EP0850403B1 - Procede permettant de determiner et d'evaluer des valeurs d'indice de fusion - Google Patents

Procede permettant de determiner et d'evaluer des valeurs d'indice de fusion Download PDF

Info

Publication number
EP0850403B1
EP0850403B1 EP19960945132 EP96945132A EP0850403B1 EP 0850403 B1 EP0850403 B1 EP 0850403B1 EP 19960945132 EP19960945132 EP 19960945132 EP 96945132 A EP96945132 A EP 96945132A EP 0850403 B1 EP0850403 B1 EP 0850403B1
Authority
EP
European Patent Office
Prior art keywords
mfr
nozzles
line
process according
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960945132
Other languages
German (de)
English (en)
Other versions
EP0850403A2 (fr
Inventor
Axel GÖTTFERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gottfert Werkstoff-Pruefmaschinen GmbH
Original Assignee
Gottfert Werkstoff-Pruefmaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gottfert Werkstoff-Pruefmaschinen GmbH filed Critical Gottfert Werkstoff-Pruefmaschinen GmbH
Publication of EP0850403A2 publication Critical patent/EP0850403A2/fr
Application granted granted Critical
Publication of EP0850403B1 publication Critical patent/EP0850403B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/08Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by measuring pressure required to produce a known flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing
    • Y10T137/2506By viscosity or consistency

Definitions

  • US-A-3,252,320 describes a device for determining the melt index of a polymer. For this, the polymer melt is led through a pipe pumped, the temperature of the line and the polymer melt as possible is kept constant. The polymer melt is used to determine the melt index pumped through a constriction in the line. The pressure in the Pipe measured before constriction.
  • US-A-3,468,158 describes a method for determining the viscosity of a non-Newtonian Liquid described in which the liquid with a defined flow rate is pumped through a pipe with a defined diameter and the Pressure drop over a defined line length is measured. This measurement will repeated at different measuring conditions. Using formulas for laminar The viscosity of the liquid is then determined from the measurement results.
  • US-A-4,449,395 describes a method for testing thermoplastic materials described. As part of this procedure, a melt sample is either at constant temperature and pressure or at constant temperature pumped through a control zone at a constant flow rate.
  • Capillary rheometers are due to their wide measuring range and their simple and robust construction the most common rheometer systems used in the polymer industry.
  • One possibility of recording measured values with a capillary rheometer is to measure the pressure difference between the inlet and outlet of the measuring nozzle, the volume flow through the measuring nozzle generally being kept constant. Likewise, however, a constant pressure difference can also be specified and the resulting volume flow through the measuring nozzle can be measured. In practice, round hole nozzles or flat slot channels are often used as the measuring nozzle.
  • the volume flow is metered using so-called melt pumps, for example gearwheel melt pumps.
  • the controllable working range of melt pumps is between 0.5 and 100 rpm, the conveying capacity is usually between 0.6 and 1.3 cm 3 / rev.
  • the Melt Index (MFR) is the most popular parameter for describing the Flow behavior of thermoplastics from an industrial point of view. Even if this Size is determined in the context of a classic one-point measurement, it is determined by Raw material manufacturers for application technology are often the only rheological Key figure specified for product specification. In this respect comes the melt index MFR also of central importance in product-related quality control and Quality assurance too.
  • the melt index MFR according to DIN, ISO is determined as the extruded sample mass in g, which in ten minutes from a tempered channel through a defined one Nozzle is extruded, the sample mass through a defined support M over a piston is loaded.
  • volume index (MVR) in which the extruded material is given in cm 3 , was also standardized for practical reasons.
  • the determination of the volume index MVR is the more common form of measurement determination.
  • the measuring nozzle of melt index devices used in the laboratory has a diameter of 2.1 mm and a length of 8 mm.
  • the circulation mass is dependent of the polymer to be characterized in each case between 2.16 kg and 21.6 kg selected.
  • the Measuring nozzles of on-line capillary rheometers have a length / diameter (L / D) ratio > 10 on. This configuration is required to accommodate pressure differences between the To generate input and output of the measuring nozzle in an order of magnitude that can be recorded with commercially available pressure transducers.
  • the measurement of the MFR or MVR is a creep test, the shear stress ⁇ W acting on the melt due to the coating mass being constant on the wall.
  • the invention has for its object to a kind of scale transfer enable the continuously determined MFR or MVR values to be acceptable Limits with the MFR determined under standardized laboratory conditions or MVR values match.
  • composition of the total force is also illustrated by Fig. 1, in which a standardized measuring cell for determining MFR or MVR values is shown.
  • the shear stress ⁇ the calculated total due to the forces acting on the pistons the total force F can be, therefore, is not completely as the pressure difference available to overcome the resistance to flow of the measurement nozzle, since a piston force F KR must be applied for example, to the friction between the piston and overcome template channel.
  • Another force component F channel is required for the liquid transport in the supply channel. This force component depends on the level.
  • F elast on all flow losses before and after the measuring nozzle, which are caused by the elastic properties of the melt. Due to the small L / D ratio of the measuring nozzle in laboratory devices, F elast can sometimes be as high in magnitude as the actual force F viscous , which is necessary to overcome the flow resistance in the measuring nozzle.
  • thermoplastic materials changing in the process such as polymer batches
  • starting material which is characterized by MFR Labor, Kal
  • melts with a similar molar mass distribution can be attributed to a molar mass-invariant master viscosity function. If this strict boundary condition is met, the ratio of the shear rates in equation (1) is directly proportional to changes in the average molar mass M W. In this case, the calculated MFR value on-line agrees well with the value measured in the laboratory. However, if the molar mass distribution has changed significantly, a new calibration value MFR * Labor, Kal must be used.
  • a wedge-shaped nozzle is used for the determination simultaneously of the MFR value according to equation (1) also the flow exponent n of the with the Wedge gap nozzle achievable viscosity spectrum determined.
  • the flow exponent changes significant, it can be assumed that the molecular weight distribution has changed. In this case, the calibration values must be redetermined.
  • This procedure has the advantage that the flow exponent n is more constant in the range Tension is determined, which means that there is always constant flow behavior, so that the flow exponent is a significant measure of changes in the molecular weight distribution can be evaluated.
  • ⁇ Kap corresponds in a first approximation to the voltage ⁇ viscous according to equation (6).
  • the dimensionless formula follows from equations (5) and (7):
  • Equation (8) is used to relate the elastic and viscous stress components that occur.
  • the pressure drop ⁇ p can be determined in the on-line capillary rheometer as
  • Equation (12) can be used to determine a setpoint value for the pressure drop ⁇ p on-line in the capillary rheometer, provided that the MFR value is known and with quasi-constant visco-elastic tension conditions.
  • This pressure drop ⁇ p on-line leads to a volume flow V through the measuring nozzle, from which the current shear rate ⁇ ⁇ on-line and thus in turn the MFR value can be calculated according to equation (2).
  • the shear rate ⁇ ⁇ channel leads to the Newtonian intrinsic viscosity ⁇ 0 .
  • the influence of the degree of filling on the MFR value measured in the laboratory device is taken into account by the term L Z (t) / L Z.
  • FIG. 3 shows the corresponding algorithm for an on-line capillary rheometer, with which the flow properties of a melt can be continuously determined and evaluated in the form of MFR values, the measurement conditions , namely ⁇ p, and thus also the actual measurement evaluation to be adapted to any changes in the visco-elastic behavior of the melt.
  • Control loop requires the determination of the viscosity function for at least two different ones Stress states so that the flow exponent n is continuously determined can be.
  • the viscosity function is usually determined in on-line rheometers by specifying different shear rates or different shear stresses determined. To do this, the individual stationary shear rates are shifted one after the other or shear stresses specified. This time consuming acquisition the viscosity function contradicts the real-time requirements of an on-line Rheometers, whose task it is to support the process under real-time conditions Perform measurements.
  • on-line rheometers with at least two measuring nozzles of different geometry used. With this one can constant volume flow rate or constant pressure difference is a range of the viscosity function cover.
  • the use of on-line rheometers is also known two nozzles connected in series, whose L / D ratio is in the range 3-30. Also a corresponding one can be used here for a given constant volume throughput Range of the viscosity function are covered.
  • nozzles connected in series with constant L / D ratio used to at a constant predetermined volume flow to cover the largest possible range of the viscosity function.
  • nozzles with different diameters are parallel switched and supplied with the same volume flows.
  • two nozzles connected in series with identical ones can also be used Diameters, but different lengths can be used.
  • An advantageous variant of the method according to the invention provides for the use of two nozzles connected in parallel, the L / D ratio of which is in the range of 10-30. Furthermore, a melt pump is provided, with which the melt to be conveyed can be divided into two independent and different volume flows. For example, a gear plate pump could be used as a melt pump. The ratio of the two volume flows should be in the range of 1/10. A possible division of the total volume flow V tot provides the following qualitative ratio: V total > V A >>> V B
  • V total V A (1-X) + V B (X) with: 0.1 ⁇ X ⁇ 1
  • a viscosity spectrum can be determined with a constant parameter specification, which can either be pressure or speed controlled.
  • the flow exponent n and the consistency k can then be determined from this.
  • the viscosity function is recorded continuously in continuous operation.
  • Equation (22) represents a compromise with regard to classic Bagley term determination, which requires constant nozzle radii.
  • the only possible source of error, according to which a sliding of the melt on the capillary wall could impair the calculation of the inlet pressure losses, is to be excluded at the relatively low shear rates of ⁇ ⁇ MFR .
  • a volume flow V C is briefly specified, where: V C ⁇ (V A , V B ) that leads to: ⁇ ⁇ A ⁇ ⁇ ⁇ B
  • V A V B and: d 1 d 2
  • Nozzles D 1 and D 2 with constant diameters d 1 and d 2 and different lengths L 1 and L 2 are charged with the parallel flow rates V A ⁇ V B. This means that ⁇ ⁇ A ⁇ ⁇ ⁇ B is fulfilled.
  • Nozzles D 1 and D 2 with different diameters d 1 and d 2 and different lengths L 1 and L 2 are charged with the parallel flow rates V A ⁇ V B. This means that ⁇ ⁇ A ⁇ ⁇ ⁇ B is fulfilled.
  • melt index 1 shows the schematic structure of a melt index used in the laboratory (MFR device) and serves to illustrate the existing in such a device Balance of forces.
  • FIG 3 shows the flow diagram of the process according to the invention applied algorithm.
  • Fig. 4 shows the measuring cell of an on-line capillary rheometer with two in parallel Capillaries or measuring nozzles of different lengths with different volume flows be loaded.
  • the measuring cell 1 of a laboratory device is shown at least schematically, with which the melt index values are determined under standardized laboratory conditions.
  • An essential component of the measuring cell 1 is a measuring nozzle or measuring capillary 2, which is fed to the melt 4 to be examined via a feed channel 3.
  • the melt 4 is loaded with a defined contact force. this happens via a piston 5 acting on the melt 4 in the feed channel 3.
  • the measuring nozzle 2 When determining the melt index according to DIN, ISO, the measuring nozzle 2 and if necessary, the supply channel 3 is tempered.
  • the measuring nozzle 2 has a diameter of 2.1 mm and is 8 mm long.
  • the coating mass is dependent on the one to be examined Melt selected and is in the order of between 2.16 kg and 21.6 kg.
  • F total F viscous + F elastic + F channel + F KR
  • the total force F total is therefore only partially available, namely with the force component F viscous , for overcoming the flow resistance in the measuring nozzle 2.
  • a force component F KR must also be applied in order to overcome the friction between the piston 5 and the supply channel 3.
  • a force component F channel for the liquid transport in the feed channel 3 is necessary, which in turn depends on the fill level of the melt 4 in the feed channel 3.
  • the force component F elast. sometimes be as high as the force component F viscous , which is necessary to overcome the flow resistance in the measuring nozzle.
  • Table 1 shows the results of experiments carried out in connection with equation (12). For a batch series of polypropylenes in an MFR range of 1-6 g / 10 min. the required standard pressure ⁇ p 1-Wb was calculated according to equation (12). Table 1 also shows the experimentally determined control pressure ⁇ p on-line Exp . With the exception of the last batch, deviations between calculated and experimental values were found to be less than 5%.
  • the MFR Laboratory Melt Index value of the product to be examined must be known as the start specification. With the determination of the viscosity function in the range of the shear rate ⁇ ⁇ MFR it is then possible to calculate the pressure setpoint specification as ⁇ p on-line according to equation (12). Since there is no comparison value for the term (1-Wb) 1 / n at the start of the measurements, ⁇ p on-line provides a calculated MFR value according to equation (1), which agrees with the laboratory value with an acceptable tolerance. As long as the continuous determination of the Wienenberg expression remains constant within limits, it can be assumed that the target value for ⁇ p delivers good results online and can therefore be maintained.
  • the measuring cell 6 comprises two capillaries D1 and D2 guided in parallel as measuring nozzles.
  • the capillaries D1 and D2 have different lengths and are simultaneously subjected to different volume flows V A and V B.
  • the pressure drop occurring at the respective measuring nozzle D1 or D2 is detected by the correspondingly arranged pressure transducers DA1 and DA2.
  • FIG. 5 also shows the performance characteristic of a spinning pump for the volume flow V B (X) as a function of different delivery capacity factors X for the known PP melts.
  • V B (X) volume flow
  • the overall speed range increases by about ten times. This makes the conditions for reproducible and reliable control of the melt pump for the polymer area discussed here possible.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Claims (10)

  1. Procédé pour détecter et évaluer des valeurs d'indices de fusion (valeurs MFR) de matériaux thermoplastiques à l'aide d'un rhéomètre capillaire travaillant en ligne en continu, la différence de pression Δp entre entrée et sortie d'une buse de mesure du rhéomètre capillaire étant prédéfinie et Δp étant régulée de telle manière que MFRen ligne = MFRlaboratoire, MFRen ligne étant la valeur de l'indice de fusion déterminée en ligne et MFRlaboratoire la valeur de l'indice de fusion déterminée par des conditions de laboratoire standardisées, caractérisé en ce qu'on détermine une valeur de consigne pour la chute de pression Δp dans le rhéomètre capillaire sous la forme
    Figure 00350001
    et qu'elle n'est pas modifiée tant que le rapport déterminé en continu entre la composante de contrainte élastique τélast. et la composante de contrainte visqueuse τvisqu. de la contrainte de cisaillement τMFR ne se modifie sensiblement pas, où
    L =
    longueur de la buse de mesure
    R =
    rayon de la buse de mesure
    τMFR =
    contrainte de cisaillement mesurée pour MFR dans des conditions de laboratoire standardisées
    k =
    consistance
    γ ˙a =
    vitesse de cisaillement calculée pour MFR dans des conditions de laboratoire standardisées
    γ ˙MFR =
    la vitesse de cisaillement présente pour MFR dans le rhéomètre capillaire en ligne
    n =
    exposant d'écoulement.
  2. Procédé selon la revendication 1,
    caractérisé en ce que le rapport entre les composantes de contrainte élastique et visqueuse de la contrainte de cisaillement est déterminé par γ MFR γ a = 1 - τ MFR - τ Kap tan α•γ a = 1 - τ elast . τvisqu. = 1 - Wb
    τKap =
    contrainte de cisaillement dans le rhéomètre capillaire pour produire la MFR
    tan α =
    pente de la courbe d'écoulement dans la zone τMFRKap
    Wb =
    nombre de Weissenberg sans dimension.
  3. Procédé selon la revendication 2,
    caractérisé en ce que le rapport entre les composantes de contrainte élastique et visqueuse de la contrainte de cisaillement est déterminé à nouveau par
    Figure 00360001
    lorsque le rapport déterminé en continu par γ MFR γ a = 1 - τ MFR - τ Kap tan α•γ a = 1 - τ élast . τvisqu. = 1 - Wb entre la composante de contrainte élastique τelast. et la composante de la contrainte de visqueuse τvisq. de la contrainte de cisaillement τMFR s'est modifié substantiellement, où
    Pc/γ ˙MFR = terme de Bagley déterminé par la vitesse de cisaillement γ ˙MFR
    ηO = viscosité limite newtonienne
    Lz(t)/Lz = influence du taux de remplissage sur le MFR mesuré dans des conditions de laboratoire standardisées
    et que ce rapport déterminé à nouveau de cette manière entre les composantes de contrainte élastique et visqueuse de la contrainte de cisaillement sert de nouvelle valeur de référence pour les mesures ultérieures.
  4. Procédé selon la revendication 3,
    caractérisé en ce que Δp est déterminée à nouveau par
    Figure 00370001
    aussitôt que le rapport mesuré en continu entre la composante de contrainte élastique τélast et la composante de contrainte visqueuse τvisq. de la containte de cisaillement s'écarte substantiellement de la valeur de référence détectée.
  5. Procédé selon l'une des revendications 1 à 4,
    caractérisé en ce que, au début des mesures en ligne, on détermine la valeur d'indice de fusion MFRlaboratoire du matériau thermoplastique à contrôler et la fonction de viscosité dans la zone γ ˙MFR et qu'on détecte ainsi une première prévision de valeur de consigne de pression par
    Figure 00370002
  6. Procédé selon l'une des revendications 1 à 5,
    caractérisé en ce qu'on utilise un rhéomètre capillaire en ligne avec deux buses de mesure (D1, D2) montées en parallèle et une pompe pour transporter le matériau thermoplastique, les buses de mesure (D1, D2) présentant respectivement un rapport longueur/diamètre (L/D) dans la plage de 10 à 30 et la pompe divise le matériau thermoplastique en deux courants volumiques (VA, VB) indépendants et différents quantitativement, de telle sorte que le rapport des courants volumiques (VA/VB) est dans la plage de 1 à 10.
  7. Procédé selon la revendication 6,
    caractérisé en ce que les deux buses (D1,D2) présentent le même diamètre (d1=d2) mais des longueurs (L1, L2) différentes et que les deux buses (D1,D2) sont alimentées par des courants volumiques égaux (VA = VB).
  8. Procédé selon la revendication 6,
    caractérisé en ce que les deux buses D1,D2) présentent des diamètres (d1,d2) différents et des longueurs (L1, L2) différentes et que les deux buses (D1,D2) sont alimentées par des courants volumiques égaux (VA=VB).
  9. Procédé selon la revendication 6,
    caractérisé en ce que les deux buses (D1,D2) présentent le même diamètre (d1=d2) mais des longueurs (L1,L2) différentes et que les deux buses (D1,D2) sont alimentées par des courants volumiques (VA,VB) différents.
  10. Procédé selon la revendication 6,
    caractérisé en ce que les deux buses (D1,D2) présentent des diamètres (d1,d2) différents et des longueurs (L1,L2) différentes et que les deux buses (D1,D2) sont alimentées par des courants volumiques (VA,VB) différents.
EP19960945132 1995-09-13 1996-09-13 Procede permettant de determiner et d'evaluer des valeurs d'indice de fusion Expired - Lifetime EP0850403B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19533859 1995-09-13
DE19533859 1995-09-13
PCT/DE1996/001736 WO1997010492A2 (fr) 1995-09-13 1996-09-13 Procede permettant de determiner et d'evaluer des valeurs d'indice de fusion

Publications (2)

Publication Number Publication Date
EP0850403A2 EP0850403A2 (fr) 1998-07-01
EP0850403B1 true EP0850403B1 (fr) 2001-11-14

Family

ID=7772017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960945132 Expired - Lifetime EP0850403B1 (fr) 1995-09-13 1996-09-13 Procede permettant de determiner et d'evaluer des valeurs d'indice de fusion

Country Status (3)

Country Link
US (1) US5959195A (fr)
EP (1) EP0850403B1 (fr)
WO (1) WO1997010492A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859677C2 (de) * 1998-12-23 2000-12-14 Goettfert Werkstoff Pruefmasch Vorrichtung zum Bestimmen von rheologischen Eigenschaften einer Schmelze
AU2002235156A1 (en) 2000-11-06 2002-05-15 Frederick J. Buja Method and apparatus for controlling a mold melt-flow process using temperature sensors
US6691561B2 (en) * 2002-04-15 2004-02-17 Gerneral Electric Company Rheological measurement process
US7585166B2 (en) * 2005-05-02 2009-09-08 Buja Frederick J System for monitoring temperature and pressure during a molding process
US8790256B2 (en) * 2006-08-14 2014-07-29 Frederick J. Buja System and method employing a thermocouple junction for monitoring of physiological parameters
US8986205B2 (en) 2010-05-14 2015-03-24 Frederick J. Buja Sensor for measurement of temperature and pressure for a cyclic process
GB201019146D0 (en) * 2010-11-12 2010-12-29 Molecular Control Systems Ltd Rheometer standardisation
WO2014128478A2 (fr) * 2013-02-21 2014-08-28 Malvern Instruments Limited Microviscosimètre pour imagerie
US20140232853A1 (en) 2013-02-21 2014-08-21 Neil E. Lewis Imaging microviscometer
DE202016101483U1 (de) 2016-03-17 2016-03-29 iVON GmbH Vorrichtung zur Messung der Viskosität von Flüssigkeiten
EP3220126A1 (fr) 2016-03-17 2017-09-20 iVON GmbH Dispositif destine a la determination de la viscosite de liquides
AT518911B1 (de) * 2016-07-18 2022-01-15 Erema Eng Recycling Maschinen & Anlagen Gmbh Verfahren und Vorrichtung zur Onlinebestimmung der Viskosität eines Polymers
US10899059B2 (en) * 2017-05-12 2021-01-26 Kuraray Europe Gmbh Method for producing films based on plasticized polyvinyl acetal having a predefined viscosity

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048030A (en) * 1958-05-29 1962-08-07 Phillips Petroleum Co Melt index apparatus
US3203225A (en) * 1963-04-22 1965-08-31 Diamond Alkali Co Capillary extrusion rheometer
US3252320A (en) * 1963-12-02 1966-05-24 Phillips Petroleum Co Melt index apparatus
US3468158A (en) * 1968-03-26 1969-09-23 Texaco Inc Method of and apparatus for determining rheological properties of non-newtonian fluids such as drilling fluids or the like
DE2317321B1 (de) * 1973-04-06 1974-07-11 Horst Dr.-Ing. 5100 Aachen Chmiel Vorrichtung zur Messung rheologischer Größen fließfähiger Substanzen mit zwei verschiedenen Meßrohren
US4449395A (en) * 1982-04-08 1984-05-22 Union Carbide Corporation Pheological measurement method and apparatus
DE3921841A1 (de) * 1989-07-03 1991-01-10 Goettfert Werkstoff Pruefmasch Echtzeit-kapillarrheometer-anordnung
US5209107A (en) * 1991-04-04 1993-05-11 Dynisco, Inc. Capillary rheometer plunger pressure transducer and measurement technique
DE4236407C2 (de) * 1992-10-28 1996-02-15 Goettfert Werkstoff Pruefmasch Verfahren und Vorrichtung zur kontinuierlichen Viskositätsmessung

Also Published As

Publication number Publication date
WO1997010492A2 (fr) 1997-03-20
EP0850403A2 (fr) 1998-07-01
US5959195A (en) 1999-09-28
WO1997010492A3 (fr) 1997-06-12

Similar Documents

Publication Publication Date Title
EP0850403B1 (fr) Procede permettant de determiner et d'evaluer des valeurs d'indice de fusion
EP2212086B2 (fr) Procédé et dispositif pour surveiller, documenter et/ou réguler une presse d'injection
DE3921841C2 (fr)
DE2751225C3 (de) Vorrichtung mit einer nach dem Siebpaket eines Schneckenextruders angeordneten Schmelzindex-Meßeinrichtung und Verfahren zum Regeln der Viskosität von aufgeschmolzenem und auszuformendem Kunststoff
DE19848687B4 (de) Verfahren und Vorrichtung zur simultanen Ermittlung von Scher- und Dehnviskosität
DE2918035A1 (de) Pruefgeraet fuer elastomeres material und pruefverfahren fuer ein solches material
DE3218037C2 (de) Vorrichtung zur Bestimmung von Fließeigenschaften, insbesondere der Fließschubspannung, von Suspensionen, insbesondere Blut
EP1253491A2 (fr) Modèle hybride et procédé de détermination des propriétés mecaniques et des propriétés de traitement d' un article moulé par injection
DE4236407C2 (de) Verfahren und Vorrichtung zur kontinuierlichen Viskositätsmessung
DE19741674A1 (de) Mischer insbesondere für viskoelastische Materialien
US3526126A (en) Method and apparatus for determining the molecular weight distribution of polymers
DE60103125T2 (de) Rheometrieverfahren und -vorrichtung sowie ihre anwendung zur steuerung der polymerherstellung
DE102016201537B4 (de) Rheometer
EP0733457A1 (fr) Extrudeuse à plusieurs composants
EP1227925B1 (fr) Dispositif pour determiner l'etat de marche d'une extrudeuse
EP3810394B1 (fr) Machine de moulage par injection pour la détermination en ligne de la rhéologie d'un matériau thermoplastique et/ou élastomère destiné à la fabrication de pièces moulées par injection
DE10101585B4 (de) Vorrichtung und Verfahren zur Durchführung von rheologischen Messungen in Online-Arbeitsweise
DE1798201A1 (de) Verfahren und Vorrichtung zur Bestimmung rheologischer Stoffwerte (Simultan-Rheometer)
DE4442172C2 (de) Vorrichtung und Verfahren zum Ermitteln von viskoelastischen Kennwerten an viskosen Meßproben
Grant et al. Some melt flow properties of polypropylene
DE3713400C2 (fr)
DE19848076A1 (de) Vorrichtung und Verfahren zum Messen der Verarbeitungseigenschaften von Kautschukmischungen
EP4019932A1 (fr) Procédé et agencement de mesure permettant de déterminer une propriété d'écoulement d'un fluide
Gleiβle EinfluB der viskoelastischen FlieBfunktionen auf den Schmelzindex/Influence of the Viscoelastic Functions on the Melt Index
DE3737892C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980304

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE NL

17Q First examination report despatched

Effective date: 19990705

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE NL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

26N No opposition filed
BERE Be: lapsed

Owner name: *GOTTFERT WERKSTOFF-PRUFMASCHINEN G.M.B.H.

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401