EP0848079B1 - Verfahren zur Herstellung einer Schutzbeschichtung mit grosser Wirksamkeit gegen Hochtemperatur-Verschleiss von Superlegierungen, Schutzbeschichtung und damit beschichtete Teile - Google Patents

Verfahren zur Herstellung einer Schutzbeschichtung mit grosser Wirksamkeit gegen Hochtemperatur-Verschleiss von Superlegierungen, Schutzbeschichtung und damit beschichtete Teile Download PDF

Info

Publication number
EP0848079B1
EP0848079B1 EP97402999A EP97402999A EP0848079B1 EP 0848079 B1 EP0848079 B1 EP 0848079B1 EP 97402999 A EP97402999 A EP 97402999A EP 97402999 A EP97402999 A EP 97402999A EP 0848079 B1 EP0848079 B1 EP 0848079B1
Authority
EP
European Patent Office
Prior art keywords
coating
deposit
powder
process according
protective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402999A
Other languages
English (en)
French (fr)
Other versions
EP0848079A1 (de
Inventor
Serge Alexandre Alperine
Jean-Paul Fournes
Jacques Louis Leger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0848079A1 publication Critical patent/EP0848079A1/de
Application granted granted Critical
Publication of EP0848079B1 publication Critical patent/EP0848079B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the invention relates to a method for producing coatings. protectors against high temperature oxidation and hot corrosion of superalloy parts, a coating protector obtained by such a process and parts made of superalloy protected by this coating. Application including the protection of hot parts of superalloy turbomachinery.
  • Turbine engine manufacturers both terrestrial that aeronautics, have faced for more than thirty years imperatives to increase the efficiency of turbomachines, reduction in their specific fuel consumption as well as pollutant emissions of COx, SOx, NOx and unburnt.
  • One of the ways to meet these imperatives is to get closer to the combustion stoichiometry fuel and therefore increase the gas temperature leaving the combustion chamber and impacting the first turbine stages. It is then necessary to return the turbine materials compatible with this elevation of flue gas temperature.
  • One solution is to develop the refractoriness of the materials used to increase the temperature limit for use and service life by creep and fatigue. This solution has been widely implemented work during the appearance of superalloys based on nickel and / or cobalt. It has experienced a technical evolution considerable by the transition from equiaxed superalloys to monocrystalline superalloys (gain of 80 to 100 ° C in creep).
  • the coatings belonging to the family of simple aluminides and their derivatives essentially consist of a nickel aluminide alloy NiAl comprising an atomic percentage of aluminum of between 40 and 55%.
  • NiAl nickel aluminide alloy
  • This type of alloy forms by oxidation at high temperature a protective layer of aluminum oxide limiting the interaction of the coating with the environment (oxygen, molten salts, SO 2 / SO 3 ).
  • These coatings can be deposited thermochemically by case hardening or in the vapor phase. They can also be obtained by depositing aluminizing paint followed by appropriate annealing.
  • the main advantage of these coatings lies in their simplicity of implementation, low production costs, the possibility of homogeneously coating parts of complex shape.
  • a good way to significantly increase lifespan of these coatings is to modify the simple aluminide NiAl by different elements such as chromium and / or certain precious metals from the platinum mine.
  • the operation consists then to make a pre-deposit on the superalloy part or modifier metals, followed by aluminization.
  • a specific heat treatment is carried out between the so-called pre-deposition step of the modifier metal and the actual aluminization step.
  • chromium as a modifier metal is described for example in French patent 2,559,508 filed by SNECMA.
  • chromium can be applied by way thermochemical.
  • the role of chromium is then essentially limit the acidity or basicity of molten salts by so-called hot corrosion conditions, by dissolution of cations playing the acid-base role of buffer in salt molten.
  • platinum as a modifier metal is described in particular by patent FR 2 018 097.
  • platinum can be deposited electrolytically on the workpiece superalloy. This precious metal returns to proportions important in solid solution in the ß-NiAl phase of nickel aluminide. It gives both better adhesion to the protective alumina layer (oxidation cyclic) and good environmental resistance by presence of molten salts (hot corrosion).
  • alloy coatings are not obtained using processes involving high diffusion temperature between the superalloy substrate and the coating under development.
  • an alloy is already deposited on the substrate made of a composition suitable for functionality sought such as resistance to oxidation and hot corrosion.
  • the most commonly used alloy coatings for high temperature protection applications for superalloy substrates are type coatings MCrAlY.
