EP0848781B1 - Heat-insulated composite profiled section - Google Patents

Heat-insulated composite profiled section Download PDF

Info

Publication number
EP0848781B1
EP0848781B1 EP96937182A EP96937182A EP0848781B1 EP 0848781 B1 EP0848781 B1 EP 0848781B1 EP 96937182 A EP96937182 A EP 96937182A EP 96937182 A EP96937182 A EP 96937182A EP 0848781 B1 EP0848781 B1 EP 0848781B1
Authority
EP
European Patent Office
Prior art keywords
width
heat
boundary walls
range
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP96937182A
Other languages
German (de)
French (fr)
Other versions
EP0848781A1 (en
Inventor
Harald Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Hydro ASA
Original Assignee
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7771330&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0848781(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Norsk Hydro ASA filed Critical Norsk Hydro ASA
Priority to DE29624629U priority Critical patent/DE29624629U1/en
Priority to EP99106735A priority patent/EP0927808B1/en
Publication of EP0848781A1 publication Critical patent/EP0848781A1/en
Application granted granted Critical
Publication of EP0848781B1 publication Critical patent/EP0848781B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/26301Frames with special provision for insulation with prefabricated insulating strips between two metal section members
    • E06B3/26303Frames with special provision for insulation with prefabricated insulating strips between two metal section members with thin strips, e.g. defining a hollow space between the metal section members
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B3/2632Frames with special provision for insulation with arrangements reducing the heat transmission, other than an interruption in a metal section
    • E06B2003/26332Arrangements reducing the heat transfer in the glazing rabbet or the space between the wing and the casing frame
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/04Wing frames not characterised by the manner of movement
    • E06B3/263Frames with special provision for insulation
    • E06B2003/26349Details of insulating strips
    • E06B2003/2635Specific form characteristics
    • E06B2003/26352Specific form characteristics hollow

Definitions

  • the invention relates to a thermally insulated Composite profile, especially for windows, doors, Facades or the like, consisting of outer and inner metal profiles that have at least one with Insulation bridge provided with connection profiles connected and spaced apart, the connection profiles in the grooves of the Metal profiles grip and the insulating bridge two in essentially parallel, a cavity between them has defining boundary walls, wherein between the Boundary walls transverse to them can be arranged, whereby the cavity in Inside the isolating web in several, towards arranged one behind the other between the metal profiles Hollow chambers is divided.
  • thermally insulated composite profiles are known for example from DE 42 38 750, the Insulating web or the insulating webs for a thermal Separate the outer and inner metal profiles.
  • the degree of heat conduction in the present case is made up of the proportion of heat that flows over the boundary walls on the one hand and the still air inside the cavity or the hollow chambers and the air space adjacent to the outside of the insulating web on the other.
  • the proportion of heat flowing over the insulating web is essentially influenced by the thickness and width of the boundary walls and the thermal conductivity of the material.
  • the mechanical parameters (strength, thickness, wall thickness, width) likewise determine the mechanical properties of the statically load-bearing insulating web which forms a spacer. The further reduction in heat conduction is therefore usually limited for structural reasons (wall thickness, width).
  • a transmitting medium is not required, so that the dimensioning of the insulating web is insignificant insofar as shading, reflections or the like influencing the radiation by the insulating web are not to be taken into account.
  • heat energy flows to it Liquids, gases or vapors due to thermal conduction or possibly also transmit radiation and carried along by the current. Since the heat transfer medium the absorption of heat energy reduces its density and consequently experiences a buoyancy, which causes Heat transfer itself as free convection designated heat flow.
  • the design of the Isolierstegs not the proportion of heat carry insignificantly influenced, so that it is the task of present invention is, in composite profiles type mentioned the design of the insulating web to improve so that the convection, ie the proportion heat transfer, limited to such a value is that the resulting heat transfer from is of the same order of magnitude as pure heat conduction with still air, and that at the same time the Radiation exchange (heat transfer through long-wave Infrared radiation) is reduced. This is supposed to a 30% reduction in heat loss achieved compared to the current state of the art become.
  • the aspect ratio of the vertical height (h) to the horizontal width (d) of the cavity or the hollow chambers can in particular be such that, taking into account the temperatures to be expected on the outer and inner metal profiles, the square of this aspect ratio multiplied by the Rayleigh Number (Ra h ), smaller than the numerical value 72.
  • the size of the Grashof number is a measure of the heat that is transported due to convection from the warm to the cold side of the cavity or hollow chamber.
  • the geometry of the insulating web that is to say the aspect ratio h / d of the cavity or the hollow chambers, is selected taking into account the expected temperature conditions so that the product of the square of the aspect ratio and the Rayleigh number remains smaller than the numerical value 72 This ensures that convection is restricted within the cavity or the hollow chambers to such an extent that the heat transfer is of the same order of magnitude as with pure heat conduction in still air.
  • the Number of hollow chambers depends on the width and height of the insulating bar and the specified aspect ratio determine.
  • each of the two boundary walls is in the range between 0.4 mm and 1.0 mm.
  • a preferred embodiment of the invention is characterized in that the insulating web has three hollow chambers and the geometry ratio related to the outer contour of the insulating strip (width D and height H) within the interval 1.3 * D - 0.022 * D 2 ⁇ H ⁇ 4.14 * D -0.088 * D 2 .
  • the width of the boundary walls is chosen to be small, so the load on the insulating web is small, at the same time, however, increases due to the low Way between the two metal profiles Heat conduction. On the other hand, due to the lower load with lower aggregates be worked, which in turn the Thermal conductivity decreases.
  • the proposed according to the invention Parameter combination thus sets the frame, within which, in addition to optimum thermal insulation also the required strength of the insulating bridge is achieved. Even with a larger width of the Boundary walls become the one that then enters Deterioration of the heat flow due to the dimensioning of the air pockets, due to the profit overcompensated.
  • the wall thickness of the boundary walls and / or the Thermal conductivity of the boundary walls in the predetermined interval chosen so small enough are that the width of the boundary walls in the area is between 20 and 50 mm.
  • the clear distance of the boundary walls in the area is between 5 and 10 mm.
  • crossbar or crossbars can expediently perpendicular to the Boundary walls aligned and fixed with these be connected. However, it is basically also possible that the between the cross bar and the Boundary walls formed angles in the area between 75 ° and 105 °.
  • the Wall thickness of the two boundary walls in the area is between 0.5 mm and 0.8 mm.
  • connection profiles symmetrical (center) to the insulating bridge are arranged.
  • the insulating web 6 has two essentially parallel, forming a cavity between them Boundary walls 6.1.6.2, whereby between the Boundary walls 6.1,6.2 running transversely to them Crosspieces 10 are arranged, whereby the cavity in the Inside of the insulating web 6 in several, in Longitudinal direction of the insulating web 6 one behind the other arranged hollow chambers is divided.
  • the heat transfer can be taken into account transport mechanisms mentioned at the beginning calculate appropriate procedures. Will that Aspect ratio of vertical height (h) to horizontal width (d) of the cavity or Hollow chambers varies, so it shows that the Share of heat transfer from warmer to colder Metal profile on convection in the hollow chambers 11 declines, by appropriate choice of Aspect ratio can be reduced so that his share compared to the heat conduction and the Heat radiation becomes insignificant.
  • a thermal resistance of the insulating web in the range between 0.15 m 2 K / W and 0.30 m 2 is achieved K / W the width (D) of the insulating web to 20 mm, in the range between 0.25 m 2 K / W and 0.50 m 2 K / W the width (D) of the insulating web to 30 mm, in the range between 0, 35 m 2 K / W and 0.65 m 2 K / W the width (D) of the insulating bridge to 40 mm, in the range between 0.40 m 2 K / W and 0.80 m 2 K / W the width (D ) of the insulating web is set to 50 mm.
  • the width (d) of the cavity or hollow chamber is chosen to be less than or equal to the width (D) of the insulating web and greater than or equal to one third of the width (D) of the insulating web, as long as the height of the cavity or hollow chamber 11 is smaller or is 5 mm.
  • the ratio of height (h) to width (d) is chosen to be greater than or equal to 0.2 and less than or equal to 5.
  • An increase in the thermal conductivity of the boundary walls (6.1,6.2) by 10% in the range between 0.15 W / mK and 0.40 W / mK leads to a reduction in the thermal resistance by 2 to 4%, which is correspondingly the case with the initially selected output variables is taken into account.
  • the aspect ratio can be estimated in a simplified manner:
  • the geometric ratio relating to the outer contour of the insulating strip should then be 1.3 * D - 0.022 * D 2 ⁇ H ⁇ 4 within the interval , 14 * D -0.088 * D 2 .
  • Corresponding interval specifications can be made for a different number of hollow chambers 11.
  • the composite profile is used in a window, of which, however, only the lower sash profile and frame profile cross section are shown.
  • Both the frame profile 1 and that Wing profile 2 are a thermally insulated composite profile trained and also consist of outer 3 and inner 4 metal profiles, each with two with Connection profiles 5 provided insulating webs 6 connected and at a distance from each other are held.
  • the essentially dovetail-shaped connecting profiles 5 engage positively in the grooves of the Metal profiles 3, 4.
  • the glass pane 7 itself is over Glazing seals 8 by means of a glazing bead 9 on Wing profile 2 held.
  • the insulating webs 6 in turn have two essentially parallel boundary walls 6.1, 6.2, that form a cavity between them.
  • the Boundary walls 6.1, 6.2 are over several Crosspieces 10 connected to each other, the number of Crosspieces 10 from the boundary conditions already explained is dependent.
  • the crosspiece 10 is rectangular aligned to the boundary walls 6.1, 6.2 and firmly connected to them.
  • this crossbars 10 under one Angle between 75 ° and 105 °, possibly even under one even larger angles to the boundary walls 6.1, 6.2 to the extent that this does not result in too much significant deterioration in thermal insulation occurs.
  • the wall thickness of the boundary walls 6.1, 6.2 can in Range between 0.4 mm and 1 mm, the Wall thicknesses of the two boundary walls 6.1, 6.2 are equal to each other. To be particularly advantageous it has been shown if the wall thickness of the Boundary walls 6.1, 6.2 in the range between 0.5 mm and 0.8 mm.
  • the wall thickness of the boundary walls 6.1, 6.2 and / or their thermal conductivity in the predetermined interval should be chosen to be sufficiently small that the width of the boundary walls 6.1, 6.2 is in the range between 20 and 50 mm.
  • connection profiles 5 are the Connection profiles 5 symmetrical, i.e. in the center of Insulating web 6 arranged.
  • connection profiles 5 asymmetrically Insulating web 6 are arranged, especially if Insulating webs 6 with comparatively far from each other spaced boundary walls 6.1, 6.2 application Find.
  • FIG. 3 shows, in which both insulating webs 6 in Frame profile 1 and the upper insulating web 6 in Wing profile 2 in the manner just described are trained.
  • the distance of the boundary walls 6.2 Insulating webs 6 in the frame profile 1 of the Boundary walls 6.1 to enlarge even further.

