EP0845790A1 - Magnetorheologische Flüssigkeiten, und mit Polymer beschichteten magnetisierbaren Teilchen - Google Patents

Magnetorheologische Flüssigkeiten, und mit Polymer beschichteten magnetisierbaren Teilchen Download PDF

Info

Publication number
EP0845790A1
EP0845790A1 EP97120063A EP97120063A EP0845790A1 EP 0845790 A1 EP0845790 A1 EP 0845790A1 EP 97120063 A EP97120063 A EP 97120063A EP 97120063 A EP97120063 A EP 97120063A EP 0845790 A1 EP0845790 A1 EP 0845790A1
Authority
EP
European Patent Office
Prior art keywords
magnetizable particles
organic polymer
coated
magnetorheological fluids
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97120063A
Other languages
English (en)
French (fr)
Other versions
EP0845790B1 (de
Inventor
Wolfgang Dr. Podszun
Olaf Dr. Halle
Johan Dr. Kijlstra
Robert Dr. Bloodworth
Eckhard Dr. Wendt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fludicon GmbH
Original Assignee
Bayer AG
Fludicon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Fludicon GmbH filed Critical Bayer AG
Publication of EP0845790A1 publication Critical patent/EP0845790A1/de
Application granted granted Critical
Publication of EP0845790B1 publication Critical patent/EP0845790B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids

Definitions

  • the invention relates to new magnetorheological fluids, a method for their manufacture and their use as well as processes for the manufacture of with an organic polymer coated magnetizable particles.
  • Magnetorheological fluids consist of a carrier liquid and magnetizable particles dispersed therein. These dispersions change their flow behavior when a magnetic is applied Field. Possible areas of application of magnetorheological fluids are, for example Couplings, dampers and bearings.
  • magnetisable Particles paramagnetic, superparamagnetic and ferromagnetic Fabrics used for use in magnetorheological fluids.
  • the object of the invention is therefore to provide MRFs which are in the prior art Technology known disadvantages do not have problems.
  • magnetorheological fluids containing a organic polymer coated magnetizable particles contain an improved Colloid stability, improved settling stability and reduced abrasiveness exhibit.
  • the invention therefore relates to magnetorheological liquids of magnetizable particles, at least one oleophilic liquid and optionally a thickener, characterized in that the magnetizable Particles are coated with an organic polymer.
  • Preferred magnetorheological liquids are 45 to 95% by weight, particularly preferably 60 to 95% by weight, very particularly preferably 75 to 95% by weight, the magnetizable particles coated with an organic polymer, and 2 up to 45% by weight of an oleophilic liquid and 0 to 20% by weight of thickener included, the sum of the wt .-% is 100 wt .-%.
  • Magnetizable particles in the sense of the invention are paramagnetic, superparamagnetic and ferromagnetic substances.
  • Examples include: iron, iron nitride, iron carbide, steel with less than 1% carbon, nickel and cobalt. Mixtures of the substances mentioned and iron alloys with aluminum, silicon, cobalt, nickel, vanadium, molybdenum, chromium, tungsten and manganese are also suitable.
  • Iron-nickel alloys and iron-cobalt alloys can be mentioned as well-suited alloys.
  • Magnetic oxides of chromium and iron, such as chromium dioxide, gamma-Fe 2 O 3 and Fe 3 O 4 are also suitable.
  • Iron and / or iron alloys are preferred magnetizable particles.
  • the mean longest dimension of the invention is preferably, with an organic polymer coated magnetizable particles, based on their mass (mass average), 0.1 to 100 microns, particularly preferably 1 to 50 microns.
  • the shape of the magnetizable particles can also be irregular, rod-shaped or be needle-shaped.
  • the spherical shape or a shape similar to the spherical shape is especially preferred when high fill levels are desired.
  • Organic polymers in the sense of the invention are natural polymers, such as e.g. Gelatin or cellulose, modified natural polymers, in particular cellulose derivatives, and synthetic polymers, with synthetic polymers being preferred.
  • gelatin includes gelatin coacervates and gelatin-like complex coacervates. Combinations of are particularly suitable as gelatin-containing complex coacervates Gelatin with synthetic polyelectrolytes preferred. Suitable synthetic polyelectrolytes are those which are obtained by homo- or copolymerization of e.g. Maleic acid, Acrylic acid, methacrylic acid, acrylamide and methacrylamide emerge. Of the
  • gelatin also includes those with conventional hardening agents such as e.g. formaldehyde or glutardialdehyde further cross-linked gelatin.
  • Suitable synthetic polymers are: polyester, polyurethane, in particular polyester urethanes and polyether urethanes, polycarbonates, polyester-polycarbonate copolymers, Polyureas, melamine resins, polysiloxanes, fluoropolymers and vinyl polymers.
  • suitable vinyl polymers are called: polyvinyl chloride, polyvinyl esters, e.g. Polyvinyl acetate, polystyrene, Polyacrylic esters, such as polymethyl methacrylate, polyethylhexyl acrylate, polylauryl methacrylate, Polystearyl methacrylate or polyethylacrylate, polyvinyl acetals, such as polyvinyl butyral.
  • Other synthetic polymers are also copolymers or terpolymers from various Vinyl and vinylidene monomers such as e.g. Polystyrene-co-acrylonitrile and copolymers from (meth) acrylic acid and (meth) acrylic esters.
  • Particularly preferred organic Polymers are vinyl polymers, polyureas and / or polyurethanes.
  • the molecular weight of the polymer can be chosen arbitrarily for this application will. Usual suitable polymers have a weight average of 30,000 - 1,000,000 daltons. The polymers can also be cross-linked.
  • the magnetorheological liquids according to the invention contain as oleophilic Liquid (carrier liquid) preferably mineral oils, paraffin oils, hydraulic oils, oils containing chlorinated aromatics (so-called transformer oils), and chlorinated and fluorinated oils. Likewise preferred are silicone oils, fluorinated silicone oils, polyethers, fluorinated polyethers and polyether polysiloxane copolymers.
  • the viscosity of the carrier liquid is preferably 1 to 1000 mPas, particularly preferably 3 to 800 mPas, measured at 25 ° C.
  • the magnetorheological liquids as carrier liquid at least one mineral oil or at least one silicone oil.
  • the invention magnetorheological liquids additionally at least one thickener, which gives the magnetorheological fluid a thixotropy and increases the settling stability of the magnetizable particles.
  • thickeners e.g. finely divided inorganic or organic microparticles.
  • silicates such as bentonite or metal oxides such as titanium dioxide, aluminum oxide or Silicon dioxide and / or flame-hydrolytically obtained highly disperse silicas, which e.g. under the trade names Aerosil® or HDK® from Degussa AG, Germany, or Wacker Chemie GmbH, Germany, commercially available are, with all microparticles an average particle diameter of less than 1 micron exhibit.
  • the amount of thickeners is 0.1 to 20 wt .-%, preferably 0.5 to 5 wt .-%.
  • the magnetorheological liquids according to the invention can also contain dispersing agents contain.
  • dispersants are lecithin, oleic acid and oleates such as iron oleate, fatty acids, alkali soaps such as lithium stearate, sodium stearate, Aluminum tristearate, sulfonates and phosphonates with lipophilic residues as well Glycerol esters such as glycerol monostearate.
  • the dispersants are preferably in amounts of 0.01 to 2% by weight, particularly preferably 0.1 to 0.5% by weight, based on the magnetizable particles.
  • the weight fraction of the coating of those coated with organic polymer magnetizable particles is 0.1 to 50% by weight, preferably 0.5 to 20 % By weight.
  • the invention also relates to a method for producing the organic polymers coated magnetizable particles, after which the organic Polymer in molten form or from a solvent by precipitation or vaporization is applied to the magnetizable particles.
  • the invention also relates to a further method for producing the organic polymers coated magnetizable particles, after which in the presence the magnetizable particles are organic monomer components by means of polycondensation, Polyaddition or polymerization implemented to an organic polymer will.
  • the organic monomer components are, for example, the Combination of aliphatic diols and aromatic or aliphatic dicarboxylic acids, Dicarboxylic acid chlorides, for the polyaddition, for example, the combination of diols, polyester and / or Polyether diols with di- or triisocyanates and for the polymerization, for example, olefinically unsaturated compounds, such as Styrene, acrylic acid ester, methacrylic acid ester and / or vinyl acetate are preferred.
  • Silanization means surface treatment with silanes, preferably those silanes are used which have at least one functional group, e.g. OH, Cl.
  • radicals R 1 are methyl, ethyl, propyl, n-butyl, tert-butyl, hexyl, octyl, ethylhexyl, decyl, dodecyl, stearyl, vinyl or allyl.
  • substituted R 1 radicals are: R 2 is preferably a phenyl or a C 1 -C 6 alkyl radical, such as methyl, ethyl, propyl, n-butyl, tert-butyl, pentyl or hexyl.
  • the hydrolyzable groups on the Si atom symbolized by X comprise, for example, halogen atoms, in particular chlorine and bromine, C 1 -C 6 alkoxy groups, preferably methoxy and ethoxy, and carboxylate groups, such as acetate and propionate.
  • silane must be matched to the following polymer coating be.
  • silanes 3 or 4 a silane is also used polymerizable double bonds applied to the magnetizable particles.
  • a polymer coating by radical Polymerization of monomers e.g. Acrylic acid esters, creating a solid chemical bond is established between the silane and the polymer coating, prefers.
  • isocyanate-containing compounds e.g. with stearyl isocyanate for reaction brought, whereby a polymer coating with urea units is formed. Silanization with silanes 3, 4, 7 and / or 9 is therefore preferred.
  • the implementation can be done by simply mixing the components with usual stirring or mixing devices.
  • the temperature during the implementation is preferably in the range from 0 ° C to 100 ° C and the reaction time is preferably 0.1 h to 10 h.
  • the amount of silane used can be varied within wide limits; it lies preferably in the range from 0.01 to 25% by weight, particularly preferably 0.1 to 10 % By weight, based on the magnetizable particles.
  • the silanization is preferably carried out in the presence of at least one aprotic Solvent carried out.
  • Suitable solvents are e.g. Acetone, butanone, Dichloromethane, trichloromethane, toluene, ethyl acetate or tetrahydrofuran.
  • a catalyst can also be used in the silanization.
  • Suitable Catalysts are protonic acids such as acetic acid or hydrogen chloride as well Amines such as dicyclohexylamine.
  • the amount of the catalyst is preferably 0.01 up to 5 wt .-%, based on the silane.
  • the silane used in the silanization can initially with acid catalysis e.g. molar amounts of water are hydrolyzed, the hydrolyzable residues X are converted into OH groups, and then the freshly prepared OH compound reacted with the magnetizable particle in a solvent becomes.
  • the invention also relates to a method for producing the invention magnetorheological fluids, after which in an oleophilic fluid, optionally in the presence of a thickener, which is also according to the invention Process produced, coated with an organic polymer magnetizable particles are dispersed.
  • the carrier liquid is first with the thickener using high shear forces, i.e. preferably at dispersing energies between 50 and 500 W / l, for example with the help of an Ultraturrax®, available from IKA-Labortechnik, Germany, homogeneous mixed and then stirred in the coated magnetizable particles.
  • high shear forces i.e. preferably at dispersing energies between 50 and 500 W / l, for example with the help of an Ultraturrax®, available from IKA-Labortechnik, Germany, homogeneous mixed and then stirred in the coated magnetizable particles.
  • the invention also relates to the use of the nonaqueous compositions according to the invention magnetorheological fluids in couplings, dampers and / or To store.
  • silanized carbonyl iron was slurried in 2000ml butanone and with 190g Stearyl methacrylate, 10 g ethylene glycol dimethacrylate and 6 g azoisobutyronitrile transferred. The mixture was stirred and refluxed at 70 ° C for 2 h and 2 h heated. The solid is filtered off after cooling, three times with 1500 ml each Washed butanone and dried in vacuo at 50 ° C for 12 h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Die Erfindung betrifft neue magnetorheologische Flüssigkeiten, ein Verfahren zu deren Herstellung und deren Verwendung sowie Verfahren zur Herstellung von mit einem organischen Polymer beschichteten magnetisierbaren Teilchen.

Description

Die Erfindung betrifft neue magnetorheologische Flüssigkeiten, ein Verfahren zu deren Herstellung und deren Verwendung sowie Verfahren zur Herstellung von mit einem organischen Polymer beschichteten magnetisierbaren Teilchen.
Als magnetorheologische Flüssigkeiten (MRF) werden Dispersionen bezeichnet, die aus einer Trägerflüssigkeit und darin dispergierten magnetisierbaren Teilchen bestehen. Diese Dispersionen ändern ihr Fließverhalten bei Anlegen eines magnetischen Feldes. Mögliche Einsatzgebiete der magnetorheologischen Flüssigkeiten sind beispielsweise Kupplungen, Dämpfer und Lager.
Für den Einsatz in magnetorheologischen Flüssigkeiten werden bislang als magnetisierbare Teilchen paramagnetische, superparamagnetische und ferromagnetische Stoffe eingesetzt.
Trotz einer umfangreichen Forschung auf diesem Gebiet gelang es nicht, das Problem der Absetzstabilität befriedigend zu lösen. Die bislang bekannten Methoden, wie z.B. die Zugabe von Kohlenstoffasern, gemäß EP-A 406 692, Silicagel, gemäß US-A 4 992 190 oder Polystyrolperlen, gemäß JP-A 419 8297, führten nur zu geringfügigen Verbesserungen.
Ein weiteres ebenfalls noch unzureichend gelöstes Problem bei magnetorheologischen Flüssigkeiten ist die Abrasivität, die besonders kritisch ist, da sie zu einem vorzeitigen Versagen des mit der magnetorhelogischen Flüssigkeit betriebenen Gerätes führen kann.
Selbst die in US-A 5 354 488 beschriebenen, mit einer isolierenden Hülle aus Siliziumdioxid beschichteten magnetisierbaren Teilchen, zeigen keine verbesserte Abrasivität.
Es besteht daher ein Bedarf an magnetorheologischen Flüssigkeiten, die über eine geringe Abrasivität und eine hohe Absetzstabilität verfügen.
Aufgabe der Erfindung ist daher die Bereitstellung von MRF's, die die im Stand der Technik bekannten Nachteile Probleme nicht aufweisen.
Es wurde nun gefunden, daß magnetorheologische Flüssigkeiten, die mit einem organischen Polymer beschichtete magnetisierbare Teilchen enthalten, eine verbesserte Kolloidstabilität, eine verbesserte Absetzstabilität und eine verringerte Abrasivität aufweisen.
Gegenstand der Erfindung sind daher magnetorheologische Flüssigkeiten, bestehend aus magnetisierbaren Teilchen, mindestens einer oleophilen Flüssigkeit und gegebenenfalls einem Verdickungsmittel, dadurch gekennzeichnet, daß die magnetisierbaren Teilchen mit einem organischen Polymer beschichtet sind.
Bevorzugt sind solche magnetorheologischen Flüssigkeiten, die 45 bis 95 Gew.-%, besonders bevorzugt 60 bis 95 Gew.-%, ganz besonders bevorzugt 75- 95 Gew.-%, der mit einem organischen Polymer beschichteten magnetisierbaren Teilchen, sowie 2 bis 45 Gew.-% einer oleophile Flüssigkeit und 0 bis 20 Gew.-% Verdickungsmittel enthalten, wobei die Summe der Gew.-% 100 Gew.-% ergibt.
Magnetisierbare Teilchen im Sinne der Erfindung sind paramagnetische, superparamagnetische und ferromagnetische Stoffe. Beispielhaft seien genannt: Eisen, Eisennitrid, Eisencarbid, Stahl mit weniger als 1 % Kohlenstoff Nickel und Kobalt. Geeignet sind auch Mischungen der genannten Stoffe und Eisen-Legierungen mit Aluminium, Silizium, Cobalt, Nickel, Vanadium, Molybdän, Chrom, Wolfram und Mangan. Als gut geeignete Legierungen sind Eisen-Nickel-Legierungen und Eisen-Kobaltlegierungen zu nennen. Weiterhin geeignet sind magnetische Oxyde des Chroms und Eisens, wie Chromdioxid, gamma-Fe2O3 und Fe3O4.
Eisen und/oder Eisenlegierungen sind dabei bevorzugte magnetisierbare Teilchen.
Besonders bevorzugt ist das sogenannte Carbonyleisen, das durch thermische Zersetzung von Pentacarbonyleisen(0) gewonnen wird.
Vorzugsweise beträgt die mittlere längste Ausdehnung der erfindungsgemäßen, mit einem organischen Polymer beschichteten magnetisierbaren Teilchen, bezogen auf deren Masse (Massenmittel), 0.1 bis 100 µm, besonders bevorzugt 1 bis 50 µm.
Die Form der magnetisierbaren Teilchen kann auch unregelmäßig, stäbchen- oder nadelförmig sein. Die Kugelform oder eine der Kugelform ähnliche Form ist insbesondere dann bevorzugt, wenn hohe Füllgrade angestrebt werden.
Organische Polymere im Sinne der Erfindung sind natürliche Polymere, wie z.B. Gelatine oder Cellulose, abgewandelte natürliche Polymere, insbesondere Cellulosederivate, und synthetische Polymere, wobei synthetische Polymere bevorzugt sind.
Der Begriff Gelatine umfaßt dabei Gelatine-Koazervate und gelatineartige Komplexkoazervate. Als gelatinehaltige Komplexkoazervate sind vor allem Kombinationen von Gelatine mit synthetischen Polyelektrolyten bevorzugt. Geeignete synthetische Polyelektrolyte sind solche, die durch Homo- oder Copolymerisation von z.B. Maleinsäure, Acrylsäure, Methacrylsäure, Acrylamid und Methacrylamid hervorgehen. Der Begriff Gelatine umfaßt auch die mit üblichen Härtungsmitteln wie z.B. Formaldehyd oder Glutardialdehyd weiter vernetzte Gelatine.
Als geeignete synthetische Polymere seien genannt: Polyester, Polyurethane, insbesondere Polyesterurethane und Polyetherurethane, Polycarbonate, Polyester-Polycarbonat-Copolymere, Polyharnstoffe, Melaminharze, Polysiloxane, Fluorpolymere und Vinylpolymerisate. Als Beispiele für geeignete Vinylpolymerisate seien genannt: Polyvinylchlorid, Polyvinylester, wie z.B. Polyvinylacetat, Polystyrol, Polyacrylester, wie Polymethylmethacrylat, Polyethylhexylacrylat, Polylaurylmethacrylat, Polystearylmethacrylat oder Polyethylacrylat, Polyvinylacetale, wie Polyvinylbutyral. Weitere synthetische Polymere sind auch Co- oder Terpolymere aus verschiedenen Vinyl- und Vinylidenmonomeren, wie z.B. Poly-styrol-co-acrylnitril und Co-polymere aus (Meth)acrylsäure und (Meth)acrylestern. Besonders bevorzugte organische Polymere sind dabei Vinylpolymerisate Polyharnstoffe und/oder Polyurethane.
Das Molekulargwicht des Polymers kann für diese Anwendung beliebig gewählt werden. Übliche geeignete Polymere weisen ein Gewichtsmittel von 30.000 - 1.000.000 Dalton auf. Die Polymere können auch vernetzt sein.
Die erfindungsgemäßen magnetorheologischen Flüssigkeiten enthalten als oleophile Flüssigkeit (Trägerflüssigkeit) bevorzugt Mineralöle, Paraffinöle, hydraulische Öle, chlorierte Aromaten enthaltende Öle (sog. Transformatoröle), sowie chlorierte und fluorierte Öle. Bevorzugt sind ebenfalle Siliconöle, fluorierte Siliconöle, Polyether, fluorierte Polyether und Polyetherpolysiloxancopolymere. Die Viskosität der Trägerflüssigkeit beträgt vorzugsweise 1 bis 1000 mPas, besonders bevorzugt 3 bis 800 mPas, gemessen bei 25°C.
In einer besonders bevorzugten Ausführungsform der Erfindung enthalten die magnetorheologischen Flüssigkeiten als Trägerflüssigkeit mindestens ein Mineralöl oder mindestens ein Siliconöl.
In einer weiteren bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen magnetorheologischen Flüssigkeiten zusätzlich mindestens ein Verdickungsmittel, das der magnetorheologischen Flüssigkeit eine Thixotropie verleiht und die Absetzstabilität der magnetisierbaren Teilchen erhöht. Verdickungsmittel sind z.B. feinteilige anorganische oder organische Micropartikel. Als solche sind bevorzugt Gele, Silikate wie Bentonit oder Metalloxide wie Titandioxid, Aluminiumoxid oder Siliziumdioxid und/oder flammhydrolytisch gewonnene hochdisperse Kieselsäuren, die z.B. unter den Handelsbezeichnungen Aerosil® oder HDK® bei der Firma Degussa AG, Deutschland, bzw. Wacker Chemie GmbH, Deutschland, kommerziell verfügbar sind, wobei alle Mikropartikel einen mittleren Teilchendurchmesser von kleiner 1 µm aufweisen.
In dieser bevorzugten Ausführungsform beträgt die Menge der Verdickungsmittel 0.1 bis 20 Gew.-%, vorzugsweise 0.5 bis 5 Gew.-%.
Die erfindungsgemäßen magnetorheologische Flüssigkeiten können auch Dispergierhilfsmittel enthalten. Beispiele für Dispergiermittel sind Lecithin, Ölsäure und Oleate wie Eisenoleat, Fettsäuren, Alkaliseifen wie Lithiumstearat, Natriumstearat, Aluminiumtristearat, Sulfonate und Phosphonate mit lipophilen Resten sowie Glycerinester wie Glycerinmonostearat.
Die Dispergiermittel sind vorzugsweise in Mengen von 0,01 bis 2 Gew.-%, besonders bevorzugt 0,1 bis 0,5 Gew.-%, bezogen auf die magnetisierbaren Teilchen, vorhanden.
Der Gewichtsanteil der Beschichtung der mit organischem Polymer beschichteten magnetisierbaren Teilchen beträgt 0.1 bis 50 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-%.
Gegenstand der Erfindung ist zudem ein Verfahren zur Herstellung der mit organischen Polymeren beschichteten magnetisierbaren Teilchen, wonach das organische Polymer in geschmolzener Form oder aus einem Lösemittel durch Ausfällen oder Verdampfen auf die magnetisierbaren Teilchen aufgebracht wird.
Ebenfalls Gegenstand der Erfindung ist ein weiteres Verfahren zur Herstellung der mit organischen Polymeren beschichteten magnetisierbaren Teilchen, wonach in Gegenwart der magnetisierbaren Teilchen organische Monomerbestandteile mittels Polykondensation, Polyaddition oder Polymerisation zu einem organischen Polymer umgesetzt werden.
Für die Polykondensation sind als organische Monomerbestandteile beispielsweise die Kombination aus aliphatischen Diolen und aromatischen oder aliphatischen Dicarbonsäuren, Dicarbonsäurechloride, für die Polyaddition beispielsweise die Kombination aus Diolen, Polyester- und/oder Polyetherdiolen mit Di- oder Triisocyanaten und für die Polymerisation beispielsweise olefinisch ungesättigte Verbindungen, wie Styrol, Acrylsäureester, Methacylsäureester und/oder Vinylacetat bevorzugt.
Für die Polykondensation, Polyaddition oder Polymerisation sind gängige Reaktionsbedingungen anwendbar.
Es wurde gefunden, daß besonders gut haftende Polymerbeschichtungen erzielbar sind, wenn die magnetisierbaren Partikel vor der Polymerbeschichtung silanisiert werden. Unter Silanisierung wird die Oberflächenbehandlung mit Silanen verstanden, wobei vorzugsweise solche Silane eingesetzt werden, die über mindestens eine funktionelle Gruppe, wie z.B. OH, Cl, verfügen.
In einer bevorzugten Ausführungsform der Erfindung werden vor der Beschichtung die magnetisierbaren Teilchen mit einem Silan der Formel (I)
Figure 00060001
in der
R1
ein C1 - C20-Alkylrest oder C2 - C20-Alkylenrest, der gegebenenfalls mit einer Amino-, Isocyanato- Methacryloyoxy- Acryloyloxy-, Epoxy- oder Mercaptogruppe substituiert sein und / oder durch -O-, -NH-, -COO- oder -NH-COO unterbrochen sein kann
R2
ein Phenyl, ein C1 - C18-Alkylrest oder ein C2 - C18-Alkylenrest
X
eine hydrolisierbare Gruppe bedeuten und
a
den Wert 0, 1 oder 2 annimmt, silanisiert.
Beispiele für Reste R1 sind Methyl, Ethyl, Propyl, n-Butyl, tert.-Butyl, Hexyl, Octyl, Ethylhexyl, Decyl, Dodecyl, Stearyl, Vinyl oder Allyl. Als substituierte R1-Reste seien beispielhaft genannt:
Figure 00070001
R2 ist vorzugsweise ein Phenyl oder ein C1-C6-Alkylrest, wie z.B. Methyl, Ethyl, Propyl, n-Butyl, tert.-Butyl, Pentyl oder Hexyl.
Die durch X symbolisierten hydrolisierbaren Gruppen am Si-Atom umfassen beispielsweise Halogenatome, insbesondere Chlor und Brom, C1-C6-Alkoxygruppen, vorzugsweise Methoxy und Ethoxy, sowie Carboxylatgruppen, wie Acetat und Propionat.
Beispiele für besonders bevorzugte Silane sind in der nachstehenden Übersicht aufgelistet:
Figure 00070002
Figure 00080001
Selbstverständlich muß das Silan auf die folgende Polymerbeschichtung abgestimmt sein.
Erfolgt die Silanisierung beispielsweise mit den Silanen 3 oder 4, so wird ein Silan mit polymerisierbaren Doppelbindungen auf die magnetisierbaren Teilchen aufgebracht. In diesem Fall ist das Aufbringen einer Polymerbeschichtung durch radikalische Polymerisation von Monomeren, wie z.B. Acrylsäureestern, wodurch eine feste chemische Bindung zwischen dem Silan und der Polymerbeschichtung aufgebaut wird, bevorzugt. Oberflächen, die mit dem Silan 7 oder 9 modifiziert wurden, können leicht mit isocyanathaltigen Verbindungen, wie z.B. mit Stearylisocyanat zur Reaktion gebracht werden, wobei eine Polymerbeschichtung mit Harnstoffeinheiten entsteht. Daher ist die Silanisierung mit den Silanen 3, 4, 7 und/oder 9 bevorzugt.
Die Umsetzung kann bereits durch einfaches Vermischen der Komponenten mit üblichen Rühr- oder Mischgeräten erfolgen. Die Temperatur bei der Umsetzung liegt vorzugsweise im Bereich von 0°C bis 100°C und die Reaktionsdauer beträgt vorzugsweise 0,1 h bis 10 h.
Die Menge des eingesetzten Silans kann in weiten Grenzen variiert werden, sie liegt vorzugsweise im Bereich von 0,01 bis 25 Gew.-%, besonders bevorzugt 0,1 bis 10 Gew.-%, bezogen auf die magnetisierbaren Teilchen.
Die Silanisierung wird vorzugsweise in Anwesenheit mindestens eines aprotischen Lösungsmittels durchgeführt. Geeignete Lösungsmittel sind z.B. Aceton, Butanon, Dichlormethan, Trichlormethan, Toluol, Essigester oder Tetrahydrofuran.
Bei der Silanisierung kann zusätzlich ein Katalysator eingesetzt werden. Geeignete Katalysatoren sind Protonensäuren, wie Essigsäure oder Chlorwasserstoff sowie Amine, wie Dicyclohexylamin. Die Menge des Katalysators beträgt vorzugsweise 0,01 bis 5 Gew.-%, bezogen auf das Silan.
Das bei der Silanisierung eingesetzte Silan kann zunächst unter saurer Katalyse mit z.B. molaren Mengen Wasser hydrolysiert werden, wobei die hydrolisierbaren Reste X in OH-Gruppen überführt werden, und dann die frisch hergestellte OH-Verbindung in einem Lösungsmittel mit dem magnetisierbaren Teilchen zur Reaktion gebracht wird.
Gegenstand der Erfindung ist zudem ein Verfahren zur Herstellung der erfindungsgemäßen magnetorheologischen Flüssigkeiten, wonach in einer oleophilen Flüssigkeit, gegebenfalls in Anwesenheit eines Verdickungsmittels, die nach dem ebenfalls erfindungsgemäßen Verfahren hergestellten, mit einem organischen Polymer beschichteten magnetisierbare Teilchen dispergiert werden.
In einer bevorzugten Ausführungsform der Erfindung wird zunächst die Trägerflüssigkeit mit dem Verdickungsmittel unter Anwendung hoher Scherkräfte, d.h. vorzugsweise bei Dispergierenergien zwischen 50 und 500 W/l, beispielsweise mit Hilfe eines Ultraturrax®, erhältlich bei der Firma IKA-Labortechnik, Deutschland, homogen gemischt und anschließend die beschichteten magnetisierbaren Teilchen eingerührt.
Gegenstand der Erfindung ist zudem die Verwendung der erfindungsgemäßen nichtwäßrigen magnetorheologische Flüssigkeiten in Kupplungen, Dämpfern und/oder Lagern.
Die Erfindung soll anhand des vorliegenden Beispiele erläutert werden. Die Erfindung ist dabei jedoch nicht auf diese Beispiele beschränkt.
Ausführungsbeispiel Beispiel 1 Beschichtung von Carbonyleisen
Durch 30-minütiges Mischen von 200 g gamma-Methacryloxypropyltrimethoxysilan, 352 g E-Wasser und 2.6 g Eisessig in einem Becherglas bei Raumtemperatur wurde eine Silanisierungslösung erzeugt. In einem heizbaren 4l-Dreihalskolben mit Glasrührer, Thermometer und Intensivkühler wurden 1000 g Carbonyleisen EN der Firma BASF AG, Deutschland, mit einer mittleren Teilchengröße (gemessen gemäß ASTM B 330) von 4-5 µm, das folgende Verunreinigungen C: 0,8 Gew.-%, N: 0,8 Gew.-%, O: 0,3 Gew.-% aufweist, in 2000 ml Butanon vorgelegt und mit der Silanisierungslösung versetzt. Das Gemisch wurde 16 h bei 40°C gerührt. Nach dem Abkühlen wird der Feststoff auf einer Nutsche abgesaugt, mehrfach mir Butanon gewaschen und bei 80°C 10 h getrocknet.
Das silanisierte Carbonyleisen wurde in 2000ml Butanon aufgeschlämmt und mit 190g Stearylmethacrylat, 10 g Ethylenglycoldimethacrylat und 6g Azoisobuttersäuredinitril versetzt. Das Gemisch wurde unter Rühren 2 h bei 70°C und weitere 2h am Rückfluß erhitzt. Der Feststoff wird nach dem Abkühlen abfiltriert, dreimal mit je 1500 ml Butanon gewaschen und 12 h lang bei 50°C im Vakuum getrocknet.
Beispiel 2 Silanisierung von Carbonyleisen
50 g gamma-Aminopropyltriethoxysilan wurden in 1000 ml Cloroform gelöst. In diese Lösung wurden 1000 g Carbonyleisen EN der Firma BASF AG, Deutschland, mit einer mittleren Teilchengröße (gemessen gemäß ASTM B 330) von 4-5 µm, das folgende Verunreinigungen C: 0,8 Gew.-%, N: 0,8 Gew.-%, O: 0,3 Gew.-% aufweist, bei Raumtemperatur eingestreut und unter gelegentlichem Umschütteln 1 h stehen gelassen. Anschließend wurde das beschichtete Carbonyleisen intensiv mit 1000 ml Chloroform gewaschen, 1 d bei Raumtemperatur und Atmosphärendruck sowie 18 h bei 50°C im Hochvakuum getrocknet.
Beispiel 3 Polyurethanbeschichtung von Carbonyleisen und Herstellung einer magnetorheologischen Flüssigkeit
32 g silanisiertes Carbonyleisen aus Beispiel 2 wurden mit 0,04 g Diazabicyclo[2.2.2]oktan in 8,0 g eines trifunktionellen Polyethylenglycols mit einem Molekulargewicht von 1015, hergestellt durch Ethoxylierung von Trimethylolpropan, eingerührt. Diese Mischung wurde mit Hilfe eines Ultraturrax® in eine Lösung aus 0,84 g des Umsetzungsproduktes aus 40 Teilen Octamethylcyclotetrasiloxan mit 2 Teilen N-(β-Aminoethyl)-γ-aminopropylmethyldiethoxysilan in 13,3 g Siliconöl (Baysilone® M 5,erhältlich bei der Bayer AG, Deutschland) eindispergiert. Zu dieser Dispersion wurden unter Scherung 2,05 g Toluoldiisocyanat hinzugegeben und 30 s nachdispergiert. Anschließend wurde die Dispersion 12 h bei 80°C zur gebrauchsfertigen magnetorheologischen Flüssigkeit ausgehärtet.

Claims (14)

  1. Magnetorheologische Flüssigkeiten, bestehend aus magnetisierbaren Teilchen, mindestens einer oleophilen Flüssigkeit und gegebenenfalls einem Verdickungsmittel, dadurch gekennzeichnet, daß die magnetisierbaren Teilchen mit einem organischen Polymer beschichtet sind.
  2. Magnetorheologische Flüssigkeiten nach Anspruch 1, dadurch gekennzeichnet, daß diese 45 bis 98 Gew.-% mit einem organischen Polymer beschichtete magnetisierbare Teilchen, 2 bis 45 Gew.-% einer oleophilen Flüssigkeit sowie 0 bis 20 Gew.-% eines Verdickungsmittels enthalten, wobei die Summe der Gew.-% 100 Gew.-% ergibt.
  3. Magnetorheologische Flüssigkeiten nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die mittlere längste Ausdehnung der mit einem organischen Polymer beschichteten magnetisierbaren Teilchen, bezogen auf deren Masse, 0,1 bis 100 µm beträgt.
  4. Magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Gewichtsanteil der Beschichtung der mit organischem Polymer beschichteten magnetisierbaren Teilchen 0,1 bis 50 Gew.-%, bezogen auf die magnetisierbaren Teilchen, beträgt.
  5. Magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das organische Polymer Vinylpolymerisate, Polyharnstoffe und/oder Polyurethane sind.
  6. Magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die magnetisierbaren Teilchen aus Eisen und/oder Eisenlegierungen sind.
  7. Magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Verdickungsmittel Gele, Silikate, Metalloxide und/oder flammhydrolytisch gewonnene hochdisperse Kieselsäuren mit einem mittleren Teilchendurchmessen von kleiner 1 µm sind.
  8. Magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Menge an Verdickungsmittel 0,1 bis 20 Gew.-% beträgt.
  9. Magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die oleophile Flüssigkeit mindestens ein Mineralöl oder mindestens ein Siliconöl ist.
  10. Verfahren zur Herstellung von mit organischem Polymer beschichteten magnetisierbaren Teilchen, dadurch gekennzeichnet, daß in Gegenwart der magnetisierbaren Teilchen organische Monomerbestandteile mittels Polykondensation, Polyaddition oder Polymerisation zu einem organischen Polymer umgesetzt werden.
  11. Verfahren zur Herstellung von mit einem organischen Polymer beschichteten magnetisierbaren Teilchen, dadurch gekennzeichnet, daß das organische Polymer in geschmolzener Form oder aus einem Lösemittel ausgefällt oder durch Verdampfen des Lösemittels auf die magnetisierbaren Teilchen aufgebracht wird.
  12. Verfahren zur Herstellung von mit einem organischen Polymer beschichteten magnetisierbaren Teilchen nach einem oder mehreren der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß die magnetisierbaren Teilchen vorab durch die Umsetzung mit einem Silan der Formel(I)
    Figure 00150001
    in der
    R1
    ein C1 - C20-Alkylrest oder C2 - C20-Alkylenrest ist, der gegebenenfalls mit einer Amino-, Isocyanato- Methacryloyoxy- Acryloyloxy, Epoxy oder Mercaptogruppe substituiert und/ oder durch -O-, -NH-, -COO- oder NH-COO unterbrochen ist,
    R2
    ein Phenyl oder ein C1 - C6-Alkylrest und
    X
    eine hydrolisierbare Gruppe bedeuten und
    a
    den Wert 0, 1 oder 2 annimmt, silanisiert werden.
  13. Verfahren zur Herstellung von magnetorheologische Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in der oleophilen Flüssigkeit, gegebenfalls in Anwesenheit eines Verdickungsmittels, die nach den Ansprüchen 10 bis 12 hergestellten magnetisierbaren Teilchen dispergiert werden.
  14. Verwendung der magnetorheologischen Flüssigkeiten nach einem oder mehreren der Ansprüche 1 bis 9 in Kupplungen, Dämpfern und / oder Lagern.
EP97120063A 1996-11-28 1997-11-17 Magnetorheologische Flüssigkeiten und mit Polymer beschichtete, magnetische Teilchen Expired - Lifetime EP0845790B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19649321 1996-11-28
DE19649321 1996-11-28

Publications (2)

Publication Number Publication Date
EP0845790A1 true EP0845790A1 (de) 1998-06-03
EP0845790B1 EP0845790B1 (de) 2002-07-10

Family

ID=7813025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97120063A Expired - Lifetime EP0845790B1 (de) 1996-11-28 1997-11-17 Magnetorheologische Flüssigkeiten und mit Polymer beschichtete, magnetische Teilchen

Country Status (5)

Country Link
US (1) US5989447A (de)
EP (1) EP0845790B1 (de)
JP (1) JPH10163021A (de)
KR (1) KR19980042844A (de)
DE (1) DE59707683D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027945A1 (en) * 1999-10-15 2001-04-19 Ferrotec Corporation Composition and method of making a ferrofluid with chemical stability
WO2001031662A1 (en) * 1999-10-28 2001-05-03 Ferrotec Corporation Ferrofluid composition and process
DE10333703B4 (de) * 2002-07-24 2007-04-26 Völkl Tennis GmbH Ballspielschläger
US7959822B2 (en) 2005-06-30 2011-06-14 Basf Se Magnetorheological liquid

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061713A1 (en) * 2000-02-18 2001-08-23 The Board Of Regents Of The University And Community College System Of Nevada Magnetorheological polymer gels
US6451219B1 (en) * 2000-11-28 2002-09-17 Delphi Technologies, Inc. Use of high surface area untreated fumed silica in MR fluid formulation
US6679999B2 (en) 2001-03-13 2004-01-20 Delphi Technologies, Inc. MR fluids containing magnetic stainless steel
JP2003020494A (ja) * 2001-07-10 2003-01-24 Building Research Institute 分散安定化磁気粘性流体
US6638443B2 (en) 2001-09-21 2003-10-28 Delphi Technologies, Inc. Optimized synthetic base liquid for magnetorheological fluid formulations
US6787058B2 (en) 2001-11-13 2004-09-07 Delphi Technologies, Inc. Low-cost MR fluids with powdered iron
US6824700B2 (en) * 2003-01-15 2004-11-30 Delphi Technologies, Inc. Glycol-based MR fluids with thickening agent
US7101487B2 (en) * 2003-05-02 2006-09-05 Ossur Engineering, Inc. Magnetorheological fluid compositions and prosthetic knees utilizing same
US7297290B2 (en) * 2003-08-08 2007-11-20 The Board Of Regents Of The University And Community College System Of Nevada Nanostructured magnetorheological fluids and gels
US7883636B2 (en) 2003-08-08 2011-02-08 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Nanostructured magnetorheological fluids and gels
US6929757B2 (en) * 2003-08-25 2005-08-16 General Motors Corporation Oxidation-resistant magnetorheological fluid
US7070708B2 (en) 2004-04-30 2006-07-04 Delphi Technologies, Inc. Magnetorheological fluid resistant to settling in natural rubber devices
US20050242322A1 (en) * 2004-05-03 2005-11-03 Ottaviani Robert A Clay-based magnetorheological fluid
CN1317721C (zh) * 2004-06-22 2007-05-23 上海大学 一种磁流变液及其制备方法
US7419616B2 (en) * 2004-08-13 2008-09-02 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
EP1632962A1 (de) * 2004-09-07 2006-03-08 C.R.F. Società Consortile per Azioni Ferromagnetische Teilchen für magnetorheologische oder elektrorheologische Flüssigkeiten, diese Teilchen enthaltende magnetorheologische oder elektrorheologische Flüssigkeiten und zugehörige Herstellungsverfahren
US20060188905A1 (en) 2005-01-17 2006-08-24 Dynal Biotech Asa Process
GB0500888D0 (en) * 2005-01-17 2005-02-23 Dynal Biotech Asa Process
CN100385577C (zh) * 2005-02-25 2008-04-30 同济大学 以碳纳米管作为抗沉降剂的磁流变液及其制备方法
KR20080103773A (ko) * 2007-05-25 2008-11-28 에스케이에너지 주식회사 자성 복합체 입자 및 이를 이용한 자기유변유체
EP2176870B1 (de) * 2007-08-01 2017-01-11 LORD Corporation Rückstandsfreie magnetorheologische flüssigkeiten auf glykolbasis
US20110121223A1 (en) * 2009-11-23 2011-05-26 Gm Global Technology Operations, Inc. Magnetorheological fluids and methods of making and using the same
DE102010026782A1 (de) 2010-07-09 2012-01-12 Eckart Gmbh Plättchenförmige Eisenpigmente, magnetorheologisches Fluid und Vorrichtung
KR101510040B1 (ko) * 2014-02-11 2015-04-07 현대자동차주식회사 자기유변유체 조성물
KR101768711B1 (ko) * 2014-07-21 2017-08-17 서울대학교산학협력단 안정성이 우수한 발포고분자로 둘러싸인 자성입자를 함유하는 자기유변체 및 그 제조방법
US10923260B2 (en) * 2015-09-15 2021-02-16 Honda Motor Co., Ltd. Magnetorheological fluid composition and vibration damping device using same
US10774218B2 (en) * 2017-11-03 2020-09-15 The Boeing Company Iron particle passivation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023265A1 (de) * 1979-07-06 1981-02-04 Bayer Ag Feinteilige Festkörper, ihre Herstellung und Verwendung
JPH03219602A (ja) * 1990-01-25 1991-09-27 Toyota Motor Corp 磁粉流体
WO1994010693A1 (en) * 1992-10-30 1994-05-11 Lord Corporation Thixotropic magnetorheological materials
US5354488A (en) * 1992-10-07 1994-10-11 Trw Inc. Fluid responsive to a magnetic field

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1145696B (it) * 1979-08-24 1986-11-05 Rhone Poulenc Ind Procedimento di preparazione di perle magnetiche di polimeri vinilaromatici
JPH0611008B2 (ja) * 1983-11-16 1994-02-09 株式会社東芝 圧粉鉄心
EP0156537A3 (de) * 1984-03-02 1987-05-13 Board Of Regents University Of Texas System Biologische magnetische Flüssigkeiten
US4832891A (en) * 1987-11-25 1989-05-23 Eastman Kodak Company Method of making an epoxy bonded rare earth-iron magnet
ES2080740T3 (es) * 1988-11-14 1996-02-16 Akzo Nobel Nv Suspension acuosa para ensayos de diagnostico.
FR2645160B1 (de) * 1989-03-31 1992-10-02 Rhone Poulenc Chimie
US5198137A (en) * 1989-06-12 1993-03-30 Hoeganaes Corporation Thermoplastic coated magnetic powder compositions and methods of making same
US5167850A (en) * 1989-06-27 1992-12-01 Trw Inc. Fluid responsive to magnetic field
US5082581A (en) * 1989-08-30 1992-01-21 Nippon Seiko Kabushiki Kaisha Aqueous magnetic fluid composition and process for producing thereof
US4992190A (en) * 1989-09-22 1991-02-12 Trw Inc. Fluid responsive to a magnetic field
US5240626A (en) * 1990-09-21 1993-08-31 Minnesota Mining And Manufacturing Company Aqueous ferrofluid
RU2106710C1 (ru) * 1992-10-30 1998-03-10 Лорд Корпорейшн Магнитореологический материал
US5578238A (en) * 1992-10-30 1996-11-26 Lord Corporation Magnetorheological materials utilizing surface-modified particles
US5296773A (en) * 1993-04-20 1994-03-22 General Motors Corporation Composite rotor for a synchronous reluctance machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023265A1 (de) * 1979-07-06 1981-02-04 Bayer Ag Feinteilige Festkörper, ihre Herstellung und Verwendung
JPH03219602A (ja) * 1990-01-25 1991-09-27 Toyota Motor Corp 磁粉流体
US5354488A (en) * 1992-10-07 1994-10-11 Trw Inc. Fluid responsive to a magnetic field
WO1994010693A1 (en) * 1992-10-30 1994-05-11 Lord Corporation Thixotropic magnetorheological materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 502 (E - 1147) 18 December 1991 (1991-12-18) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027945A1 (en) * 1999-10-15 2001-04-19 Ferrotec Corporation Composition and method of making a ferrofluid with chemical stability
WO2001031662A1 (en) * 1999-10-28 2001-05-03 Ferrotec Corporation Ferrofluid composition and process
DE10333703B4 (de) * 2002-07-24 2007-04-26 Völkl Tennis GmbH Ballspielschläger
US7959822B2 (en) 2005-06-30 2011-06-14 Basf Se Magnetorheological liquid

Also Published As

Publication number Publication date
EP0845790B1 (de) 2002-07-10
DE59707683D1 (de) 2002-08-14
JPH10163021A (ja) 1998-06-19
US5989447A (en) 1999-11-23
KR19980042844A (ko) 1998-08-17

Similar Documents

Publication Publication Date Title
EP0845790B1 (de) Magnetorheologische Flüssigkeiten und mit Polymer beschichtete, magnetische Teilchen
EP1279704B1 (de) Verfahren zur Herstellung von modifiziertem Russ
DE60005965T2 (de) Wasserhaltige magnetorheologische materialien
EP0288693B1 (de) Verfahren zur Herstellung von hochdispersem Metalloxid mit ammoniumfunktionellem Organopolysiloxan modifizierter Oberfläche als positiv steuerndes Ladungsmittel für Toner
DE3411759C1 (de) An ihrer Oberflaeche durch hydrophile und hydrophobe Gruppen modifizierte Teilchen
DE2743682C2 (de) Mit einem Silan oberflächlich behandelte oxidische oder silicatische Teilchen und deren Verwendung
DE4030727A1 (de) Kunstharzbeschichtete metallpigmente, verfahren zu ihrer herstellung und ihre verwendung
DE10151478C1 (de) Mit Aminogruppen oberflächenmodifizierte Feststoffe, Verfahren zu deren Herstellung und deren Verwendung
US5178947A (en) Magnetizable composite microspheres based on a crosslinked organosilicon polymer
US5859075A (en) Polyurethane Microspheres
EP2049603B1 (de) Mit polysiloxan oberflächenmodifizierte partikel und herstellungsverfahren
DE2522945C2 (de) Verfahren zur Herstellung gefüllter agglomerierter Körner aus einem Tetrafluoräthylenpolymerisat
DE2743663A1 (de) Mit silan behandelte aluminiumhydroxide
CA2191469C (en) Polyether phosphates
EP0267341A1 (de) Verfahren zur Herstellung von Organoton mit verbesserten Dispergierbarkeit enthaltenden Harzzusammensetzung
EP1611141B1 (de) Organosilylfunktionalisierte partikel und deren herstellung
DE4446383C2 (de) Dispergierharze
EP0546407B1 (de) Verwendung von organofunktionellen Polysiloxanen zum Modifizierten der Oberfläche feinteiliger Partikel
DE102004022400A1 (de) Feuchtigkeitsvernetzbare alkoxysilyfunktionelle Partikel enthaltende Zusammensetzung
DE102007030285A1 (de) Oberflächenmodifizierte Partikel und Herstellungsverfahren
EP0546406B1 (de) Verwendung von organofunktionellen Polysiloxanen zum Modifizieren der Oberfläche feinteiliger Partikel
US5128204A (en) Magnetizable microspheres based on a polysilsesquioxane and a process for their preparation
DE4119670A1 (de) Elektroviskose fluessigkeit auf basis von polyetheracrylaten als disperse phase
EP0688818A1 (de) Präparationen von monodispersen kugelförmigen Oxidpartikeln
DE4004927A1 (de) Magnetaufzeichnungstraeger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19981203

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GE BAYER SILICONES GMBH & CO. KG

17Q First examination report despatched

Effective date: 20000609

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FLUDICON GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020710

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020710

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020710

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020710

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WENDT, ECKHARD, DR.

Inventor name: BLOODWORTH, ROBERT, DR.

Inventor name: KIJLSTRA, JOHAN, DR.

Inventor name: HALLE, OLAF, DR.

Inventor name: PODSZUN, WOLFGANG, DR.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707683

Country of ref document: DE

Date of ref document: 20020814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020710

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170131

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59707683

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWAELTE VOELGER & BEHRENS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59707683

Country of ref document: DE

Owner name: HITACHI AUTOMOTIVE SYSTEMS EUROPE GMBH, DE

Free format text: FORMER OWNER: FLUDICON GMBH, 64293 DARMSTADT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59707683

Country of ref document: DE

Owner name: HITACHI AUTOMOTIVE SYSTEMS EUROPE GESELLSCHAFT, DE

Free format text: FORMER OWNER: FLUDICON GMBH, 64293 DARMSTADT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59707683

Country of ref document: DE