EP0847678B1 - Panel-form microphones - Google Patents

Panel-form microphones Download PDF

Info

Publication number
EP0847678B1
EP0847678B1 EP96929397A EP96929397A EP0847678B1 EP 0847678 B1 EP0847678 B1 EP 0847678B1 EP 96929397 A EP96929397 A EP 96929397A EP 96929397 A EP96929397 A EP 96929397A EP 0847678 B1 EP0847678 B1 EP 0847678B1
Authority
EP
European Patent Office
Prior art keywords
panel
transducer
form microphone
sites
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96929397A
Other languages
German (de)
French (fr)
Other versions
EP0847678A1 (en
Inventor
Henry Azima
Martin Colloms
Neil Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NVF Tech Ltd
Original Assignee
New Transducers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9517918.0A external-priority patent/GB9517918D0/en
Priority claimed from GBGB9522281.6A external-priority patent/GB9522281D0/en
Priority claimed from GBGB9606836.6A external-priority patent/GB9606836D0/en
Application filed by New Transducers Ltd filed Critical New Transducers Ltd
Publication of EP0847678A1 publication Critical patent/EP0847678A1/en
Application granted granted Critical
Publication of EP0847678B1 publication Critical patent/EP0847678B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/02Postcards; Greeting, menu, business or like cards; Letter cards or letter-sheets
    • B42D15/022Postcards; Greeting, menu, business or like cards; Letter cards or letter-sheets combined with permanently fastened sound-producing or light-emitting means or carrying sound records