Landscapes

  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Insulating Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Thermal Insulation (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Wing Frames And Configurations (AREA)
  • Building Environments (AREA)
  • Cookers (AREA)
  • Insulating Bodies (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Refrigerator Housings (AREA)
  • Cable Accessories (AREA)
  • Special Wing (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

The outer and inner profiled metal sections (3,4) are joined by a mating profiled insulating rib (5,6) fitting in grooves in them. The insulating rib comprises two parallel walls (6.1,6.2) joined by transverse ribs so as to form lengthwise chambers (11). Dependent on the degree of resistance required to heat-transfer, the width of the insulating rib is 20,30,40 or 50 mm. The chamber width is equal to or less than the insulating rib width where the chamber height is 5 mm. or less, and wall thickness also regulates the resistance to heat transfer.

Description

Die Erfindung betrifft ein wärmegedämmtes Verbundprofil, insbesondere für Fenster, Türen, Fassaden oder dergleichen, bestehend aus äußeren und inneren Metallprofilen, die über mindestens einen mit Anschlußprofilen versehenen Isoliersteg miteinander verbunden und auf Abstand voneinander gehalten sind, wobei die Anschlußprofile in Aufnahmenuten der Metallprofile greifen und der Isoliersteg zwei im wesentlichen parallele, zwischen sich einen Hohlraum bildende Begrenzungswände aufweist, wobei zwischen den Begrenzungswänden quer zu ihnen verlaufende Querstege angeordnet sein können, wodurch der Hohlraum im Inneren des Isolierstegs in mehrere, in Richtung zwischen den Metallprofilen hintereinander angeordnete Hohlkammern unterteilt wird.The invention relates to a thermally insulated Composite profile, especially for windows, doors, Facades or the like, consisting of outer and inner metal profiles that have at least one with Insulation bridge provided with connection profiles connected and spaced apart, the connection profiles in the grooves of the Metal profiles grip and the insulating bridge two in essentially parallel, a cavity between them has defining boundary walls, wherein between the Boundary walls transverse to them can be arranged, whereby the cavity in Inside the isolating web in several, towards arranged one behind the other between the metal profiles Hollow chambers is divided.

Derartige wärmegedämmte Verbundprofile sind beispielsweise aus der DE 42 38 750 bekannt, wobei der Isoliersteg bzw. die Isolierstege für eine thermische Trennung der äußeren und inneren Metallprofile sorgen.Such thermally insulated composite profiles are known for example from DE 42 38 750, the Insulating web or the insulating webs for a thermal Separate the outer and inner metal profiles.

Bei der Bemessung der Isolierstege ist zu beachten, daß der Wärmetransport von dem wärmeren zum kälteren Metallprofil auf dreierlei verschiedene Art erfolgen kann, nämlich durch Wärmeleitung, durch Wärmestrahlung sowie durch Wärmemitführung (Konvektion), wobei in der Regel alle drei Transportmechanismen nebeneinander auftreten.When dimensioning the insulating bars, it should be noted that that the heat transfer from the warmer to the colder Metal profiles are made in three different ways can, namely by heat conduction, by heat radiation as well as by heat entrainment (convection), whereby in the Usually all three transport mechanisms side by side occur.

Bei der Wärmeleitung wird Wärmeenergie zwischen direkt benachbarten Teilen fester Körper oder unbewegter Flüssigkeiten bzw. Gase übertragen. Das Maß der Wärmeleitung setzt sich im vorliegenden Fall zusammen aus dem Anteil an Wärme, die über die Begrenzungswände einerseits und die ruhende Luft innerhalb des Hohlraumes bzw. der Hohlkammern sowie des außen an den Isoliersteg angrenzenden Luftraums andererseits fließt. Der über den Isoliersteg fließende Wärmeanteil wird im wesentlichen durch die Dicke und die Breite der Begrenzungswände sowie die Wärmeleitfähigkeit des Materials beeinflußt. Die mechanischen Größen (Festigkeit, Dicke, Wanddicke, Breite) bestimmen jedoch gleichfalls die mechanischen Eigenschaften des statisch tragenden, einen Abstandshalter bildenden Isolierstegs. Der weiteren Verringerung der Wärmeleitung sind daher in der Regel aus statischen Gründen Grenzen gesetzt (Wanddicke, Breite). Bei der Wärmestrahlung hingegen ist ein übertragendes Medium nicht erforderlich, so daß die Bemessung des Isolierstegs insoweit ohne Bedeutung ist, sofern nicht Abschattungen, Reflektionen oder dergleichen Beeinflussung der Strahlung durch den Isoliersteg zu berücksichtigen sind.In heat conduction, heat energy is transferred between directly adjacent parts of solid bodies or immobile liquids or gases. The degree of heat conduction in the present case is made up of the proportion of heat that flows over the boundary walls on the one hand and the still air inside the cavity or the hollow chambers and the air space adjacent to the outside of the insulating web on the other. The proportion of heat flowing over the insulating web is essentially influenced by the thickness and width of the boundary walls and the thermal conductivity of the material. However, the mechanical parameters (strength, thickness, wall thickness, width) likewise determine the mechanical properties of the statically load-bearing insulating web which forms a spacer. The further reduction in heat conduction is therefore usually limited for structural reasons (wall thickness, width). In the case of thermal radiation, on the other hand, a transmitting medium is not required, so that the dimensioning of the insulating web is insignificant insofar as shading, reflections or the like influencing the radiation by the insulating web are not to be taken into account.