  • M represents the base alloy which may be cobalt, nickel, iron, or a combination of these three metals.
  • Chromium is present between 10 and 40% by mass and is mainly used to increase the resistance of coatings to hot corrosion.
  • Aluminum is present in contents between 2 and 25 % by mass. Its major role is the hot forming of a protective layer of alumina which it is desired to be at slow growth, as chemically stable as possible to resist hot corrosion and extremely adherent so as to withstand the stresses of expansion differential during thermal cycling at temperature high.
  • Yttrium Y is present at levels between a few tens of ppm and a few percent by mass. His role is twofold:
  • Certain other elements such as hafnium, zirconium, cerium, lanthanides and generally most rare earths can play a role very similar to that of yttrium on the adhesion of protective alumina layers.
  • the contribution of yttrium and related elements sometimes called active elements, to the effectiveness of protective coatings of superalloys is limited to only high temperature oxidation. No type effect active element could not be highlighted in the case of hot corrosion of coated superalloys.
  • a first solution consists of the coatings of Aluminized MCrAlY.
  • Aluminization in pack or vapor phase on a MCrAlY coating deposited by one of the techniques mentioned above has the advantage of obtaining a external composition of the coating enriched with aluminum, this which extends the life of the coating, in particular by high temperature oxidation condition.
  • a second solution is made up of electrophoretic MCrAlY coatings.
  • the process for producing this type of coating is described, for example, in patent FR 2,529,991 filed by SNECMA.
  • the method consists in depositing on a substrate made of nickel-based superalloy a coating composed of agglomerated MCrAlY alloy powders, by a suitable electrophoresis technique.
  • This porous deposit having no mechanical strength, it is necessary to fill the porosity by aluminization in the vapor phase.
  • the aluminization plays the role of consolidation and filling of the pores left between the agglomerated MCrAlY powder grains.
  • the final structure is very similar to that of a traditional aluminized MCrAlY coating.
  • the slightly directional electrophoretic technique allows evenly form shaped parts complex than turbine distributor vane doublets. This technique is much less expensive than a coating MCrAlY deposited by plasma then aluminized for a quality of equivalent protection. However the coating obtained has a limited performance gain compared to a MCrAlY coating alone.
  • This coating has the major drawback of not comprising, by construction, platinum only in its external part. In done, it is the overlay of a coating of MCrAlY traditional and an aluminide coating modified by the platinum.
  • the beneficial effects of MCrAlY coatings and platinum modified aluminide coatings are juxtaposed but not added. The synergy of effects does therefore cannot be obtained.
  • the total thickness of the coating is at least equal to 100 ⁇ m, which can pose problems with added mass when the coating is performed on rotating parts.
  • such coating is, of a very high cost price (at least equal to the sum of the prices of a traditional MCrAlY coating and a platinum modified aluminide).
  • the problem coating of complex shaped parts always arises acutely.
  • the invention consists in carrying out on the surface of a superalloy a first deposit of an alloy powder agglomerated containing at least chromium, aluminum and a active element, and to fill the open porosity of the deposit of powder by a second electrolytic deposit of precious metal from the platinum mine.
  • Appropriate heat treatment is then performed to allow inter-broadcast between the powder-based coating and electrolytic coating and obtain a coating comprising over its entire thickness chromium, an active element such as Yttrium, and a metal precious from the platinum mine.
  • thermochemical aluminization treatment can be done in a final step to bring a additional aluminum in the final coating and complete the filling of the residual gaps between grains of powder deposited.
  • the invention consists in depositing, at the surface of a superalloy, an agglomerated alloy powder containing at least chromium, aluminum, an element active and at least one precious metal from the platinum mine and to fill the open porosity of the agglomerated powder deposit by an aluminization treatment.
  • the deposition of the alloy powder can be carried out by a electrophoretic technique or by painting technique with a thermodegradable or volatile binder.
  • the active element is chosen from the group consisting of Yttrium, Yttric or lanthanidic rare earths such that Zr, Hf, La, Ce.
  • the element of the platinum mine is chosen from the group consisting of platinum, palladium, Rhodium, Ruthenium, Osmium, Iridium and combinations of these metals.
  • the coating is deposited on a sample 10 or a part nickel or cobalt-based superalloy, equiaxial, with directed or monocrystalline solidification, taking the place of substrate, such as for example and without limitation the superalloys known under the names: IN100, DS200, DS186, MAR M 247, DS247, MAR M 509, René 77, René 125, HS31, X40, AM1, AM3.
  • composition of these powders can occur without departing from the scope of this invention, such as by example the replacement of all or part of the active element Y by one or more other active elements taken in the following list: Zr, Hf, La, Ce and more generally the yttrique or lanthanidic rare earths.
  • the particle size of the powder can be between 2 and 100 micrometers, preferably between 4 and 15 ⁇ m. It is particularly advantageous to use a particle size of fine powder, because it will on the one hand limit the final surface roughness of the coating and on the other hand limit the size of the residual porosities after the electrophoretic deposition. The risk of persistence of porosity in the coating after its final stage of development is finds decreased by the same amount.
  • This first deposit can be made using for example a painting technique with thermodegradable binder or volatile, or advantageously an electrophoretic technique.
  • the electrophoretic technique consists in carrying out a porous skeleton of metallic powders by immersing the parts to be coated in an insulating solution containing suspension of the powders to be deposited.
  • the homogeneity of the suspension is ensured by agitation, which avoids sedimentation of particles at the bottom of the tank electrophoresis.
  • the parts to be coated are positioned and cathode polarized.
  • the anode consists of an electrode shaped arranged opposite and / or around the part to be coated, in order to obtain a homogeneous distribution of the electric field in the vicinity of the part, and thus the thicknesses of the deposit regular.
  • the metallic particles are charged electrically in the electrostratic field and migrate quickly towards the surface of the room where they agglomerate by the Coulomb attraction. Parties not to be coated are protected by masking assemblies made in materials chemically compatible with the bath electrophoresis. Keeping parts in the tank and electrical connections of the parts are also ensured by the assembly comprising the mask (s).
  • the difference of potential applied between anode and cathode, ensuring the migration of metallic particles, is between 200 and 500 V.
  • the duration of deposit is between 1 second and 1 minute (typically less than 10 seconds) depending on the particle size of the powders to be deposited, and the thickness of the deposit wanted.
  • the deposited coating is not dense, but easily manipulated as shown in FIG. 1.
  • the coating thicknesses can be between 20 and 200 ⁇ m at this stage, preferably between 30 and 60 ⁇ m. Depending on the density and particle size of the powder used, this corresponds to a mass of deposited alloy of between 10 and 100 mg / cm 2 , preferably between 20 and 60 mg / cm 2 .
  • the second step 2 of the coating production process is a step of electroplating a metal alloy containing at least one platinum mine metal.
  • this platinum mine alloy is chosen from pure platinum or a platinum-rhodium alloy, or another palladium-nickel alloy.
  • Sample or piece having previously undergone step 1 of the process is immersed in an electrolytic metal or alloy deposition bath selected.
  • An anode system and / or current thieves, is arranged around the sample or the part to be coated with so that the distribution of current densities is homogeneous at all points of the room, this using the know-how of a person skilled in the art of electroplating.
  • the cathodic current density to be applied is chosen, in depending on the operating parameters of the bath used.
  • This current density is sufficiently low, in order to allow the penetration of the electrolytic deposit in all the gaps left between the grains of powder deposited during step 1.
  • the duration of the electrolysis is adjusted by so that the mass of precious metal deposited is between 5 and 70%, preferably between 20 and 50% of the total mass of deposits made during steps 1 and 2.
  • the coating 12 obtained is composed of the juxtaposition of the MCrAlY powder and the alloy metallic containing at least one platinum mine metal.
  • the annealing temperature can be between 750 and 1250 ° C and its duration between 15 minutes and 48 hours (preferably between 2 and 4 p.m.). In the event that none further processing is not planned, it is necessary that the annealing completely closes the residual porosity of the coating and that the interdiffusion between the powder grains of MCrAlY and the deposition of the electrodeposited metal alloy be complete. It is then necessary to apply the highest annealing temperatures and / or durations of anneals the longest. In the event that a treatment later described in step 4 below is planned, the densification of the coating and the interdiffusion between grains of MCrAlY powder and deposition of the alloy metallic electrodeposited is partly ensured by step 4. The temperatures and / or the annealing times can then to be weaker.
  • Step 4 of the method according to the invention is optional.
  • She consists of aluminizing the coating according to conventional methods known to those skilled in the art. To this end, it is possible to use vapor phase aluminization or aluminization by applying paint aluminizing. It is also possible to apply checkout aluminization techniques.
  • This fourth step enriches the aluminum outer surface of the coating, thereby extending the life lifetime of this coating under high oxidation conditions temperature. This fourth step also makes it possible to complete the filling of the interstices left between the grains of powder deposited during the first stage.
  • the first deposit made in step 1 is made from an MCrAlY type alloy powder additionally containing one or more metals from the mine of platinum.
  • the addition of one or more metals from the platinum mine can be done in different ways. It is possible to directly produce powders whose composition corresponds to the formula MCrAlY + MP where MP is a metal of the platinum mine or an alloy thereof. The techniques of manufacture of such powders are those corresponding to the state of the art in powder metallurgy. It is exhaustively, casting the alloy followed by a atomization step by arc or by rotating electrode. he it is also possible to use MCrALY powders conventional, having undergone a surface treatment subsequent so as to deposit on the periphery of the grains a alloy containing the metal of the MP platinum mine.
  • This subsequent surface treatment can be for example a autocatalytic chemical deposit or not, a deposit electrolytic, an organometallic PVD or CVD type deposit.
  • MCrALY + MP type powders are further characterized by the metal content of the MP platinum mine.
  • the metal of the platinum MP mine can represent between 2 and 60% by mass (preferably between 20 and 50%) relative to the total mass of the powder.
  • This first deposit is then directly followed by a deposit coating aluminization according to step 4 of process, steps 2 and 3 being omitted.
  • steps 2 and 3 being omitted.
  • aluminization depot only aluminization techniques in vapor phase or by application of aluminizing paint can be used. Aluminization techniques in body are not possible because the friction of the powders aluminization cement on a powdery deposit directly from step 1 and not yet consolidated risks destroying the porous layer.
  • the coating is carried out on a sample in the form of plates of dimensions 20 ⁇ 30 ⁇ 2 mm 3 made of DS200 + Hf alloy.
  • This sample underwent a first electrophoretic deposition from a powder of CoNiCrAlY alloy, the composition of which is given in the table represented in FIG. 2.
  • the particle size of the powder is centered on approximately 15 ⁇ m.
  • the quantity of powder deposited corresponds to a mass gain of 15 mg / cm 2 .
  • This sample then underwent a second electroplating of Pd-20% mass Ni alloy.
  • the current density used for this second deposit is 1 A / dm 2 for a duration of approximately 45 minutes.
  • the amount of palladium alloy deposited in this way is approximately 8 mg / cm 2 (or approximately 35% of the metallic mass deposited in total during these first two stages).
  • a two-hour secondary vacuum diffusion annealing at 850 ° C was carried out.
  • aluminization in the vapor phase using a cement alloy of Cr-30% by mass Al, and an activator of the NH 4 F type was carried out at 1100 ° C. for 10 h.
  • the coating obtained is dense, single-phase with a total thickness of approximately 80 ⁇ m. It is essentially composed of a ß (Ni, Co) Al phase containing chromium, palladium and yttrium in solid solution.
  • Figures 3 and 4 illustrate the distribution of the main elements in the thickness of the coating.
  • the atomic percentages were determined by electron microprobe analysis. Yttrium cannot be validly detected by this type of measurement, but is detected with an electron microscope at higher magnification.
  • Figures 3 and 4 show that the composition of the coating varies little in its thickness and in particular that the metal of the platinum mine is present in a significant amount throughout the thickness of the coating.
  • Example 1 The procedure is as in Example 1 except during the electrolytic deposition step where the amount of palladium alloy deposited corresponds to 12 mg / cm 2 by increasing the duration of the electrolytic deposition in proportion.
  • the mass of the palladium alloy then corresponds to approximately 44% of the metal mass deposited in total during the two deposition operations.
  • the structure of the coating obtained is identical to that of Example 1, but the amount of palladium is greater (15 atomic% on average).

Claims (14)

  1. Verfahren zur Herstellung einer Schutzbeschichtung gegen Oxidation bei hohen Temperaturen und gegen Hitzekorrosion an Bauteilen aus Superlegierungen,
       dadurch gekennzeichnet, daß es darin besteht:
    in einem ersten Verfahrensschritt auf dem zu beschichtenden Bauteil einen ersten Überzug einer feinpulverigen Legierung, die mindestens Chrom, Aluminium und ein aktives Element enthält und eine offene Restporosität aufweist, aufzubringen,
    in einem zweiten Verfahrensschritt die offenen Restporen des ersten feinpulverigen Überzugs mit einem zweiten, elektrolytischen, metallischen Überzug, der mindestens ein Platin(gruppen)erz-Metall enthält, geschlossen werden,
    in einem dritten Verfahrensschritt eine Wärmebehandlung durchzuführen, durch die das Ineinander-Diffundieren des ersten feinpulverigen Überzugs und des zweiten, elektrolytischen Überzugs gewährleistet wird.
  2. Verfahren zur Herstellung einer Schutzbeschichtung nach Anspruch 1, dadurch gekennzeichnet, daß es ferner einen vierten Verfahrensschritt beinhaltet, der darin besteht, ein Aluminieren des in dem dritten Verfahrensschritt erzielten Überzugs dergestalt durchzuführen, daß dieser Überzug mit Aluminium angereichert wird und das Schließen seiner Poren vollendet wird.
  3. Verfahren zur Herstellung einer Schutzbeschichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Platingruppen(erz)-Metall, das im zweiten Verfahrensschritt aufgebracht wird, in einem Masseverhältnis von 5 bis 70 % zur Gesamtmasse der in den beiden ersten Verfahrensschritten hergestellten Überzüge steht.
  4. Verfahren zur Herstellung einer Schutzbeschichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Wärmebehandlung des dritten Verfahrensschritts bei einer Temperatur von 750 bis 1250 °C und über eine Zeitdauer von 15 Minuten bis 48 Stunden durchgeführt wird.
  5. Verfahren zur Herstellung einer Schutzbeschichtung gegen Oxidation bei hohen Temperaturen und gegen Hitzekorrosion an Bauteilen aus Superlegierungen, dadurch gekennzeichnet, daß es darin besteht:
    in einem ersten Verfahrensschritt auf dem zu beschichtenden Bauteil einen ersten Überzug einer feinpulverigen Legierung, die mindestens Chrom, Aluminium und ein aktives Element sowie mindestens ein Platingruppen(erz)-Metall enthält und eine offene Restporosität aufweist, aufzubringen,
    in einem zweiten Verfahrensschritt ein Aluminieren des in dem ersten Verfahrensschritt erzielten Überzugs dergestalt durchzuführen, daß dieser Überzug mit Aluminium angereichert wird und die offenen Restporen des ersten feinpulverigen Überzugs geschlossen werden.
  6. Verfahren zur Herstellung einer Schutzbeschichtung nach Anspruch 5, dadurch gekennzeichnet, daß das Platingruppen(erz)-Metall in einem Masseverhältnis von 2 bis 60 % zur Gesamtmasse des Pulvers steht.
  7. Verfahren zur Herstellung einer Schutzbeschichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Überzug aus einer feinpulverigen Legierung durch eine Elektrophorese-Technik hergestellt wird.
  8. Verfahren zur Herstellung einer Schutzbeschichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Überzug aus einer feinpulverigen Legierung durch eine Anstrich-Technik mit einem durch Wärme abbaubaren oder flüchtigen Binder hergestellt wird.
  9. Verfahren zur Herstellung einer Schutzbeschichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das aktive Element der feinpulverigen Legierung aus einer Gruppe gewählt wird, die Yttrium, seltene Yttererden und seltene Lanthaniderden umfaßt.
  10. Verfahren zur Herstellung einer Schutzbeschichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Platingruppen(erz)-Metall aus einer Gruppe gewählt wird, die Platin, Palladium, Rhodium, Ruthenium, Osmium, Iridium sowie Verbindungen dieser Metalle umfaßt.
  11. Schutzbeschichtung, die mit dem Herstellungsverfahren nach einem der Ansprüche 1 bis 4 hergestellt ist, dadurch gekennzeichnet, daß sie mindestens die Elemente Cr, Al, ein aktives Element und ein Platingruppen(erz)-Metall enthält, wobei diese Elemente alle in der gesamten Dicke der Beschichtung zusammen vorhanden sind.
  12. Schutzbeschichtung, die mit dem Herstellungsverfahren nach einem der Ansprüche 5 oder 6 hergestellt ist, dadurch gekennzeichnet, daß sie mindestens die Elemente Cr, Al, ein aktives Element und ein Platingruppen(erz)-Metall enthält, wobei diese Elemente alle in der gesamten Dicke der Beschichtung zusammen vorhanden sind.
  13. Schutzbeschichtung nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß sie als Wärmesperr-Unterschicht für ein Bauteil aus Superlegierung verwendet wird.
  14. Bauteil aus Superlegierung, dadurch gekennzeichnet, daß es eine Schutzbeschichtung nach einem der Ansprüche 11 oder 12 aufweist.
EP97402999A 1996-12-12 1997-12-11 Verfahren zur Herstellung einer Schutzbeschichtung mit grosser Wirksamkeit gegen Hochtemperatur-Verschleiss von Superlegierungen, Schutzbeschichtung und damit beschichtete Teile Expired - Lifetime EP0848079B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615257A FR2757181B1 (fr) 1996-12-12 1996-12-12 Procede de realisation d'un revetement protecteur a haute efficacite contre la corrosion a haute temperature pour superalliages, revetement protecteur obtenu par ce procede et pieces protegees par ce revetement
FR9615257 1996-12-12

Publications (2)

Publication Number Publication Date
EP0848079A1 EP0848079A1 (de) 1998-06-17
EP0848079B1 true EP0848079B1 (de) 2000-03-15

Family

ID=9498582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402999A Expired - Lifetime EP0848079B1 (de) 1996-12-12 1997-12-11 Verfahren zur Herstellung einer Schutzbeschichtung mit grosser Wirksamkeit gegen Hochtemperatur-Verschleiss von Superlegierungen, Schutzbeschichtung und damit beschichtete Teile

Country Status (6)

Country Link
US (1) US6183888B1 (de)
EP (1) EP0848079B1 (de)
JP (1) JP3431474B2 (de)
CA (1) CA2228768C (de)
DE (1) DE69701442T2 (de)
FR (1) FR2757181B1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2745590B1 (fr) * 1996-02-29 1998-05-15 Snecma Revetement de barriere thermique a sous-couche amelioree et pieces revetues par une telle barriere thermique
DE19807636C1 (de) * 1998-02-23 1999-11-18 Mtu Muenchen Gmbh Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht
FR2787472B1 (fr) * 1998-12-16 2001-03-09 Onera (Off Nat Aerospatiale) Procede pour produire une poudre d'alliage metallique de type mcraly et revetements obtenus avec cette poudre
EP1065026B1 (de) * 1999-06-03 2004-04-28 ALSTOM Technology Ltd Verfahren zur Herstellung oder zur Reparatur von Kühlkanälen in einstristallinen Komponenten von Gasturbinen
SE516045C2 (sv) * 2000-03-20 2001-11-12 Westinghouse Atom Ab Komponent innefattande en zirkoniumlegering, förfarande för att tillverka nämnda komponent samt en nukleär anläggning innefattande nämnda komponent
FR2827311B1 (fr) * 2001-07-12 2003-09-19 Snecma Moteurs Procede de reparation locale de pieces revetues d'une barriere thermique
US6838190B2 (en) * 2001-12-20 2005-01-04 General Electric Company Article with intermediate layer and protective layer, and its fabrication
US7371467B2 (en) * 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
EP1428982B1 (de) * 2002-12-06 2009-02-04 ALSTOM Technology Ltd Verfahren zur selektiven Abscheidung einer MCrAlY-Beschichtung
US7297247B2 (en) * 2003-05-06 2007-11-20 Applied Materials, Inc. Electroformed sputtering target
US20050028248A1 (en) * 2003-08-08 2005-02-10 Yan Suen Ching Multi-axially stretchable fabric cap
DE10355234A1 (de) * 2003-11-26 2005-06-30 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer korrosionsbeständigen und oxidationsbeständigen Beschichtung sowie Bauteil mit einer solchen Beschichtung
US7604726B2 (en) * 2004-01-07 2009-10-20 Honeywell International Inc. Platinum aluminide coating and method thereof
US20070104886A1 (en) * 2005-11-10 2007-05-10 General Electric Company Electrostatic spray for coating aircraft engine components
TWI291713B (en) * 2004-04-13 2007-12-21 Applied Materials Inc Process chamber component having electroplated yttrium containing coating
US7645485B2 (en) * 2004-04-30 2010-01-12 Honeywell International Inc. Chromiumm diffusion coatings
FR2870858B1 (fr) * 2004-05-28 2007-04-06 Snecma Moteurs Sa Procede de fabrication ou de reparation d'un revetement sur un substrat metallique
US7229701B2 (en) * 2004-08-26 2007-06-12 Honeywell International, Inc. Chromium and active elements modified platinum aluminide coatings
NL1028629C2 (nl) * 2005-03-24 2006-10-02 Netherlands Inst For Metals Re Bekledingslaag, substraat voorzien van een bekledingslaag en werkwijze voor het aanbrengen van een corrosiewerende bekledingslaag.
US20070138019A1 (en) * 2005-12-21 2007-06-21 United Technologies Corporation Platinum modified NiCoCrAlY bondcoat for thermal barrier coating
JP2009522443A (ja) 2005-12-28 2009-06-11 アンサルド エネルジア エス.ピー.エー. 保護コーティングを製造するための合金組成物、その使用、適用方法、及び該組成物でコーティングされた超合金物品
EP1989399B1 (de) * 2006-02-24 2012-02-08 MT Coatings, LLC Aufgeraute beschichtung für turbomotorkomponenten
US20080080978A1 (en) * 2006-10-03 2008-04-03 Robert George Zimmerman Coated turbine engine components and methods for making the same
US7767072B2 (en) * 2006-12-15 2010-08-03 Honeywell International Inc. Method of forming yttrium-modified platinum aluminide diffusion coating
US8124246B2 (en) * 2008-11-19 2012-02-28 Honeywell International Inc. Coated components and methods of fabricating coated components and coated turbine disks
US9222163B2 (en) 2009-05-26 2015-12-29 Siemens Aktiengesellschaft Layered coating system with a MCrAlX layer and a chromium rich layer and a method to produce it
KR101274363B1 (ko) * 2009-05-27 2013-06-13 노벨러스 시스템즈, 인코포레이티드 얇은 시드층 상의 도금을 위한 펄스 시퀀스
US9385035B2 (en) 2010-05-24 2016-07-05 Novellus Systems, Inc. Current ramping and current pulsing entry of substrates for electroplating
US8367160B2 (en) 2010-11-05 2013-02-05 United Technologies Corporation Coating method for reactive metal
KR102633691B1 (ko) 2017-04-21 2024-02-05 플란제 콤포지트 마테리얼스 게엠베하 초합금 스퍼터링 타겟

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1796175C2 (de) * 1968-09-14 1974-05-30 Deutsche Edelstahlwerke Gmbh, 4150 Krefeld Hochtemperaturkorrosions- und zunderbeständige Diffusionsschutzschicht auf Gegenständen aus hochwarmfesten Legierungen auf Nickel- und/oder Kobaltbasis
BE757636A (fr) * 1969-11-03 1971-04-01 Deutsche Edelstahlwerke Ag Procede de protection en surface pour objets metalliques
US3874901A (en) * 1973-04-23 1975-04-01 Gen Electric Coating system for superalloys
US4145481A (en) * 1977-08-03 1979-03-20 Howmet Turbine Components Corporation Process for producing elevated temperature corrosion resistant metal articles
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
US4123595A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article
JPS5582760A (en) * 1978-12-15 1980-06-21 Hitachi Ltd Coating method for platinum group metal onto heat resistant alloy
FR2529911B1 (fr) * 1982-07-08 1986-05-30 Snecma Procede et dispositif pour la realisation de revetements protecteurs metalliques
FR2559508B1 (fr) * 1984-02-15 1992-12-24 Snecma Procede de protection des alliages resistant a chaud notamment a base de nickel
US4714624A (en) * 1986-02-21 1987-12-22 Textron/Avco Corp. High temperature oxidation/corrosion resistant coatings
FR2638174B1 (fr) * 1988-10-26 1991-01-18 Onera (Off Nat Aerospatiale) Procede de protection de surface de pieces metalliques contre la corrosion a temperature elevee, et piece traitee par ce procede
DE3918380A1 (de) * 1989-06-06 1990-12-20 Starck Hermann C Fa Hochtemperatur-verbund-werkstoff, verfahren zu seiner herstellung sowie dessen verwendung
GB9218858D0 (en) * 1992-09-05 1992-10-21 Rolls Royce Plc High temperature corrosion resistant composite coatings
GB9302978D0 (en) * 1993-02-15 1993-03-31 Secr Defence Diffusion barrier layers
US5495386A (en) * 1993-08-03 1996-02-27 Avx Corporation Electrical components, such as capacitors, and methods for their manufacture
US5427866A (en) * 1994-03-28 1995-06-27 General Electric Company Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems
GB9426257D0 (en) * 1994-12-24 1995-03-01 Rolls Royce Plc Thermal barrier coating for a superalloy article and method of application

Also Published As

Publication number Publication date
FR2757181B1 (fr) 1999-02-12
US6183888B1 (en) 2001-02-06
CA2228768C (fr) 2005-02-15
DE69701442T2 (de) 2000-09-07
JP3431474B2 (ja) 2003-07-28
JPH10176283A (ja) 1998-06-30
DE69701442D1 (de) 2000-04-20
FR2757181A1 (fr) 1998-06-19
CA2228768A1 (fr) 1998-06-12
EP0848079A1 (de) 1998-06-17

Similar Documents

Publication Publication Date Title
EP0848079B1 (de) Verfahren zur Herstellung einer Schutzbeschichtung mit grosser Wirksamkeit gegen Hochtemperatur-Verschleiss von Superlegierungen, Schutzbeschichtung und damit beschichtete Teile
EP0792948B1 (de) Wärmehemmende Beschichtung mit verbesserter Unterschicht und Gegenstände mit dieser Wärmehemmende Beschichtung
US7157151B2 (en) Corrosion-resistant layered coatings
US6372299B1 (en) Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings
CZ20004537A3 (cs) Vícevrstvový vazební povlak pro povlakový systém tepelné ochranné bariéry a způsob jeho vytvoření
JPH06220607A (ja) 高温耐腐食性複合被覆
EP2459780B1 (de) Stück aus einem substrat mit einer auf der basis einer ceriumoxid keramischen beschichtung
JP2004285423A (ja) 耐食性および耐熱性に優れる熱遮蔽皮膜被覆材並びにその製造方法
EP3538500A1 (de) Mit einer wärmedämmung beschichtetes turbomaschinenteil und verfahren zur herstellung davon
EP0990716B1 (de) Wärmedämmschicht
WO2017085400A1 (fr) Pièce de moteur d'aéronef comportant un revêtement de protection contre l'érosion et procédé de fabrication d'une telle pièce
CA2769198C (fr) Methode de fabrication d'une barriere thermique
FR2718464A1 (fr) Article en super alliage ayant un revêtement de barrière thermique et sa fabrication.
EP1141442A1 (de) Verfahren zur herstellung eines metallegierungspulvers vom typ mcraly und nach diesem verfahren erhaltene überzüge
FR2813318A1 (fr) Formation d'un revetement aluminiure incorporant un element reactif, sur un substrat metallique
WO2012146864A1 (fr) Pièce comportant un revêtement sur un substrat métallique en superalliaae, le revêtement comprenant une sous-couche métallique
WO2015007983A2 (fr) Procede de fabrication d'une sous-couche metallique a base de platine sur un substrat metallique
CA2508821C (fr) Procede de fabrication ou de reparation d'un revetement sur un substrat metallique
WO2019077271A1 (fr) Piece de turbine en superalliage comprenant du rhenium et procede de fabrication associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19990322

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD FOR DEPOSITING A PROTECTIVE COATING WITH GREAT EFFICIENCY AGAINST CORROSION AT HIGH TEMPERATURES FOR SUPERALLOYS, PROTECTIVE COATING AND PIECES PROTECTED WITH SUCH A COATING

RTI1 Title (correction)

Free format text: METHOD FOR DEPOSITING A PROTECTIVE COATING WITH GREAT EFFICIENCY AGAINST CORROSION AT HIGH TEMPERATURES FOR SUPERALLOYS, PROTECTIVE COATING AND PIECES PROTECTED WITH SUCH A COATING

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69701442

Country of ref document: DE

Date of ref document: 20000420

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151125

Year of fee payment: 19

Ref country code: DE

Payment date: 20151119

Year of fee payment: 19

Ref country code: IT

Payment date: 20151120

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151124

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161205

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69701442

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161211

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717