Definitions

  • the invention relates to microphones and more particularly to microphones comprising panel-form acoustic elements.
  • Embodiments of the present invention use members of nature, structure and configuration achievable generally and/or specifically by implementing teachings of our co-pending PCT publication No. WO97/09842 of even date herewith.
  • Such members thus have capability to sustain and propagate input vibrational energy by bending waves in operative area(s) extending transversely of thickness often but not necessarily to edges of the member(s); are configured with or without anisotropy of bending stiffness to have resonant mode vibration components distributed over said area(s) beneficially for acoustic coupling with ambient air; and have predetermined preferential locations or sites within said area for transducer means, particularly operationally active or moving part(s) thereof effective in relation to acoustic vibrational activity in said area(s) and signals, usually electrical, corresponding to acoustic content of such vibrational activity.
  • This invention is particularly concerned with active acoustic devices in the form of microphones.
  • the invention is a panel-form microphone characterised by a stiff lightweight member having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having a transducer mounted wholly and exclusively on said member at one of said locations or sites to produce a signal in response to resonance of the member due to incident acoustic energy.
  • the member may be mounted in a surrounding frame by means of an interposed resilient support. Two or more of the said transducers may be positioned at the locations or sites on the member.
  • the member may have a cellular core sandwiched between skins.
  • the or each transducer may be a piezo-electric device.
  • a panel-form loudspeaker (81) of the kind described and claimed in our co-pending International publication No. WO97/09842 of even date herewith comprising a rectangular frame (1) carrying a resilient suspension (3) round its inner periphery which supports a distributed mode sound radiating panel (2).
  • a transducer (9) as described in detail with reference to our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858 of even date herewith, is mounted wholly and exclusively on or in the panel (2) at a predetermined location defined by dimensions x and y , the position of which location is calculated as described in our co-pending International publication No.
  • the transducer (9) is driven by a signal amplifier (10), e.g. an audio amplifier, connected to the transducer by conductors (28).
  • a signal amplifier (10) e.g. an audio amplifier
  • Amplifier loading and power requirements can be entirely normal, similar to conventional cone type speakers, sensitivity being of the order of 86 - 88dB/watt under room loaded conditions.
  • Amplifier load impedance is largely resistive at 6 ohms, power handling 20-80 watts.
  • the panel core and/or skins are of metal, they may be made to act as a heat sink for the transducer to remove heat from the motor coil of the transducer and thus improve power handling.
  • Figures 2 a and 2 b are partial typical cross-sections through the loudspeaker (81) of Figure 1.
  • Figure 2 a shows that the frame (1), surround (3) and panel (2) are connected together by respective adhesive-bonded joints (20).
  • Suitable materials for the frame include lightweight framing, e.g. picture framing of extruded metal e.g. aluminium alloy or plastics.
  • Suitable surround materials include resilient materials such as foam rubber and foam plastics.
  • Suitable adhesives for the joints (20) include epoxy, acrylic and cyano-acrylate etc. adhesives.
  • Figure 2 b illustrates, to an enlarged scale, that the panel (2) is a rigid lightweight panel having a core (22) e.g. of a rigid plastics foam (97) e.g. cross linked polyvinylchloride or a cellular matrix (98) i.e. a honeycomb matrix of metal foil, plastics or the like, with the cells extending transversely to the plane of the panel, and enclosed by opposed skins (21) e.g. of paper, card, plastics or metal foil or sheet. Where the skins are of plastics, they may be reinforced with fibres e.g. of carbon, glass, Kevlar or the like in a manner known per se to increase their modulus.
  • a core e.g. of a rigid plastics foam (97) e.g. cross linked polyvinylchloride or a cellular matrix (98) i.e. a honeycomb matrix of metal foil, plastics or the like, with the cells extending transversely to the plane of the panel, and enclosed
  • Envisaged skin layer materials and reinforcements thus include carbon, glass, Kevlar (RTM), Nomex (RTM) i.e. aramid etc. fibres in various lays and weaves, as well as paper, bonded paper laminates, melamine, and various synthetic plastics films of high modulus, such as Mylar (RTM), Kaptan (RTM), polycarbonate, phenolic, polyester or related plastics, and fibre reinforced plastics, etc. and metal sheet or foil.
  • Investigation of the Vectra grade of liquid crystal polymer thermoplastics shows that they may be useful for the injection moulding of ultra thin skins or shells of smaller size, say up to around 30cm diameter. This material self forms an orientated crystal structure in the direction of injection, a preferred orientation for the good propagation of treble energy from the driving point to the panel perimeter.