Bei der Wärmemitführung wird Wärmeenergie an strömende Flüssigkeiten, Gase oder Dämpfe durch Wärmeleitung oder gegebenenfalls auch Strahlung übertragen und durch die Strömung mitgeführt. Da der Wärmeträger bei der Aufnahme der Wärmeenergie seine Dichte verkleinert und demzufolge einen Auftrieb erfährt, verursacht die Wärmeübertragung selbst eine als freie Konvektion bezeichnete Wärme strömung.When carrying the heat, heat energy flows to it Liquids, gases or vapors due to thermal conduction or possibly also transmit radiation and carried along by the current. Since the heat transfer medium the absorption of heat energy reduces its density and consequently experiences a buoyancy, which causes Heat transfer itself as free convection designated heat flow.

Es hat sich nunmehr gezeigt, daß die Ausgestaltung des Isolierstegs den Anteil an Wärmemitführung nicht unwesentlich beeinflußt, so daß es Aufgabe der vorliegenden Erfindung ist, bei Verbundprofilen der eingangs genannten Art die Gestaltung des Isolierstegs so zu verbessern, daß die Konvektion, also der Anteil an Wärmemitführung, auf einen solchen Wert begrenzt wird, daß der hierdurch bedingte Wärmeübergang von gleicher Größenordnung ist wie die reine Wärmeleitung bei ruhender Luft, und daß gleichzeitig parallel der Strahlungsaustausch (Wärmetransport durch langwellige Infrarotstrahlung) verringert wird. Hierdurch soll eine Reduzierung der Wärmeverluste um etwa 30 % gegenüber dem derzeitigen Stand der Technik erreicht werden. It has now been shown that the design of the Isolierstegs not the proportion of heat carry insignificantly influenced, so that it is the task of present invention is, in composite profiles type mentioned the design of the insulating web to improve so that the convection, ie the proportion heat transfer, limited to such a value is that the resulting heat transfer from is of the same order of magnitude as pure heat conduction with still air, and that at the same time the Radiation exchange (heat transfer through long-wave Infrared radiation) is reduced. This is supposed to a 30% reduction in heat loss achieved compared to the current state of the art become.

Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß - ausgehend von einer Wanddicke s=0,5 mm und einer Wärmeleitfähigkeit lambda = 0,35 W/mK der Begrenzungswände - zur Erreichung eines Wärmedurchlaßwiderstandes des Isolierstegs im Bereich zwischen 0,15 m2K/W und 0,30 m2K/W die in Richtung des Abstands der Metallprofile gemessene Breite (D) des Isolierstegs 20 mm, im Bereich zwischen 0,25 m2K/W und 0,50 m2K/W die Breite (D) des Isolierstegs 30 mm, im Bereich zwischen 0,35 m2K/W und 0,65 m2K/W die Breite (D) des Isolierstegs 40 mm, im Bereich zwischen 0,40 m2K/W und 0,80 m2K/W die Breite (D) des Isolierstegs 50 mm beträgt, wobei die in ebenfalls Richtung des Abstands der Metallprofile gemessene Breite (d) des Hohlraums bzw. der Hohlkammer kleiner oder gleich der Breite (D) des Isolierstegs und größer oder gleich einem Drittel der Breite (D) des Isolierstegs ist, solange die Höhe des Hohlraums bzw. der Hohlkammer kleiner oder gleich 5 mm ist, und wobei bei einer Höhe des Hohlraums bzw. der Hohlkammer im Bereich über 5 mm bis 20 mm und wenigstens einem vorhandenen Quersteg das Verhältnis von Höhe (h) zur Breite (d) der Hohlkammer größer oder gleich 0,2 und kleiner oder gleich 5 ist, wobei weiter die Wanddicke (s) im Bereich zwischen 0,25 mm und 1,0 mm liegt mit einer Abhängigkeit des Wärmedurchlaßwiderstandes von der Wanddicke (s) nach der Beziehung R(s)=R(s=0,25mm) + (s - 0,25)/0,25 * delta R und mit einem Wertebereich für delta R zwischen 0,025 und 0,05, und wobei eine Erhöhung der Wärmeleitfähigkeit der Begrenzungswände um 10% im Bereich zwischen 0,15 W/mK und 0,40 W/mK zu einer Reduzierung des Wärmedurchlaßwiderstandes um 2 bis 4% führt.This object is achieved according to the invention in that - starting from a wall thickness s = 0.5 mm and a thermal conductivity lambda = 0.35 W / mK of the boundary walls - to achieve a thermal resistance of the insulating web in the range between 0.15 m 2 K / W and 0.30 m 2 K / W the width (D) of the insulating web measured in the direction of the spacing of the metal profiles, the width in the range between 0.25 m 2 K / W and 0.50 m 2 K / W (D) of the insulating web 30 mm, in the range between 0.35 m 2 K / W and 0.65 m 2 K / W the width (D) of the insulating web 40 mm, in the range between 0.40 m 2 K / W and 0.80 m 2 K / W the width (D) of the insulating web is 50 mm, the width (d) of the cavity or the hollow chamber also measured in the direction of the spacing of the metal profiles being less than or equal to the width (D) of the insulating web and is greater than or equal to one third of the width (D) of the insulating web, as long as the height of the cavity or the hollow chamber is less than or equal to 5 mm, and at a height of the cavity or the hollow chamber in the range above 5 mm to 20 mm and at least one transverse web present, the ratio of the height (h) to the width (d) of the hollow chamber is greater than or equal to 0.2 and less than or equal to 5, wherein further the wall thickness (s) lies in the range between 0.25 mm and 1.0 mm with a dependence of the thermal resistance on the wall thickness (s) according to the relationship R (s) = R (s = 0.25 mm) + (s - 0 , 25) / 0.25 * delta R and with a range of values for delta R between 0.025 and 0.05, and with a 10% increase in the thermal conductivity of the boundary walls in the range between 0.15 W / mK and 0.40 W / mK leads to a reduction of the thermal resistance by 2 to 4%.

Zwischenwerte in der Beziehung zwischen dem Intervall des Wärmedurchlaßwiderstandes und der Breite (D) des Isolierstegs können dabei linear interpoliert werden.Intermediate values in the relationship between the interval the thermal resistance and the width (D) of the Insulating bars can be linearly interpolated.

Noch günstigere Bedingungen ergeben sich, wenn bei einer Höhe des Hohlraums bzw. der Hohlkammer im Bereich über 5 mm bis 20 mm und wenigstens einem vorhandenen Quersteg das Verhältnis von Höhe (h) zur Breite (d) größer oder gleich 0,5 und kleiner oder gleich 2 ist.Even more favorable conditions result if at a height of the cavity or cavity in the Range over 5 mm to 20 mm and at least one existing crossbar the ratio of height (h) to Width (d) greater than or equal to 0.5 and less than or is equal to 2.

Das Seitenverhältnis der vertikalen Höhe (h) zur horizontalen Breite (d) des Hohlraums bzw. der Hohlkammern kann dabei insbesondere so bemessen sein, daß unter Berücksichtigung der an den äußeren und inneren Metallprofilen zu erwartenden Temperaturen das Quadrat dieses Seitenverhältnisses, multipliziert mit der Rayleigh-Zahl (Rah), kleiner ist als der Zahlenwert 72.The aspect ratio of the vertical height (h) to the horizontal width (d) of the cavity or the hollow chambers can in particular be such that, taking into account the temperatures to be expected on the outer and inner metal profiles, the square of this aspect ratio multiplied by the Rayleigh Number (Ra h ), smaller than the numerical value 72.

