the segment [end linked 2 - center of drift 11], and joins point 57 located at the third of the segment [tied end 2 - pull point 5], after doing a round trip between points 56 and 57: the line 55 is tripled between points 56 and 57 using, for example, a double pulley at point 56 and a becket pulley at point 57.
  • a bungee cord for example pulling the device 54 in the same direction as the wires of connection 6.
  • the amplitude of the sliding of the device 54 must be provided on arm 1: in the case of Figure 14, if the arm 1 must be able to be tilted between the horizontal and the vertical, this amplitude is worth approximately 40% of the length of the arm 1 (segment linked end 2 - pull point 5).
  • the ship includes a device 58, articulated at the second end 5 of the arm 1 and shaped so as to create an upward force when this second end 5 of the arm 1 is submerged, the ship under way.
  • arm 1 is generally oriented generally towards the front of the ship; if for any reason, excessive lodging or higher wave for example, the tip 5 of arm 1 meets water, it is possible, depending on its shape, that it tends to want sinking deeper into the water, which can potentially unbalance vessel.
  • we can either profile the arm 1 so as not to create this downward force, so therefore add at its end 5 a profiled device 58, for example as in Figure 15, a simple inclined plane which will create hydrodynamically an upward force in the event of immersion.
  • This device 58 must ability to orient themselves in line with ship, regardless of orientation 4 clean of arm 1, so it is articulated.
  • the articulation can be a simple axis 59, vertical for the inclination 3 current of the arm 1 the inclination 3 current is horizontal on Figure 15, or it can be a ball joint.
  • This device can also be combined with a float 37 as described above.
  • Figure 16 illustrates a ship with ballast 60 can be alternately filled with the surrounding water ship or emptied, the ship under way.
  • the interest of this comes from the use of a kite to tow a ship. Indeed, traction of the kite on the ship determines a vertical component ascending, for example 50% of its value, when the kite is 30 degrees on the horizon; this vertical component has an effect positive on the ship since it lightens it, thus reducing its apparent weight; however, above a certain wind speed, the apparent weight of the vessel may become too low: the vessel may then temporarily come out of the water, which cancels the work of its anti-drift plans, thus harming the ship's course and its overall speed.
  • ballast 60 which is filled with water, for example by means of the pump reversible 61, when the ship picks up speed and, therefore, the relative wind increases, so as to keep a sufficient apparent weight : the ship can thus go faster, because the anti-drift plans operate effectively.
  • ballast 60 when the ship loses speed, voluntarily or when the real wind decreases, we empty the ballast 60 so as to lighten the ship, for example by means of the reversible pump 61.
  • ballast 60 Unlike monohull ballasts conventional, designed to move water from side to side of the ship, ballast 60 must be well balanced laterally so as not to not create a parasitic deposit on the ship, which does not prevent however to design it in several volumes.
  • the ship has its arm adjustable in length.
  • the influence of the length of the arm 1. A longer arm long allows to obtain the same position of the traction line 10, therefore the same balance in heel of the ship, with a traction point 5 located higher, which is an advantage.
  • one more arm short is certainly more resistant.
  • the advantage of being able to settle the arm 1 in length is able, by lengthening it, to locate the point of traction 5 higher: this allows, for example, to adapt to a bigger seas so as to avoid arm 1 touching too often the water.
  • Figure 17 illustrates with an arm 1 telescopic in two parts 62 and 63 respectively supporting its linked end 2 and its free end 5, a jack 64 located at the inside of part 62 allowing the part 63 to slide compared to part 62 it is possible to some extent depending on the possible amplitude of the variation in length of the arm 1 to control the balance in heel of arm 1 with this adjustment in length, and leaving the inclination 3 of the arm 1 fixed: in fact, the arm length variation 1 changes the position of the traction 5, therefore from traction line 10, which allows adapt to different sites of the kite (i.e. different inclinations of the straight line 10).
  • the ship according to the invention is therefore particularly intended for rapid movement thanks to the wind.

Description

La présente invention concerne un navire utilisant pour se déplacer la traction d'un cerf-volant.The present invention relates to a ship using for move the traction of a kite.

Traditionnellement, les navires à propulsion éolienne utilisent des voiles, ce qui engendre généralement, d'une part un couple de roulis dû conjointement à la hauteur du centre de poussée vélique et à la direction de cette poussée, d'autre part un couple de lacet variable dû au déplacement du centre de poussée vélique en fonction de l'allure du navire.Traditionally, wind powered ships use sails, which generally generates, on the one hand a roll torque due to height of center of thrust vélique and to the direction of this thrust on the other hand a couple of variable yaw due to the displacement of the velical center of thrust in depending on the speed of the ship.

Le navire selon l'invention a pour objet de réduire les couples de roulis et de lacet, par l'utilisation d'un cerf-volant à la place des voiles et d'un bras articulé comme gréement, en inclinant et en orientant le bras articulé de façon à rapprocher du centre de dérive du navire, la droite représentant géométriquement la traction du cerf-volant.The object of the ship according to the invention is to reduce the roll and yaw couples, using a kite at the places sails and an articulated arm as rigging, tilting and by orienting the articulated arm so as to approach the center of drift of the ship, the line representing geometrically the traction of the kite.

A cet effet, le navire tracté par cerf-volant comporte un bras articulé par une première extrémité avec le navire, le point de traction des fils de liaison entre le cerf-volant et le navire constituant la deuxième extrémité du bras, le cerf-volant n'étant relié au navire que par les fils de liaison comportant un moyen de commande de l'inclinaison du bras permettant son abaissement par rapport à la direction des fils de liaison, characterisé en ce qu'il comporte un moyen de commande de l'orientation azimutale du bras par rapport à la direction des fils de liaison, les fils de liaison passant tous par l'unique point de traction qui constitue la deuxième extrémité du bras. For this purpose, the vessel towed by kite includes a arm articulated by a first end with the ship, the point of traction of the connecting wires between the kite and the ship constituting the second end of the arm, the kite not being connected to the ship only by connecting wires comprising means for controlling the inclination of the arm allowing its lowering in relation to the direction of the wires liaison, characterized in that it comprises a means for controlling the azimuthal orientation of the arm by relation to the direction of the connecting wires, the connecting wires all passing through the single point of traction which constitutes the second end of the arm.

Selon des modes particuliers de réalisation, le navire peut également présenter d'autres caractéristiques séparément ou en combinaison.According to particular embodiments, the ship can also have other characteristics separately or in combination.

De préférence, l'articulation du bras est constituée par une pièce intermédiaire rigide comprenant deux axes de rotation perpendiculaires, le premier axe, vertical, servant de liaison avec le navire, l'extrémité liée du bras s'adaptant au deuxième axe, le bras et l'axe vertical de rotation étant coplanaires. Dans ce cas, le moyen de commande du bras en inclinaison comprend favorablement un cordage de longueur réglable reliant un point du bras à un point de la pièce intermédiaire ou à un point mobile sur le navire, ou bien il comprend un vérin reliant un point du bras à un point de la pièce intermédiaire ou à un point mobile sur le navire.Preferably, the articulation of the arm is constituted by a rigid intermediate piece comprising two axes of rotation perpendicular, the first axis, vertical, serving as a link with the ship, the bound end of the arm adapting to the second axis, the arm and the vertical axis of rotation being coplanar. In this case, the means control arm tilting favorably includes a rope adjustable length connecting a point on the arm to a point on the workpiece intermediate or at a mobile point on the ship, or it includes a jack connecting a point of the arm to a point of the intermediate piece or at a mobile point on the ship.

Dans un autre mode de réalisation, le moyen de commande du bras en orientation comprend deux cordages de longueurs réglables, le premier cordage reliant le bras à un point du navire situé en avant de l'extrémité articulée du bras, le deuxième cordage reliant le bras indifféremment à un point du navire situé à l'arrière gauche de l'extrémité articulée du bras ou à un point situé à l'arrière droite de l'extrémité articulée du bras.In another embodiment, the control means of the arm in orientation includes two ropes of adjustable lengths, the first line connecting the arm to a point on the ship located in front of the articulated end of the arm, the second cord connecting the arm indifferently to a point on the ship located aft left of the articulated end of the arm or at a point at the rear right of the articulated end of the arm.

Dans encore un mode de réalisation, le moyen de commande de l'orientation azimutale du bras est un moyen agissant directement sur la pièce intermédiaire pour la faire tourner autour de son axe vertical.In yet another embodiment, the control means of the azimuthal orientation of the arm is a means acting directly on the intermediate part to rotate it around its axis vertical.

De préférence, le navire comporte un flotteur situé à l'extrémité libre du bras.Preferably, the vessel includes a float located at the free end of the arm.

De préférence aussi, le cerf-volant est commandé par ses fils de liaison au nombre de trois, les deux premiers fils permettant de faire tourner le cerf-volant, le troisième fil agissant sur l'incidence du cerf-volant.Preferably also, the kite is controlled by its three connecting wires, the first two allowing to rotate the kite, the third wire acting on the incidence of the kite.

Une poulie est favoralement fixée au bras, poulie par laquelle passe un fil dont les deux brins de part et d'autre de la poulie constituent les deux premiers fils, ainsi qu'un mécanisme situé sur le bras permettant de régler la longueur du troisième fil. Dans ce cas, le navire peut favorablement comporter un système présentant trois moyeux d'enroulement, un pour chacun des trois fils de liaison, ce système étant muni de trois fonctions activables indépendamment les unes des autres, la première fonction permettant d'enrouler ou de dérouler simultanément les trois fils d'une même longueur variable, la deuxième fonction permettant de dérouler (respectivement d'enrouler) le premier fil et d'enrouler (respectivement de dérouler) simultanément le deuxième fil d'une même longueur variable, la troisième fonction permettant de dérouler ou d'enrouler le troisième fil d'une longueur variable.A pulley is favorably attached to the arm, pulley by which passes a wire whose two strands on either side of the pulley constitute the first two wires, as well as a mechanism located on the arm to adjust the length of the third wire. In this case, the vessel may favorably include a system presenting three winding hubs, one for each of the three connecting wires, this system being provided with three functions which can be activated independently each other, the first function allowing to wind or simultaneously unwind the three wires of the same variable length, the second function allowing to unwind (respectively to wrap) the first wire and to wind (respectively to unwind) simultaneously the second wire of the same variable length, the third function to unwind or wrap the third wire of variable length.

Selon un mode de réalisation, le navire comporte un dispositif duquel tous les fils de liaison sont issus et sortent dans le même sens, ce dispositif pouvant coulisser dans la direction correspondante et étant soumis à la traction d'un filin dans le sens opposé aux fils de liaison, ce filin étant relié au bras de façon qu'un relèvement du bras entraíne une traction du filin.According to one embodiment, the ship includes a device from which all the connecting wires come and go out the same direction, this device being able to slide in the direction corresponding and being subjected to the pull of a rope in the direction opposite the connecting wires, this cable being connected to the arm so that raising the arm causes the rope to pull.