  • thermoplastics allow for the mould tooling to carry location and registration features such as grooves or rings for the accurate location of transducer parts e.g. the motor coil, and the magnet suspension. Additional with some weaker core materials it is calculated that it would be advantageous to increase the skin thickness locally e.g. in an area or annulus up to 150% of the transducer diameter, to reinforce that area and beneficially couple vibration energy into the panel. High frequency response will be improved with the softer foam materials by this means.
  • Envisaged core layer materials include fabricated honeycombs or corrugations of aluminium alloy sheet or foil, or Kevlar (RTM), Nomex (RTM), plain or bonded papers, and various synthetic plastics films, as well as expanded or foamed plastics or pulp materials, even aerogel metals if of suitably low density.
  • Some suitable core layer materials effectively exhibit usable self-skinning in their manufacture and/or otherwise have enough inherent stiffness for use without lamination between skin layers.
  • a high performance cellular core material is known under the trade name 'Rohacell' which may be suitable as a radiator panel and which is without skins. In practical terms, the aim is for an overall lightness and stiffness suited to a particular purpose, specifically including optimising contributions from core and skin layers and transitions between them.
  • piezo and electro dynamic transducers have negligible electromagnetic radiation or stray magnet fields.
  • Conventional speakers have a large magnetic field, up to 1 metre distant unless specific compensation counter measures are taken.
  • electrical connection can be made to the conductive parts of an appropriate DML panel or an electrically conductive foam or similar interface may be used for the edge mounting.
  • the suspension (3) may damp the edges of the panel (2) to prevent excessive edge movement of the panel. Additionally or alternatively, further damping may be applied, e.g. as patches, bonded to the panel in selected positions to damp excessive movement to distribute resonance equally over the panel.
  • the patches may be of bitumen-based material, as commonly used in conventional loudspeaker enclosures or may be of a resilient or rigid polymeric sheet material. Some materials, notably paper and card, and some cores may be self-damping. Where desired, the damping may be increased in the construction of the panels by employing resiliently setting, rather than rigid setting adhesives.
  • Effective said selective damping includes specific application to the panel including its sheet material of means permanently associated therewith. Edges and corners can be particularly significant for dominant and less dispersed low frequency vibration modes of panels hereof. Edge-wise fixing of damping means can usefully lead to a panel with its said sheet material fully framed, though their corners can often be relatively free, say for desired extension to lower frequency operation. Attachment can be by adhesive or self-adhesive materials. Other forms of useful damping, particularly in terms of more subtle effects and/or mid- and higher frequencies can be by way of suitable mass or masses affixed to the sheet material at predetermined effective medial localised positions of said area.
  • a panel as described above is a good receiver of sound which appears as acoustic vibration over the panel.
  • a preferably lightweight panel structure aids sensitivity and the vibration may be sensed by one and preferably more simple bending transducers e.g. of the piezo variety as described in Figure 4 below.
  • a plurality of transducers and transducer placement positions optimises the quality of coupling from the distributed panel vibrations to the desired electrical output signal. Placement should be in position(s) of high modal density, inboard of the panel, while the panel itself should have the preferred actual or equivalent geometry for good modal distribution.
  • Sound energy incident on the panel is converted into free mode vibration.
  • This vibration may be sensed by optical or electrodynamic vibration transducers and the result is a microphone.
  • optical or electrodynamic vibration transducers For non-critical applications a single sensor is effective, placed at an equivalent, optimised driving point.
  • the panel be light to provide the best match between the radiation impedance of the air and the panel. Higher sensitivity is achieved with lower mass panels.
  • the calculations for the theoretical model indicates an optimal location at a panel corner since all vibrational modes are 'voiced' at the corners.
  • FIG 3 illustrates a distributed mode panel (2) according to the present invention e.g. of the kind shown in Figures 1 and 2, intended for use as a sound receiver or microphone.
  • the panel (2) is mounted in a surrounding frame (1) and is attached to the frame via a resilient suspension (3) in the manner shown in Figures 1 and 2.
  • the frame is suspended on a pair of wires (33), e.g. from a ceiling or on a floor standing frame (not shown).
  • the panel carries an array of four vibration transducers (63) spaced over the panel and which may be piezo-electric transducers of the kind shown in Figure 4 below which are coupled in parallel to drive a signal receiver and conditioner (65) connected to an output (66).
  • FIG 4 shows a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20).
  • a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20).
  • a transducer (9) via leads (28) will cause the piezo disc (27) to bend and thus locally resiliently deform the panel (2) to launch bending waves into the panel.

Abstract

A panel-form microphone characterised by a distributed mode acoustic member (12) and a transducer (63) coupled wholly and exclusively to the member to produce a signal in response to resonance of the member due to incident acoustic energy.

Description

TECHNICAL FIELD
The invention relates to microphones and more particularly to microphones comprising panel-form acoustic elements.
BACKGROUND ART
It is known from GB-A-2262861 to suggest a panel-form loudspeaker comprising:-
  • a resonant multi-mode radiator element being a unitary sandwich panel formed of two skins of material with a spacing core of transverse cellular construction, wherein the panel is such as to have ratio of bending stiffness (B), in all orientations, to the cube power of panel mass per unit surface area (ยต) of at least 10;
  • a mounting means which supports the panel or attaches to it a supporting body, in a free undamped manner;
  • and an electro-mechanical drive means coupled to the panel which serves to excite a multi-modal resonance in the radiator panel in response to an electrical input within a working frequency band for the loudspeaker.
  • DISCLOSURE OF INVENTION
    Embodiments of the present invention use members of nature, structure and configuration achievable generally and/or specifically by implementing teachings of our co-pending PCT publication No. WO97/09842 of even date herewith. Such members thus have capability to sustain and propagate input vibrational energy by bending waves in operative area(s) extending transversely of thickness often but not necessarily to edges of the member(s); are configured with or without anisotropy of bending stiffness to have resonant mode vibration components distributed over said area(s) beneficially for acoustic coupling with ambient air; and have predetermined preferential locations or sites within said area for transducer means, particularly operationally active or moving part(s) thereof effective in relation to acoustic vibrational activity in said area(s) and signals, usually electrical, corresponding to acoustic content of such vibrational activity. Uses are envisaged in co-pending International publication No. WO97/09842 of even date herewith for such members as or in "passive" acoustic devices without transducer means, such as for reverberation or for acoustic filtering or for acoustically "voicing" a space or room; and as or in "active" acoustic devices with transducer means, such as in a remarkably wide range of sources of sound or loudspeakers when supplied with input signals to be converted to said sound, or in such as microphones when exposed to sound to be converted into other signals.
    This invention is particularly concerned with active acoustic devices in the form of microphones.
    Members as above are herein called distributed mode acoustic radiators and are intended to be characterised as in the above PCT publication and/or otherwise as specifically provided herein.
    The invention is a panel-form microphone characterised by a stiff lightweight member having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means and having a transducer mounted wholly and exclusively on said member at one of said locations or sites to produce a signal in response to resonance of the member due to incident acoustic energy. The member may be mounted in a surrounding frame by means of an interposed resilient support. Two or more of the said transducers may be positioned at the locations or sites on the member. The member may have a cellular core sandwiched between skins. The or each transducer may be a piezo-electric device.
    BRIEF DESCRIPTION OF DRAWINGS
    The invention is diagrammatically illustrated, by way of example, in the accompanying drawings, in which:-
  • Figure 1 is a diagram showing a distributed-mode loudspeaker as described and claimed in our co-pending International publication No. WO97/09842;
  • Figure 2a is a partial section on the line A-A of Figure 1;
  • Figure 2b is an enlarged cross-section through a distributed mode radiator of the kind shown in Figure 2a and showing two alternative constructions;
  • Figure 3 is a diagram of an embodiment of distributed-mode microphone according to the present invention, and
  • Figure 4 is a perspective view of a vibration transducer.
  • BEST MODES FOR CARRYING OUT THE INVENTION
    Referring to Figure 1 of the drawings, there is shown a panel-form loudspeaker (81) of the kind described and claimed in our co-pending International publication No. WO97/09842 of even date herewith comprising a rectangular frame (1) carrying a resilient suspension (3) round its inner periphery which supports a distributed mode sound radiating panel (2). A transducer (9) as described in detail with reference to our co-pending International publication Nos. WO97/09859, WO97/09861, WO97/09858 of even date herewith, is mounted wholly and exclusively on or in the panel (2) at a predetermined location defined by dimensions x and y, the position of which location is calculated as described in our co-pending International publication No. WO97/09842 of even date herewith, to launch bending waves into the panel to cause the panel to resonate to radiate an acoustic output. The transducer (9) is driven by a signal amplifier (10), e.g. an audio amplifier, connected to the transducer by conductors (28).
    Amplifier loading and power requirements can be entirely normal, similar to conventional cone type speakers, sensitivity being of the order of 86 - 88dB/watt under room loaded conditions. Amplifier load impedance is largely resistive at 6 ohms, power handling 20-80 watts. Where the panel core and/or skins are of metal, they may be made to act as a heat sink for the transducer to remove heat from the motor coil of the transducer and thus improve power handling.
    Figures 2a and 2b are partial typical cross-sections through the loudspeaker (81) of Figure 1. Figure 2a shows that the frame (1), surround (3) and panel (2) are connected together by respective adhesive-bonded joints (20). Suitable materials for the frame include lightweight framing, e.g. picture framing of extruded metal e.g. aluminium alloy or plastics. Suitable surround materials include resilient materials such as foam rubber and foam plastics. Suitable adhesives for the joints (20) include epoxy, acrylic and cyano-acrylate etc. adhesives.
    Figure 2b illustrates, to an enlarged scale, that the panel (2) is a rigid lightweight panel having a core (22) e.g. of a rigid plastics foam (97) e.g. cross linked polyvinylchloride or a cellular matrix (98) i.e. a honeycomb matrix of metal foil, plastics or the like, with the cells extending transversely to the plane of the panel, and enclosed by opposed skins (21) e.g. of paper, card, plastics or metal foil or sheet. Where the skins are of plastics, they may be reinforced with fibres e.g. of carbon, glass, Kevlar or the like in a manner known per se to increase their modulus.
    Envisaged skin layer materials and reinforcements thus include carbon, glass, Kevlar (RTM), Nomex (RTM) i.e. aramid etc. fibres in various lays and weaves, as well as paper, bonded paper laminates, melamine, and various synthetic plastics films of high modulus, such as Mylar (RTM), Kaptan (RTM), polycarbonate, phenolic, polyester or related plastics, and fibre reinforced plastics, etc. and metal sheet or foil. Investigation of the Vectra grade of liquid crystal polymer thermoplastics shows that they may be useful for the injection moulding of ultra thin skins or shells of smaller size, say up to around 30cm diameter. This material self forms an orientated crystal structure in the direction of injection, a preferred orientation for the good propagation of treble energy from the driving point to the panel perimeter.
    Additional such moulding for this and other thermoplastics allows for the mould tooling to carry location and registration features such as grooves or rings for the accurate location of transducer parts e.g. the motor coil, and the magnet suspension. Additional with some weaker core materials it is calculated that it would be advantageous to increase the skin thickness locally e.g. in an area or annulus up to 150% of the transducer diameter, to reinforce that area and beneficially couple vibration energy into the panel. High frequency response will be improved with the softer foam materials by this means.
    Envisaged core layer materials include fabricated honeycombs or corrugations of aluminium alloy sheet or foil, or Kevlar (RTM), Nomex (RTM), plain or bonded papers, and various synthetic plastics films, as well as expanded or foamed plastics or pulp materials, even aerogel metals if of suitably low density. Some suitable core layer materials effectively exhibit usable self-skinning in their manufacture and/or otherwise have enough inherent stiffness for use without lamination between skin layers. A high performance cellular core material is known under the trade name 'Rohacell' which may be suitable as a radiator panel and which is without skins. In practical terms, the aim is for an overall lightness and stiffness suited to a particular purpose, specifically including optimising contributions from core and skin layers and transitions between them.
    Several of the preferred formulations for the panel employ metal and metal alloy skins, or alternatively a carbon fibre reinforcement. Both of these, and also designs with an alloy Aerogel or metal honeycomb core, will have substantial radio frequency screening properties which should be important in several EMC applications. Conventional panel or cone type speakers have no inherent EMC screening capability.
    In addition the preferred form of piezo and electro dynamic transducers have negligible electromagnetic radiation or stray magnet fields. Conventional speakers have a large magnetic field, up to 1 metre distant unless specific compensation counter measures are taken.
    Where it is important to maintain the screening in an application, electrical connection can be made to the conductive parts of an appropriate DML panel or an electrically conductive foam or similar interface may be used for the edge mounting.
    The suspension (3) may damp the edges of the panel (2) to prevent excessive edge movement of the panel. Additionally or alternatively, further damping may be applied, e.g. as patches, bonded to the panel in selected positions to damp excessive movement to distribute resonance equally over the panel. The patches may be of bitumen-based material, as commonly used in conventional loudspeaker enclosures or may be of a resilient or rigid polymeric sheet material. Some materials, notably paper and card, and some cores may be self-damping. Where desired, the damping may be increased in the construction of the panels by employing resiliently setting, rather than rigid setting adhesives.
    Effective said selective damping includes specific application to the panel including its sheet material of means permanently associated therewith. Edges and corners can be particularly significant for dominant and less dispersed low frequency vibration modes of panels hereof. Edge-wise fixing of damping means can usefully lead to a panel with its said sheet material fully framed, though their corners can often be relatively free, say for desired extension to lower frequency operation. Attachment can be by adhesive or self-adhesive materials. Other forms of useful damping, particularly in terms of more subtle effects and/or mid- and higher frequencies can be by way of suitable mass or masses affixed to the sheet material at predetermined effective medial localised positions of said area.
    A panel as described above is a good receiver of sound which appears as acoustic vibration over the panel. A preferably lightweight panel structure aids sensitivity and the vibration may be sensed by one and preferably more simple bending transducers e.g. of the piezo variety as described in Figure 4 below. A plurality of transducers and transducer placement positions optimises the quality of coupling from the distributed panel vibrations to the desired electrical output signal. Placement should be in position(s) of high modal density, inboard of the panel, while the panel itself should have the preferred actual or equivalent geometry for good modal distribution.
    Sound energy incident on the panel is converted into free mode vibration. This vibration may be sensed by optical or electrodynamic vibration transducers and the result is a microphone. For non-critical applications a single sensor is effective, placed at an equivalent, optimised driving point.
    For superior quality the non reciprocal nature of the transduction principle must be considered. Two factors are pertinent; firstly, some frequency dependent equalisation to reach a flat frequency response, and secondly, the need to capture a broader sampling of the complex vibrations of the acoustic panel. A minimum of three transducers is indicated; they may be inexpensive piezo electric benders with their outputs connected in parallel. Alternatively larger area polymer piezo films may be applied, with suitable geometric pickup patterning to define the vibration integration areas for the required optimisation of sensitivity versus frequency response.
    For microphone applications it is advantageous that the panel be light to provide the best match between the radiation impedance of the air and the panel. Higher sensitivity is achieved with lower mass panels. For a single transducer the calculations for the theoretical model indicates an optimal location at a panel corner since all vibrational modes are 'voiced' at the corners.
    Figure 3 illustrates a distributed mode panel (2) according to the present invention e.g. of the kind shown in Figures 1 and 2, intended for use as a sound receiver or microphone. Although not shown in the drawing, the panel (2) is mounted in a surrounding frame (1) and is attached to the frame via a resilient suspension (3) in the manner shown in Figures 1 and 2. The frame is suspended on a pair of wires (33), e.g. from a ceiling or on a floor standing frame (not shown).
    The panel carries an array of four vibration transducers (63) spaced over the panel and which may be piezo-electric transducers of the kind shown in Figure 4 below which are coupled in parallel to drive a signal receiver and conditioner (65) connected to an output (66).
    Figure 4 shows a transducer (9) for a distributed mode panel (2) in the form of a crystalline disc-like piezo bender (27) mounted on a disc (118), e.g. of brass, which is bonded to a face of the panel (2), e.g. by an adhesive bond (20). In operation an acoustic signal applied to the transducer (9) via leads (28) will cause the piezo disc (27) to bend and thus locally resiliently deform the panel (2) to launch bending waves into the panel.

    Claims (5)

    1. A panel-form microphone characterised by a stiff lightweight member (2) having capability to sustain and propagate input vibrational energy by bending waves in at least one operative area extending transversely of thickness to have resonant mode vibration components distributed over said at least one area and have predetermined preferential locations or sites within said area for transducer means (9,63) and having a transducer (9,63) mounted wholly and exclusively on said member at one of said locations or sites to produce a signal in response to resonance of the member due to incident acoustic energy.
    2. A panel-form microphone according to claim 1, characterised in that the member (2) is mounted in a surrounding frame (1) by means of an interposed resilient support (3).
    3. A panel-form microphone according to claim 1 or claim 2, characterised by at least two said transducers (9,63) at said locations or sites on the member.
    4. A panel-form microphone according to any preceding claim, characterised in that the member (2) has a cellular core (22) sandwiched between skins (21).
    5. A panel-form microphone according to any preceding claim, characterised in that the or each transducer (9,63) is a piezo-electric device.
    EP96929397A 1995-09-02 1996-09-02 Panel-form microphones Expired - Lifetime EP0847678B1 (en)

    Applications Claiming Priority (7)

    Application Number Priority Date Filing Date Title
    GBGB9517918.0A GB9517918D0 (en) 1995-09-02 1995-09-02 Acoustic device
    GB9517918 1995-09-02
    GBGB9522281.6A GB9522281D0 (en) 1995-10-31 1995-10-31 Acoustic device
    GB9522281 1995-10-31
    GBGB9606836.6A GB9606836D0 (en) 1996-03-30 1996-03-30 Acoustic device
    GB9606836 1996-03-30
    PCT/GB1996/002155 WO1997009862A1 (en) 1995-09-02 1996-09-02 Panel-form microphones

    Publications (2)

    Publication Number Publication Date
    EP0847678A1 EP0847678A1 (en) 1998-06-17
    EP0847678B1 true EP0847678B1 (en) 1999-04-21

    Family

    ID=34865243

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96929397A Expired - Lifetime EP0847678B1 (en) 1995-09-02 1996-09-02 Panel-form microphones

    Country Status (13)

    Country Link
    EP (1) EP0847678B1 (en)
    JP (1) JPH11512254A (en)
    CN (1) CN1195463A (en)
    AT (1) ATE179297T1 (en)
    AU (1) AU703058B2 (en)
    CA (1) CA2230449A1 (en)
    DE (1) DE69602204T2 (en)
    DK (1) DK0847678T3 (en)
    EA (1) EA000640B1 (en)
    ES (1) ES2132952T3 (en)
    HK (1) HK1008652A1 (en)
    RO (1) RO119057B1 (en)
    WO (1) WO1997009862A1 (en)

    Families Citing this family (28)

    * Cited by examiner, โ€  Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19757097B4 (en) * 1997-12-20 2004-04-15 Harman Audio Electronic Systems Gmbh Sound reproduction device
    DK1120007T3 (en) 1998-06-22 2005-12-12 Slab Technology Ltd speakers
    DE19943084A1 (en) * 1999-09-09 2001-04-05 Harman Audio Electronic Sys Sound transducer
    US10158337B2 (en) 2004-08-10 2018-12-18 Bongiovi Acoustics Llc System and method for digital signal processing
    US11431312B2 (en) 2004-08-10 2022-08-30 Bongiovi Acoustics Llc System and method for digital signal processing
    US8284955B2 (en) 2006-02-07 2012-10-09 Bongiovi Acoustics Llc System and method for digital signal processing
    US10848118B2 (en) 2004-08-10 2020-11-24 Bongiovi Acoustics Llc System and method for digital signal processing
    EP1800514B1 (en) * 2004-10-08 2008-05-07 Koninklijke Philips Electronics N.V. Display device comprising a panel acoustic transducer, and transparent panel acoustic transducer
    JP2007116422A (en) * 2005-10-20 2007-05-10 Sony Corp Audio output device and method
    US9615189B2 (en) 2014-08-08 2017-04-04 Bongiovi Acoustics Llc Artificial ear apparatus and associated methods for generating a head related audio transfer function
    US10701505B2 (en) 2006-02-07 2020-06-30 Bongiovi Acoustics Llc. System, method, and apparatus for generating and digitally processing a head related audio transfer function
    US11202161B2 (en) 2006-02-07 2021-12-14 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function
    US10069471B2 (en) 2006-02-07 2018-09-04 Bongiovi Acoustics Llc System and method for digital signal processing
    US10848867B2 (en) 2006-02-07 2020-11-24 Bongiovi Acoustics Llc System and method for digital signal processing
    ITMI20121414A1 (en) 2012-08-08 2014-02-09 Hst Italia ALARM SYSTEM WITH OPERATING OBJECTS BOTH AS SENSORS OR AS ACTUATORS
    US9883318B2 (en) 2013-06-12 2018-01-30 Bongiovi Acoustics Llc System and method for stereo field enhancement in two-channel audio systems
    US9264004B2 (en) 2013-06-12 2016-02-16 Bongiovi Acoustics Llc System and method for narrow bandwidth digital signal processing
    US9906858B2 (en) 2013-10-22 2018-02-27 Bongiovi Acoustics Llc System and method for digital signal processing
    US10639000B2 (en) 2014-04-16 2020-05-05 Bongiovi Acoustics Llc Device for wide-band auscultation
    US10820883B2 (en) 2014-04-16 2020-11-03 Bongiovi Acoustics Llc Noise reduction assembly for auscultation of a body
    US9615813B2 (en) 2014-04-16 2017-04-11 Bongiovi Acoustics Llc. Device for wide-band auscultation
    US9564146B2 (en) 2014-08-01 2017-02-07 Bongiovi Acoustics Llc System and method for digital signal processing in deep diving environment
    US10691006B2 (en) 2014-12-09 2020-06-23 Imax Theatres International Limited Methods and systems of vibrating a screen
    US9638672B2 (en) 2015-03-06 2017-05-02 Bongiovi Acoustics Llc System and method for acquiring acoustic information from a resonating body
    WO2017087495A1 (en) 2015-11-16 2017-05-26 Bongiovi Acoustics Llc Surface acoustic transducer
    US9621994B1 (en) 2015-11-16 2017-04-11 Bongiovi Acoustics Llc Surface acoustic transducer
    AU2019252524A1 (en) 2018-04-11 2020-11-05 Bongiovi Acoustics Llc Audio enhanced hearing protection system
    US10959035B2 (en) 2018-08-02 2021-03-23 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function

    Family Cites Families (5)

    * Cited by examiner, โ€  Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3247925A (en) * 1962-03-08 1966-04-26 Lord Corp Loudspeaker
    JPS5541066A (en) * 1978-09-19 1980-03-22 Sony Corp Diaphragm for electroacoustic converter
    SE443483B (en) * 1983-01-14 1986-02-24 Gustav Georg Arne Bolin RECEIVER MAGNETIC FOR SOUND WAVES CONSISTING OF A RESONANCE DISC AND ANTICULAR CAUSED BY THE SOUND MOVES REACTING PIEZOELECTRIC MICROPHONE TYPE MICROPHONE
    US4751419A (en) * 1986-12-10 1988-06-14 Nitto Incorporated Piezoelectric oscillation assembly including several individual piezoelectric oscillation devices having a common oscillation plate member
    EP0541646B1 (en) * 1990-08-04 1995-01-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Panel-form loudspeaker

    Also Published As

    Publication number Publication date
    DE69602204T2 (en) 1999-09-16
    ES2132952T3 (en) 1999-08-16
    JPH11512254A (en) 1999-10-19
    EA000640B1 (en) 1999-12-29
    AU6881296A (en) 1997-03-27
    EA199800262A1 (en) 1998-10-29
    ATE179297T1 (en) 1999-05-15
    DE69602204D1 (en) 1999-05-27
    EP0847678A1 (en) 1998-06-17
    WO1997009862A1 (en) 1997-03-13
    CA2230449A1 (en) 1997-03-13
    AU703058B2 (en) 1999-03-11
    CN1195463A (en) 1998-10-07
    DK0847678T3 (en) 1999-10-25
    RO119057B1 (en) 2004-02-27
    HK1008652A1 (en) 1999-05-14

    Similar Documents

    Publication Publication Date Title
    EP0847678B1 (en) Panel-form microphones
    US6307942B1 (en) Panel-form microphones
    EP0847677B1 (en) Inertial vibration transducers
    EP0847665B1 (en) Panel-form loudspeakers
    US6198831B1 (en) Panel-form loudspeakers
    US6215881B1 (en) Ceiling tile loudspeaker
    US6031926A (en) Panel-form loudspeakers
    AU703061B2 (en) Vibration transducers
    US6144746A (en) Loudspeakers comprising panel-form acoustic radiating elements
    US6188775B1 (en) Panel-form loudspeakers
    EP0847669B1 (en) Visual display means incorporating loudspeakers
    EP0847671B1 (en) Personal computers
    EP0847664B1 (en) Loudspeakers comprising panel-form acoustic radiating elements
    EP0847672B1 (en) Packaging
    WO1997009843A1 (en) Loudspeakers comprising panel-form acoustic radiating elements
    EP0847666B1 (en) Panel-form loudspeakers
    US6404894B1 (en) Packaging

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980318

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL PAYMENT 980318;LT PAYMENT 980318;LV PAYMENT 980318;SI PAYMENT 980318

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19980708

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: NEW TRANSDUCERS LIMITED

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL PAYMENT 19980318;LT PAYMENT 19980318;LV PAYMENT 19980318;SI PAYMENT 19980318

    LTIE Lt: invalidation of european patent or patent extension
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990421

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990421

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990421

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990421

    REF Corresponds to:

    Ref document number: 179297

    Country of ref document: AT

    Date of ref document: 19990515

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 69602204

    Country of ref document: DE

    Date of ref document: 19990527

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2132952

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990902

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19990709

    Ref country code: CH

    Ref legal event code: PL

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20030807

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20030811

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20030814

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030815

    Year of fee payment: 8

    Ref country code: FI

    Payment date: 20030815

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20030819

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030821

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20030829

    Year of fee payment: 8

    Ref country code: IE

    Payment date: 20030829

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20030908

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20031001

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040902

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040902

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040902

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040902

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040903

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040930

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050302

    BERE Be: lapsed

    Owner name: *NEW TRANSDUCERS LTD

    Effective date: 20040930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050401

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050401

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040902

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20050302

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20050401

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050902

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20040903

    BERE Be: lapsed

    Owner name: *NEW TRANSDUCERS LTD

    Effective date: 20040930