Die dimensionslose Rayleigh-Zahl Rah ist das Produkt aus der Grashof-Zahl und der lediglich die Stoffeigenschaften des im eingeschlossenen Hohlraums befindlichen Fluids charakterisierenden Prandtl-Zahl, die für Luft zu Pr=0.71 angenommen werden kann. Die Größe der Grashof-Zahl ist ein Maß für die Wärme, die aufgrund von Konvektion von der warmen zur kalten Seite des Hohlraums bzw. der Hohlkammer transportiert wird. Wird nun die Geometrie des Isolierstegs, also das Seitenverhältnis h/d des Hohlraums bzw. der Hohlkammern unter Berücksichtigung der zu erwartenden Temperaturverhältnisse so gewählt, daß das Produkt aus dem Quadrat des Seitenverhältnisses und der Rayleigh-Zahl kleiner bleibt als der Zahlenwert 72, so ist damit sichergestellt, daß innerhalb des Hohlraums bzw. der Hohlkammern die Konvektion soweit eingeschränkt ist, daß der Wärmeübergang von gleicher Größenordnung ist wie bei reiner Wärmeleitung in ruhender Luft.The dimensionless Rayleigh number Ra h is the product of the Grashof number and the Prandtl number that characterizes only the material properties of the fluid in the enclosed cavity, which can be assumed for air to be Pr = 0.71. The size of the Grashof number is a measure of the heat that is transported due to convection from the warm to the cold side of the cavity or hollow chamber. If the geometry of the insulating web, that is to say the aspect ratio h / d of the cavity or the hollow chambers, is selected taking into account the expected temperature conditions so that the product of the square of the aspect ratio and the Rayleigh number remains smaller than the numerical value 72 This ensures that convection is restricted within the cavity or the hollow chambers to such an extent that the heat transfer is of the same order of magnitude as with pure heat conduction in still air.

In bevorzugter Ausführungsform der Erfindung kann die Anzahl der Hohlkammern sich aus der Breite und Höhe des Isolierstegs und dem vorgegebenen Seitenverhältnis bestimmen.In a preferred embodiment of the invention, the Number of hollow chambers depends on the width and height of the insulating bar and the specified aspect ratio determine.

Als weiter vorteilhaft hat es sich herausgestellt, wenn die Wandstärke jeder der beiden Begrenzungswände im Bereich zwischen 0,4 mm und 1,0 mm liegt.It has also proven to be advantageous if the wall thickness of each of the two boundary walls is in the range between 0.4 mm and 1.0 mm.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß der Isoliersteg drei Hohlkammern aufweist und das auf die Außenkontur der Isolierleiste (Breite D und Höhe H) bezogene Geometrieverhältnis innerhalb des Intervalls 1,3*D - 0,022*D2 < H < 4,14*D -0,088*D2 liegt.A preferred embodiment of the invention is characterized in that the insulating web has three hollow chambers and the geometry ratio related to the outer contour of the insulating strip (width D and height H) within the interval 1.3 * D - 0.022 * D 2 <H <4.14 * D -0.088 * D 2 .

Als günstig im Rahmen der Erfindung hat es sich weiter erwiesen, wenn die Wärmeleitfähigkeit L der Begrenzungswände zwischen 0,17 und 0,35 W/(mK) liegt. Außerdem empfiehlt es sich, die den Abstand zwischen den Metallprofilen bestimmende Breite der Begrenzungswände in Abhängigkeit von der Wandstärke so auszuwählen, daß der spezifische Wärmestrom q0, also der Wärmestrom durch eine 1 m lange Leiste bei delta T = 1 K, der über die Begrenzungswände fließt, kleiner bleibt als 0,02 W.In the context of the invention, it has also proven to be advantageous if the thermal conductivity L of the boundary walls is between 0.17 and 0.35 W / (mK). It is also advisable to select the width of the boundary walls that determines the distance between the metal profiles depending on the wall thickness so that the specific heat flow q 0 , i.e. the heat flow through a 1 m long strip at delta T = 1 K, over the boundary walls flows, remains less than 0.02 W.

Die hierdurch erreichten Vorteile bestehen im wesentlichen darin, daß bei einer Ausbildung der Isolierstege nach den angegebenen Merkmalen außer einer optimalen Wärmedämmung auch hinsichtlich der erzielbaren Festigkeit der Isolierstege eine günstige Abstimmung erreicht wird. Dieser Bemessung liegt weiter die Erkenntnis zugrunde, daß die für die Isolierstege in Frage kommenden Materialien, insbesondere PVC, Polypropylen und Polyamid, in dieser Reihenfolge eine größer werdende Wärmeleitfähigkeit besitzen. Um deren mechanische Festigkeit zu vergrößern, werden häufig Zuschlagstoffe in diese Materialien eingebracht, die zwar die Festigkeit, zugleich jedoch auch die Wärmeleitfähigkeit erhöhen.The advantages achieved in this are essential that in training the Insulating bars according to the specified characteristics except optimal thermal insulation also with regard to achievable strength of the insulating bars a cheap Vote is reached. This dimension lies further based on the knowledge that for the Insulating webs in question materials, especially PVC, polypropylene and polyamide, in this Order of increasing thermal conductivity have. To increase their mechanical strength enlarge, aggregates are often in this Materials that, while strength, at the same time, however, increase the thermal conductivity.

Wird die Breite der Begrenzungswände gering gewählt, so ist die Belastung für den Isoliersteg zwar klein, zugleich erhöht sich jedoch aufgrund des geringen Weges zwischen den beiden Metallprofilen die Wärmeleitung. Andererseits kann aufgrund der geringeren Belastung mit geringeren Zuschlagstoffen gearbeitet werden, wodurch wiederum die Wärmeleitfähigkeit zurückgeht.If the width of the boundary walls is chosen to be small, so the load on the insulating web is small, at the same time, however, increases due to the low Way between the two metal profiles Heat conduction. On the other hand, due to the lower load with lower aggregates be worked, which in turn the Thermal conductivity decreases.

Die erfindungsgemäß vorgeschlagene Parameterkombination steckt damit den Rahmen ab, innerhalb dessen neben einem Optimum an Wärmedämmung auch die geforderte Festigkeit des Isolierstegs erreicht wird. Selbst bei einer größeren Breite der Begrenzungswände wird die dann eintretende Verschlechterung der Wärmestroms durch die Bemessung der die Luft einschließenden Hohlkammern aufgrund des erzielten Gewinns überkompensiert.The proposed according to the invention Parameter combination thus sets the frame, within which, in addition to optimum thermal insulation also the required strength of the insulating bridge is achieved. Even with a larger width of the Boundary walls become the one that then enters Deterioration of the heat flow due to the dimensioning of the air pockets, due to the profit overcompensated.

Weiter wird im Rahmen der Erfindung vorgeschlagen, daß die Wandstärke der Begrenzungswände und/oder die Wärmeleitfähigkeit der Begrenzungswände in dem vorgegebenen Intervall so hinreichend klein gewählt sind, daß die Breite der Begrenzungswände im Bereich zwischen 20 und 50 mm liegt.It is further proposed within the scope of the invention that the wall thickness of the boundary walls and / or the Thermal conductivity of the boundary walls in the predetermined interval chosen so small enough are that the width of the boundary walls in the area is between 20 and 50 mm.

Darüberhinaus hat es sich im Rahmen der Erfindung als vorteilhaft herausgestellt, wenn der lichte Abstand der Begrenzungswände im Bereich zwischen 1 und 15 mm liegt. Besonders günstig ist es jedoch, wenn der lichte Abstand der Begrenzungswände im Bereich zwischen 5 und 10 mm liegt.In addition, it has in the context of the invention as exposed advantageously when the clear distance the boundary walls in the range between 1 and 15 mm lies. However, it is particularly favorable if the clear distance of the boundary walls in the area is between 5 and 10 mm.

Der Quersteg bzw. die Querstege können zweckmäßigerweise rechtwinklig zu den Begrenzungswänden ausgerichtet und fest mit diesen verbunden sein. Es ist jedoch grundsätzlich auch möglich, daß der zwischen dem Quersteg und den Begrenzungswänden gebildete Winkel im Bereich zwischen 75° und 105° liegt.The crossbar or crossbars can expediently perpendicular to the Boundary walls aligned and fixed with these be connected. However, it is basically also possible that the between the cross bar and the Boundary walls formed angles in the area between 75 ° and 105 °.

Im Rahmen der Parameteroptimierung hat es sich darüberhinaus als vorteilhaft erwiesen, wenn die Wandstärke der beiden Begrenzungswände im Bereich zwischen 0,5 mm und 0,8 mm liegt. In the context of parameter optimization, it did furthermore proven to be advantageous if the Wall thickness of the two boundary walls in the area is between 0.5 mm and 0.8 mm.

Schließlich ist eine weiter vorteilhafte Ausgestaltung der Erfindung dadurch gekennzeichnet, daß die Anschlußprofile symmetrisch (mittig) zum Isoliersteg angeordnet sind.Finally, a further advantageous embodiment the invention characterized in that the Connection profiles symmetrical (center) to the insulating bridge are arranged.

Im folgenden wird die Erfindung an in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert; es zeigen

Fig. 1
einen einzelnen Isoliersteg in schematischer Darstellung, wie er der Ermittlung der Bemessungsgrundlagen dient,
Fig. 2
ein Verbundprofil in einer Schnittdarstellung,
Fig. 3
eine weitere Ausführungsform in der Fig. 2 entsprechender Darstellung.
In the following the invention is explained in more detail using exemplary embodiments shown in the drawing; show it
Fig. 1
a single insulating bridge in a schematic representation, as it serves to determine the design bases,
Fig. 2
a composite profile in a sectional view,
Fig. 3
another embodiment in FIG. 2 corresponding representation.

In Fig. 1 ist von dem wärmegedämmten Verbundprofil, das insbesondere für Fenster, Türen, Fassaden oder dergleichen vorgesehen ist, das äußere und innere Metallprofil 3, 4 angedeutet sowie der mit jeweils einem Anschlußprofil 5 an seinen beiden Seiten versehene Isoliersteg 6 wiedergegeben, der die beiden Metallprofile 3, 4 miteinander verbindet und auf Abstand voneinander hält.1 is of the thermally insulated composite profile, especially for windows, doors, facades or the like is provided, the outer and inner Metal profile 3, 4 indicated and with each a connection profile 5 on both sides provided insulating web 6, the two Metal profiles 3, 4 connects together and on Keeps a distance from each other.

Der Isoliersteg 6 weist zwei im wesentlichen parallele, zwischen sich einen Hohlraum bildende Begrenzungswände 6.1,6.2 auf, wobei zwischen den Begrenzungswänden 6.1,6.2 quer zu ihnen verlaufende Querstege 10 angeordnet sind, wodurch der Hohlraum im Inneren des Isolierstegs 6 in mehrere, in Längsrichtung des Isolierstegs 6 hintereinander angeordnete Hohlkammern unterteilt wird.The insulating web 6 has two essentially parallel, forming a cavity between them Boundary walls 6.1.6.2, whereby between the Boundary walls 6.1,6.2 running transversely to them Crosspieces 10 are arranged, whereby the cavity in the Inside of the insulating web 6 in several, in Longitudinal direction of the insulating web 6 one behind the other arranged hollow chambers is divided.

Der Wärmetransport läßt sich bei Berücksichtigung der eingangs angesprochenen Transportmechanismen durch geeignete Verfahren berechnen. Wird das Seitenverhältnis der vertikalen Höhe (h) zur horizontalen Breite (d) des Hohlraums bzw. der Hohlkammern variiert, so zeigt sich hierbei, daß der Anteil des Wärmeübergangs vom wärmeren zum kälteren Metallprofil, der auf Konvektion in den Hohlkammern 11 zurückgeht, durch passende Wahl des Seitenverhältnisses so verringert werden kann, daß sein Anteil gegenüber der Wärmeleitung und der Wärmestrahlung unbedeutend wird.The heat transfer can be taken into account transport mechanisms mentioned at the beginning calculate appropriate procedures. Will that Aspect ratio of vertical height (h) to horizontal width (d) of the cavity or Hollow chambers varies, so it shows that the Share of heat transfer from warmer to colder Metal profile on convection in the hollow chambers 11 declines, by appropriate choice of Aspect ratio can be reduced so that his share compared to the heat conduction and the Heat radiation becomes insignificant.

Trägt man den Wärmedurchlaßwiderstand für unterschiedliche Breiten des Isolierstegs 6 über der Höhe des Isolierstegs auf, so ergibt sich ein Bereich, in dem der Wärmedurchlaßwiderstand ein Maximum besitzt. Dies zeigt, daß bei Berücksichtigung der an den äußeren und inneren Metallprofilen 3, 4 zu erwartenden Temperaturen und geeigneter Wahl des Seitenverhältnisses der Hohlkammern eine Verbesserung der Wärmedämmung erreicht werden kann. Auch bei einer Auftragung der Abhängigkeit des Wärmedurchlaßwiderstandes von der Höhe des Isolierstegs für unterschiedliche Wanddicken zeigt sich bei einem bestimmten Wertebereich ein Maximum. Die Variation der Wanddicke führt zwar wegen der sich ändernden Wärmeleitung erwartungsgemäß zu einer Änderung des Gesamtwärmewiderstandes; der Einfluß des Konvektionsanteils ist jedoch auch hier erkennbar.If you wear the thermal resistance for different widths of the insulating web 6 over the Height of the insulating web, there is an area in which the thermal resistance is a maximum owns. This shows that when considering the the outer and inner metal profiles 3, 4 expected temperatures and suitable choice of Aspect ratio of the hollow chambers an improvement thermal insulation can be achieved. Even with one Plotting the dependency of the Thermal resistance of the height of the Insulating web for different wall thicknesses shows a maximum for a certain range of values. The variation in wall thickness does result because of the changing heat conduction to one as expected Change in total thermal resistance; the influence of However, the convection component can also be seen here.

Dies läßt sich zur Bemessung des Isolierstegs in folgender Weise ausnutzen:This can be used for dimensioning the insulating bridge in take advantage of the following:

Ausgehend von einer Wanddicke s=0,5 mm und einer Wärmeleitfähigkeit lambda = 0,35 W/mK der Begrenzungswände 6.1,6.2 wird zur Erreichung eines Wärmedurchlaßwiderstandes des Isolierstegs im Bereich zwischen 0,15 m2K/W und 0,30 m2K/W die Breite (D) des Isolierstegs auf 20 mm, im Bereich zwischen 0,25 m2K/W und 0,50 m2K/W die Breite (D) des Isolierstegs auf 30 mm, im Bereich zwischen 0,35 m2K/W und 0,65 m2K/W die Breite (D) des Isolierstegs auf 40 mm, im Bereich zwischen 0,40 m2K/W und 0,80 m2K/W die Breite (D) des Isolierstegs auf 50 mm festgelegt. Die Breite (d) des Hohlraums bzw. der Hohlkammer wird dabei kleiner oder gleich der Breite (D) des Isolierstegs und größer oder gleich einem Drittel der Breite (D) des Isolierstegs gewählt, solange die Höhe des Hohlraums bzw. der Hohlkammer 11 kleiner oder gleich 5 mm ist. Bei einer Höhe des Hohlraums bzw. der Hohlkammer im Bereich über 5 mm bis 20 mm und wenigstens einem vorhandenen Quersteg 10 wird das Verhältnis von Höhe (h) zur Breite (d) größer oder gleich 0,2 und kleiner oder gleich 5 gewählt. Wird die Wanddicke (s) im Bereich zwischen 0,25 mm und 1,0 mm variiert, so ist eine Abhängigkeit des Wärmedurchlaßwiderstandes von der Wanddicke (s) nach der Beziehung R(s)=R(s=0,25mm) + (s - 0,25)/0,25 * delta R und mit einem Wertebereich für delta R zwischen 0,025 und 0,05 zu berücksichtigen. Eine Erhöhung der Wärmeleitfähigkeit der Begrenzungswände (6.1,6.2) um 10% im Bereich zwischen 0,15 W/mK und 0,40 W/mK führt zu einer Reduzierung des Wärmedurchlaßwiderstandes um 2 bis 4%, was entsprechend bei den eingangs gewählten Ausgangsgrößen zu berücksichtigen ist.Starting from a wall thickness s = 0.5 mm and a thermal conductivity lambda = 0.35 W / mK of the boundary walls 6.1.6.2, a thermal resistance of the insulating web in the range between 0.15 m 2 K / W and 0.30 m 2 is achieved K / W the width (D) of the insulating web to 20 mm, in the range between 0.25 m 2 K / W and 0.50 m 2 K / W the width (D) of the insulating web to 30 mm, in the range between 0, 35 m 2 K / W and 0.65 m 2 K / W the width (D) of the insulating bridge to 40 mm, in the range between 0.40 m 2 K / W and 0.80 m 2 K / W the width (D ) of the insulating web is set to 50 mm. The width (d) of the cavity or hollow chamber is chosen to be less than or equal to the width (D) of the insulating web and greater than or equal to one third of the width (D) of the insulating web, as long as the height of the cavity or hollow chamber 11 is smaller or is 5 mm. With a height of the cavity or the hollow chamber in the range above 5 mm to 20 mm and at least one transverse web 10 present, the ratio of height (h) to width (d) is chosen to be greater than or equal to 0.2 and less than or equal to 5. If the wall thickness (s) is varied in the range between 0.25 mm and 1.0 mm, the thermal resistance is dependent on the wall thickness (s) according to the relationship R (s) = R (s = 0.25mm) + ( s - 0.25) / 0.25 * delta R and with a range of values for delta R between 0.025 and 0.05. An increase in the thermal conductivity of the boundary walls (6.1,6.2) by 10% in the range between 0.15 W / mK and 0.40 W / mK leads to a reduction in the thermal resistance by 2 to 4%, which is correspondingly the case with the initially selected output variables is taken into account.