Selon un autre mode de réalisation, le navire comporte un dispositif articulé à la deuxième extrémité du bras et profilé de manière à créer une force vers le haut lorsque cette deuxième extrémité du bras est immergée, le navire faisant route.According to another embodiment, the ship includes a device articulated at the second end of the arm and profiled way to create an upward force when this second end of the arm is submerged, the ship under way.

Le navire peut également comporter un ballast susceptible d'être alternativement rempli avec l'eau environnant le navire ou vidé, le navire faisant route.The vessel may also include ballast capable of alternately be filled with the water surrounding the vessel or emptied, the ship under way.

Selon encore un autre mode de réalisation, le bras est réglable en longueur.According to yet another embodiment, the arm is adjustable in length.

Pour une meilleure compréhension de la présente invention, ainsi que d'autres objets, avantages et possibilités de celle-ci, on se référera à la description suivante donnée à titre non limitatif et aux revendications annexées, en combinaison avec les dessins décrits ci-dessous sur lesquels :

  • La Figure 1 représente le navire selon l'invention, en vue d'ensemble;
  • La Figure 2 représente le navire selon l'invention en vue de devant, comme illustration de son comportement en roulis ;
  • La Figure 3 représente le navire selon l'invention en vue de dessus, comme illustration de son comportement en lacet ;
  • Les Figures 4 à 10 illustrent différentes caractéristiques du navire selon l'invention; les Figures 4 à 8 sont des vues en contreplongée sur lesquelles seuls le bras et son articulation sont représentés; les Figures 9 et 10 sont des vues d'ensemble sur lesquelles seule la partie de ses fils de liaison du cerf-volant partant du navire via le bras articulé est représentée ;
  • La Figure 11 illustre un autre mode de réalisation et représente une pièce d'articulation, en vue de côté ;
  • La Figure 12 illustre un autre mode de réalisation et représente un bras, en vue de dessus ;
  • La Figure 13 illustre un autre mode de réalisation et représente un bras muni d'un système de commande des fils de liaison, en vue de dessus ;
  • La Figure 14 illustre un autre mode de réalisation et représente le bras muni d'un filin d'équilibrage de la traction du cerf-volant, en vue de côté ;
  • La Figure 15 illustre un autre mode de réalisation et représente la deuxième extrémité du bras munie d'un dispositif profilé, en vue de côté ;
  • La Figure 16 illustre un autre mode de réalisation et représente le navire muni d'un ballast dans sa coque, celle-ci étant vue en transparence pour laisser apparaítre le ballast ; et
  • La Figure 17 illustre un autre mode de réalisation et représente, en vue de côté, un bras télescopique muni d'un vérin, la base du bras étant vue en transparence sur la Figure pour laisser apparaítre le vérin.
  • For a better understanding of the present invention, as well as other objects, advantages and possibilities thereof, reference is made to the following description given without limitation and to the appended claims, in combination with the drawings described below on which ones :
  • Figure 1 shows the ship according to the invention, in overview;
  • Figure 2 shows the ship according to the invention in front view, as an illustration of its roll behavior;
  • Figure 3 shows the ship according to the invention in top view, as an illustration of its yaw behavior;
  • Figures 4 to 10 illustrate different characteristics of the ship according to the invention; Figures 4 to 8 are counter-diving views in which only the arm and its articulation are shown; Figures 9 and 10 are general views on which only the part of its connecting son of the kite leaving the ship via the articulated arm is shown;
  • Figure 11 illustrates another embodiment and shows a hinge part, in side view;
  • Figure 12 illustrates another embodiment and shows an arm, seen from above;
  • Figure 13 illustrates another embodiment and shows an arm provided with a control system for connecting wires, seen from above;
  • FIG. 14 illustrates another embodiment and represents the arm provided with a rope for balancing the traction of the kite, in side view;
  • Figure 15 illustrates another embodiment and shows the second end of the arm provided with a profiled device, in side view;
  • Figure 16 illustrates another embodiment and shows the ship with a ballast in its hull, the latter being seen in transparency to reveal the ballast; and
  • Figure 17 illustrates another embodiment and shows, in side view, a telescopic arm provided with a jack, the base of the arm being seen in transparency in the Figure to reveal the jack.
  • En référence maintenant à la Figure 1, le navire tracté par cerf-volant comporte, selon la présente invention, un moyen de commande de l'inclinaison 3 du bras 1 permettant son abaissement par rapport à la direction 10 des fils de liaison 6, un moyen de commande de l'orientation azimutale 4 du bras 1 par rapport à la direction 10 des fils de liaison 6, les fils de liaison 6 passant tous par l'unique point de traction qui constitue la deuxième extrémité 5 du bras 1. Dans toute la description, le bras 1 est, du point de vue géométrique, assimilé au segment formé par sa première extrémité 2, dite extrémité liée, et sa deuxième extrémité 5, dite extrémité libre. De ce fait, l'extrémité libre 5 correspond au point de traction. Le point de traction 5 peut être matérialisé, par exemple, par une poulie multiple, articulée sur le bras 1, par laquelle passent les fils de liaison 6 en direction du cerf-volant. La direction 10 des fils de liaison 6 s'entend comme la direction moyenne des fils de liaison 6, mais aussi comme la droite de même direction passant par le point de traction 5. En ce sens, elle est ici assimilée à la droite de traction du cerf-volant, et ces deux appellations sont utilisées indifféremment : en effet, compte tenu du fait que chacun des fils de liaison 6 exerce sur le point de traction 5 une force qui est, par définition physique caractéristique d'un fil, dirigée dans l'axe du fil considéré et toujours tractrice, d'une part la droite de traction du cerf-volant, qui est la résultante des forces élémentaires exercées par chacun des fils de liaison 6, passe par le point de traction 5, d'autre part, cette même droite de traction est orientée à l'intérieur du faisceau des fils de liaison 6 en direction du cerf-volant, faisceau qui a pour sommet le point de traction 5. En remarquant que l'angle au sommet de ce faisceau est faible, de l'ordre de quelques degrés compte tenu de l'éloignement du cerf-volant, l'approximation qui consiste à assimiler la droite de traction du cerf-volant à la direction 10 des fils de liaison 6 est donc justifiée.Referring now to Figure 1, the vessel towed by according to the present invention, a kite comprises a means of control of the inclination 3 of the arm 1 allowing its lowering by relative to the direction 10 of the connecting wires 6, a control means the azimuthal orientation 4 of the arm 1 relative to the direction 10 connecting wires 6, the connecting wires 6 all passing through the single traction point which constitutes the second end 5 of the arm 1. Throughout the description, the arm 1 is, from the geometric point of view, assimilated to the segment formed by its first end 2, called end linked, and its second end 5, called the free end. Thereby, the free end 5 corresponds to the point of traction. Point of traction 5 can be materialized, for example, by a pulley multiple, articulated on arm 1, through which the wires of link 6 towards the kite. Direction 10 of the sons of link 6 is understood as the mean direction of the link wires 6, but also as the line of the same direction passing through the point of traction 5. In this sense, it is here assimilated to the traction line kite, and these two names are used interchangeably : indeed, taking into account the fact that each of the connecting wires 6 exerts on the traction point 5 a force which is, by definition characteristic physics of a wire, directed in the axis of the wire considered and still tractor, on the one hand the kite's straight line, which is the result of the elementary forces exerted by each of the connecting wires 6 passes through the traction point 5, on the other hand, this same traction line is oriented inside the bundle of connecting wires 6 in the direction of the kite, beam which has for its point the point of traction 5. By noticing that the angle at the top of this beam is small, of the order of a few degrees taking into account the distance of the kite, the approximation which consists in assimilating the line of traction of the kite to the direction 10 of the connecting wires 6 is therefore justified.

    La verticale du navire étant identifiée par l'axe 9, l'inclinaison 3 du bras 1 est l'angle entre cet axe 9 et le bras 1. L'axe longitudinal 7 et l'axe transversal 8 du navire étant définis et tous deux horizontaux, l'orientation 4 du bras 1 est l'angle entre la projection du bras 1 sur le plan horizontal, et l'axe longitudinal 7. A noter que les trois axes 7, 8, 9 sont considérés comme étant des vecteurs, et non des droites de l'espace physique. L'inclinaison 3 et l'orientation 4 du bras 1 sont commandées au moyen de tout système adapté dont des exemples non limitatifs sont présentés ci-après.The vertical of the ship being identified by axis 9, the inclination 3 of the arm 1 is the angle between this axis 9 and the arm 1. The longitudinal axis 7 and the transverse axis 8 of the ship being defined and both horizontal, the orientation 4 of the arm 1 is the angle between the projection of the arm 1 on the horizontal plane, and the longitudinal axis 7. Note that the three axes 7, 8, 9 are considered to be vectors, not lines of physical space. Tilt 3 and the orientation 4 of the arm 1 are controlled by means of any system adapted, non-limiting examples of which are presented below.

    La Figure 2 illustre l'intérêt de la commande de l'inclinaison 3 du bras 1. En effet, cette commande permet, en inclinant le bras 1, d'abaisser son extrémité libre 5 qui constitue le point de traction du cerf-volant, et donc aussi la droite de traction 10 du cerf-volant. Un abaissement suffisant du point de traction 5, comme sur la Figure 2, permet alors de faire passer la droite de traction 10 à proximité du centre de dérive 11 du navire en projection sur un plan vertical et transversal au navire, donc de réduire voire d'annuler le couple de roulis sur le navire.Figure 2 illustrates the value of the the inclination 3 of the arm 1. Indeed, this command allows, in tilting the arm 1, to lower its free end 5 which constitutes the point of traction of the kite, and therefore also the line of traction 10 of the kite. Sufficient lowering of the traction point 5, as in Figure 2, then allows to pass the right of traction 10 near the center of drift 11 of the projecting vessel on a vertical plane transverse to the ship, therefore to reduce or even to cancel the roll torque on the ship.

    L'intérêt général d'un faible couple de roulis est de diminuer l'exigence de stabilité du navire : avec un navire selon l'invention, les systèmes de coques multiples, quilles ou lests divers ne sont plus requis nécessairement quant à la stabilité en roulis pour les allures au près.The general interest of a low roll torque is reduce the stability requirement of the ship: with a ship according to the invention, multiple hull systems, various keels or weights are no longer necessarily required for roll stability for upwind gaits.

    En ce qui concerne l'amplitude de réglage de la commande de l'inclinaison 3 du bras 1, lorsque le cerf-volant est incliné de façon à créer une composante horizontale de traction sur le navire, le point de traction 5 doit pouvoir être suffisamment abaissé pour, comme on l'a vu précédemment, faire passer la droite de traction 10 assez près du centre de dérive 11 de façon à n'occasionner qu'un couple de roulis faible, voire nul. L'inclinaison 3 requise est fonction de paramètres comme le site du cerf-volant, la longueur du bras 1, la cinématique de l'articulation du bras 1, les positions relatives de l'extrémité articulée 2 du bras 1 et du centre de dérive 11. D'autre part, il est conseillé de pouvoir suffisamment relever le bras 1 pour que, lorsque le cerf-volant est en position quasi verticale, afin de peu déplacer le navire, la traction verticale du cerf-volant ne fasse pas contregíter le navire de façon excessive et n'entraíne pas non plus de contraintes trop importantes dans le bras 1 et la commande de son inclinaison 3.Regarding the adjustment range of the control the inclination 3 of the arm 1, when the kite is inclined so to create a horizontal component of traction on the ship, the point tension 5 must be capable of being lowered sufficiently to, as saw it previously, pass the traction line 10 close enough of the center of drift 11 so as to cause only a couple of rolls weak or even zero. The required tilt 3 depends on parameters like the kite site, arm length 1, kinematics of the articulation of arm 1, the relative positions of the end articulated 2 of the arm 1 and of the center of drift 11. On the other hand, it is advised to be able to raise arm 1 enough so that when the kite is in an almost vertical position, in order to move little the ship, the vertical pull of the kite does not excessively contravening the vessel and also does not result in too much stress in arm 1 and sound control tilt 3.

    Il faut remarquer que, si la commande de l'inclinaison 3 du bras 1 doit, bien entendu, être dimensionnée structurellement pour permettre l'abaissement du bras 1 malgré la traction en sens opposé exercée par le cerf-volant sur l'extrémité libre 5, par contre il n'est pas nécessaire que la commande de l'inclinaison 3 du bras 1 soit conçue aussi pour relever le bras 1. En effet, on a vu que c'était l'abaissement de l'extrémité libre 5 du bras 1 qui était la condition de réduction voire d'annulation du couple de roulis. Dans ces conditions, des cordages tirant le bras 1 vers le bas peuvent être utilisés pour régler une inclinaison 3 minimale, comme ceci est réalisé dans certains modes de réalisation préférés indiqués ci-après. Cependant, une commande de l'inclinaison 3 permettant le relèvement du bras 1, telle qu'un vérin, peut être utile si l'on veut utiliser le bras 1 pour redresser le navire, si ce dernier a chaviré, en utilisant un flotteur éventuellement amovible ou gonflable prévu, par exemple, à l'extrémité libre 5.Note that if the tilt 3 command arm 1 must, of course, be dimensioned structurally to allow lowering of arm 1 despite pulling in opposite direction exerted by the kite on the free end 5, on the other hand it the arm 3 tilt control 3 does not have to be designed also to raise arm 1. Indeed, we saw that it was the lowering of the free end 5 of the arm 1 which was the condition reduction or even cancellation of the roll torque. In these conditions, ropes pulling arm 1 down may be used to set a minimum tilt 3, as this is carried out in certain preferred embodiments indicated below. However, a tilt 3 control allowing the raising of the arm 1, such as a jack, can be useful if you want to use the arm 1 to straighten the vessel, if it has capsized, using an optionally removable or inflatable float provided, for example, at the free end 5.

    En ce qui concerne la longueur du bras 1, on peut se rendre compte, sur la Figure 2, qu'un bras 1 qui serait plus court tout en gardant son extrémité libre 5 sur la droite de traction 10 pour créer le même couple de roulis sensiblement nul dans le cas de la Figure 2, aurait cette extrémité libre 5 située plus bas sur cette même droite 10: un bras 1 plus court a son extrémité libre 5 plus près de l'eau. Un bras 1 plus long subit des contraintes plus importantes et présente une inertie supérieure.Regarding the length of arm 1, we can go counts, in Figure 2, that an arm 1 which would be shorter while keeping its free end 5 on the pull line 10 to create the same substantially zero roll torque in the case of FIG. 2, would have this free end 5 located lower on this same straight line 10: an arm 1 shorter at its free end 5 closer to the water. A longer arm 1 undergoes greater stresses and presents higher inertia.

    La Figure 3 illustre l'intérêt de la commande de l'orientation 4 du bras 1. En effet, cette commande permet de rendre négligeable, voire nul, le couple de lacet exercé par le cerf-volant sur le navire, quelle que soit l'allure de ce dernier, simplement en orientant le bras 1 de façon que la droite 10 soit dans le même plan vertical que le centre de dérive 11, comme sur la Figure 3. Une utilisation complémentaire de la commande de l'orientation 4 peut consister à modifier l'orientation 4 du bras 1 à partir de la valeur qui annule le couple de lacet, de façon à créer un couple de lacet, négatif ou positif, susceptible de faire tourner le navire, ce qui peut notamment être intéressant pour les virements de bord au près. Il est intéressant de positionner, autant que possible, le centre de dérive 11 à la verticale du point de rotation du bras en orientation 4; dans ce cas, lorsque le bras 1 s'aligne naturellement sur la direction 10, le navire est neutre en lacet : ceci permet de réduire les efforts manuels ou provenant d'une source d'énergie à exercer pour la commande en orientation 4 du bras 1.Figure 3 illustrates the value of the orientation 4 of arm 1. Indeed, this command makes it possible to make negligible, if not zero, the yaw torque exerted by the kite on the ship, whatever the speed of the latter, simply by orienting arm 1 so that line 10 is in the same plane vertical as the center of drift 11, as in Figure 3. A additional use of the orientation control 4 can consist in modifying the orientation 4 of the arm 1 from the value which cancels the yaw couple, so as to create a yaw couple, negative or positive, which could cause the vessel to turn, which can be particularly interesting for tacking upwind. he it is interesting to position, as much as possible, the center of drift 11 vertically from the arm rotation point in orientation 4; in this case, when the arm 1 naturally aligns with the direction 10, the ship is neutral in yaw: this reduces manual efforts or those from an energy source to exercise to the control in orientation 4 of the arm 1.

    En ce qui concerne l'amplitude de réglage de la commande de l'orientation 4 du bras 1, il est conseillé de permettre au bras 1 de balayer un champ de 160 degrés au moins, réparti symétriquement à gauche et à droite de l'axe longitudinal 7 du navire sur l'avant, afin de pouvoir utiliser la traction du cerf-volant dans la plupart des allures d'un navire, du près serré au grand largue; une amplitude plus importante de l'orientation 4 du bras 1 au-delà de 80 degrés à gauche et à droite peut cependant faciliter les virements de bord au près. Le fait d'avoir, conformément à l'invention, un point unique de traction 5 (celui-ci pouvant être réalisé en pratique par une poulie multiple comme on l'a vu plus haut) est très important, l'exemple du cas d'un cerf-volant commandé par ses deux fils de liaison pouvant l'illustrer; pour ce type de cerf-volant, en effet, la traction sur l'un ou l'autre des fils permet de faire tourner le cerf-volant: on utilise donc ces deux fils pour diriger le cerf-volant. Un navire étant constamment soumis à des oscillations en tous sens: tangage, roulis, lacet, si, contrairement à l'invention, les deux fils partaient de deux points différents du navire pour rejoindre le cerf-volant, (comme dans le document DE-U-87 02 480 selon lequel les fils partent de chaque extrémité d'une barre articulée en son milieu à l'extrémité d'une sorte de bras), il est clair que, l'orientation générale du segment constitué par ces deux points variant avec celle du navire, cela équivaudrait à tirer sur un des fils et à relâcher l'autre: on aurait donc une commande parasite, d'autant plus importante que le segment est grand ; il faudrait alors effectuer des actions correctrices permanentes sur le système de commande, par exemple en modifiant constamment l'orientation du segment par rapport au navire de façon qu'elle reste constante dans l'espace (donc à l'opposé des oscillations du navire), ou par enroulement/déroulement des deux fils. Par contre, lorsque, selon la présente invention, les fils quittent tous le navire via l'extrémité libre 5 du bras 1 et de façon suffisamment rapprochée, ce qui correspond en fait à un segment de longueur quasiment nulle et peut être assimilé à un point unique au regard de l'éloignement du cerf-volant, ce phénomène n'existe plus : la commande du cerf-volant est alors, toutes choses égales par ailleurs, beaucoup plus stable.Regarding the adjustment range of the control orientation 4 of arm 1, it is advisable to allow arm 1 to sweep a field of at least 160 degrees, distributed symmetrically to left and right of the ship's longitudinal axis 7 on the bow, so to be able to use kite traction in most paces of a ship, from close close to the large drop; more amplitude important orientation 4 of arm 1 beyond 80 degrees to the left and to the right can, however, facilitate tacking upwind. The having, in accordance with the invention, a single point of traction 5 (this can be achieved in practice by a multiple pulley as we saw above) is very important, the example of the case of a kite controlled by its two connecting wires which can illustrate it; for this type of kite, in fact, the traction on one or the other wires to rotate the kite: so we use these two wires to direct the kite. A ship being constantly subject to oscillations in all directions: pitch, roll, yaw, if, unlike the invention, the two wires started from two points different from the ship to join the kite, (as in the document DE-U-87 02 480 according to which the wires leave from each end of a bar hinged in the middle at the end of a sort of arm), it is clear that, the general orientation of the segment constituted by these two points varying with that of the ship, that would be equivalent to pulling on one of the wires and releasing the other: we would have therefore a parasitic command, all the more important as the segment is tall ; corrective actions should then be carried out permanent on the control system, for example by modifying constantly orienting the segment relative to the ship so that it remains constant in space (therefore opposite to oscillations of the ship), or by winding / unwinding the two wires. On the other hand, when, according to the present invention, the wires leave all the ship via the free end 5 of the arm 1 and so sufficiently close together, which actually corresponds to a segment of almost zero length and can be assimilated to a single point at look at the distance of the kite, this phenomenon no longer exists: the control of the kite is then, all other things being equal elsewhere, much more stable.

    En ce qui concerne l'extrémité articulée 2 du bras 1, l'articulation entre ce dernier et le navire peut être réalisée de diverses manières : par exemple et de manière non limitative, souple au moyen de cordages ou de maillons de chaíne, ou bien de type mécanique avec des axes de rotation définis. L'articulation doit être dimensionnée pour résister aux efforts résultant de la traction du cerf-volant sur l'extrémité libre 5 du bras 1, efforts dépendant aussi du moyen de commande de l'inclinaison 3 du bras 1. Il est conseillé, pour une simple raison de symétrie, de positionner l'articulation du bras 1 de façon que ce dernier puisse se déplacer de manière symétrique sur la gauche et la droite du navire. Du fait que la traction exercée par le cerf-volant sur le navire présente une composante verticale, il est recommandé de positionner l'articulation du bras 1 par rapport au centre de gravité du navire, de façon que l'action du cerf-volant ait tendance à soulever l'avant du navire et non l'arrière. Pour la stabilité de route du navire, il peut être intéressant de situer le centre de dérive 11 du navire approximativement à la même cote longitudinale que l'articulation du bras 1.Regarding the articulated end 2 of the arm 1, the articulation between the latter and the ship can be carried out various ways: for example and without limitation, flexible by means of ropes or chain links, or of the type mechanical with defined axes of rotation. The joint must be dimensioned to withstand the forces resulting from the traction of the kite on the free end 5 of the arm 1, efforts also dependent the tilt control means 3 of the arm 1. It is advisable, for a simple reason of symmetry, to position the articulation of the arm 1 so that it can move so symmetrical on the left and the right of the ship. Because the traction exerted by the kite on the ship presents a vertical component, it is recommended to position the joint of arm 1 with respect to the center of gravity of the ship, so that the action of the kite tends to lift the front of the ship and not the back. For the ship's course stability, it can be interesting to locate the center of drift 11 of the ship approximately at the same longitudinal dimension as the articulation of the arm 1.

    En référence maintenant à la Figure 4, le navire, selon la présente invention, comporte comme articulation du bras 1, une pièce intermédiaire 12 rigide comprenant deux axes de rotation 13, 14 perpendiculaires, le premier axe 13, vertical, servant de liaison avec le navire, l'extrémité liée 2 du bras 1 s'adaptant au deuxième axe 14, le bras 1 et l'axe vertical de rotation 13 étant coplanaires. Cette caractéristique est un exemple non limitatif de l'articulation existant entre l'extrémité 2 du bras 1 et le navire. Bien qu'entraíné par la rotation de la pièce intermédiaire 12 autour de l'axe 13, le deuxième axe 14, étant perpendiculaire au premier axe 13 qui est vertical, reste donc horizontal. La condition supplémentaire de coplanarité entre l'axe vertical 13 et le bras 1 permet de mieux équilibrer les efforts dans le bras 1 et la pièce 12. La Figure 4 donne un exemple non limitatif de réalisation d'une telle articulation : l'extrémité liée 2 du bras 1 présente un aspect en fourchette avec deux évidements cylindriques coaxiaux. Les axes 13 et 14 sont matérialisés chacun par un évidement cylindrique de la pièce 12 : le premier évidement, correspondant à l'axe 13, est vertical et reçoit le cylindre vertical 15 qui est fixé sur le navire, ce qui réalise l'articulation permettant de faire varier l'orientation 4 du bras 1. Le deuxième évidement cylindrique est horizontal ; il reçoit la tige 16 après positionnement, en alignement à ses deux extrémités, des deux évidements cylindriques de l'extrémité 2 du bras 1, ce qui réalise l'articulation permettant de faire varier l'inclinaison 3 du bras 1. Il faut noter que, comme illustré sur la Figure 4, l'axe horizontal 14 ne coupe pas obligatoirement l'axe vertical 13 : il peut, en effet, être intéressant de déporter l'extrémité 2 pour des raisons structurelles ou d'encombrement.Referring now to Figure 4, the vessel, according to the present invention, comprises as an articulation of the arm 1, a part rigid intermediate 12 comprising two axes of rotation 13, 14 perpendicular, the first axis 13, vertical, serving as a connection with the ship, the linked end 2 of the arm 1 adapting to the second axis 14, the arm 1 and the vertical axis of rotation 13 being coplanar. This characteristic is a nonlimiting example of the joint existing between the end 2 of arm 1 and the ship. Although driven by the rotation of the intermediate piece 12 around the axis 13, the second axis 14, being perpendicular to the first axis 13 which is vertical, therefore remains horizontal. The additional condition of coplanarity between the vertical axis 13 and the arm 1 allows better balance the forces in arm 1 and part 12. Figure 4 gives a nonlimiting example of making such a joint : the linked end 2 of arm 1 has a fork appearance with two coaxial cylindrical recesses. Axes 13 and 14 are each materialized by a cylindrical recess in part 12: the first recess, corresponding to axis 13, is vertical and receives the vertical cylinder 15 which is fixed on the ship, which achieves the articulation making it possible to vary the orientation 4 of the arm 1. The second cylindrical recess is horizontal; he receives the rod 16 after positioning, in alignment at its two ends, of the two cylindrical recesses of the end 2 of the arm 1, which achieves the joint making it possible to vary the inclination 3 of the arm 1. Note that, as illustrated in Figure 4, the horizontal axis 14 does not necessarily cut the vertical axis 13: it can, in fact, be interesting to deport end 2 for reasons structural or bulk.

    D'autres variantes peuvent être apportées. Par exemple, l'axe vertical 13 peut ne pas être matérialisé par un axe réel, métallique ou autre : la pièce intermédiaire 12 peut être élargie et comporter sur ses bords des chariots, trois au minimum, de préférence circulant sur un guide circulaire (ou seulement une portion de cercle) horizontal et fixé sur le navire, à l'instar de chariots circulant sur un rail d'écoute ; dans ce cas, c'est l'axe du guide circulaire qui constitue l'axe vertical 13. La Figure 11 illustre une réalisation de ce type.Other variations can be made. For example, the vertical axis 13 may not be materialized by an actual axis, metallic or other: the intermediate piece 12 can be widened and have carts on its edges, at least three, preferably traveling on a circular guide (or only a portion of a circle) horizontal and fixed on the ship, like carriages traveling on a listening rail; in this case, it is the axis of the circular guide which constitutes the vertical axis 13. FIG. 11 illustrates an embodiment of this guy.

    La Figure 5 montre que le navire peut comporter comme moyen de commande du bras 1 en inclinaison 3, un cordage 17 de longueur réglable reliant un point 18 du bras 1 à un point 19 de la pièce intermédiaire 12. Le point 19 étant solidaire de la pièce intermédiaire 12 et non du navire proprement dit, la traction du cordage 17 destinée à incliner le bras 1 a un effet neutre sur son orientation 4. Le point 19 doit être situé sous le bras 1 pour l'abaisser quand on réduit la longueur du cordage 17, remplissant ainsi le rôle de commande en inclinaison 3 du bras 1. Il est conseillé de positionner les points 18, 19 dans le plan défini par le bras 1 et l'axe vertical de rotation 13, et de façon aussi à ce que le cordage 17 travaille à une distance suffisante de l'axe horizontal de rotation 14 afin de ne pas occasionner de contraintes trop importantes dans le cordage 17 et dans la pièce 12, quand le cerf-volant exerce sa traction. Bien entendu, le cordage peut, classiquement, être démultiplié au moyen de poulies multiples. Figure 5 shows that the vessel may include as a means control arm 1 in inclination 3, a rope 17 of length adjustable connecting point 18 of arm 1 to point 19 of the workpiece intermediate 12. Point 19 being integral with the part intermediate 12 and not of the ship itself, the traction of the rope 17 intended to tilt the arm 1 has a neutral effect on its orientation 4. Point 19 must be located under arm 1 to lower it when you reduce the length of rope 17, filling thus the role of controlling the tilt 3 of the arm 1. It is advisable to position the points 18, 19 in the plane defined by the arm 1 and the vertical axis of rotation 13, and also so that the rope 17 works at a sufficient distance from the horizontal axis of rotation 14 so as not to cause undue stress in the line 17 and in room 12, when the kite is exercising traction. Of course, the rope can, conventionally, be multiplied by means of multiple pulleys.

    Sur la Figure 6, le navire comporte comme moyen de commande du bras 1 en inclinaison 3, un vérin 20 reliant un point 21 du bras 1 à un point 22 de la pièce intermédiaire 12. Ce moyen ne diffère du précédent que par l'utilisation d'un vérin à la place d'un cordage de longueur réglable, ce qui permet de commander également le relèvement du bras 1.In Figure 6, the ship has as control means of arm 1 in inclination 3, a jack 20 connecting a point 21 of arm 1 at a point 22 of the intermediate piece 12. This means does not differ from the precedent only by the use of a jack instead of a rope adjustable length, which also allows control of the bearing arm 1.

    La Figure 7 illustre un autre mode de réalisation du moyen de commande du bras. Le navire comporte ici comme moyen de commande du bras 1 en inclinaison 3, un cordage 23 de longueur réglable reliant un point 24 du bras 1 à un point 25 mobile sur le navire. La différence réside dans le fait que le point d'attache 25 du cordage 23 est sur le navire lui-même et non sur la pièce intermédiaire 12. A titre d'exemple non limitatif, si, comme sur la Figure 7, ce point 25 est un chariot mobile symbolisé par un point sur un guide 26 de type rail d'écoute (symbolisé par une ligne, Figure 7) fixé au navire, en forme `de cercle centré sur l'axe vertical de rotation 13 de l'articulation, le cordage 23 n'exerce pas de moment d'axe vertical sur le bras 1 : la traction du cordage 23 destinée à incliner le bras 1 a, dans ce cas aussi, un effet neutre sur son orientation 4.Figure 7 illustrates another embodiment of the means arm control. The ship has here as a means of controlling the arm 1 in inclination 3, a cord 23 of adjustable length connecting a point 24 of arm 1 to a point 25 mobile on the ship. The difference resides in the fact that the attachment point 25 of the rope 23 is on the ship itself and not on intermediate piece 12. As nonlimiting example, if, as in Figure 7, this point 25 is a mobile carriage symbolized by a point on a rail type guide 26 sheet (symbolized by a line, Figure 7) fixed to the ship, shaped `of a circle centered on the vertical axis of rotation 13 of the joint, the rope 23 does not exert a vertical axis moment on the arm 1: the pulling the rope 23 intended to tilt the arm 1 a, in this case also, a neutral effect on its orientation 4.

    Sur la Figure 8, le navire selon l'invention comporte comme moyen de commande du bras 1 en inclinaison 3, un vérin 27 reliant un point 28 du bras 1 à un point 29 mobile sur le navire. Il ne diffère du précédent que par l'utilisation d'un vérin à la place d'un cordage de longueur réglable, ce qui permet de commander également le relèvement du bras 1. Cependant, il peut être nécessaire de prévenir le coulissement intempestif du point mobile 29, lors des efforts en extension du vérin 27 pour relever le bras 1. Comme illustré sur la Figure 8, à titre d'exemple non limitatif, le peint mobile 29 étant comme précédemment un chariot pouvant coulisser sur un guide 30 en forme de cercle centré sur l'axe vertical de rotation 13 de l'articulation, une partie 31 de la pièce intermédiaire 12 est solidaire du chariot (point mobile 29) : la position du point 29 sur le guide 30 est liée à l'orientation 4 du bras 1 et ne peut se modifier d'elle-même quand on commande l'allongement du vérin 27.In Figure 8, the ship according to the invention comprises as control means of the arm 1 in inclination 3, a jack 27 connecting a point 28 of arm 1 to a point 29 movable on the ship. It does differ from the above only by the use of a jack instead of a rope adjustable length, which also allows you to control the raising the arm 1. However, it may be necessary to prevent inadvertent sliding of the movable point 29, during efforts in extension of the jack 27 to raise the arm 1. As illustrated in the Figure 8, by way of nonlimiting example, the mobile painted 29 being as before, a carriage which can slide on a guide 30 in circle shape centered on the vertical axis of rotation 13 of the joint, part 31 of the intermediate piece 12 is secured to the carriage (movable point 29): the position of point 29 on the guide 30 is linked to the orientation 4 of the arm 1 and cannot be modify on its own when controlling the extension of the jack 27.

    La Figure 9 illustre un navire selon l'invention comportant comme moyen de commande du bras 1 en orientation 4, deux cordages 32, 33 de longueurs réglables, le premier cordage 32 reliant le bras 1 à un point 34 du navire situé en avant de l'extrémité articulée 2 du bras 1, le deuxième cordage 33 reliant le bras 1 indifféremment à un point 35 du navire situé à l'arrière gauche de l'extrémité articulée 2 du bras 1 ou à un point 36 situé à l'arrière droite de l'extrémité articulée 2 du bras 1. La traction coordonnée des deux cordages 32, 33 sur le bras 1 dans des directions sensiblement opposées a pour effet d'imposer au bras 1 une orientation 4 donnée. L'utilisation du seul cordage 32 permet de limiter l'orientation 4 du bras 1 à une valeur maximale, en vue d'empêcher le bras 1 de partir vers l'arrière s'il touche l'eau quand le navire avance, ou de retenir le bras 1 pour l'empêcher de heurter éventuellement des superstructures du navire lors d'un virement de bord au près, le cerf-volant passant d'un côté à l'autre du navire sur l'arrière de ce dernier en tirant de ce fait le bras 1 vers l'arrière. Le point 35, respectivement le point 36, est utilisé pour rattacher le cordage 33 au navire, selon que le bras 1 est orienté sur la gauche (respectivement sur la droite) du navire : le travail du cordage 33 est ainsi amélioré, notamment quand ce cordage 33 est court.Figure 9 illustrates a ship according to the invention comprising as control means of the arm 1 in orientation 4, two ropes 32, 33 of adjustable lengths, the first rope 32 connecting the arm 1 to a point 34 of the ship located in front of the articulated end 2 of the arm 1, the second rope 33 connecting arm 1 indifferently to a point 35 of the ship located aft left of the hinged end 2 of arm 1 or at a point 36 located at the rear right of the end articulated 2 of the arm 1. The coordinated traction of the two ropes 32, 33 on arm 1 in substantially opposite directions has the effect to impose on the arm 1 a given orientation 4. The use of single rope 32 limits the orientation 4 of arm 1 to a value maximum, in order to prevent arm 1 from moving backwards if touch the water when the ship is moving, or hold arm 1 to prevent it from possibly hitting the ship's superstructures during a close tack, the kite passing from one side to the other of the ship on the stern of the latter, thereby drawing arm 1 backwards. Point 35, respectively point 36, is used to attach rope 33 to the ship, depending on whether arm 1 is oriented on the left (respectively on the right) of the ship: the work of the rope 33 is thus improved, in particular when this rope 33 is short.

    Sur la Figure 10, le navire comporte un flotteur 37 situé à l'extrémité libre 5 du bras 1. La fonction de ce flotteur 37 est d'augmenter la stabilité du navire à l'arrêt, le bras 1 étant orienté en travers du navire et son extrémité libre 5 abaissée au niveau de l'eau. Quand le navire avance, le flotteur 37 peut toucher l'eau sous des angles variés du fait que l'orientation 4 du bras 1 est elle-même variable : il peut être nécessaire que la liaison entre le flotteur 37 et le bras 1 soit articulée, notamment si le flotteur 37 est profilé. Une deuxième fonction de ce flotteur peut être, si la commande de l'inclinaison 3 du bras 1 permet son relèvement, par exemple si un vérin est utilisé, de participer au redressement du navire si celui-ci a chaviré : si l'on relève le bras 1 (lorsque le navire est retourné, cela consiste, en fait, à abaisser le bras 1 dans l'eau), le flotteur 37 exerce alors un couple de redressement sur le navire. Ce flotteur 37 peut être aussi amovible, ou gonflable.In Figure 10, the ship has a float 37 located at the free end 5 of the arm 1. The function of this float 37 is increase the stability of the stationary vessel, arm 1 being oriented across the ship and its free end 5 lowered to the level of the water. As the ship advances, float 37 can touch the water under varied angles because orientation 4 of arm 1 is itself variable: it may be necessary that the connection between the float 37 and the arm 1 is articulated, in particular if the float 37 is profiled. A second function of this float can be, if the control of the inclination 3 of the arm 1 allows it to be raised, for example if a cylinder is used, to participate in the recovery of the ship if it capsized: if arm 1 is raised (when the ship is returned, this consists, in fact, of lowering arm 1 in the water), the float 37 then exerts a righting torque on the ship. This float 37 can also be removable, or inflatable.

    La Figure 11 représente un navire qui comporte comme moyen de commande de l'orientation azimutale 4 du bras 1 un moyen agissant directement sur la pièce intermédiaire 12 pour la faire tourner autour de son axe vertical 13 ; dans l'exemple de réalisation illustré sur la Figure 11, la pièce intermédiaire 12 possède une partie 38 que l'on peut appeler levier d'orientation. Une deuxième pièce, appelée guide d'orientation 39 et solidaire du navire, est schématisée comme une pièce circulaire, axée de fait sur l'axe de rotation vertical 13 de la pièce intermédiaire 12, et présente une gorge 40 sur sa partie externe; lors des changements de l'orientation 4 du bras 1, l'extrémité du levier d'orientation 38 suit le guide d'orientation 39 : pour guider la rotation de la pièce 12, trois chariots de guidage, du type du chariot 60 (le seul des trois représenté sur la Figure 11), répartis sur le guide d'orientation 39 et solidaires de la pièce intermédiaire 12, pourraient être utilisés. Sur la Figure 11, un moteur électrique 41 entraíne un moyeu 42 d'axe vertical, situé à l'extrémité du levier d'orientation 38, qui embobine d'un côté et débobine de l'autre une courroie 43, située dans la gorge 40 du guide d'orientation 39; cette courroie 43 peut faire plusieurs fois le tour du guide 39 pour assurer une bonne adhérence sur ce dernier, ou être crantée. La rotation dans un sens ou dans l'autre du moyeu 42 commande ainsi le déplacement du levier d'orientation 38 le long du guide d'orientation 39 donc, finalement, commande l'orientation azimutale 4 du bras 1. Cet exemple ne présente aucun caractère limitatif, notamment sur la motorisation de la commande, laquelle pourrait être manuelle, un câble lié en son milieu à l'extrémité du levier d'orientation 38 remplaçant la courroie 43 et coulissant dans la gorge 40, la commande en orientation 4 consistant alors à tirer sur ce câble par ses extrémités ou utiliser un autre type de motorisation, ou encore utiliser un système à engrènement tel qu'un pignon engrenant directement sur le guide d'orientation.Figure 11 represents a ship which comprises as a means for controlling the azimuthal orientation 4 of the arm 1 an acting means directly on the intermediate piece 12 to rotate it around its vertical axis 13; in the embodiment illustrated on the Figure 11, the intermediate part 12 has a part 38 which is can call orientation lever. A second room, called a guide 39 and attached to the ship, is shown schematically as a circular part, in fact focused on the vertical axis of rotation 13 of the intermediate piece 12, and has a groove 40 on its part external; when the orientation 4 of the arm 1 changes, the end of the orientation lever 38 follows the orientation guide 39: to guide the rotation of part 12, three carriages of guide, of the type of carriage 60 (the only one of the three shown on the Figure 11), distributed on the orientation guide 39 and integral with the intermediate piece 12, could be used. In Figure 11, a electric motor 41 drives a hub 42 of vertical axis, located at the end of the orientation lever 38, which coils on one side and the other unwinds a belt 43, located in the groove 40 of the guide orientation 39; this belt 43 can go around several times of guide 39 to ensure good adhesion thereon, or to be notched. The rotation in one direction or the other of the hub 42 controls thus the displacement of the orientation lever 38 along the guide of orientation 39 therefore, finally, controls the azimuthal orientation 4 of arm 1. This example has no limiting character, in particular on the motorization of the control, which could be manual, a cable tied in the middle at the end of the lever orientation 38 replacing the belt 43 and sliding in the groove 40, the control in orientation 4 then consisting in pulling on this cable by its ends or use another type of motorization, or still use a meshing system such as a meshing pinion directly on the orientation guide.

    Quand le cerf-volant utilisé est du type commandé par les fils de liaison 6, ce qui est un cas très courant, le système de commande peut être situé sur le bras 1 lui-même, ce qui simplifie le parcours des fils 6 jusqu'à l'extrémité libre 5 du bras. Ci-dessous deux exemples d'un tel système de commande sont donnés dans le cas où le cerf-volant est du type à trois fils, les deux premiers fils 44, 45 permettant de faire tourner le cerf-volant à gauche ou à droite, le troisième fil 46 agissant sur l'incidence du cerf-volant et permettant de moduler sa traction. La Figure 12 illustre ainsi un premier système de commande du cerf-volant, la Figure 13 un autre, plus sophistiqué.When the kite used is of the type ordered by connecting wires 6, which is a very common case, the control can be located on arm 1 itself, which simplifies the path of the wires 6 to the free end 5 of the arm. Below two examples of such a control system are given in the case where the kite is of the three-wire type, the first two wires 44, 45 allowing the kite to turn left or right, the third wire 46 acting on the incidence of the kite and allowing to modulate its traction. Figure 12 thus illustrates a first system another kite, more sophisticated.

    Sur la Figure 12, le navire comporte une poulie 47 fixée au bras 1 et par laquelle passe un fil dont les deux brins, de part et d'autre de la poulie 47, constituent les deux fils de direction 44, 45 du cerf-volant, ainsi qu'un mécanisme 48 (un simple bloqueur sur la Figure 12) situé sur le bras 1 et permettant de régler la longueur du fil d'incidence 46. Ce système de commande du cerf-volant est adapté aux navires de petite taille. Deux poignées 49, 50 peuvent être fixées sur les fils de direction 44, 45, permettant ainsi à un équipier de commander la direction du cerf-volant ; il est alors intéressant de situer la poulie 47 loin du point de traction 5, lequel consiste, par exemple, en une poulie triple articulée sur le bras 1 pour procurer une amplitude maximale au mouvement de ces poignées 49, 50 et, si la cinématique du bras 1 le permet, il est pratique pour l'équipier concerné, que les poignées 49, 50 soient, en position moyenne, proches de l'axe du bateau. Le bloqueur 48 peut être remplacé par un système d'enroulement. In Figure 12, the ship has a pulley 47 attached to the arm 1 and through which a wire passes, the two strands of both on the other side of the pulley 47, constitute the two steering wires 44, 45 of the kite, as well as a mechanism 48 (a simple blocker on the Figure 12) located on arm 1 and used to adjust the length of the bearing wire 46. This kite control system is suitable small vessels. Two handles 49, 50 can be attached on the steering wires 44, 45, thus allowing a team member to command the direction of the kite; it is then interesting to locate the pulley 47 far from the traction point 5, which consists, by example, in a triple pulley articulated on arm 1 to provide maximum amplitude of movement of these handles 49, 50 and, if the kinematics of arm 1 allows it, it is practical for the team member concerned, that the handles 49, 50 are, in the middle position, close of the axis of the boat. Blocker 48 can be replaced by a system winding.

    Un système de sécurité, si le pilote du navire tombe à la mer, peut être réalisé en agissant automatiquement du fait de l'éloignement du pilote, sur le troisième fil 46 ; si une traction sur celui-ci diminue l'incidence du cerf-volant, on peut relier le pilote à l'extrémité du troisième fil 46, qui sera tiré quand le navire s'éloignera du pilote tombé à la mer. Si c'est au contraire l'allongement du troisième fil 46 qui diminue l'incidence, on peut prévoir un système de débloquage ou de largage du troisième fil 46, commandé par l'éloignement du pilote (un filin reliant ce dernier au système de débloquage, un mousqueton à ouverture sous charge, par exemple).A safety system, if the ship's pilot falls to the sea, can be achieved by acting automatically due to the distance of the pilot, on the third wire 46; if a pull on this reduces the incidence of the kite, we can connect the pilot at the end of the third wire 46, which will be pulled when the ship will move away from the fallen pilot. If on the contrary the elongation of the third wire 46 which decreases the incidence, one can providing a system for unlocking or releasing the third wire 46, controlled by the remoteness of the pilot (a line connecting the latter to release system, one carabiner with opening under load, by example).

    La Figure 13 illustre un navire qui comporte un système présentant trois moyeux d'enroulement 51, 52, 53, un pour chacun des trois fils de liaison 44, 45, 46, ce système étant muni de trois fonctions activables indépendamment les unes des autres, la première fonction permettant d'enrouler ou de dérouler simultanément les trois fils 44, 45, 46 d'une même longueur variable, la deuxième fonction permettant de dérouler, respectivement d'enrouler, le premier fil 44 et d'enrouler, respectivement de dérouler, simultanément le deuxième fil 45 d'une même longueur variable, la troisième fonction permettant de dérouler ou d'enrouler le troisième fil 46 d'une longueur variable. Sur la Figure 13, les trois moyeux 51, 52, 53 sont situés sur le bras 1 : le moyeu 51 commande le premier fil de direction 44, le moyeu 52 le deuxième fil de direction 45, et le moyeu 53 le fil d'incidence 46. Les trois fonctions demandées peuvent être assurées, par exemple, au moyen de trois moteurs électriques entraínant les moyeux 51 52, 53 (un moteur pour chaque moyeu). Chaque moteur doit être asservi à la vitesse d'enroulement ou à la longueur d'enroulement du fil qu'il commande ; à cette fin, il est conseillé de prévoir, à la sortie des moyeux d'enroulement 51, 52, 53, des capteurs de vitesse ou de longueur, car, en pratique, la même rotation de deux moyeux, comme ceux 51, 52 des fils de direction 44, 45, n'enroule (ne déroule) pas forcément la même longueur de fil, ceci étant dû tant aux variations dans l'enroulement effectif sur les moyeux, qu'aux différences de tension des fils, ce problème étant d'autant plus présent que les longueurs de fil sont importantes. Munis de ces capteurs, les trois moteurs sont synchronisés pour la première fonction, de façon à assurer des vitesses d'enroulement identiques ; pour la deuxième fonction, les deux premiers moteurs fonctionnent de façon à assurer des vitesses d'enroulement opposées, le troisième moteur étant stoppé; pour la troisième fonction, seul le troisième moteur est utilisé. Un intérêt particulier d'une telle motorisation réside dans la possibilité d'enrouler rapidement l'ensemble des fils de liaison 44, 45, 46 en cas de déventement du cerf-volant dû aussi bien à une erreur de pilotage qu'à une baisse brusque et momentanée de vent : l'enroulement rapide des fils de liaison 6 permet, comme le cerf-voliste qui recule, de recréer du vent relatif et de continuer à contrôler le cerf-volant. Egalement, il est facile, avec un tel système de commande, de régler la longueur globale des fils de liaison 44, 45, 46 pour s'adapter aux conditions de navigation : allongement en cas de vent irrégulier pour avoir ensuite une marge de raccourcissement, recherche de meilleures conditions en altitude (le vent étant plus soutenu et plus régulier en hauteur).Figure 13 illustrates a ship with a system having three winding hubs 51, 52, 53, one for each of three connecting wires 44, 45, 46, this system being provided with three functions can be activated independently of each other, the first function allowing the three to be rolled up or unrolled simultaneously wires 44, 45, 46 of the same variable length, the second function allowing the first wire 44 to be unwound or wound respectively and to wind, respectively to unwind, simultaneously the second wire 45 of the same variable length, the third function allowing unwinding or winding the third wire 46 of variable length. In Figure 13, the three hubs 51, 52, 53 are located on the arm 1: the hub 51 controls the first steering wire 44, the hub 52 the second steering wire 45, and the hub 53 the bearing wire 46. The three requested functions can be performed, for example, at by means of three electric motors driving the hubs 51 52, 53 (one motor for each hub). Each motor must be slaved to the winding speed or the winding length of the wire it ordered ; to this end, it is advisable to plan, at the exit of winding hubs 51, 52, 53, speed sensors or length, because in practice the same rotation of two hubs, as those 51, 52 of the direction wires 44, 45, does not wind (does not unwind) necessarily the same length of wire, this being due both to variations in the actual winding on the hubs, tension of the wires, this problem being all the more present as the wire lengths are important. With these sensors, the three motors are synchronized for the first function, so that ensure identical winding speeds; for the second function, the first two motors operate to ensure opposite winding speeds, the third motor being stopped; for the third function, only the third motor is used. A particular interest of such a motorization lies in the possibility of rapidly winding all the connecting wires 44, 45, 46 in case of kite winding due to an error as well to a sudden and momentary drop in wind: the rapid winding of the connecting wires 6 allows, like the kite-flyer backing up, recreating relative wind and continuing to control the kite. Also, it is easy, with such control system, to adjust the overall length of the connecting wires 44, 45, 46 to adapt to sailing conditions: lengthening in case of irregular wind to then have a margin of shortening, search for better conditions at altitude (the wind being more sustained and more regular in height).

    Sur la Figure 14, le navire comporte un dispositif 54 duquel tous les fils de liaison 6 sont issus et sortent dans le même sens, ce dispositif 54 pouvant coulisser dans la direction correspondante et étant soumis à la traction d'un filin 55 dans le sens opposé aux fils de liaison 6, ce filin 55 étant relié au bras 1 de façon qu'un relèvement du bras 1 entraíne une traction sur le filin 55. L'intérêt de ce mode de réalisation est de fournir une aide au moyen de commande de l'inclinaison 3 du bras 1, proportionnelle à la traction du cerf-volant. En effet, plus le cerf-volant tire via ses fils de liaison 6, plus l'effort à fournir par le moyen de commande de l'inclinaison 3 pour abaisser le bras 1 est important. On utilise cette force de traction des fils de liaison 6 pour aider l'abaissement du bras 1. En général, le dispositif 54 comprend, le cas échéant, le système de commande des fils de liaison 6 ; par exemple, dans le cas illustré sur la Figure 12, ce pourrait être un châssis, supportant à la fois la poulie 47 et le bloqueur 48, coulissant le long du bras 1. Dans le cas illusté sur la Figure 13, ce pourrait être le système de commande lui-même coulissant le long du bras 1. Dans l'exemple illustré sur la Figure 14, le centre de dérive 11 est situé verticalement sous l'extrémité liée 2 du bras 1, et les fils de liaison 6 sortent du dispositif 54 en direction de l'extrémité libre 5 du bras 1 ; le dispositif 54 coulisse donc le long du bras 1. Via des poulies appropriées, le filin 55 passe par l'extrémité liée 2 du bras 1, contourne le point 56 situé au tiers du segment [extrémité liée 2 - centre de dérive 11], et rejoint le point 57 situé au tiers du segment [extrémité liée 2 - point de traction 5], après avoir fait un aller-retour entre les points 56 et 57 : le filin 55 est triplé entre les points 56 et 57 au moyen, par exemple, d'une poulie double au point 56 et d'une poulie à ringot au point 57. Le triangle (extrémité liée 2 -centre de dérive 11 - point de traction 5) et le triangle (extrémité liée 2 - point 56 - point 57) étant semblables et de rapport 3, on voit que, lorsque le bras 1 est incliné de façon que la droite de traction 10 passe par le centre de dérive 11, le moment exercé par les fils de liaison 6 par rapport à l'extrémité liée 2 est compensé par le moment exercé par le filin 55, puisque celui-ci reçoit, via le dispositif 54, la même traction des fils de liaison 6, et triple celle-ci entre les points 56 et 57. Donc, lorsque le bras est dans une position a priori équilibrée, la droite de traction 10 passant par le centre de dérive 11, le moyen de commande de l'inclinaison 3 du bras 1 est complètement soulagé ; ceci permet donc de petites variations de réglage de l'inclinaison 3 autour de cette position avec une faible dépense d'énergie. En vue d'assurer une prétension du filin 55, on peut prévoir un système de rappel, un sandow, par exemple tirant le dispositif 54 dans le même sens que les fils de liaison 6. D'autre part, l'amplitude du coulissement du dispositif 54 doit être prévue sur le bras 1 : dans le cas de la Figure 14, si le bras 1 doit pouvoir être incliné entre l'horizontale et la verticale, cette amplitude vaut environ 40 % de la longueur du bras 1 (segment extrémité liée 2 - point de traction 5).In Figure 14, the ship has a device 54 from which all the connecting wires 6 come from and come out in the same sense, this device 54 being able to slide in the direction corresponding and being subjected to the traction of a rope 55 in the opposite direction to the connecting wires 6, this rope 55 being connected to the arm 1 so that raising the arm 1 causes traction on the rope 55. The advantage of this embodiment is to provide assistance to the means for controlling the inclination 3 of the arm 1, proportional to the kite pulling. In fact, the more the kite pulls via its connecting wires 6, plus the effort to be provided by the control means of the inclination 3 to lower the arm 1 is important. We use this tensile force of the connecting wires 6 to help lowering of the arm 1. In general, the device 54 comprises, where appropriate, the control system for connecting wires 6; for example, in the case illustrated in Figure 12, it could be a chassis, supporting both the pulley 47 and the blocker 48, sliding along the arm 1. In the case illustrated in Figure 13, it could be the system of control itself sliding along arm 1. In the example illustrated in Figure 14, the center of drift 11 is located vertically under the linked end 2 of arm 1, and the wires of link 6 exit the device 54 towards the free end 5 of arm 1; the device 54 therefore slides along the arm 1. Via appropriate pulleys, the rope 55 passes through the linked end 2 of the arm 1, bypasses point 56 located at the third of the segment [end linked 2 - center of drift 11], and joins point 57 located at the third of the segment [tied end 2 - pull point 5], after doing a round trip between points 56 and 57: the line 55 is tripled between points 56 and 57 using, for example, a double pulley at point 56 and a becket pulley at point 57. The triangle (linked end 2 - drift center 11 - traction point 5) and the triangle (linked end 2 - point 56 - point 57) being similar and of ratio 3, it can be seen that, when the arm 1 is inclined so that the traction line 10 passes through the center of drift 11, the moment exerted by the connecting wires 6 relative to the linked end 2 is compensated by the moment exerted by the rope 55, since the latter receives, via the device 54, the same traction of the connecting wires 6, and triple it between points 56 and 57. So when the arm is in an a priori balanced position, the traction line 10 passing through the drift center 11, the control means for the inclination 3 of the arm 1 is completely relieved; this therefore allows small variations in tilt adjustment 3 around this position with low energy expenditure. In order to ensure pretension rope 55, we can provide a reminder system, a bungee cord, for example pulling the device 54 in the same direction as the wires of connection 6. On the other hand, the amplitude of the sliding of the device 54 must be provided on arm 1: in the case of Figure 14, if the arm 1 must be able to be tilted between the horizontal and the vertical, this amplitude is worth approximately 40% of the length of the arm 1 (segment linked end 2 - pull point 5).

    Sur la Figure 15, le navire comporte un dispositif 58, articulé à la deuxième extrémité 5 du bras 1 et profilé de manière à créer une force vers le haut lorsque cette deuxième extrémité 5 du bras 1 est immergée, le navire faisant route. Lorsque le navire fait route, le bras 1 est, en général, orienté globalement sur l'avant du navire ; si pour une raison quelconque, une gíte excessive ou une vague plus haute par exemple, le bout 5 du bras 1 rencontre l'eau, il est possible, en fonction de sa forme, qu'il ait tendance à vouloir s'enfoncer plus dans l'eau, ce qui peut éventuellement déséquilibrer le navire. Pour remédier à cela, on peut soit profiler différemment le bras 1 de façon à ne pas créer cette force vers le bas, soit donc rajouter à son extrémité 5 un dispositif 58 profilé, par exemple comme sur la Figure 15, un simple plan incliné qui créera hydrodynamiquement une force vers le haut en cas d'immersion. Ce dispositif 58 doit pouvoir s'orienter dans l'axe du navire, quelle que soit l'orientation 4 propre du bras 1, aussi est-il articulé. Comme sur la Figure 15, l'articulation peut être un simple axe 59, vertical pour l'inclinaison 3 courante du bras 1 l'inclinaison 3 courante est à l'horizontale sur la Figure 15, ou ce peut être une rotule. Ce dispositif peut aussi être combiné avec un flotteur 37 comme décrit précédemment.In FIG. 15, the ship includes a device 58, articulated at the second end 5 of the arm 1 and shaped so as to create an upward force when this second end 5 of the arm 1 is submerged, the ship under way. When the ship does road, arm 1 is generally oriented generally towards the front of the ship; if for any reason, excessive lodging or higher wave for example, the tip 5 of arm 1 meets water, it is possible, depending on its shape, that it tends to want sinking deeper into the water, which can potentially unbalance vessel. To remedy this, we can either profile the arm 1 so as not to create this downward force, so therefore add at its end 5 a profiled device 58, for example as in Figure 15, a simple inclined plane which will create hydrodynamically an upward force in the event of immersion. This device 58 must ability to orient themselves in line with ship, regardless of orientation 4 clean of arm 1, so it is articulated. As in Figure 15, the articulation can be a simple axis 59, vertical for the inclination 3 current of the arm 1 the inclination 3 current is horizontal on Figure 15, or it can be a ball joint. This device can also be combined with a float 37 as described above.

    La Figure 16 illustre un navire comportant un ballast 60 susceptible d'être alternativement rempli avec l'eau environnant le navire ou vidé, le navire faisant route. L'intérêt de ceci provient de l'usage d'un cerf-volant pour tracter un navire. En effet, la traction du cerf-volant sur le navire détermine une composante verticale ascendante, par exemple de 50 % de sa valeur, lorsque le cerf-volant est à 30 degrés sur l'horizon; cette composante verticale a un effet positif sur le navire puisqu'elle l'allège, en diminuant donc son poids apparent ; cependant, au-dessus d'une certaine vitesse du vent, le poids apparent du navire peut devenir trop faible : le navire risque alors de sortir momentanément de l'eau, ce qui annule le travail de ses plans anti-dérive, nuisant ainsi au cap du navire et à sa vitesse globale. Pour remédier à cela, on peut donc utiliser un ballast 60 que l'on remplit d'eau, par exemple au moyen de la pompe réversible 61, quand le navire prend de la vitesse et, donc, que le vent relatif augmente, de façon à garder un poids apparent suffisant : le navire peut ainsi aller plus vite, car les plans anti-dérive fonctionnent efficacement. Inversement, lorsque le navire perd de la vitesse, volontairement ou lorsque le vent réel diminue, on vide le ballast 60 de façon à alléger le navire, par exemple au moyen de la pompe réversible 61. A la différence des ballasts des monocoques classiques, conçus de façon à déplacer l'eau d'un côté à l'autre du navire, le ballast 60 doit être bien équilibré latéralement afin de ne pas créer une gíte parasite sur le navire, ce qui n'empêche pas cependant de le concevoir en plusieurs volumes.Figure 16 illustrates a ship with ballast 60 can be alternately filled with the surrounding water ship or emptied, the ship under way. The interest of this comes from the use of a kite to tow a ship. Indeed, traction of the kite on the ship determines a vertical component ascending, for example 50% of its value, when the kite is 30 degrees on the horizon; this vertical component has an effect positive on the ship since it lightens it, thus reducing its apparent weight; however, above a certain wind speed, the apparent weight of the vessel may become too low: the vessel may then temporarily come out of the water, which cancels the work of its anti-drift plans, thus harming the ship's course and its overall speed. To remedy this, we can therefore use a ballast 60 which is filled with water, for example by means of the pump reversible 61, when the ship picks up speed and, therefore, the relative wind increases, so as to keep a sufficient apparent weight : the ship can thus go faster, because the anti-drift plans operate effectively. Conversely, when the ship loses speed, voluntarily or when the real wind decreases, we empty the ballast 60 so as to lighten the ship, for example by means of the reversible pump 61. Unlike monohull ballasts conventional, designed to move water from side to side of the ship, ballast 60 must be well balanced laterally so as not to not create a parasitic deposit on the ship, which does not prevent however to design it in several volumes.

    Sur la Figure 17, le navire a son bras réglable en longueur. On a vu plus haut à propos du mode de réalisation représenté sur la Figure 2, l'influence de la longueur du bras 1. Un bras plus long permet d'obtenir la même position de la droite de traction 10, donc le même équilibre en gíte du navire, avec un point de traction 5 situé plus haut, ce qui est un avantage. Inversement un bras plus court est certainement plus résistant. L'intérêt de pouvoir régler le bras 1 en longueur est de pouvoir, en l'allongeant, situer le point de traction 5 plus haut : ceci permet, par exemple, de s'adapter à une mer plus grosse de façon à éviter que le bras 1 ne touche trop souvent l'eau. Si le réglage de la longueur du bras 1 peut être fait en cours de navigation, comme la Figure 17 l'illustre avec un bras 1 télescopique en deux parties 62 et 63 supportant respectivement son extrémité liée 2 et son extrémité libre 5, un vérin 64 situé à l'intérieur de la partie 62 permettant de faire coulisser la partie 63 par rapport à la partie 62, il est possible dans une certaine mesure en fonction de l'amplitude possible de la variation de longueur du bras 1 de commander l'équilibre en gíte du bras 1 avec ce réglage en longueur, et en laissant fixe l'inclinaison 3 du bras 1 : en effet, la variation de longueur du bras 1 modifie la position du point de traction 5, donc de la droite de traction 10, ce qui permet de s'adapter à des sites différents du cerf-volant (c'est-à-dire à des inclinaisons différentes de la droite 10).In Figure 17, the ship has its arm adjustable in length. We saw above about the embodiment shown in Figure 2, the influence of the length of the arm 1. A longer arm long allows to obtain the same position of the traction line 10, therefore the same balance in heel of the ship, with a traction point 5 located higher, which is an advantage. Conversely one more arm short is certainly more resistant. The advantage of being able to settle the arm 1 in length is able, by lengthening it, to locate the point of traction 5 higher: this allows, for example, to adapt to a bigger seas so as to avoid arm 1 touching too often the water. If the length of the arm 1 can be adjusted in progress navigation, as Figure 17 illustrates with an arm 1 telescopic in two parts 62 and 63 respectively supporting its linked end 2 and its free end 5, a jack 64 located at the inside of part 62 allowing the part 63 to slide compared to part 62 it is possible to some extent depending on the possible amplitude of the variation in length of the arm 1 to control the balance in heel of arm 1 with this adjustment in length, and leaving the inclination 3 of the arm 1 fixed: in fact, the arm length variation 1 changes the position of the traction 5, therefore from traction line 10, which allows adapt to different sites of the kite (i.e. different inclinations of the straight line 10).

    Le navire selon l'invention est donc particulièrement destiné au déplacement rapide grâce au vent.The ship according to the invention is therefore particularly intended for rapid movement thanks to the wind.

    Bien que l'on ait représenté et décrit ce que l'on considère actuellement être les modes de réalisation préférés de la présente invention, il est évident que l'Homme de l'Art pourra y apporter différents changements et modifications sans sortir du cadre de la présente invention tel que défini par les revendications jointes.Although we have represented and described what we currently considers to be the preferred embodiments of the present invention, it is obvious that the skilled person can make various changes and modifications without departing from the framework of the present invention as defined by the claims attached.

    Claims (16)

    1. Boat pulled along by a kite comprising an arm (1) which is articulated via a first end (2) to the boat, the point through which the kite strings (6) connecting the kite to the boat pull constituting the second end (5) of the arm (1), the kite being connected to the boat only by the said kite strings (6), comprising a means of controlling the inclination (3) of the arm (1) allowing the latter to be lowered with respect to the direction (10) of the said kite strings (6), characterized in that it includes a means of controlling the orientation (4) in terms of azimuth of the said arm (1) with respect to the direction (10) of the kite strings (6), the said kite strings (6) all passing through the single pulling point which constitutes the second end (5) of the said arm (1).
    2. Boat according to Claim 1, characterized in that the articulation of the said arm (1) consists of a rigid intermediate component (12) which has two perpendicular axes of rotation (13, 14), the first axis (13), which is vertical, serving as a connection with the boat, the connected end (2) of the arm (1) being attached to the second axis (14), the said arm (1) and the vertical axis of rotation (13) being coplanar.
    3. Boat according to Claim 2, characterized in that the said means of controlling the said arm (1) in terms of inclination (3) comprises a line (17) of adjustable length connecting a point (18) on the said arm (1) to a point (19) on the said intermediate component (12).
    4. Boat according to Claim 2, characterized in that the said means of controlling the said arm (1) in terms of inclination (3) comprises a ram (20) connecting a point (21) on the said arm (1) to a point (22) on the said intermediate component (12).
    5. Boat according to Claim 2, characterized in that the said means of controlling the said arm (1) in terms of inclination (3) comprises an adjustable-length line (23) connecting a point (24) on the said arm (1) to a moving point (25) on the boat.
    6. Boat according to Claim 2, characterized in that the said means of controlling the said arm (1) in terms of inclination (3) comprises a ram (27) connecting a point (28) on the said arm (1) to a moving point (29) on the boat.
    7. Boat according to any one of the preceding claims, characterized in that the said means of controlling the said arm (1) in terms of orientation (4) comprises two adjustable-length lines (32, 33), the first line (32) connecting the arm (1) to a point (34) on the boat situated forward of the articulated end (2) of the arm (1), the second line (33) connecting the arm (1) either to a point (35) on the boat which is aft and left of the articulated end (2) of the arm (1) or to a point (36) which is aft and to the right of the articulated end (2) of the said arm (1).
    8. Boat according to any one of the preceding claims, characterized in that it comprises a float (37) situated at the free end (5) of the said arm (1).
    9. Boat according to Claim 2, characterized in that the means of controlling the orientation in terms of azimuth (4) of the said arm (1) is a means which acts directly on the said intermediate component (12) to make it turn about its vertical axis (13).
    10. Boat according to any one of the preceding claims, characterized in that the said kite used is controlled by kite strings (6), of which there are at least three, two first strings (44, 45) allowing the said kite to be made to turn, and a third string (46) acting on the angle of incidence of the said kite.
    11. Boat according to Claim 10, characterized in that it comprises a pulley (47) fixed to the said arm (1) and over which there passes a string, of which the two strands, one on either side of the pulley (47), constitute the said two strings (44, 45), and a mechanism (48) situated on the arm (1) allowing the length of the string (46) to be adjusted.
    12. Boat according to Claim 10, characterized in that it comprises a system which has at least three winders (51, 52, 53), one for each of the strings (44, 45, 46), this system being fitted with three functions that can be activated independently of one another, the first function allowing the said strings (44, 45, 46) to be wound up or unwound simultaneously by the same variable length, the second function allowing the first string (44) to be unwound (or wound in) and at the same time the second string (45) to be wound in (or wound out) by the same variable length, the third function allowing the third string (46) to be unwound or wound in by a variable length.
    13. Boat according to any one of the preceding claims, characterized in that it comprises a device (54) from which all the kite strings (6) originate and which they all leave in the same direction, it being possible for this device (54) to slide in the corresponding direction, the device being subject to the action of a rope (55) pulling in the opposite direction to the kite strings (6), this rope (55) being connected to the said arm (1) in such a way that raising the arm (1) leads to pulling on the rope (55).
    14. Boat according to any one of the preceding claims, characterized in that it comprises a device (58), articulated to the second end (5) of the said arm (1) and shaped in such a way as to create an upwards force when the said second end (5) of the said arm (1) is immersed, when the boat is making way.
    15. Boat according to any one of the preceding claims, characterized in that it comprises a ballast which can be either filled with the water surrounding the boat or emptied while the ship is making way.
    16. Boat according to any one of the preceding claims, characterized in that the said arm (1) is of adjustable length.
    EP96934979A 1995-10-26 1996-10-25 Boat powered by means of a kite via a hinged arm Expired - Lifetime EP0853576B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9512622A FR2740427B1 (en) 1995-10-26 1995-10-26 VESSEL TRACTED BY KITE VIA AN ARTICULATED ARM
    FR9512622 1995-10-26
    PCT/FR1996/001678 WO1997015490A1 (en) 1995-10-26 1996-10-25 Boat powered by means of a kite via a hinged arm

    Publications (2)

    Publication Number Publication Date
    EP0853576A1 EP0853576A1 (en) 1998-07-22
    EP0853576B1 true EP0853576B1 (en) 1999-06-09

    Family

    ID=9483929

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96934979A Expired - Lifetime EP0853576B1 (en) 1995-10-26 1996-10-25 Boat powered by means of a kite via a hinged arm

    Country Status (7)

    Country Link
    US (1) US6003457A (en)
    EP (1) EP0853576B1 (en)
    AU (1) AU7308896A (en)
    DE (1) DE69602849D1 (en)
    FR (1) FR2740427B1 (en)
    NZ (1) NZ320358A (en)
    WO (1) WO1997015490A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010028216A1 (en) 2010-04-26 2011-10-27 Stephan Schroeder Attitude and control device for fastening and controlling guidance kite of vehicle, has load introduction elements for introducing release cable and control line whose length is more adjustable independently

    Families Citing this family (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AU2001289852A1 (en) * 2000-08-31 2002-03-13 Edwin Lundgren Control device for a steering kite on a boat
    FR2822802B1 (en) * 2001-03-29 2004-05-14 Maurice Grenier NAUTICAL CRAFT DRAWN BY A KITE
    WO2003101824A1 (en) * 2002-06-03 2003-12-11 Arnaud Ballu Control and fixing device for the sail of a kite
    US7971545B2 (en) * 2004-09-06 2011-07-05 Skysails Gmbh & Co. Kg Watercraft having a kite-like element
    ITTO20060874A1 (en) * 2006-12-11 2008-06-12 Modelway S R L AUTOMATIC FLIGHT CONTROL ACTUATION SYSTEM FOR POWER WING PROFILES
    US8117977B2 (en) * 2007-08-24 2012-02-21 Skysails Gmbh & Co. Kg Aerodynamic wind propulsion device and method for controlling
    NL2001758C2 (en) * 2008-07-04 2010-01-05 Zwijnenberg Evert Hendrik Will Auxiliary device for placement between a first object providing a pulling or pushing force and a second object on which the pulling or pushing force is exerted.
    GB2508660B (en) * 2012-12-10 2014-12-24 Bruce Nicholas Martin A control arrangement for a wind powered vehicle
    US11542037B2 (en) 2019-12-09 2023-01-03 Insitu, Inc. Methods and apparatus to deploy unmanned aerial vehicles (UAVs) by kites
    US11745897B2 (en) * 2019-12-09 2023-09-05 Insitu, Inc. Methods and apparatus to recover unmanned aerial vehicles (UAVs) with kites
    EP3939876A1 (en) * 2020-07-17 2022-01-19 SP80 Sàrl Wind-powered watercraft
    US20220227468A1 (en) * 2021-01-19 2022-07-21 Robert Richardson Kite power with directional control for marine vessels

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1022300A (en) * 1950-07-22 1953-03-03 Improvements in means of navigation on sail gliders
    GB1184914A (en) * 1966-04-28 1970-03-18 Albert Marie Gabriel D Galbert Pivotal Rigging for Sailing Boats and Sail Propelled Vehicles
    FR2510969A1 (en) * 1981-08-10 1983-02-11 Buraschi Daniel Sailing craft rigging support - has arm which pivots on vertical axis of hull, maintaining sail surface at constant angle
    JPS61232989A (en) * 1985-04-06 1986-10-17 Shinzo Sakaki Sailboat
    DE8702480U1 (en) * 1987-02-18 1988-06-16 Bley, Johannes, 4800 Bielefeld, De
    US4809629A (en) * 1987-02-26 1989-03-07 Martinmaas Werner W Sail rig for a wind propelled vehicle
    FR2624827A1 (en) * 1987-12-21 1989-06-23 Allard Francois Movable rigging device which, due to its geometry, gives the craft to which it is fitted new capabilities such as handleability, speed and jumping
    US4934296A (en) * 1989-05-03 1990-06-19 Bernard Smith Hydrofoil sailboat and method of sailing therewith
    FR2649068A1 (en) * 1989-06-29 1991-01-04 Baud Barthelemy Variable-inclination sail device with elastic return for a boat
    US5255624A (en) * 1992-06-01 1993-10-26 Legare David J Sailboat mast floatation device
    DE29501822U1 (en) * 1995-02-04 1995-04-27 Mader Anton Dipl Ing Drachenrigg

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010028216A1 (en) 2010-04-26 2011-10-27 Stephan Schroeder Attitude and control device for fastening and controlling guidance kite of vehicle, has load introduction elements for introducing release cable and control line whose length is more adjustable independently

    Also Published As

    Publication number Publication date
    FR2740427A1 (en) 1997-04-30
    AU7308896A (en) 1997-05-15
    FR2740427B1 (en) 1998-01-02
    US6003457A (en) 1999-12-21
    NZ320358A (en) 1998-09-24
    WO1997015490A1 (en) 1997-05-01
    EP0853576A1 (en) 1998-07-22
    DE69602849D1 (en) 1999-07-15

    Similar Documents

    Publication Publication Date Title
    EP0853576B1 (en) Boat powered by means of a kite via a hinged arm
    WO2005054049A2 (en) Dynamic stabiliser for a boat, a force stabilising device for orienting sails and a semi-submersible boat
    EP0126679B1 (en) Vessel with at least two connected hulls, and with several masts
    FR3091256A1 (en) RECEPTION DEVICE FOR AN UNDERWATER VEHICLE
    FR2515137A1 (en) ROLLING DEVICE AND SAILING DEVICE
    FR2854864A1 (en) Small sail catamaran comprises chassis fixed on two floats and mast carrying sail, each float having rudder blade and sail having yard to which sheet is fixed, central driving post has seat and rudder blade control guide and locking cleat
    WO2020136114A1 (en) Docking device for an underwater vehicle
    EP2488409B1 (en) Dirigible airship
    FR2775462A1 (en) Self releasing type multi-hull water craft such as soil boat, power boat
    FR2627449A1 (en) SAILBOAT WITH A LIFT AND ANTI-GITE DEVICE
    EP0481897B1 (en) Movable rig for planing sailboats and sailing vessel comprising at least one planing hull equipped with this rig
    CA1265958A (en) Gear, for sail boards among others
    FR2721280A1 (en) Sail boat rigging which suspends triangular sail from upper yard fixed to mast
    FR2526749A1 (en) Sailing craft outboard centre-board - is immersed and of variable inclination to correct heeling by wind force
    FR2628698A1 (en) High-performance sailing craft - has steerable lifting sail mast and steerable floats at corners of triangular platform
    FR2639605A1 (en) Flexible flying wing provided with towing cables intended in particular for towing a boat
    EP0104122A1 (en) Automotive ships for pushing and steering any train of barges at optimum efficiency
    FR2637562A1 (en) Running rigging for a sailing craft, and sailing craft provided with such rigging
    FR2544276A1 (en) DEVICE FOR MANEUVERING THE SPINNAKER OF A CATAMARAN
    WO2001079059A1 (en) Propelling device for a water craft
    EP0613815A1 (en) Sport boat
    FR3123309A1 (en) Sail Propulsion Element, Sail Propelled Vehicle
    FR2899198A1 (en) Sailing boat, has fixed mast, front sail for providing sail force, and boom rotated in one direction or in another direction along wind, where rotation is limited by sheet which drives identical rotation and inverse rotation of boom
    FR2877913A1 (en) Trapezoid rigging for e.g. terrestrial sail propulsion vehicle, has vertical posts respectively inclined along concurrent axis forming preset angle between twenty and fifty degrees, and sheet connected to ends of booms of main sails
    EP0456729A1 (en) Multi-structure or variable configuration sail vehicle

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980328

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE DK ES FI FR GB GR IE IT LI NL SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DAL MOLIN, DENIS

    Owner name: CHATELAIN, PIERRE

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CHATELAIN, PIERRE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19981001

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE DK ES FI FR GB GR IE IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990609

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990609

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 19990609

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990609

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990609

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990609

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69602849

    Country of ref document: DE

    Date of ref document: 19990715

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990909

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990910

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990913

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001025

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010410

    Year of fee payment: 5

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20001025

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010629

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: RN

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: D3

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST