EP0848862B1 - Antenna array - Google Patents

Antenna array Download PDF

Info

Publication number
EP0848862B1
EP0848862B1 EP97927140A EP97927140A EP0848862B1 EP 0848862 B1 EP0848862 B1 EP 0848862B1 EP 97927140 A EP97927140 A EP 97927140A EP 97927140 A EP97927140 A EP 97927140A EP 0848862 B1 EP0848862 B1 EP 0848862B1
Authority
EP
European Patent Office
Prior art keywords
antenna array
radiating element
array according
decoupling structure
decoupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97927140A
Other languages
German (de)
French (fr)
Other versions
EP0848862A1 (en
Inventor
Roland Gabriel
Max GÖTTL
Georg Klinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP0848862A1 publication Critical patent/EP0848862A1/en
Application granted granted Critical
Publication of EP0848862B1 publication Critical patent/EP0848862B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • Dual polarized antenna arrays i.e. radiator arrangements, which dipoles, slots or planar radiator elements for simultaneous reception or simultaneous emission electromagnetic waves with two orthogonal linear Polarizations that are separate and separate from each other decoupled outputs are sufficient known.
  • radiator arrangements can, for example of several elements in the form of dipoles, Slits or planar emitter elements exist as they do for example from EP 0 685 900 A1 or from the prior publication "Antennas", second part, by Adolf Heilmann, Bibliographical Institute Mannheim / Vienna / Zurich, 1970 University pocket book publisher, pages 47 to 50, known are.
  • This applies to omnidirectional spotlights for example with horizontal polarization the shapes of a dipole square or a dipole cross known, which is a coupling between the two systems offset by 90 ° exhibit.
  • radiator modules To increase the antenna gain, it is possible to use several these radiator modules to antenna fields, so-called arrays, interconnect. It is per sending and receiving station not uncommon, ten or more radiator modules interconnect to an array.
  • the spotlight modules can be arranged side by side or one below the other.
  • the direction in which the emitter modules are straight or inclined should be arranged next to or below each other be referred to as the alignment of the antenna array.
  • the object of the present invention is therefore a To create X-polarized antenna array, which is preferred broadband a high decoupling between the resulting Has feed systems for both polarizations.
  • Decoupling device with a new type of decoupling structure is provided.
  • This decoupling structure is completely different to the z.
  • the invention Decoupling structure has a longitudinal extension on, in the vertical mounting direction two side by side Arrays arranged (basically also with horizontal Direction of attachment of two arrays arranged side by side) is aligned. In other words, they are already good Results with a vertically aligned X-polarized Array e.g. then achieved when between two on top of each other arranged radiator modules in the vertical direction extending longitudinal rod is provided.
  • a longitudinal slot or another decoupling structure with an elongated recess or extension introduced is.
  • the conductive ones cross-shaped structural elements of the decoupling structure connected at their intersection.
  • the first is the embodiment received according to Figures 1a and 1b.
  • a dipole square for example a square structure have
  • the radiator modules 1 are in front of a reflector 7 Dipoles at a distance from the reflector 7 sitting on it assembled.
  • the reflector 7 by a metallization 9 on a circuit board 11 formed on the back of a feed network 13th is located, which separates the individual radiator modules interconnects for the respective polarization.
  • the dipoles 3 are compared via a so-called symmetrization 14 the circuit board 11 held mechanically and electrically contacted, d. H. so fed from the board 13.
  • the longitudinal or extension component of the decoupling structure 17, which in the following also partially as a decoupling structural element 17 is according to the Embodiment according to Figure 1a or 1b larger than at least 1/4 of the distance between the two neighboring ones Centers or base points 23 of the radiator modules or corresponds 1/4 of this distance.
  • the longitudinal component is preferably more than 40 or 50% of the said Spotlight module distance 25.
  • the rod 17a shown is a short distance above the Reflector surface 7 is arranged and is a spacer 18 on the reflector 7, i.e. mechanically held by the circuit board 11 and with the reflector 7 electrically contacted.
  • the decoupling structure could but also further than the double dipole arrangement 3 be removed from the reflector surface 7, wherein however then influences on the radiation diagram at good decoupling can be determined if the distance of the decoupling structure 17 from the reflector surface is more than half as far away as the dipoles the double dipole arrangement 3.
  • the arrangement is preferred such that the conductive decoupling structure 17 in shape of the rod 17a not more than 1/8 to 1/4 wavelength is removed from the reflector plane.
  • the arrangement can be such that the dipoles 3 'for example at a distance of 0.1 to 0.5 Wavelengths, preferably 0.2 to 0.3 wavelengths, in particular by 0.25 wavelengths, in front of the reflector surface sit, the decoupling structure in the form of the decoupling structure element 17a a distance of 0.015 up to 0.125 wavelengths, in particular 0.015 to 0.035 wavelengths (i.e. about 1/60 to 1/8, especially 1/60 to 1/30 of the wavelength), opposite the reflector surface 7 can have.
  • the decoupling structure 17 is not in the form of a Rod, but in the form of a plan view of Figure 1a congruent to the rod shown there in the reflector surface 7 slot introduced.
  • a conductive surface at a distance in front of the reflector surface in which a corresponding one Recess is introduced, which has a structure with a longitudinal extension, preferably parallel and in the area of the connection or mounting direction 21 lying.
  • the exemplary embodiment according to FIGS. 2a, 2b and 2c differs from the exemplary embodiment explained above in that for the decoupling structure 17 no rod extending in the connecting direction 21 17a, but a cross-shaped decoupling structural element 17b is used from two crossing bars.
  • a schematic perspective illustration is shown in FIG. 2c of the embodiment shown in Figures 2a and 2b.
  • the rods 27 are in this embodiment almost perpendicular to each other, the two rods almost parallel to the polarization planes, i.e. to the dipoles 3 'are aligned.
  • the cruciform Decoupling structural element 17b with the rods 27 also conductive again, the two rods 27 in their intersection 29 are conductively connected.
  • the longitudinal component in the connection or mounting direction 21 of the cross-shaped decoupling structure 17 thus formed 0.25 to 1 wavelength, for example, preferably 0.5 to 0.8 wavelengths, especially around 0.7 Wavelengths.
  • the projection is under "longitudinal component" on the vertical, i.e. on the direct connecting line between two neighboring radiator modules in To understand the direction of cultivation. Because of the symmetrical Structure is the extension in the transverse direction to the direction of attachment 21 of the same length, but this does not have to be mandatory.
  • Patch emitters 1a such as basically from the ITG technical report pre-publication 128 "antennas" (lectures of the ITG conference from April 12 to 15, 1994 in Dresden), VDE-Verlag GmbH, Berlin, Offenbach, pages 259 to 264 are known. It deals are aperture-coupled microstrip patch antennas with a cross slot or offset slot arrangement to receive two orthogonal linear Polarizations.
  • the patch radiators 1a have square shapes in plan view Structure on and are with their slot arrangement each again aligned at a 45 ° angle to the vertical V in order to both + 45 ° and -45 ° polarizations received or to be able to send.

Description

Die Erfindung betrifft ein Antennenarray zum gleichzeitigen Empfangen oder zur gleichzeitigen Abstrahlung elektromagnetischer Wellen mit zwei linearen orthogonalen Polarisationen nach dem Oberbegriff des Anspruches 1.The invention relates to an antenna array for simultaneous Receive or for the simultaneous emission of electromagnetic Waves with two linear orthogonal ones Polarizations according to the preamble of claim 1.

Dual polarisierte Antennenarrays, also Strahleranordnungen, welche Dipole, Schlitze oder planare Strahlerelemente zum gleichzeitigen Empfangen oder gleichzeitigen Abstrahlen elektromagnetischer Wellen mit zwei orthogonalen linearen Polarisationen, die getrennten und voneinander entkoppelten Ausgängen zugeführt werden, sind hinlänglich bekannt. Dabei können derartige Strahleranordnungen beispielsweise aus mehreren Elementen in Form von Dipolen, Schlitzen oder Planarstrahlerelementen bestehen, wie sie beispielweise aus der EP 0 685 900 A1 oder aus der Vorveröffentlichung "Antennen", zweiter Teil, von Adolf Heilmann, Bibliographisches Institut Mannheim/Wien/Zürich, 1970 Hochschultaschenbücherverlag, Seiten 47 bis 50, bekannt sind. Daraus sind beispielsweise bei Rundstrahlern mit horizontaler Polarisation die Formen eines Dipolquadrates oder eines Dipolkreuzes bekannt, welche eine Kopplung zwischen den beiden um 90° räumlich versetzten Systemen aufweisen.Dual polarized antenna arrays, i.e. radiator arrangements, which dipoles, slots or planar radiator elements for simultaneous reception or simultaneous emission electromagnetic waves with two orthogonal linear Polarizations that are separate and separate from each other decoupled outputs are sufficient known. Such radiator arrangements can, for example of several elements in the form of dipoles, Slits or planar emitter elements exist as they do for example from EP 0 685 900 A1 or from the prior publication "Antennas", second part, by Adolf Heilmann, Bibliographical Institute Mannheim / Vienna / Zurich, 1970 University pocket book publisher, pages 47 to 50, known are. This applies to omnidirectional spotlights, for example with horizontal polarization the shapes of a dipole square or a dipole cross known, which is a coupling between the two systems offset by 90 ° exhibit.

Zur Erhöhung der Richtwirkung werden derartige nachfolgend auch als Strahlermodule bezeichnete Strahleranordnungen üblicherweise vor einer reflektierenden Fläche, dem sog. Reflektor, angeordnet, wobei bei Planarantennen gleichzeitig eine metallische Schicht des Substrates als Reflektor fungieren kann.To increase the directivity, such are below also referred to as radiator modules usually in front of a reflective surface, the so-called Reflector, arranged, with planar antennas simultaneously a metallic layer of the substrate as a reflector can act.

Zur Erhöhung des Antennengewinns ist es möglich, mehrere dieser Strahlermodule zu Antennenfeldern, sog. Arrays, zusammenzuschalten. Pro Sende- und Empfangsstation ist es dabei durchaus nicht unüblich, zehn oder mehr Strahlermodule zu einem Array zusammenzuschalten. Die Strahlermodule können dabei neben- oder untereinander angeordnet werden. Die Richtung, in der die Strahlermodule gerade oder schräg neben- oder untereinander angeordnet werden, soll dabei als Ausrichtung des Antennenarrays bezeichnet werden.To increase the antenna gain, it is possible to use several these radiator modules to antenna fields, so-called arrays, interconnect. It is per sending and receiving station not uncommon, ten or more radiator modules interconnect to an array. The spotlight modules can be arranged side by side or one below the other. The direction in which the emitter modules are straight or inclined should be arranged next to or below each other be referred to as the alignment of the antenna array.

Als nachteilig erweist sich aber nunmehr, dass beim Zusammenschalten mehrerer Strahlermodule die resultierende Entkopplung der Arrays zwischen den zusammengeschalteten Strahlermodulen beider Polarisationen deutlich schlechter ausfällt als die des Strahlermoduls selbst. Diese nachteiligen Effekte treten vor allem dann auf, wenn die Ausrichtung des Antennenarrays nicht mit einer der beiden Polarisationsebenen zusammenfällt. Hauptsächlich tritt dieser Fall bei Antennenarrays auf, welche so aufgebaut sind, dass die Strahlermodule in Vertikalrichtung übereinander angeordnet sind, wobei die Strahlermodule so ausgerichtet sind, dass sie lineare Polarisationen mit einem Winkel von +45° und -45° bezogen auf die Vertikale empfangen oder abstrahlen. Derartige Antennenarrays mit von der Polarisationsebene abweichender Ausrichtung werden nachfolgend auch kurz als X-polarisierte Arrays bezeichnet.It has now proven to be disadvantageous that when interconnecting the result of several radiator modules Decoupling the arrays between the interconnected Radiator modules of both polarizations significantly worse fails than that of the radiator module itself. These disadvantage Effects occur especially when the alignment of the antenna array with one of the two Polarization planes coincide. Mainly kicks this case with antenna arrays, which are constructed in this way are that the radiator modules one above the other in the vertical direction are arranged, the radiator modules so aligned are that they have linear polarizations with a Receive angles of + 45 ° and -45 ° related to the vertical or blast. Such antenna arrays with from orientation deviating from the polarization plane hereinafter also referred to as X-polarized arrays.

Bei derartigen Arrays ist festzustellen, dass u.a. durch die fehlende Übereinstimmung der Ausrichtung des Arrays und der Polarisationsebenen sowie durch die schiefwinklige Lage der Polarisationsebenen zum Reflektor die benachbarten Module untereinander relativ stark verkoppeln. Als nicht ausreichend empfundene Entkopplungswerte von beispielsweise 20 bis 25 dB sind dabei keine Seltenheit.With such arrays, it should be noted that i.a. by the mismatch of alignment of the array and the polarization planes as well as the oblique angle Position of the polarization planes to the reflector the neighboring ones Couple modules relatively strongly. As decoupling values of, for example, not sufficiently felt 20 to 25 dB are not uncommon.

Da im Mobilfunkbereich bevorzugt die vertikale Polarisation genutzt wird, bietet dieser Antennentyp gegenüber dual polarisierten Antennen mit horizontaler und vertikaler Polarisation den Vorteil, dass auf beiden Polarisationen zur mobilen Station gesendet werden kann.Vertical polarization is preferred in the field of mobile communications is used, this antenna type offers dual polarized antennas with horizontal and vertical Polarization has the advantage of being on both polarizations can be sent to the mobile station.

Es sind bereits Antennenarrays vorgeschlagen worden, welche zur Verbesserung der Entkopplung zwischen den einzelnen Strahlern, d.h. den Strahlermodulen, Trennwände vorsehen, die also senkrecht zu der Anbau- oder Verbindungsrichtung oder -linie zwischen zwei benachbarten Strahlermodulen ausgerichtet sind. Versuche haben nunmehr ergeben, dass eine derartige Konstruktion bei X-polarisierten Arrays durch eine festzustellende Polarisationsdrehung meist sogar noch zu einer Verschlechterung der Entkopplung führt, insbesondere bei breitbandigen Antennen.Antenna arrays have already been proposed, which to improve the decoupling between the individual Emitters, i.e. the radiator modules, partitions provide, that is perpendicular to the direction of attachment or connection or line between two neighboring ones Radiator modules are aligned. Attempts have now reveal that such a construction in X-polarized Arrays by a polarization rotation to be determined usually even worsening Decoupling leads, especially with broadband antennas.

Schließlich ist auch bekannt, dass bei vertikal übereinander angeordneten Einzelstrahlern mit horizontaler Polarisation horizontal angeordnete Stäbe eine Verbesserung der Entkopplung zwischen den Einzelstrahler bewirken. Diese Verbesserung der Entkopplung betrifft jedoch nur Strahler der gleichen Polarisation und führt bei X-polarisierten Arrays (bei denen beispielsweise die vertikale Ausrichtung der Arrays, wie erwähnt, nicht mit den linearen Polarisationen von beispielsweise +45° und -45° übereinstimmt) meist zu keiner Verbesserung der Entkopplung zwischen den verschiedenen polarisierten Speisesystemen.Finally, it is also known that when stacked vertically arranged single radiators with horizontal polarization horizontally arranged bars an improvement cause the decoupling between the individual radiators. However, this improvement in decoupling only affects Emitter of the same polarization and leads to X-polarized Arrays (where, for example, the vertical Alignment of the arrays, as mentioned, not with the linear ones Polarizations of + 45 ° and -45 °, for example) mostly no improvement in the decoupling between the different polarized feeding systems.

Ein den vorstehend erläuterten Antennen entsprechendes Antennenarray ist beispielsweise auch aus der US 3 541 559 bekannt geworden. Das Antennenarray umfasst mehrere in einem Antennenfeld angeordnete, d.h. in mehreren horizontalen Reihen und vertikalen Spalten angeordnete, Strahlermodule, wobei jeweils zwischen zwei vertikal bzw. horizontal nebeneinander angeordneten Strahlermodulen ein stabförmiges Reflektorelement nach. Art eines parasitären Reflektors angeordnet ist. Dieses stabförmige parasitäre Reflektorelement ist jeweils quer zu der zwei benachbarte Strahlermodule verbindenden Verbindungslinie ausgerichtet. Diese parasitären Reflektorelemente dienen einer Strahlungsformung, die auch schon bei Verwendung eines einzigen Strahlermoduls wirksam ist.A corresponding to the antennas explained above Antenna array is also, for example, from US 3,541,559 known. The antenna array spans several in an antenna array, i.e. in several horizontal Radiator modules arranged in rows and vertical columns, being between two vertical and two horizontal radiator modules arranged side by side rod-shaped reflector element after. Kind of a parasitic Reflector is arranged. This rod-shaped parasitic Reflector element is transverse to the two adjacent Aligned connecting line connecting radiator modules. These parasitic reflector elements are used for radiation shaping, that even when using a single one Emitter module is effective.

Aufgabe der vorliegenden Erfindung ist es von daher, ein X-polarisiertes Antennenarray zu schaffen, welches bevorzugt breitbandig eine hohe Entkopplung zwischen den resultierenden Speisesystemen für beide Polarisationen besitzt.The object of the present invention is therefore a To create X-polarized antenna array, which is preferred broadband a high decoupling between the resulting Has feed systems for both polarizations.

Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The task is according to the invention in accordance with the claim 1 specified features solved. Advantageous configurations the invention are specified in the subclaims.

Es kann als durchaus überraschend bezeichnet werden, dass mit der erfindungsgemäßen Lösung eine gegenüber dem Stand der Technik deutliche Verbesserung der gewünschten Entkopplung der jeweils benachbarten Strahlermodule erzeugbar ist. Während bei vergleichbaren dual polarisierten Antennenarrays (also bei Antennenarrays, bei denen gleichzeitig mit zwei unterschiedlichen polarisierten elektromagnetischen Wellen für die Übertragung gearbeitet wird) ohne ausreichende Entkopplung es erforderlich war, pro Basisstationsantennen mindestens zwei räumlich versetzte Antennenarrays getrennt für Senden und Empfangen anzuordnen, so können vergleichbare Ergebnisse gemäß der Erfindung heute mit lediglich einem X-polarisierten Antennenarray erzielt werden, da durch die hohe Entkopplung von mehr als beispielsweise. 30 dB das Antennenarray sowohl zum Senden als auch zum Empfangen genutzt werden kann. Dies führt natürlich zu einem beachtlichen Kostenvorteil.It can be described as quite surprising that with the solution according to the invention compared to the state technology significantly improve the desired decoupling each of the adjacent radiator modules can be generated is. While with comparable dual polarized antenna arrays (So with antenna arrays where at the same time with two different polarized electromagnetic Shafts are working for the transmission) without adequate decoupling was required per base station antennas at least two spatially offset antenna arrays to be arranged separately for sending and receiving, see above can comparable results according to the invention today achieved with only one X-polarized antenna array be because of the high decoupling of more than, for example. 30 dB the antenna array for both sending and can also be used for receiving. Of course, this leads at a considerable cost advantage.

Damit eignet sich die erfindungsgemäße Lösung aufgrund der hohen erzielbaren Entkopplung zwischen den Polarisationen bei Antennenarrays mit hoher vertikaler Bündelung insbesondere für den Mobilfunkbereich.The solution according to the invention is therefore suitable on the basis of high achievable decoupling between the polarizations especially with antenna arrays with high vertical bundling for the mobile phone area.

Erfindungsgemäß werden diese Vorteile dadurch erzielt, dass zwischen zwei benachbarten Strahlermodulen eine Entkopplungseinrichtung mit einer neuartigen Entkopplungsstruktur vorgesehen ist. Diese Entkopplungsstruktur ist, völlig abweichend zu den bei z. B. vertikal ausgerichteten Antennenarrays verwendeten horizontalen Trennwänden oder Stäben, genau umgekehrt angeordnet. Die erfindungsgemäße Entkopplungsstruktur weist nämlich eine Längserstreckung auf, die in vertikaler Anbaurichtung zweier nebeneinander angeordneter Arrays (grundsätzlich auch bei horizontaler Anbaurichtung zweier nebeneinander angeordneter Arrays) ausgerichtet ist. Mit anderen Worten werden bereits gute Ergebnisse bei einem vertikal ausgerichteten X-polarisierten Array z.B. dann erzielt, wenn zwischen zwei übereinander angeordneten Strahlermodulen ein sich in Vertikalrichtung erstreckender Längsstab vorgesehen ist. Ebenso möglich ist z.B., dass in der Reflektorfläche oder in einer weiteren leitenden Fläche vor dieser Reflektorfläche ein Längsschlitz oder eine andere Entkopplungsstruktur mit einer länglichen Ausnehmung oder Ausdehnung eingebracht ist.According to the invention, these advantages are achieved by that between two neighboring radiator modules Decoupling device with a new type of decoupling structure is provided. This decoupling structure is completely different to the z. B. vertically aligned Antenna arrays used horizontal partitions or Rods, arranged exactly the opposite. The invention Decoupling structure has a longitudinal extension on, in the vertical mounting direction two side by side Arrays arranged (basically also with horizontal Direction of attachment of two arrays arranged side by side) is aligned. In other words, they are already good Results with a vertically aligned X-polarized Array e.g. then achieved when between two on top of each other arranged radiator modules in the vertical direction extending longitudinal rod is provided. As well it is possible, for example, that in the reflector surface or in another conductive surface in front of this reflector surface a longitudinal slot or another decoupling structure with an elongated recess or extension introduced is.

Besonders günstige Ergebnisse werden aber dann erzielt, wenn zwischen zwei benachbarten X-polarisierten Strahlermodulen eine Entkopplungseinrichtung mit einer kreuzförmigen Entkopplungsstruktur in Form eines kreuzförmigen Strukturelementes verwendet wird, welches beispielsweise aus zwei sich kreuzenden Einzelstäben (d.h. metallisch leitenden Stäben) oder aus kreuzförmigen Schlitzen bestehen kann, wobei die Schlitze in der Reflektorfläche oder einer dazu parallel versetztliegenden, metallisch leitenden Fläche eingebracht sind.However, particularly favorable results are achieved if between two neighboring X-polarized radiator modules a decoupling device with a cross-shaped Decoupling structure in the form of a cruciform Structural element is used, which for example from two intersecting single bars (i.e. metallic conductive rods) or cross-shaped slots can, the slots in the reflector surface or a parallel, metallic conductive surface are introduced.

In einer bevorzugten Ausführungsform sind dabei die leitenden kreuzförmigen Strukturelemente der Entkopplungsstruktur in ihrem Schnittpunkt leitend miteinander verbunden.In a preferred embodiment, the conductive ones cross-shaped structural elements of the decoupling structure connected at their intersection.

Schließlich erweist es sich auch als günstig, wenn die kreuzförmigen leitenden Strukturelemente in verschiedenen Finally, it turns out to be favorable if the cross-shaped conductive structural elements in different

Ebenen zueinander liegen, die aber im wesentlichen nicht weiter als eine halbe Wellenlänge voneinander entfernt liegen sollen.Layers lie to each other, but essentially not more than half a wavelength apart should lie.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert. Dabei zeigen im einzelnen:

Figur 1a :
eine schematische Draufsicht auf ein Antennenarray mit zwei Strahlermodulen und einer dazwischen vorgesehenen erfindungsgemäßen Entkopplungseinrichtung in Draufsicht;
Figur 1b :
eine Seitenansicht längs der Pfeilrichtung Ib in Figur 1a;
Figur 2a :
ein abgewandeltes Ausführungsbeispiel eines erfindungsgemäßen Antennenarrays mit einer kreuzförmigen Entkopplungseinrichtung in Draufsicht;
Figur 2b :
eine Seitendarstellung gemäß der Pfeilrichtung IIb in Figur 2a;
Figur 2c :
eine schematische Perspektivdarstellung des Ausführungsbeispieles gemäß Figur 2a und Figur 2b;
Figur 3a :
ein zu Figur 2a abgewandeltes Ausführungsbeispiel, bei welchem als Strahlermodule sog. Patchstrahler verwendet werden;
Figur 3b :
eine Seitendarstellung von Figur 3a gemäß Pfeilrichtung IIIb in Figur 3a;
Figur 4a :
ein weiteres Ausführungsbeispiel eines Antennenarrays in Draufsicht; und
Figur 4b :
eine entsprechende Seitendarstellung gemäß Pfeilrichtung IVb in Figur 4a.
The invention is explained in more detail below on the basis of exemplary embodiments. The individual shows:
Figure 1a:
a schematic plan view of an antenna array with two radiator modules and a decoupling device according to the invention provided between them in plan view;
Figure 1b:
a side view along the arrow direction Ib in Figure 1a;
Figure 2a:
a modified embodiment of an antenna array according to the invention with a cross-shaped decoupling device in plan view;
Figure 2b:
a side view according to the direction of arrow IIb in Figure 2a;
Figure 2c:
a schematic perspective view of the embodiment shown in Figure 2a and Figure 2b;
Figure 3a:
an exemplary embodiment modified from FIG. 2a, in which so-called patch radiators are used as radiator modules;
Figure 3b:
a side view of Figure 3a in the direction of arrow IIIb in Figure 3a;
Figure 4a:
a further embodiment of an antenna array in plan view; and
Figure 4b:
a corresponding page representation according to arrow direction IVb in Figure 4a.

Nachfolgend wird zunächst auf das Ausführungsbeispiel gemäß den Figuren 1a und 1b eingegangen. In diesem Ausführungsbeispiel ist ein Antennenarray mit zwei Strahlermodulen 1 gezeigt, welche aus einer Doppel-Dipol-Anordnung 3 bestehen. Es kann sich dabei beispielsweise um einen sog. Kreuzdipol handeln, welcher zwei räumlich um 90° versetzt ausgerichtete Systeme umfasst, welche getrennt gespeist werden. Abweichend dazu können aber auch andere Doppel-Dipol-Anordnungen eingesetzt werden, bei denen die einzelnen Dipole in Draufsicht, also in Vorzugsabstrahlrichtung, beispielsweise eine quadratische Struktur aufweisen (also ein sog. Dipolquadrat). Schließlich können auch noch weiter abweichende Strahlermodule zum Empfang von elektromagnetischen Wellen mit zwei linearen orthogonalen Polarisationen verwendet werden, wie sie nachfolgend noch anhand von sog. Patchstrahlern erläutert werden.The first is the embodiment received according to Figures 1a and 1b. In this embodiment is an antenna array with two radiator modules 1, which consists of a double dipole arrangement 3 exist. It can be, for example act a so-called cross dipole, which spatially around two 90 ° offset systems, which are separate be fed. Deviating from this can also other double dipole arrangements are used at which the individual dipoles in top view, i.e. in the preferred emission direction, for example a square structure have (so-called a dipole square). Finally can also emit more different radiator modules Reception of electromagnetic waves with two linear Orthogonal polarizations are used as they are explained below using so-called patch radiators become.

Die Strahlermodule 1 sind vor einem Reflektor 7 mit ihren Dipolen im Abstand zum Reflektor 7 auf diesem sitzend montiert. Im gezeigten Ausführungsbeispiel wird der Reflektor 7 durch eine Metallisierung 9 auf einer Platine 11 gebildet, auf deren Rückseite sich ein Speisenetzwerk 13 befindet, welches die einzelnen Strahlermodule getrennt für die jeweilige Polarisation zusammenschaltet. Die Dipole 3 werden dabei über eine sog. Symmetrierung 14 gegenüber der Platine 11 mechanisch gehalten und elektrisch kontaktiert, d. h. also von der Platine 13 aus gespeist.The radiator modules 1 are in front of a reflector 7 Dipoles at a distance from the reflector 7 sitting on it assembled. In the exemplary embodiment shown, the reflector 7 by a metallization 9 on a circuit board 11 formed on the back of a feed network 13th is located, which separates the individual radiator modules interconnects for the respective polarization. The dipoles 3 are compared via a so-called symmetrization 14 the circuit board 11 held mechanically and electrically contacted, d. H. so fed from the board 13.

Im gezeigten Ausführungsbeispiel sind die beiden gezeigten Strahlermodule 1 in vertikaler Ausrichtung V übereinander und dabei wiederum in paralleler Ausrichtung zur Reflektorebene angeordnet. Die Doppel-Dipolanordnung 3 ist so gewählt, dass mit den Strahlermodulen 1 eine lineare Polarisation von +45° und -45°, bezogen auf die Vertikale V, empfangen werden kann.In the exemplary embodiment shown, the two are shown Radiator modules 1 in vertical alignment V one above the other and again in parallel to the reflector plane arranged. The double dipole arrangement 3 is like this chosen that with the radiator modules 1 a linear polarization of + 45 ° and -45 °, based on the vertical V, can be received.

Zur Erzielung einer hohen Entkopplung zwischen den beiden Strahlermodulen 1 ist im erläuterten Ausführungsbeispiel gemäß Figur 1a und 1b ferner eine Entkopplungsstruktur 17 vorgesehen, welche aus einem leitenden Stab 17a besteht. Dieser ist im gezeigten Ausführungsbeispiel mittig zwischen den beiden Strahlermodulen 1 angeordnet, wobei sich der Stab 17a in Verbindungs- oder Anbaurichtung 21 der Strahlermodule 1, also auf der direkten Verbindungslinie zwischen den benachbarten Strahlermodulen 1 befindet.To achieve a high level of decoupling between the two Radiator modules 1 is in the illustrated embodiment a decoupling structure 17 according to FIGS. 1a and 1b provided, which consists of a conductive rod 17a. In the exemplary embodiment shown, this is in the middle between the two radiator modules 1 arranged, where the rod 17a in the connection or mounting direction 21 of the Radiator modules 1, i.e. on the direct connecting line is located between the adjacent radiator modules 1.

Die Längs- oder Erstreckungskomponente der Entkopplungsstruktur 17, die nachfolgend teilweise auch als Entkopplungs-Strukturelement 17 bezeichnet wird, ist gemäß dem Ausführungsbeispiel nach Figur 1a bzw. 1b größer als zumindest 1/4 des Abstandes zwischen den beiden benachbarten Zentren oder Fußpunkten 23 der Strahlermodule oder entspricht 1/4 dieses Abstandes. Die Längskomponente beträgt dabei vorzugsweise mehr als 40 oder 50 % des erwähnten Strahlermodul-Abstandes 25.The longitudinal or extension component of the decoupling structure 17, which in the following also partially as a decoupling structural element 17 is according to the Embodiment according to Figure 1a or 1b larger than at least 1/4 of the distance between the two neighboring ones Centers or base points 23 of the radiator modules or corresponds 1/4 of this distance. The longitudinal component is preferably more than 40 or 50% of the said Spotlight module distance 25.

Der gezeigte Stab 17a ist in geringem Abstand oberhalb der Reflektorfläche 7 angeordnet und wird dabei über ein Abstandselement 18 auf dem Reflektor 7, d.h. mechanisch durch die Platine 11 gehalten und dabei mit dem Reflektor 7 elektrisch kontaktiert. Schließlich könnte die Entkopplungsstruktur aber auch weiter als die Doppel-Dipol-Anordnung 3 von der Reflektorfläche 7 entfernt sein, wobei jedoch dann Einflüsse auf das Strahlungsdiagramm bei an sich gleichguter Entkopplung dann festzustellen sind, wenn der Abstand der Entkopplungsstruktur 17 von der Reflektorfläche mehr als halb so weit entfernt ist wie die Dipole der Doppel-Dipol-Anordnung 3. Bevorzugt ist die Anordnung derart, dass die leitende Entkopplungsstruktur 17 in Form des Stabes 17a nicht weiter als 1/8 bis 1/4 Wellenlänge von der Reflektorebene entfernt ist.The rod 17a shown is a short distance above the Reflector surface 7 is arranged and is a spacer 18 on the reflector 7, i.e. mechanically held by the circuit board 11 and with the reflector 7 electrically contacted. Finally, the decoupling structure could but also further than the double dipole arrangement 3 be removed from the reflector surface 7, wherein however then influences on the radiation diagram at good decoupling can be determined if the distance of the decoupling structure 17 from the reflector surface is more than half as far away as the dipoles the double dipole arrangement 3. The arrangement is preferred such that the conductive decoupling structure 17 in shape of the rod 17a not more than 1/8 to 1/4 wavelength is removed from the reflector plane.

Im praktischen Aufbau kann die Anordnung derart sein, dass die Dipole 3' beispielsweise im Abstand von 0,1 bis 0,5 Wellenlängen, vorzugsweise 0,2 bis 0,3 Wellenlängen, insbesondere um 0,25 Wellenlängen, vor der Reflektorfläche sitzen, wobei die Entkopplungsstruktur in Form des Entkopplungs-Strukturelementes 17a einen Abstand von 0,015 bis 0,125 Wellenlängen, insbesondere 0,015 bis 0,035 Wellenlängen (also ca. 1/60 bis 1/8, insbesondere 1/60 bis 1/30 der Wellenlänge), gegenüber der Reflektorfläche 7 aufweisen kann.In practice, the arrangement can be such that the dipoles 3 'for example at a distance of 0.1 to 0.5 Wavelengths, preferably 0.2 to 0.3 wavelengths, in particular by 0.25 wavelengths, in front of the reflector surface sit, the decoupling structure in the form of the decoupling structure element 17a a distance of 0.015 up to 0.125 wavelengths, in particular 0.015 to 0.035 wavelengths (i.e. about 1/60 to 1/8, especially 1/60 to 1/30 of the wavelength), opposite the reflector surface 7 can have.

Schließlich kann abweichend vom gezeigten Ausführungsbeispiel die Entkopplungsstruktur 17 nicht in Form eines Stabes, sondern in Form eines in Draufsicht auf Figur 1a deckungsgleich zu dem dort gezeigten Stab in der Reflektorfläche 7 eingebrachten Schlitzes bestehen. Möglich ist auch eine Anordnung mit einer leitenden Fläche im Abstand vor der Reflektorfläche, in der dann eine entsprechende Ausnehmung eingebracht ist, die eine Struktur mit Längserstreckung, vorzugsweise parallel und im Bereich der Verbindungs- oder Anbaurichtung 21 liegend aufweist.Finally, different from the embodiment shown the decoupling structure 17 is not in the form of a Rod, but in the form of a plan view of Figure 1a congruent to the rod shown there in the reflector surface 7 slot introduced. Is possible also an arrangement with a conductive surface at a distance in front of the reflector surface, in which a corresponding one Recess is introduced, which has a structure with a longitudinal extension, preferably parallel and in the area of the connection or mounting direction 21 lying.

Das Ausführungsbeispiel gemäß Figur 2a, 2b und 2c unterscheidet sich von dem vorstehend erläuterten Ausführungsbeispiel dadurch, dass für die Entkopplungsstruktur 17 kein sich in Verbindungsrichtung 21 erstreckender Stab 17a, sondern ein kreuzförmiges Entkopplungs-Strukturelement 17b aus zwei sich kreuzenden Stäben verwendet wird. Dabei ist in Figur 2c eine schematische Perspektivdarstellung des Ausführungsbeispieles nach Figur 2a und 2b wiedergegeben. Die Stäbe 27 stehen in diesem Ausführungsbeispiel nahezu senkrecht aufeinander, wobei die beiden Stäbe jeweils nahezu parallel zu den Polarisationsebenen, d.h. zu den Dipolen 3', ausgerichtet sind. Das kreuzförmige Entkopplungs-Strukturelement 17b mit den Stäben 27 ist ebenfalls wieder leitend, wobei die beiden Stäbe 27 in ihrem Schnittpunkt 29 leitend miteinander verbunden sind.The exemplary embodiment according to FIGS. 2a, 2b and 2c differs differs from the exemplary embodiment explained above in that for the decoupling structure 17 no rod extending in the connecting direction 21 17a, but a cross-shaped decoupling structural element 17b is used from two crossing bars. A schematic perspective illustration is shown in FIG. 2c of the embodiment shown in Figures 2a and 2b. The rods 27 are in this embodiment almost perpendicular to each other, the two rods almost parallel to the polarization planes, i.e. to the dipoles 3 'are aligned. The cruciform Decoupling structural element 17b with the rods 27 also conductive again, the two rods 27 in their intersection 29 are conductively connected.

Die Längskomponente in Verbindungs- oder Anbaurichtung 21 der so geformten kreuzförmigen Entkopplungsstruktur 17 beträgt dabei beispielsweise 0,25 bis 1 Wellenlänge, vorzugsweise 0,5 bis 0,8 Wellenlängen, insbesondere um 0,7 Wellenlängen. Unter "Längskomponente" ist dabei die Projektion auf die Vertikale, also auf die direkte Verbindungslinie zwischen zwei benachbarten Strahlermodulen in Anbaurichtung zu verstehen. Aufgrund des symmetrischen Aufbaus ist die Erstreckung in Querrichtung zur Anbaurichtung 21 gleichlang, was aber nicht zwingend sein muss.The longitudinal component in the connection or mounting direction 21 of the cross-shaped decoupling structure 17 thus formed 0.25 to 1 wavelength, for example, preferably 0.5 to 0.8 wavelengths, especially around 0.7 Wavelengths. The projection is under "longitudinal component" on the vertical, i.e. on the direct connecting line between two neighboring radiator modules in To understand the direction of cultivation. Because of the symmetrical Structure is the extension in the transverse direction to the direction of attachment 21 of the same length, but this does not have to be mandatory.

Bei dem Ausführungsbeispiel gemäß Figuren 3a und 3b werden abweichend zu dem Ausführungsbeispiel nach Figuren 2a und 2b als Strahlermodule sog. Patchstrahler 1a verwendet, wie sie grundsätzlich aus der Vorveröffentlichung ITG-Fachbericht 128 "Antennen" (Vorträge der ITG-Fachtagung vom 12. bis 15. April 1994 in Dresden), VDE-Verlag GmbH, Berlin, Offenbach, Seiten 259 bis 264 bekannt sind. Es handelt sich dabei um sog. aperturgekoppelte Microstrip-Patch-Antennen mit einer Kreuzschlitz- oder Offset-Schlitz-Anordnung zum Empfang zweier orthogonaler linearer Polarisationen.In the exemplary embodiment according to FIGS. 3a and 3b deviating from the exemplary embodiment according to FIGS. 2a and 2b used as emitter modules. Patch emitters 1a, such as basically from the ITG technical report pre-publication 128 "antennas" (lectures of the ITG conference from April 12 to 15, 1994 in Dresden), VDE-Verlag GmbH, Berlin, Offenbach, pages 259 to 264 are known. It deals are aperture-coupled microstrip patch antennas with a cross slot or offset slot arrangement to receive two orthogonal linear Polarizations.

Die Patchstrahler 1a weisen in Draufsicht quadratische Struktur auf und sind mit ihrer Schlitzanordnung jeweils wieder im 45° Winkel zur Vertikalen V ausgerichtet, um sowohl + 45° als auch -45° Polarisationen empfangen oder senden zu können.The patch radiators 1a have square shapes in plan view Structure on and are with their slot arrangement each again aligned at a 45 ° angle to the vertical V in order to both + 45 ° and -45 ° polarizations received or to be able to send.

Da aufgrund der quadratischen Struktur dieses Einzelspeise-Systems 1 der effektive Abstand zwischen den Außenkonturen zwischen den beiden Strahlermodulen 1 in Anbaurichtung 21 vergleichsweise kurz bemessen ist, eignet sich insbesondere eine kreuzförmige Entkopplungsstruktur 17, wie sie anhand des Ausführungsbeispieles nach Figuren 2a und 2b beschrieben wurde.Because of the square structure of this single-feed system 1 the effective distance between the outer contours between the two radiator modules 1 in the direction of attachment 21 is comparatively short, is suitable in particular a cross-shaped decoupling structure 17, as they are based on the embodiment of Figures 2a and 2b.

Das Ausführungsbeispiel gemäß den Figuren 4a und 4b unterscheidet sich von demjenigen nach den Figuren 3a und 3b nur dadurch, dass anstelle des in Form von sich kreuzenden Stäben 27 gebildeten und vor der Ebene des Reflektors 7 angeordneten kreuzförmigen Entkopplungs-Strukturelemente 17b nunmehr ein entsprechender kreuzförmiger Schlitz 17c als Entkopplungsstruktur verwendet wird, dessen Anordnung und Ausrichtung ansonsten der kreuzförmigen Stabanordnung 17b gemäß Figuren 3a und 3b entsprechen kann. Die Dimensionierung kann dabei ähnlich wie bei der kreuzförmigen Stabanordnung gemäß Figuren 3a und 3b sein.The exemplary embodiment according to FIGS. 4a and 4b differs differs from that according to FIGS. 3a and 3b only in that instead of in the form of intersecting Bars 27 formed and in front of the plane of the reflector 7 arranged cross-shaped decoupling structural elements 17b now a corresponding cruciform slot 17c is used as the decoupling structure, its arrangement and otherwise aligning the cruciform rod assembly 17b according to FIGS. 3a and 3b. The dimensioning can be similar to the cruciform Rod arrangement according to Figures 3a and 3b.

In den Zeichnungen ist lediglich in den Figuren 1a bis 2c die mechanische Verankerung und Abstützung der Dipole 3 auf dem Reflektor bzw. der Platine angedeutet worden. Es werden dazu die üblichen Konstruktionen verwendet, um beispielsweise über die erwähnten Symmetrierungen 14 die einzelnen Dipole an einem Substrat oder einer Platine zu verankern und hierüber elektrisch zu speisen. Werden die Dipole beispielsweise über zwei Stege oder Arme am Reflektorblech verankert und darüber gehalten und stehen mit dem Reflektorblech leitend in Verbindung, so erfolgt die Einspeisung der Dipole von der Platine aus über separate Leitungen. Unter anderem auch hierzu wird nur beispielhaft auf die DE 43 02 905 C2 oder weitere daraus vorbekannte Dipoleinrichtungen verwiesen. In den weiteren Figuren 3a folgende ist die mechanische Abstützung der Dipole gegenüber dem Reflektor bzw. der Platine nicht näher dargestellt.In the drawings is only in Figures 1a to 2c the mechanical anchoring and support of the dipoles 3 has been indicated on the reflector or the circuit board. It the usual constructions are used to for example via the mentioned symmetrizations 14 individual dipoles on a substrate or a circuit board anchor it and feed it electrically. Will the Dipoles, for example, via two webs or arms on the reflector plate anchored and held above and stand with the Reflector plate in a conductive connection, so the feed takes place the dipole from the board via separate Cables. Among other things, this is only an example to DE 43 02 905 C2 or others previously known therefrom Dipole devices referenced. In the further figures 3a the following is the mechanical support of the dipoles opposite the reflector or the board not shown.

Claims (17)

  1. Antenna array for simultaneous reception and for simultaneous transmission of electromagnetic waves having two linear, orthogonal polarizations, in particular using a reflector (7), having the following features
    having at least two radiating element modules (1), the alignment of the antenna array is governed by the connection direction (21), in which the radiating element modules (1) are arranged alongside one another and/or one above the other,
    the radiating element modules (1) having a radiating element arrangement (3) for simultaneous reception or transmission of electromagnetic waves having two orthogonal polarizations,
    the connection direction (21) of the antenna array is rotated with respect to the alignment of the two mutually orthogonal polarization planes of the two linear orthogonal polarizations to be received or to be transmitted,
    having a decoupling device (17) between two adjacent radiating element modules (1),
    characterized by the following further features
    the decoupling device (17) comprises a decoupling structure (17) which extends with its longitudinal component parallel to the connection direction (21) of two adjacent radiating element modules (21), and
    the longitudinal component of the respective decoupling structure (17) having a length which is greater than or equal to 25% of the radiating element module separation (25) between the centres or bases (23) of the corresponding adjacent radiating element modules (1).
  2. Antenna array according to Claim 1, characterized in that the longitudinal extent of the longitudinal component of the decoupling structure (17) in the connection direction (21) is at least 50% of the radiating element module separation (25).
  3. Antenna array according to Claim 1 or 2, characterized in that the ratio of the longitudinal component of the decoupling structure (17) measured in its connection direction (21) to its extent in the direction of its transverse component is greater than 0.5 or is 0.5.
  4. Antenna array according to Claim 3, characterized in that the ratio of the longitudinal extent in the connection direction (21) to the transverse extent, running at right angles to this, of the decoupling structure (17) is greater than or equal to 0.7 and less than or equal to 1.5, preferably greater than or equal to 0.9 and less than or equal to 1.1, in particular about 1.0.
  5. Antenna array according to Claim 1 or 2, characterized in that the decoupling structure (17) is at least one electrically conductive rod (17a) extending with its longitudinal component in the connection direction (21), or a longitudinal element extending essentially in the connection direction (21).
  6. Antenna array according to one of Claims 1 to 5, characterized in that the decoupling structure (17) comprises at least one slot (17c) which extends with its longitudinal component in the connection direction (21), and is formed in the reflector (7) or in a separate conductive surface arranged at a distance in front of the reflector.
  7. Antenna array according to one of Claims 1 to 6, characterized in that the decoupling structure (17, 17a) is aligned at least virtually parallel to the direct connecting line between two adjacent radiating element modules (1) and, at the same time, preferably extends on the direct connecting line between two adjacent decoupling structures (17, 17a).
  8. Antenna array according to one of Claims 1 to 7, characterized in that the decoupling structure (17) comprises a cruciform arrangement (17b, 17c, 17d).
  9. Antenna array according to Claim 8, characterized in that the decoupling structure (17) comprises two, or a multiple thereof, rods (27) which are arranged at least approximately at right angles to one another, are conductive and are aligned with their respective longitudinal extent parallel to the two polarizations which are aligned orthogonally with respect to one another.
  10. Antenna array according to Claim 9, characterized in that the decoupling structure (17) in the form of a cruciform arrangement (17b) comprises rods (27b) which are arranged in a cruciform manner with respect to one another and parallel to the reflector plane (7) and are conductively connected at their intersection (29).
  11. Antenna array according to Claim 8, characterized in that the cruciform arrangement comprises a cruciform slot arrangement (17c) which is formed in the reflector (7) or in a conductive surface arranged in front of the reflector (7).
  12. Antenna array according to one of Claims 1 to 11, characterized in that the decoupling structure (17) is formed on different separation planes with respect to the reflector (7), the distance from the reflector plane being less than or equal to half a wavelength of the electromagentic waves to be received or to be transmitted.
  13. Antenna array according to one of Claims 1 to 12, characterized in that the decoupling structure (17) is formed symmetrically with respect to the direct connecting line between two adjacent radiating element modules (1) and thus symmetrically with respect to the connection direction (21).
  14. Antenna array according to one of Claims 1 to 13, characterized in that the decoupling structure (17) is formed symmetrically with respect to a centre transverse plane at right angles to the direct connecting line between two adjacent radiating element modules (1).
  15. Antenna array according to one of Claims 8 to 14, characterized in that the two mutually perpendicular components of the cruciform arrangement (17b, 17c, 17d) of the decoupling structure (17) are aligned parallel to the two mutually orthogonal polarization planes of the two linear orthogonal polarizations to be received or to be transmitted.
  16. Antenna array according to one of Claims 1 to 15, characterized in that the radiating element arrangement (3) comprises a dipole radiating element arrangement.
  17. Antenna array according to one of Claims 1 to 15, characterized in that the radiating element arrangement (3) comprises a patch radiating element arrangement (1a).
EP97927140A 1996-07-04 1997-06-05 Antenna array Expired - Lifetime EP0848862B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19627015 1996-07-04
DE19627015A DE19627015C2 (en) 1996-07-04 1996-07-04 Antenna field
PCT/EP1997/002922 WO1998001923A1 (en) 1996-07-04 1997-06-05 Antenna array

Publications (2)

Publication Number Publication Date
EP0848862A1 EP0848862A1 (en) 1998-06-24
EP0848862B1 true EP0848862B1 (en) 2002-04-17

Family

ID=7798955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97927140A Expired - Lifetime EP0848862B1 (en) 1996-07-04 1997-06-05 Antenna array

Country Status (7)

Country Link
US (1) US6025812A (en)
EP (1) EP0848862B1 (en)
KR (1) KR100454146B1 (en)
CA (1) CA2228548C (en)
DE (2) DE19627015C2 (en)
ES (1) ES2175417T3 (en)
WO (1) WO1998001923A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051906A1 (en) * 2020-09-08 2022-03-17 摩比天线技术(深圳)有限公司 Decoupling element and antenna

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952983A (en) * 1997-05-14 1999-09-14 Andrew Corporation High isolation dual polarized antenna system using dipole radiating elements
DE19823750A1 (en) * 1998-05-27 1999-12-09 Kathrein Werke Kg Antenna array with several primary radiator modules arranged vertically one above the other
DE19823749C2 (en) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dual polarized multi-range antenna
DE19860121A1 (en) 1998-12-23 2000-07-13 Kathrein Werke Kg Dual polarized dipole emitter
US6615026B1 (en) * 1999-02-01 2003-09-02 A. W. Technologies, Llc Portable telephone with directional transmission antenna
FI990395A (en) 1999-02-24 2000-08-25 Nokia Networks Oy Hardware for attenuating interference between antennas
US6512475B1 (en) * 1999-04-02 2003-01-28 Geophysical Survey Systems, Inc. High-frequency dual-channel ground-penetrating impulse antenna and method of using same for identifying plastic pipes and rebar in concrete
DE19931907C2 (en) 1999-07-08 2001-08-09 Kathrein Werke Kg antenna
CN1196231C (en) * 1999-10-26 2005-04-06 弗拉克托斯股份有限公司 Interlaced multiband antenna arrays
US6356242B1 (en) * 2000-01-27 2002-03-12 George Ploussios Crossed bent monopole doublets
DE10012809A1 (en) 2000-03-16 2001-09-27 Kathrein Werke Kg Dual polarized dipole array antenna has supply cable fed to supply point on one of two opposing parallel dipoles, connecting cable to supply point on opposing dipole
US6774745B2 (en) * 2000-04-27 2004-08-10 Bae Systems Information And Electronic Systems Integration Inc Activation layer controlled variable impedance transmission line
AU2001257500A1 (en) * 2000-05-02 2001-11-12 Bae Systems Information And Electronic Systems Integration, Inc. Low profile, broadband, dual mode, modified notch antenna
US6452549B1 (en) 2000-05-02 2002-09-17 Bae Systems Information And Electronic Systems Integration Inc Stacked, multi-band look-through antenna
US6690331B2 (en) 2000-05-24 2004-02-10 Bae Systems Information And Electronic Systems Integration Inc Beamforming quad meanderline loaded antenna
US6323814B1 (en) 2000-05-24 2001-11-27 Bae Systems Information And Electronic Systems Integration Inc Wideband meander line loaded antenna
US6359599B2 (en) 2000-05-31 2002-03-19 Bae Systems Information And Electronic Systems Integration Inc Scanning, circularly polarized varied impedance transmission line antenna
AU2001265221A1 (en) 2000-05-31 2001-12-11 Bae Systems Information And Electronic Systems Integration, Inc. Wideband meander line loaded antenna
US6384792B2 (en) 2000-06-14 2002-05-07 Bae Systemsinformation Electronic Systems Integration, Inc. Narrowband/wideband dual mode antenna
US6300915B1 (en) * 2000-11-09 2001-10-09 Bae Systems Aerospace Inc. Advanced Systems Vertical array antennas for differential GPS ground stations
DE10064129B4 (en) * 2000-12-21 2006-04-20 Kathrein-Werke Kg Antenna, in particular mobile radio antenna
KR100403764B1 (en) * 2000-12-28 2003-10-30 주식회사 하이닉스반도체 Polarization Diversity Applicable Smart Antenna
FR2823017B1 (en) * 2001-03-29 2005-05-20 Cit Alcatel MULTIBAND TELECOMMUNICATIONS ANTENNA
CN1507673A (en) * 2001-04-16 2004-06-23 �����ɷ� Dual-band dual-polarized antenna array
DE10150150B4 (en) 2001-10-11 2006-10-05 Kathrein-Werke Kg Dual polarized antenna array
DE10203873A1 (en) * 2002-01-31 2003-08-14 Kathrein Werke Kg Dual polarized radiator arrangement
EP1509969A4 (en) * 2002-03-26 2005-08-31 Andrew Corp Multiband dual polarized adjustable beamtilt base station antenna
US6674406B1 (en) * 2002-10-08 2004-01-06 The United States Of America As Represented By The Secretary Of The Navy Microstrip patch antenna with progressive slot loading
DE10316564B4 (en) 2003-04-10 2006-03-09 Kathrein-Werke Kg Antenna with at least one dipole or a dipole-like radiator arrangement
US6940465B2 (en) 2003-05-08 2005-09-06 Kathrein-Werke Kg Dual-polarized dipole antenna element
US7132995B2 (en) 2003-12-18 2006-11-07 Kathrein-Werke Kg Antenna having at least one dipole or an antenna element arrangement similar to a dipole
DE10359623A1 (en) * 2003-12-18 2005-07-21 Kathrein-Werke Kg Mobile antenna arrangement for a base station
US7027004B2 (en) 2003-12-18 2006-04-11 Kathrein-Werke Kg Omnidirectional broadband antenna
US7015871B2 (en) 2003-12-18 2006-03-21 Kathrein-Werke Kg Mobile radio antenna arrangement for a base station
DE10359622A1 (en) * 2003-12-18 2005-07-21 Kathrein-Werke Kg Antenna with at least one dipole or a dipole-like radiator arrangement
JP4169709B2 (en) * 2004-02-16 2008-10-22 株式会社国際電気通信基礎技術研究所 Array antenna device
DE602004012705T2 (en) * 2004-02-20 2008-07-17 Alcatel Lucent Dual polarized antenna module
DE102004025904B4 (en) * 2004-05-27 2007-04-05 Kathrein-Werke Kg antenna
US7868843B2 (en) * 2004-08-31 2011-01-11 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US7148848B2 (en) * 2004-10-27 2006-12-12 General Motors Corporation Dual band, bent monopole antenna
DE102005005781A1 (en) * 2005-02-08 2006-08-10 Kathrein-Werke Kg Radom, in particular for mobile radio antennas and associated mobile radio antenna
KR100725501B1 (en) * 2005-08-19 2007-06-08 삼성전자주식회사 Electromagnetic Wave Measuring Apparatus
US7616168B2 (en) * 2005-08-26 2009-11-10 Andrew Llc Method and system for increasing the isolation characteristic of a crossed dipole pair dual polarized antenna
US7358924B2 (en) 2005-10-07 2008-04-15 Kathrein-Werke Kg Feed network, and/or antenna having at least one antenna element and a feed network
WO2007042938A2 (en) 2005-10-14 2007-04-19 Fractus, Sa Slim triple band antenna array for cellular base stations
DE102006037518B3 (en) 2006-08-10 2008-03-06 Kathrein-Werke Kg Antenna arrangement, in particular for a mobile radio base station
DE102006037517A1 (en) 2006-08-10 2008-02-21 Kathrein-Werke Kg Antenna arrangement, in particular for a mobile radio base station
DE102006039279B4 (en) 2006-08-22 2013-10-10 Kathrein-Werke Kg Dipole radiator arrangement
DE102007006559B3 (en) * 2007-02-09 2008-09-11 Kathrein-Werke Kg Mobile antenna, in particular for a base station
WO2008148569A2 (en) * 2007-06-06 2008-12-11 Fractus, S.A. Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
JP5294443B2 (en) * 2007-06-21 2013-09-18 三星電子株式会社 Antenna device and wireless communication terminal
WO2010033004A2 (en) * 2008-09-22 2010-03-25 주식회사 케이엠더블유 Dual-frequency / polarization antenna for mobile-communications base station
DE102008059268A1 (en) 2008-11-27 2009-11-19 Kathrein-Werke Kg Positional recognition device for antenna, particularly mobile phone antenna, has integrated inclination sensor and global positioning system, where device is provided in control unit for adjusting electrical beam deflection with antenna
US8838176B2 (en) * 2012-01-10 2014-09-16 Mediatek Inc. High gain antenna and wireless device using the same
TWI497832B (en) * 2012-06-18 2015-08-21 Wistron Neweb Corp Decoupling circuit and antenna device
US9437935B2 (en) 2013-02-27 2016-09-06 Microsoft Technology Licensing, Llc Dual band antenna pair with high isolation
CN103715519B (en) * 2013-06-09 2016-12-28 京信通信技术(广州)有限公司 Double polarization array antenna and radiating element thereof
DE102013012305A1 (en) 2013-07-24 2015-01-29 Kathrein-Werke Kg Wideband antenna array
KR101636828B1 (en) * 2015-01-08 2016-07-08 인하대학교 산학협력단 4-port MIMO antenna for LTE femtocell using cross decoupler
JP6610652B2 (en) 2015-02-16 2019-11-27 日本電気株式会社 Multiband antenna, multiband antenna array, and wireless communication apparatus
DE102015002441A1 (en) 2015-02-26 2016-09-01 Kathrein-Werke Kg Radome and associated mobile radio antenna and method for the production of the radome or the mobile radio antenna
US9799953B2 (en) 2015-03-26 2017-10-24 Microsoft Technology Licensing, Llc Antenna isolation
DE102015007504B4 (en) 2015-06-11 2019-03-28 Kathrein Se Dipole radiator arrangement
DE102015007503A1 (en) 2015-06-11 2016-12-15 Kathrein-Werke Kg Dipole radiator arrangement
DE102015115892A1 (en) 2015-09-21 2017-03-23 Kathrein-Werke Kg Dipolsockel
CN108028462B (en) * 2015-11-25 2021-11-05 康普技术有限责任公司 Phased array antenna with decoupling unit
DE102016104610A1 (en) 2016-03-14 2017-09-14 Kathrein-Werke Kg Multiple holder for a dipole radiator arrangement and a dipole radiator arrangement with such a multiple holder
US10148015B2 (en) 2016-03-14 2018-12-04 Kathrein-Werke Kg Dipole-shaped antenna element arrangement
DE102016104611B4 (en) 2016-03-14 2020-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Dipole-shaped radiator arrangement
DE102016112257A1 (en) 2016-07-05 2018-01-11 Kathrein-Werke Kg Antenna arrangement with at least one dipole radiator arrangement
DE102016219163A1 (en) 2016-10-04 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Antenna arrangement for a vehicle and vehicle
CN110462931B (en) * 2017-03-29 2021-07-06 日本电业工作株式会社 Array antenna and sector antenna
EP4246726A3 (en) 2017-05-16 2023-11-22 Huawei Technologies Co., Ltd. Antenna
DE102017116920A1 (en) 2017-06-09 2018-12-13 Kathrein Se Dual polarized cross dipole and antenna arrangement with two such dual polarized cross dipoles
CN107546489B (en) * 2017-08-16 2020-12-15 京信通信技术(广州)有限公司 Multi-frequency base station antenna for eliminating coupling resonance
CN111384595B (en) * 2018-12-29 2021-07-16 华为技术有限公司 MIMO antenna and base station
WO2020190863A1 (en) 2019-03-21 2020-09-24 Commscope Technologies Llc Base station antennas having parasitic assemblies for improving cross-polarization discrimination performance
DE102019108901A1 (en) 2019-03-22 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for mobile radio systems with at least one dual-polarized crossed dipole
CN110176671A (en) * 2019-05-20 2019-08-27 深圳市信维通信股份有限公司 A kind of millimeter wave array antenna
CN115986429A (en) 2020-03-24 2023-04-18 康普技术有限责任公司 Base station antenna with active antenna module and related apparatus and methods
DE202021106120U1 (en) 2020-03-24 2021-12-14 Commscope Technologies Llc Radiating elements with angled feed shafts and base station antennas including the same
WO2021222217A1 (en) * 2020-04-28 2021-11-04 Commscope Technologies Llc Base station antennas having reflector assemblies including a nonmetallic substrate having a metallic layer thereon
CN213753057U (en) * 2020-12-31 2021-07-20 罗森伯格技术有限公司 Antenna element and antenna
EP4040602A1 (en) * 2021-02-08 2022-08-10 Nokia Technologies Oy An array of patch antennas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510876A (en) * 1967-06-29 1970-05-05 Itt Vertical beam steering antenna system
US3541559A (en) * 1968-04-10 1970-11-17 Westinghouse Electric Corp Antenna for producing circular polarization over wide angles
DE7142601U (en) * 1971-11-11 1972-07-13 Rohde & Schwarz DIRECTIONAL BEAM FOR CIRCULAR OR ELLIPTICAL POLARIZATION FOR CONSTRUCTION OF ROUND BEAM ANTENNAS
GB2265258B (en) * 1992-03-11 1995-09-27 Siemens Plessey Electronic Antenna array incorporating a choke
DE4302905C1 (en) * 1993-02-02 1994-03-17 Kathrein Werke Kg Directional antenna, pref. symmetrical dipole type - is formed by cutting and/or stamping out sections of reflector wall and bending remaining bridging piece
GB9410994D0 (en) * 1994-06-01 1994-07-20 Alan Dick & Company Limited Antennae
SE9404312L (en) * 1994-12-12 1996-04-01 Teracom Components Ab Device for antenna systems for breaking high frequency electric currents in the supporting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051906A1 (en) * 2020-09-08 2022-03-17 摩比天线技术(深圳)有限公司 Decoupling element and antenna

Also Published As

Publication number Publication date
KR100454146B1 (en) 2005-01-24
WO1998001923A1 (en) 1998-01-15
US6025812A (en) 2000-02-15
DE19627015A1 (en) 1998-01-08
CA2228548C (en) 2003-01-14
CA2228548A1 (en) 1998-01-15
ES2175417T3 (en) 2002-11-16
KR19990037683A (en) 1999-05-25
DE59707037D1 (en) 2002-05-23
EP0848862A1 (en) 1998-06-24
DE19627015C2 (en) 2000-07-13

Similar Documents

Publication Publication Date Title
EP0848862B1 (en) Antenna array
EP1082782B1 (en) Dual polarised multi-range antenna
EP1749331B1 (en) Mobile radio antenna with beam-forming element
EP1082781B1 (en) Antenna array with several vertically superposed primary radiator modules
EP1194982B1 (en) Antenna
DE10256960B3 (en) Two-dimensional antenna array
EP1470615B1 (en) Dual-polarized radiating assembly
EP1057224B1 (en) Dual-polarized dipole antenna
DE69834102T2 (en) WORKING ANTENNA ON TWO ISOLATED CHANNELS
EP2929589B1 (en) Dual polarized, omnidirectional antenna
DE69829037T2 (en) ANTENNA WITH IMPROVED CHANNEL SEPARATION
DE69832592T2 (en) DEVICE FOR RECEIVING AND SENDING RADIO SIGNALS
DE10012809A1 (en) Dual polarized dipole array antenna has supply cable fed to supply point on one of two opposing parallel dipoles, connecting cable to supply point on opposing dipole
DE69938063T2 (en) IMPROVING POLARIZATION SEPARATION
DE69828848T2 (en) Directional antenna system with crossed polarization
DE69835944T2 (en) ARRANGEMENT WITH ANTENNA UNITS
EP1525642B1 (en) Two-dimensional antenna array
WO2016050336A1 (en) Multi-band radiator system
DE602004012705T2 (en) Dual polarized antenna module
DE19815003A1 (en) Dual polarized antenna element
EP2514027B1 (en) Dual-polarised antenna array, in particular a mobile radio antenna
DE202004008770U1 (en) Mobile radio base station antenna element has conducting main reflector, dual polarized radiator and cross shaped passive subreflector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FI FR GB IE IT LI SE

17Q First examination report despatched

Effective date: 20010417

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01Q 21/24 A

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FI FR GB IE IT LI SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLINGER, GEORG

Inventor name: GOETTL, MAX

Inventor name: GABRIEL, ROLAND

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020417

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59707037

Country of ref document: DE

Date of ref document: 20020523

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020717

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2175417

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20050623

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060605

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100624

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150623

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20150622

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160622

Year of fee payment: 20

Ref country code: ES

Payment date: 20160622

Year of fee payment: 20

Ref country code: GB

Payment date: 20160628

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59707037

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59707037

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59707037

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190314 AND 20190320