Bei der Festlegung der Gestalt des Isolierstegs kann dann weiter so vorgegangen werden, daß die Anzahl der Hohlkammern 11 sich aus der Breite und Höhe des Isolierstegs und dem vorgegebenen Seitenverhältnis bestimmt.When determining the shape of the insulating web can then proceed in such a way that the number of Hollow chambers 11 from the width and height of Isolierstegs and the specified aspect ratio certainly.

Weist der Isoliersteg drei Hohlkammern 11 auf, so läßt sich das Seitenverhältnis vereinfacht abschätzen: Das auf die Außenkontur der Isolierleiste (Breite D und Höhe H) bezogene Geometrieverhältnis soll dann innerhalb des Intervalls 1,3*D - 0,022*D2 < H < 4,14*D -0,088*D2 liegen. Für eine andere Zahl von Hohlkammern 11 können entsprechende Intervallangaben erstellt werden. Bei den in den Fig. 2 und 3 dargestellten Ausführungsbeispielen kommt das Verbundprofil bei einem Fenster zum Einsatz, von welchem jedoch nur der untere Flügelprofil- und Blendrahmenprofilquerschnitt dargestellt sind.If the insulating web has three hollow chambers 11, the aspect ratio can be estimated in a simplified manner: The geometric ratio relating to the outer contour of the insulating strip (width D and height H) should then be 1.3 * D - 0.022 * D 2 <H <4 within the interval , 14 * D -0.088 * D 2 . Corresponding interval specifications can be made for a different number of hollow chambers 11. In the exemplary embodiments shown in FIGS. 2 and 3, the composite profile is used in a window, of which, however, only the lower sash profile and frame profile cross section are shown.

Sowohl das Blendrahmenprofil 1 als auch das Flügelprofil 2 sind als wärmegedämmtes Verbundprofil ausgebildet und bestehen ebenfalls aus äußeren 3 und inneren 4 Metallprofilen, die über jeweils zwei mit Anschlußprofilen 5 versehene Isolierstege 6 miteinander verbunden und auf Abstand voneinander gehalten sind. Die im wesentlichen schwalbenschwanzförmig ausgebildeten Anschlußprofile 5 greifen dabei formschlüssig in Aufnahmenuten der Metallprofile 3, 4.Both the frame profile 1 and that Wing profile 2 are a thermally insulated composite profile trained and also consist of outer 3 and inner 4 metal profiles, each with two with Connection profiles 5 provided insulating webs 6 connected and at a distance from each other are held. The essentially dovetail-shaped connecting profiles 5 engage positively in the grooves of the Metal profiles 3, 4.

Die Glasscheibe 7 selbst ist über Verglasungsdichtungen 8 mittels einer Glasleiste 9 am Flügelprofil 2 gehalten.The glass pane 7 itself is over Glazing seals 8 by means of a glazing bead 9 on Wing profile 2 held.

Die Isolierstege 6 weisen wiederum zwei im wesentlichen parallele Begrenzungswände 6.1, 6.2 auf, die zwischen sich einen Hohlraum bilden. Die Begrenzungswände 6.1, 6.2 sind dabei über mehrere Querstege 10 miteinander verbunden, wobei die Zahl der Querstege 10 von den schon erläuterten Randbedingen abhängig ist.The insulating webs 6 in turn have two essentially parallel boundary walls 6.1, 6.2, that form a cavity between them. The Boundary walls 6.1, 6.2 are over several Crosspieces 10 connected to each other, the number of Crosspieces 10 from the boundary conditions already explained is dependent.

In den in den Fig. 2 und 3 dargestellten Ausführungsbeispielen ist der Quersteg 10 rechtwinklig zu den Begrenzungswänden 6.1, 6.2 ausgerichtet und fest mit diesen verbunden. Es besteht jedoch die Möglichkeit, diese Querstege 10 auch unter einem Winkel zwischen 75° und 105°, ggf. sogar unter einem noch größeren Winkel zu den Begrenzungswänden 6.1, 6.2 auszurichten, soweit hierdurch keine allzu nennenswerte Verschlechterung der Wärmedämmung auftritt.In the illustrated in Figs. 2 and 3 In exemplary embodiments, the crosspiece 10 is rectangular aligned to the boundary walls 6.1, 6.2 and firmly connected to them. However, there is Possibility of this crossbars 10 under one Angle between 75 ° and 105 °, possibly even under one even larger angles to the boundary walls 6.1, 6.2 to the extent that this does not result in too much significant deterioration in thermal insulation occurs.

Die Wandstärke der Begrenzungswände 6.1, 6.2 kann im Bereich zwischen 0,4 mm und 1 mm liegen, wobei die Wandstärken der beiden Begrenzungswände 6.1, 6.2 untereinander gleich sind. Als besonders vorteilhaft hat es sich gezeigt, wenn die Wandstärke der Begrenzungswände 6.1, 6.2 im Bereich zwischen 0,5 mm und 0,8 mm liegt.The wall thickness of the boundary walls 6.1, 6.2 can in Range between 0.4 mm and 1 mm, the Wall thicknesses of the two boundary walls 6.1, 6.2 are equal to each other. To be particularly advantageous it has been shown if the wall thickness of the Boundary walls 6.1, 6.2 in the range between 0.5 mm and 0.8 mm.

Bei der Materialauswahl für die Begrenzungswände 6.1, 6.2 ist darauf zu achten, daß die Wärmeleitfähigkeit L zwischen 0,17 und 0,35 W/(mK) liegt. Dabei ist zu berücksichtigen, daß die Beigabe von Zuschlagstoffen in das Material zwar die Festigkeit erhöht, zugleich aber auch die Wärmeleitfähigkeit vergrößert, so daß hier ein Kompromiß innerhalb des erfindungsgemäß vorgeschlagenen Intervalls sowie der Wandstärke der Begrenzungswände 6.1, 6.2 gefunden werden muß, der es jedoch zuläßt, daß bei entsprechender Breite und Wanddicke der Begrenzungswände 6.1, 6.2 der spezifische Wärmestrom q0, also der Wärmestrom durch eine 1 m lange Leiste bei delta T = 1 K, der über die Begrenzungswände 6.1, 6.2 fließt, kleiner bleibt als 0,02 Watt. Da eine zu große Breite der Begrenzungswände 6.1, 6.2 zu einer vergrößerten Belastung führt, ist die Wandstärke der Begrenzungswände 6.1, 6.2 und/oder ihre Wärmeleitfähigkeit in dem vorgegebenen Intervall so hinreichend klein zu wählen, daß die Breite der Begrenzungswände 6.1, 6.2 im Bereich zwischen 20 und 50 mm liegt.When selecting the materials for the boundary walls 6.1, 6.2, care must be taken that the thermal conductivity L is between 0.17 and 0.35 W / (mK). It should be taken into account that the addition of additives to the material increases the strength, but at the same time increases the thermal conductivity, so that a compromise must be found within the interval proposed according to the invention and the wall thickness of the boundary walls 6.1, 6.2, but it does allows the specific heat flow q 0 , i.e. the heat flow through a 1 m long strip at delta T = 1 K, which flows over the boundary walls 6.1, 6.2, to remain smaller than 0.02 given the corresponding width and wall thickness of the boundary walls 6.1, 6.2 Watt. Since the width of the boundary walls 6.1, 6.2 leads to an increased load, the wall thickness of the boundary walls 6.1, 6.2 and / or their thermal conductivity in the predetermined interval should be chosen to be sufficiently small that the width of the boundary walls 6.1, 6.2 is in the range between 20 and 50 mm.

In dem Ausführungsbeispiel nach Fig. 2 sind die Anschlußprofile 5 symmetrisch, also mittig zum Isoliersteg 6 angeordnet. Es besteht jedoch auch die Möglichkeit, die Anschlußprofile 5 asymmetrisch am Isoliersteg 6 anzuordnen, insbesondere dann, wenn Isolierstege 6 mit vergleichsweise weit voneinander beabstandeten Begrenzungswänden 6.1, 6.2 Anwendung finden. Ein solches Beispiel ist in Fig. 3 dargestellt, in der beide Isolierstege 6 im Blendrahmenprofil 1 und der obere Isoliersteg 6 im Flügelprofil 2 in der eben beschriebenen Weise ausgebildet sind. Dabei besteht auch die Möglichkeit, den Abstand der Begrenzungswände 6.2 der Isolierstege 6 im Blendrahmenprofil 1 von den Begrenzungswänden 6.1 noch weiter zu vergrößern.2 are the Connection profiles 5 symmetrical, i.e. in the center of Insulating web 6 arranged. However, there is also Possibility to connect the connection profiles 5 asymmetrically Insulating web 6 to be arranged, especially if Insulating webs 6 with comparatively far from each other spaced boundary walls 6.1, 6.2 application Find. Such an example is in FIG. 3 shown, in which both insulating webs 6 in Frame profile 1 and the upper insulating web 6 in Wing profile 2 in the manner just described are trained. There is also the possibility the distance of the boundary walls 6.2 Insulating webs 6 in the frame profile 1 of the Boundary walls 6.1 to enlarge even further.

Claims (15)

  1. A heat-insulated composite profile member, in articular for windows, doors, facades or the like, comprising outer and inner metal profile members (3, 4) which are connected together and held at a spacing from each other by way of at least one insulating bar (6) provided with connecting profile portions (5), wherein the connecting profile portions (5) engage into receiving grooves in the metal profile members (3, 4) and the insulating bar (6) has two substantially parallel boundary walls (6.1, 6.2) forming a cavity between them, wherein transverse bars (10) can be arranged between the boundary walls (6.1, 6.2) in a position of extending transversely with respect thereto, whereby the cavity in the interior of the insulating bar (6) is subdivided into a plurality of hollow chambers (11) which are arranged in succession in the direction between the metal profile members (3, 4), characterised in that - based on a wall thickness s = 0.5 mm and a thermal conductivity lambda = 0.35 W/mK of the boundary walls (6.1, 6.2) - to achieve a thermal resistance (R) of the insulating bar in the range between 0.15 m2K/W and 0.30m2K/W the width (D) of the insulating bar as measured in the direction of the spacing of the metal profile members (3, 4) is 20 mm, in the range between 0.25 m2K/W ana 0.50 m2K/W the width (D) of the insulating bar is 30 mm, in the range between 0.35 m2K/W and 0.65m2K/W the width (D) of the insulating bar is 40 mm, and in the range between 0.40 m2K/W and 0.80 m2K/W the width (D) of the insulating bar is 50 mm, wherein the width (d) of the cavity or the hollow chamber as also measured in the direction of the spacing of the metal profile members (3, 4) is smaller than or equal to the width (D) of the insulating bar and greater than or equal to a third of the width (D) of the insulating bar as long as the height (h) of the cavity or the hollow chamber (11) is less than or equal to 5 mm, and wherein with a height (h) of the cavity or the hollow chamber in the range above 5 mm to 20 mm and with at least one transverse bar (10) being present the ratio of the height (h) to the width (d) of the hollow chamber (11) is greater than or equal to 0.2 or less than or equal to 5, wherein moreover the wall thickness (s) is in the range between 0.25 mm and 1.0 mm with a dependency of the thermal resistance (R) on the wall thickness (s) in accordance with the relationship:
    R(s)=R(s=0.25 mm) + (s-0.25)/0.25 * delta R, and with a value range for delta R of between 0.025 and 0.05, and wherein an increase in the thermal conductivity of the boundary walls (6.1, 6.2) by 10% in the range between 0.15 W/mK and 0.40 W/mK leads to a reduction in the thermal resistance by 2 to 4%.
  2. A neat-insulated composite profile member according to claim 1 characterised in that with a height of the cavity or the hollow chamber (11) in the range above 5 mm to 20 mm and with at least one transverse bar (10) being present the ratio of the height (h) to the width (d) is greater than or equal to 0.5 and less than or equal to 2.
  3. A heat-insulated composite profile member according to claim 1 or claim 2 characterised in that the sides ratio of the vertical height (h) to the horizontal width (b) of the cavity or the hollow chambers (11) is such that having regard to the temperatures to be expect at the outer and inner metal profile members (3, 4) the square or product of that sides ratio multiplied by the Rayleigh number (Rah) is less that the numerical value 72.
  4. A heat-insulated composite profile member according to one of claims 1 to 3 characterised in that the number of hollow chambers (11) is determined from the width and height of the insulating bar and the predetermined sides ratio of the hollow chambers.
  5. A heat-insulated composite profile member according to one of claims 1 to 4 characterised in that the wall thickness of each of the two boundary walls (6.1, 6.2) is in the range of between 0.4 mm and 1.0 mm.
  6. A heat-insulated composite profile member according to claim 5 characterised in that the insulating bar has three hollow chambers and the geometrical relationship related to the external contour of the insulating bar (width D and height H) is within the range 1.3*0 - 0.022*D2 < H < 4.14*D - 0.188*D2.
  7. A heat-insulated composite profile member according to one of claims 1 to 6 characterised in that the thermal conductivity L of the boundary walls (6.1, 6.2) is between 0.17 and 0.35 W/(mK).
  8. A heat-insulated composite profile member according to one of claims 1 to 7 characterised in that the width of the boundary walls (6.1, 6.2), which determines the spacing between the metal profile members (3, 4), is so selected in dependence on the wall thickness that the specific heat flux q0, that is to say the heat flux through a 1 m long bar with delta T = 1 K, which flows by way of the boundary walls (6.1, 6.2), remains less than 0.02 W.
  9. A heat-insulated composite profile member according to one of claims 1 to 8 characterised in that the wall thickness of the boundary walls (6.1, 6.2) and/or the thermal conductivity of the boundary walls (6.1, 6.2) are so selected to be sufficiently small in the predetermined range that the width of the boundary walls (6.1, 6.2) is in the range of between 20 and 50 mm.
  10. A heat-insulated composite profile member according to one of claims 1 to 9 characterised in that the internal spacing of the boundary walls (6.1, 6.2) is in the range of between 1 and 15 mm.
  11. A heat-insulated composite profile member according to one of claims 1 to 10 characterised in that the internal spacing of the boundary walls (6.1, 6.2) is in the range of between 5 and 10 mm.
  12. A heat-insulated composite profile member according to one of claims 1 to 11 characterised in that the transverse bar (10) is oriented at a right angle with respect to the boundary walls (6.1, 6.2) and is fixedly connected thereto.
  13. A heat-insulated composite profile member according to one of claims 1 to 11 characterised in that the angle formed between the transverse bar (10) and the boundary walls (6.1, 6.2) is in the range of between 75° and 105°.
  14. A heat-insulated composite profile member according to one of claims to 13 characterised in that the wall thickness of the two boundary walls (6.1, 6.2) is in the range of between 0.5 mm and 0.8 mm.
  15. A heat-insulator composite profile member according to one of claims 1 to 15 characterised in that the connecting profile portions (5) are arranged symmetrically (centrally) with respect to the insulating bar (6).
EP96937182A 1995-09-05 1996-09-05 Heat-insulated composite profiled section Revoked EP0848781B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE29624629U DE29624629U1 (en) 1995-09-05 1996-09-05 Composite profiled heat-insulating component - has insulating section forming parallel lengthwise chambers between metal sections with dimensions dependent on degree of insulation required
EP99106735A EP0927808B1 (en) 1995-09-05 1996-09-05 Heat insulating composite profile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19532772 1995-09-05
DE19532772 1995-09-05
PCT/DE1996/001652 WO1997009504A1 (en) 1995-09-05 1996-09-05 Heat-insulated composite profiled section

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP99106735.6 Division-Into 1999-04-03

Publications (2)

Publication Number Publication Date
EP0848781A1 EP0848781A1 (en) 1998-06-24
EP0848781B1 true EP0848781B1 (en) 1999-11-24

Family

ID=7771330

Family Applications (2)

Application Number Title Priority Date Filing Date
EP96937182A Revoked EP0848781B1 (en) 1995-09-05 1996-09-05 Heat-insulated composite profiled section
EP99106735A Revoked EP0927808B1 (en) 1995-09-05 1996-09-05 Heat insulating composite profile

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP99106735A Revoked EP0927808B1 (en) 1995-09-05 1996-09-05 Heat insulating composite profile

Country Status (10)

Country Link
EP (2) EP0848781B1 (en)
JP (1) JPH11512158A (en)
AT (2) ATE186967T1 (en)
CA (1) CA2231102A1 (en)
CZ (1) CZ65998A3 (en)
DE (2) DE59603733D1 (en)
DK (1) DK0927808T3 (en)
NO (1) NO309782B1 (en)
PL (1) PL181284B1 (en)
WO (1) WO1997009504A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835439A1 (en) * 1998-08-05 2000-02-17 Pitscheider Ingenieurbuero Dr Hollow insulation strip
DE10033388A1 (en) 2000-07-08 2002-01-24 Wicona Bausysteme Gmbh Insulated composite profile, especially for windows, doors, facades and the like
DE102005032176A1 (en) * 2005-07-09 2007-01-11 Hydro Building Systems Gmbh Heat-insulated composite profile for frames of windows, doors and facades comprises one or more sealing elements extending in the plane of a frame in the central region of the frame
DE202007000004U1 (en) * 2007-02-27 2008-04-10 Henkenjohann, Johann window profile
GB2464558A (en) * 2008-10-25 2010-04-28 Bowater Building Products Ltd Window frame with thermal break
IE86524B1 (en) 2009-07-15 2015-04-08 Architectural & Metal Systems Ltd Insulated frame member
DE102012010900B4 (en) 2012-06-01 2023-07-27 Technoform Bautec Holding Gmbh Composite profile for window, door or facade elements and insulating bar for such a composite profile
WO2013189604A1 (en) 2012-06-20 2013-12-27 Technoform Bautec Holding Gmbh Insulating web for a compound profile for windows, doors or façade elements, and method for production of such an insulating web and compound profile having such an insulating web
DE202013104081U1 (en) * 2013-09-09 2014-12-10 Promat Gmbh Posts for a hinged door and fire-resistant glazing with such a post
KR101455572B1 (en) * 2014-04-02 2014-10-28 박종석 Insulation for fittings frame members
CN105888451A (en) * 2015-07-31 2016-08-24 苏州锟鹏肖氏建材有限公司 Bridge-cutoff aluminum alloy and heat preservation plate composite window frame
US11976511B2 (en) 2021-11-05 2024-05-07 Arconic Technologies Llc Thermal dampening devices for window systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH388594A (en) * 1960-11-07 1965-02-28 Rudolf Tschudin Hans Composite profile insulating frame
DE3202352A1 (en) * 1982-01-26 1983-08-11 W. Hartmann & Co (Gmbh & Co), 2000 Hamburg Composite section for window bars and window-bar cross formed therefrom
DE4238750C2 (en) * 1992-11-17 1995-09-14 Wicona Bausysteme Gmbh Insulated composite profile

Also Published As

Publication number Publication date
EP0848781A1 (en) 1998-06-24
ATE186967T1 (en) 1999-12-15
DE59603733D1 (en) 1999-12-30
NO309782B1 (en) 2001-03-26
WO1997009504A1 (en) 1997-03-13
PL325156A1 (en) 1998-07-06
EP0927808B1 (en) 2003-02-19
NO980935D0 (en) 1998-03-04
JPH11512158A (en) 1999-10-19
PL181284B1 (en) 2001-07-31
DK0927808T3 (en) 2003-05-19
ATE232936T1 (en) 2003-03-15
DE59610159D1 (en) 2003-03-27
EP0927808A3 (en) 2001-04-11
CZ65998A3 (en) 1998-07-15
CA2231102A1 (en) 1997-03-13
NO980935L (en) 1998-04-27
EP0927808A2 (en) 1999-07-07

Similar Documents

Publication Publication Date Title
EP0802300B1 (en) Framework made of fireproof metal profiles for windows, doors, facades or glazed roofs
EP0848781B1 (en) Heat-insulated composite profiled section
EP3140485B1 (en) Composite profile for doors, windows or façade elements
DE3402226C1 (en) Composite profile for a sash or window frame for windows or glazed doors
DE1683365C3 (en) Profile for window frames and sashes
EP0117308A2 (en) Plastic hollow profile reinforced by a metallic profile and frame
EP2586953B1 (en) Insulating bar and heat insulated profile
EP1002924A2 (en) Heat-insulating compound profile particularly for windows, doors, facades or the like
DE2516036C3 (en) Multi-part profile rod, insulated against heat transmission, for exterior wall constructions
DE3231876A1 (en) Plastic hollow section
AT398328B (en) COMPOSITE PROFILE BAR WITH TWO METAL BARS AND A INSULATING BAR CONNECTING THEM AND FRAME WITH LEGS THAT HAVE ONE COMPOSITE PROFILE BAR
DE29624629U1 (en) Composite profiled heat-insulating component - has insulating section forming parallel lengthwise chambers between metal sections with dimensions dependent on degree of insulation required
AT391515B (en) THERMAL INSULATED COMPOSITE PROFILE
DE2905191A1 (en) Hollow sectional window frame member - has longitudinal slots in walls of cavity to limit heat flow through member
DE10028802A1 (en) Profile for use in double glazing unit has cavities on cold and warm sides connected by narrow central section which reduces heat transfer by conduction
CH654897A5 (en) Composite profiled rod
EP1004739B1 (en) Insulating disposition for aluminium section members
DE3040608C2 (en) Decorative grille integrated in insulating glass with hollow grille bars made from extruded profile rods
DE2943090A1 (en) Heat insulated aluminium window or door frame profile - has holes in connecting stem interrupting heat flow between pieces
DE10353822A1 (en) Sill profile for sliding door or sliding window has three metal profile beams separated by insulating strips and has void in region where door edges overlap when door is closed
DE9400942U1 (en) Perforated brick
DE3809988C2 (en) Structural bar-shaped component
EP4102021B1 (en) Window or door cavity profile, system with such a cavity profile and frame made from same
DE2625911C2 (en) Thermally insulated frame made of metal for sliding windows or sliding doors
DE102011122924A1 (en) Insulating web for connecting profile elements of heat-insulated profile, particularly window or door, has hollow chamber profile section adjacent to profile bar section and tapered in angle of thirty five degree to fifty five degree

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19980714

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORSK HYDRO ASA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORSK HYDRO ASA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FI FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 186967

Country of ref document: AT

Date of ref document: 19991215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59603733

Country of ref document: DE

Date of ref document: 19991230

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000204

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SCHUECO INTERNATIONAL KG

Effective date: 20000804

NLR1 Nl: opposition has been filed with the epo

Opponent name: SCHUECO INTERNATIONAL KG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041122

Year of fee payment: 9

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050701

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050902

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050904

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050906

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20050914

Year of fee payment: 10

Ref country code: CH

Payment date: 20050914

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20050915

Year of fee payment: 10

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20050927

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20050927

NLR2 Nl: decision of opposition

Effective date: 20050927

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO