EP0842070B1 - Process and device for determining a pressure value - Google Patents

Process and device for determining a pressure value Download PDF

Info

Publication number
EP0842070B1
EP0842070B1 EP96922763A EP96922763A EP0842070B1 EP 0842070 B1 EP0842070 B1 EP 0842070B1 EP 96922763 A EP96922763 A EP 96922763A EP 96922763 A EP96922763 A EP 96922763A EP 0842070 B1 EP0842070 B1 EP 0842070B1
Authority
EP
European Patent Office
Prior art keywords
delivery pump
voltage
determined
pressure
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96922763A
Other languages
German (de)
French (fr)
Other versions
EP0842070A1 (en
Inventor
Michael Wolf
Jürgen Binder
Helmut Wiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0842070A1 publication Critical patent/EP0842070A1/en
Application granted granted Critical
Publication of EP0842070B1 publication Critical patent/EP0842070B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/404Control of the pump unit
    • B60T8/4059Control of the pump unit involving the rate of delivery

Definitions

  • the invention relates to methods and an apparatus for Determination of a pressure variable, in particular a differential pressure in a brake system with anti-lock and or Drive slip control. It is based on WO 94/18041 out.
  • WO 94/18041 discloses a method and a circuit arrangement to determine the pedal force as a controlled variable for a brake system with anti-lock control.
  • the brake system contains a hydraulic pump. With this Hydraulic pump becomes a pressure medium, soft one Pressure reduction derived from the wheel brake was returned. On the other hand, the hydraulic pump is used for the auxiliary pressure supply.
  • the drive motor becomes one during regular braking Hydraulic pump switched to generator operation and the The level of the generator voltage and its decay behavior evaluated. From the generator voltage and the decay behavior the pre-pressure dependent on the pedal force can be approximated determine.
  • DE-OS 38 19 490 A1 describes a pump system of a hydraulic Actuator for setting a movable Organ of an object. It is about this object for example, a brake of an anti-lock braking system Cars.
  • the pump system includes an electric motor for driving a pump that affects hydraulic fluid pressure becomes.
  • the pump system also includes a test facility to measure the pressure of the hydraulic fluid and thus to record the functionality of the hydraulics. The pressure is not measured with the help of a sensor, but based on the detected engine speed, the recorded current of the electric motor and the current operating voltage on the electric motor. Based on the pressure value of the hydraulic fluid determined in this way the electric motor is controlled or the Functionality of the hydraulics monitored.
  • DE-OS 38 19 490 A1 shows a determination of the torque of the electric motor, starting from the motor voltage and the motor current.
  • the invention has for its object an optimal method and to provide an optimal device with which is a pressure variable, in particular a differential pressure in one Brake system with anti-lock protection and / or traction control can be determined without the pressure-sensing sensors.
  • differential pressure in particular in a process Brake system with anti-lock and / or traction control can be determined easily and inexpensively. Because it can on the usually when capturing Differential pressures used expensive sensors waived become.
  • FIG. 1 shows a schematic representation of essential elements of the invention Device
  • Figure 2 is a block diagram for Control of the return pump
  • Figure 3 on the return pump applied voltage plotted against time
  • Figure 4 shows the dependence of different signals on each other.
  • the inlet valve which is in the brake line between the Brake pressure sensor or the master brake cylinder and the wheel brake is generally at rest switched to passage, while the exhaust valves, the serves to reduce pressure, the pressure medium path in the rest position back to the master brake cylinder via a return pump locks.
  • valve arrangements can also be used with three switch positions.
  • An inlet valve 100 projects through a first connection a first line 105 with a master brake cylinder 110 in Connection.
  • the first line 105 usually prevails a pressure PV, which is also referred to as a form.
  • a second line 115 is the second connection of the Intake valve 100 in connection with the wheel brake 120.
  • the pressure PW which the Determined braking force of the wheel.
  • connection There is a connection from the second line 115 to one Connection of an exhaust valve 160, the second connection communicates with a storage chamber 175. Over a Return pump 170 is the storage chamber 175 with the Master brake cylinder in connection.
  • the inlet valve 100 shown is a so-called 2/2 solenoid valve. In its rest position as long as no current flows, the inlet valve 100 gives the Flow between the first line 105 and the second Line 115 free. In this position the solenoid valve armature held by a spring. By energizing one Coil 130 is exerted against the spring force, which brings the valve into its closed position.
  • the illustrated outlet valve 160 is also a so-called 2/2 solenoid valve. In its rest position the solenoid valve is blocked as long as no current is flowing 160 the passage between the second line 115 and the return pump 170. In this position the solenoid valve armature held by a spring. By energizing one Coil 165 is exerted against the spring force, which brings the valve into its open position.
  • the coil 165 is connected to a first electrical connection with a supply voltage Ubat and with a second connection with a switching means 180 in connection.
  • Corresponding coil 130 is connected via a first electrical connection with the supply voltage Ubat and with a second one Connection with a second switching means 140 in connection.
  • Field-effect transistors are preferably used as switching means used.
  • the control connection of the first switching means 180 is also available a control unit 150 in connection. About this connection the first switching means 180 with a first drive signal A1 applied.
  • the control port of the second Switching means 130 also stands with the control unit 150 in connection and is from this with a second control signal A2 acted upon.
  • the control unit 150 is preferably an anti-lock and / or traction control system. This processes various signals from different sensors or Signals from other control units, such as one Vehicle speed control, a vehicle dynamics control and / or a vehicle speed limit. Especially this device processes signals from speed sensors 190, the speeds of the various wheels of the motor vehicle to capture. Starting from the various processed Signals, the control unit 150 determines the signals A1 and A2 for controlling the coils 130 and 165.
  • the pressure build-up and the Pressure reduction in the second line 115 and thus in the wheel brake cylinder 120 can be controlled.
  • control unit 150 controls the inlet valve 100 so that it closes. Controls at the same time the exhaust valve 160 to open. In order to the connection between the wheel brake cylinder 120 and the storage chamber 175 released.
  • the return pump 170 conveys the hydraulic fluid from the storage chamber 175 back into the master cylinder 110. This will make one Pressure difference between the primary pressure PV in the master brake cylinder and the pressure PS built up in the storage chamber. This Differential pressure is called differential pressure.
  • control unit 150 controls this Intake valve in its open and exhaust valve 160 in its closed position.
  • the differential pressure PD between the pressure PV in the first line 105 and the Pressure PS in the storage chamber 175 may be known. According to the invention was recognized that starting from a size that a Represents the measure of the speed of the return pump, the differential pressure PD can be determined. This applies in particular as long as the outlet valve 160 releases the flow.
  • FIG 2 is a device for controlling the return pump 170 shown. Already described in Figure 1 Elements are identified by corresponding reference symbols.
  • the return pump 170 is at its first connection 171 in connection with the supply voltage Ubat. Your second Connection 172 is via a switching means 200 and Current measuring means 210 connected to ground. From port 171 and from the connection 172 of the return pump 170 there is one each Line to a return pump evaluation 220.
  • the return pump evaluation 220 acts on the control unit 150 and the return pump control 230 with one Signal.
  • the return pump control 230 receives a signal from the Control unit 150 and acts on the switching means 200 and if necessary, the return pump control 220 with a control signal.
  • the current measuring means 210 is preferably as ohmic resistance implemented at its two connections a voltage value is tapped to the return pump control 230 is directed.
  • the return pump 170 is only controlled. This means based on the request signal the control unit 150 controls the return pump control 230 the switch 200 accordingly, so that the return pump 170 is energized.
  • the return pump is activated in a clocked manner.
  • the Return pump evaluation 220 detects that on the return pump applied voltage. Those in the switch-off breaks voltage applied to the return pump is a measure of the speed of the return pump. Based on this tension According to the invention, the differential pressure can be determined and be sent to the control unit 150.
  • the voltage or the speed of the return pump be returned to the return pump control 230.
  • the voltage or the speed of the Return pump 170 from return pump controller 230 by varying the duty cycle or the pulse pause ratio be managed.
  • FIG 3 is the applied to the return pump 170 Voltage U plotted against time t.
  • the switching means 200 is closed.
  • the one on the return pump 170 falling voltage corresponds approximately to the supply voltage Ubat.
  • the switch 200 opened and the voltage drops briefly to values lower as zero.
  • the pulse pause begins at time T1 Pulse train.
  • the thousands between the pulse pause time Time T1 and T2 of the control pulse sequence continue Pump now acts as a generator. This will cause the return pump generates a voltage based on the value UG slowly declines over time.
  • switch 200 is closed again and the voltage rises to supply voltage Ubat.
  • the voltage again falls to a value less than zero and then rises again to the value UG.
  • switch 200 is closed again and kept closed until time T5.
  • the value of the voltage UG that increases at the return pump 170 essentially depends on the Speed N of the return pump. This connection is shown in simplified form in FIG. 4a. At low speeds the return pump results in a small voltage UG and a large voltage UG at high speeds.
  • the speed of the return pump depends on that of the moment M to be applied to the pump. This connection is shown in simplified form in FIG. 4b. A little moment M has a high speed and a large moment has a small one Speed N result.
  • the required moment M does not only affect the Speed and thus to the value UG of the falling voltage out, but the moment also affects the course of the Voltage off. With a bigger moment the tension drops faster. This is for example in the period between T3 and T4 the case.
  • the differential pressure PD is determined. Based on the value UG after switching off, the following results 4a the speed of the return pump. This value can also the return pump control 230 for speed control be fed. Based on the speed N results 4b, the moment to be applied by the pump M. Based on the moment M, according to FIG. 4c, the Differential pressure PD.
  • This determination is made in the return pump evaluation 220 carried out. This can be done with reference to FIGS. 4a, 4b and 4c shown maps or according to a predetermined algorithm respectively.
  • the differential pressure PD is determined. The prerequisite for this is that a regulation of the Return pump 170 falling voltage U during the Switch-off breaks are provided and that the supply voltage Ubat is known.
  • the control can be controlled by means of the differential pressure PD determined in this way the intake and exhaust valves are improved.
  • the pressure PS in the storage chamber 175 is small compared to the form PV, the pressure difference corresponds PD the form PV.
  • the form PV can be estimated.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

A process and device are disclosed for determining a pressure value, in particular in a slip-controlled braking system with a feeding pump (170). The differential pressure (PD) between a first pipe (105) and a second pipe (115) is determined based on a value (M) that represents a measure for the speed of rotation (N) of the feeding pump (170).

Description

Stand der TechnikState of the art

Die Erfindung betrifft Verfahren und eine Vorrichtung zur Ermittlung einer Druckgröße, insbesondere eines Differenzdruckes in einer Bremsanlage mit Blockierschutz- und oder Antriebsschlupfregelung. Dabei geht sie von der WO 94/18041 aus.The invention relates to methods and an apparatus for Determination of a pressure variable, in particular a differential pressure in a brake system with anti-lock and or Drive slip control. It is based on WO 94/18041 out.

Aus dem stand der Technik sind verschiedene Verfahren und Vorrichtungen zur Ermittlung von Druckgrößen bekannt.Various methods and are from the prior art Devices for determining pressure sizes are known.

Die WO 94/18041 offenbart ein Verfahren bzw. eine Schaltungsanordnung zur Bestimmung der Pedalkraft als Regelgröße für eine Bremsanlage mit Blockierschutzregelung. Unter anderem enthält die Bremsanlage eine Hydraulikpumpe. Mit dieser Hydraulikpumpe wird zum einen Druckmittel, weiches zum Druckabbau aus der Radbremse abgeleitet wurde, rückgefördert. Zum anderen dient die Hydraulikpumpe der Hilfsdruckversorgung. Bei dem in der WO 94/18041 beschriebenen Verfahren wird während einer Regelbremsung der Antriebsmotor einer Hydraulikpumpe auf Generatorbetrieb umgeschaltet und die Höhe der Generatorspannung sowie deren Abklingverhalten ausgewertet. Aus der Generatorspannung und dem Abklingverhalten läßt sich der von der Pedalkraft abhängige Vordruck näherungsweise ermitteln.WO 94/18041 discloses a method and a circuit arrangement to determine the pedal force as a controlled variable for a brake system with anti-lock control. Amongst other things the brake system contains a hydraulic pump. With this Hydraulic pump becomes a pressure medium, soft one Pressure reduction derived from the wheel brake was returned. On the other hand, the hydraulic pump is used for the auxiliary pressure supply. In the method described in WO 94/18041 the drive motor becomes one during regular braking Hydraulic pump switched to generator operation and the The level of the generator voltage and its decay behavior evaluated. From the generator voltage and the decay behavior the pre-pressure dependent on the pedal force can be approximated determine.

Die DE-OS 38 19 490 A1 beschreibt ein Pumpsystem eines hydraulischen Stellgliedes zum Einstellen eines beweglichen Organs eines Objektes. Bel diesem Objekt handelt es sich beispielsweise um eine Bremse eines Antiblockiersystems eines KFZ. Zum Pumpsystem gehört ein Elektromotor zum Antreiben einer Pumpe, mit der ein Hydraulik-Flüssigkeitsdruck beeinflußt wird. Das Pumpsystem enthält ferner eine Prüfeinrichtung zur Erfassung des Druckes der Hydraulikflüssigkeit und damit zur Erfassung der Funktionsfähigkeit der Hydraulik. Dabei wird der Druck nicht mit Hilfe eines Sensors gemessen, sondern ausgehend von der erfaßten Motordrehzahl, der erfaßten aktuellen Stromaufnahme des Elektromotors und der aktuellen Betriebsspannung am Elektromotor, ermittelt. Ausgehend von dem so ermittelten Druckwert der Hydraulikflüssigkeit wird der Elektromotor angesteuert, bzw. wird die Funktionsfähigkeit der Hydraulik überwacht. Desweiteren zeigt die DE-OS 38 19 490 A1 eine Ermittlung des Drebmomentes des Elektromotors, ausgehend von der Motorspannung und dem Motorstrom.DE-OS 38 19 490 A1 describes a pump system of a hydraulic Actuator for setting a movable Organ of an object. It is about this object for example, a brake of an anti-lock braking system Cars. The pump system includes an electric motor for driving a pump that affects hydraulic fluid pressure becomes. The pump system also includes a test facility to measure the pressure of the hydraulic fluid and thus to record the functionality of the hydraulics. The pressure is not measured with the help of a sensor, but based on the detected engine speed, the recorded current of the electric motor and the current operating voltage on the electric motor. Based on the pressure value of the hydraulic fluid determined in this way the electric motor is controlled or the Functionality of the hydraulics monitored. Furthermore DE-OS 38 19 490 A1 shows a determination of the torque of the electric motor, starting from the motor voltage and the motor current.

Aufgabe der ErfindungObject of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein optimales Verfahren und eine optimale Vorrichtung bereitzustellen, mit der eine Druckgröße, insbesondere ein Differenzdruck in einer Bremsanlage mit Blockierschutz und/oder Antriebsschlupfregelung, ohne den Druck erfassende Sensoren bestimmbar ist.The invention has for its object an optimal method and to provide an optimal device with which is a pressure variable, in particular a differential pressure in one Brake system with anti-lock protection and / or traction control can be determined without the pressure-sensing sensors.

Die Aufgabe wird durch die Merkmale der Ansprüche 1 oder 2 oder 5 bzw. 9 gelöst.The object is achieved by the features of claims 1 or 2 or 5 or 9 solved.

Vorteile der ErfindungAdvantages of the invention

Mit der erfindungsgemäßen Vorrichtung und den erfindungsgemäßen Verfahren kann der Differenzdruck, insbesondere in einer Bremsanlage mit Blockierschutz- und/oder Antriebsschlupfregelung einfach und kostengünstig ermittelt werden. Denn es kann auf die üblicherweise bei der Erfassung von Differenzdrücken eingesetzten teuren Sensoren verzichtet werden. With the device according to the invention and the inventive The differential pressure, in particular in a process Brake system with anti-lock and / or traction control can be determined easily and inexpensively. Because it can on the usually when capturing Differential pressures used expensive sensors waived become.

Die Ansteuerung der Auslaß- und insbesondere der Einlaßventile wird optimiert, was zwangsläufig zu einer Verbesserung des Regelverhaltens führt, dadurch daß bei Ansteuerung der Auslaß- bzw. Einlaßventile der Differenzdruck berücksichtigt wird.The control of the exhaust and especially the intake valves is optimized, which inevitably leads to an improvement of the control behavior results in that when the Exhaust or intake valves take into account the differential pressure becomes.

Ein weiterer Vorteil ergibt sich bei einer sogenannten Stotterbremse. Eine Stotterbremse liegt vor, wenn der Fahrer den Vordruck PV stark variiert. Mit obiger Schätzung des Differenzdruckes kann auf einfache Weise der Vordruckabfall erkannt und die ABS-Regelung entsprechend modifiziert werden.Another advantage is a so-called stutter brake. There is a stutter brake when the driver takes the Form PV varies widely. With the above estimate of the differential pressure can easily detect the drop in pressure and the ABS control can be modified accordingly.

Weitere vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung können den Unteransprüchen entnommen werden. Further advantageous and expedient configurations and Developments of the invention can the dependent claims be removed.

Zeichnungendrawings

Die Erfindung wird nachstehend anhand der in den Zeichnungen dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 eine schematische Darstellung wesentlicher Elemente der erfindungsgemäßen Vorrichtung, Figur 2 ein Blockdiagramm zur Ansteuerung der Rückförderpumpe, Figur 3 die an der Rückförderpumpe anliegende Spannung über der Zeit aufgetragen, und Figur 4 die Abhängigkeit verschiedener Signale voneinander.The invention is described below with reference to the drawings illustrated embodiments explained. 1 shows a schematic representation of essential elements of the invention Device, Figure 2 is a block diagram for Control of the return pump, Figure 3 on the return pump applied voltage plotted against time, and Figure 4 shows the dependence of different signals on each other.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Es ist bekannt, daß zur Modulation des Druckes in den einzelnen Radbremsen eines Fahrzeugs, das mit einer Blockierschutz- und/oder Antriebsschlupfregelung ausgerüstet ist, elektrisch betätigbare Einlaß- und Auslaßventile verwendet werden. Hierzu dienen vorzugsweise Zweiwegeventile. Der gewünschte Druckaufbaugradient oder der Druckabbaugradient wird durch Ansteuerung der Ventile mit Pulsfolgen und Variieren des Pulsdauer/Pulspauseverhältnisses erreicht.It is known to modulate the pressure in each Wheel brakes of a vehicle equipped with an anti-lock and / or traction control system, electrically operated inlet and outlet valves are used become. Two-way valves are preferably used for this. The one you want Pressure build-up gradient or the pressure reduction gradient is achieved by controlling the valves with pulse sequences and varying the pulse duration / pause ratio reached.

Das Einlaßventil, das in der Bremsleitung zwischen dem Bremsdruckgeber bzw. dem Hauptbremszylinder und der Radbremse eingefügt ist, ist im allgemeinen in seiner Ruhestellung auf Durchlaß geschaltet, während das Auslaßventile, das zum Druckabbau dient, in der Ruhestellung den Druckmittelweg zurück zum Hauptbremszylinder über eine Rückförderpumpe sperrt. The inlet valve, which is in the brake line between the Brake pressure sensor or the master brake cylinder and the wheel brake is generally at rest switched to passage, while the exhaust valves, the serves to reduce pressure, the pressure medium path in the rest position back to the master brake cylinder via a return pump locks.

Anstelle der Einlaß-/Auslaßventilpaare können auch Ventilanordnungen mit drei Schaltpositionen Verwendung finden.Instead of the inlet / outlet valve pairs, valve arrangements can also be used with three switch positions.

In Figur 1 sind die Verhältnisse am Beispiel eines Einlaßventils und eines Auslaßventils einer Blockierschutz-und/oder Antriebsschlupfregelung dargestellt. Die beschriebene Vorgehensweise ist nicht allein auf die Verwendung bei Einlaßventilen und Auslaßventilen bei Bremsanlagen mit Blockierschutz- und/oder Antriebsschlupfregelung beschränkt, sie kann auch bei anderen Anwendungen mit ähnlicher Anordnung Verwendung finden.In Figure 1, the conditions are based on the example of an intake valve and an outlet valve of an anti-lock and / or Traction control system shown. The one described How to proceed is not solely based on use Intake valves and exhaust valves in brake systems with Anti-lock and / or traction control limited, it can also be used in other applications with a similar arrangement Find use.

Ein Einlaßventil 100 steht über einen ersten Anschluß über eine erste Leitung 105 mit einem Hauptbremszylinder 110 in Verbindung. In der ersten Leitung 105 herrscht üblicherweise ein Druck PV, der auch als Vordruck bezeichnet wird. Über eine zweite Leitung 115 steht der zweite Anschluß des Einlaßventils 100 mit der Radbremse 120 in Verbindung. In der zweiten Leitung 115 herrscht der Druck PW, der die Bremskraft des Rades bestimmt.An inlet valve 100 projects through a first connection a first line 105 with a master brake cylinder 110 in Connection. The first line 105 usually prevails a pressure PV, which is also referred to as a form. over a second line 115 is the second connection of the Intake valve 100 in connection with the wheel brake 120. In the second line 115 is the pressure PW, which the Determined braking force of the wheel.

Von der zweiten Leitung 115 besteht eine Verbindung zu einem Anschluß eines Auslaßventils 160, dessen zweiter Anschluß mit einer Speicherkammer 175 in Verbindung steht. Über eine Rückförderpumpe 170 steht die Speicherkammer 175 mit dem Hauptbremszylinder in Verbindung.There is a connection from the second line 115 to one Connection of an exhaust valve 160, the second connection communicates with a storage chamber 175. Over a Return pump 170 is the storage chamber 175 with the Master brake cylinder in connection.

Bei dem dargestellten Einlaßventil 100 handelt es sich um ein sogenanntes 2/2-Magnetventil. In seiner Ruhestellung, solange kein Strom fließt, gibt das Einlaßventil 100 den Durchfluß zwischen der ersten Leitung 105 und der zweiten Leitung 115 frei. In dieser Stellung wird der Magnetventilanker durch eine Feder gehalten. Durch Bestromen einer Spule 130 wird eine Kraft entgegen der Federkraft ausgeübt, die das Ventil in seine Schließstellung bringt. The inlet valve 100 shown is a so-called 2/2 solenoid valve. In its rest position as long as no current flows, the inlet valve 100 gives the Flow between the first line 105 and the second Line 115 free. In this position the solenoid valve armature held by a spring. By energizing one Coil 130 is exerted against the spring force, which brings the valve into its closed position.

Bei dem dargestellten Auslaßventil 160 handelt es sich ebenfalls um ein sogenanntes 2/2-Magnetventil. In seiner Ruhestellung, solange keine Strom fließt, sperrt das Magnetventil 160 den Durchlaß zwischen der zweiten Leitung 115 und der Rückförderpumpe 170. In dieser Stellung wird der Magnetventilanker durch eine Feder gehalten. Durch Bestromen einer Spule 165 wird eine Kraft entgegen der Federkraft ausgeübt, die das Ventil in seinen Öffnungsstellung bringt.The illustrated outlet valve 160 is also a so-called 2/2 solenoid valve. In its rest position the solenoid valve is blocked as long as no current is flowing 160 the passage between the second line 115 and the return pump 170. In this position the solenoid valve armature held by a spring. By energizing one Coil 165 is exerted against the spring force, which brings the valve into its open position.

Die Spule 165 steht mit einem ersten elektrischen Anschluß mit einer Versorgungsspannung Ubat und mit einem zweiten Anschluß mit einem Schaltmittel 180 in Verbindung. Entsprechend steht die Spule 130 über einen ersten elektrischen Anschluß mit der Versorgungsspannung Ubat und mit einem zweiten Anschluß mit einem zweiten Schaltmittel 140 in Verbindung. Als Schaltmittel werden vorzugsweise Feldeffekttransistoren verwendet.The coil 165 is connected to a first electrical connection with a supply voltage Ubat and with a second connection with a switching means 180 in connection. Corresponding coil 130 is connected via a first electrical connection with the supply voltage Ubat and with a second one Connection with a second switching means 140 in connection. Field-effect transistors are preferably used as switching means used.

Der Steueranschluß des ersten Schaltmittels 180 steht mit einer Steuereinheit 150 in Verbindung. Über diese Verbindung wird das erste Schaltmittel 180 mit einem ersten Ansteuersignal A1 beaufschlagt. Der Steueranschluß des zweiten Schaltmittels 130 steht ebenfalls mit der Steuereinheit 150 in Verbindung und wird von dieser mit einem zweiten Ansteuersignal A2 beaufschlagt.The control connection of the first switching means 180 is also available a control unit 150 in connection. About this connection the first switching means 180 with a first drive signal A1 applied. The control port of the second Switching means 130 also stands with the control unit 150 in connection and is from this with a second control signal A2 acted upon.

Durch Schließen der Schaltmittel 140 und 180 wird der Stromfluß zwischen der Versorgungsspannung durch die Spule 130 bzw. 165 zum Masseanschluß freigegeben.By closing the switching means 140 and 180, the current flow between the supply voltage through coil 130 or 165 released for ground connection.

Bei der Steuereinheit 150 handelt es sich vorzugsweise um eine Blockierschutz- und/oder Antriebsschlupfregelung. Diese verarbeitet verschiedene Signale verschiedener Sensoren bzw. Signale anderer Steuereinheiten, wie beispielsweise einer Fahrgeschwindigkeitsregelung, einer Fahrdynamikregelung und/oder einer Fahrgeschwindigkeitsbegrenzung. Insbesondere verarbeitet diese Einrichtung Signale von Drehzahlsensoren 190, die die Drehzahlen der verschiedenen Räder des Kraftfahrzeugs erfassen. Ausgehend von den verschiedenen verarbeiteten Signalen bestimmt die Steuereinheit 150 die Signale A1 und A2 zur Ansteuerung der Spulen 130 und 165.The control unit 150 is preferably an anti-lock and / or traction control system. This processes various signals from different sensors or Signals from other control units, such as one Vehicle speed control, a vehicle dynamics control and / or a vehicle speed limit. Especially this device processes signals from speed sensors 190, the speeds of the various wheels of the motor vehicle to capture. Starting from the various processed Signals, the control unit 150 determines the signals A1 and A2 for controlling the coils 130 and 165.

Mittels der Ventile 100 und 160 kann der Druckaufbau und der Druckabbau in der zweiten Leitung 115 und damit im Radbremszylinder 120 gesteuert werden.The pressure build-up and the Pressure reduction in the second line 115 and thus in the wheel brake cylinder 120 can be controlled.

Desweiteren wird die Rückförderpumpe von der Steuereinheit 150 mit einem Ansteuersignal A3 beaufschlagt.Furthermore, the return pump from the control unit 150 acted upon by a control signal A3.

Diese Einrichtung arbeitet nun wie folgt. Im normalen Betrieb befinden sich die Magnetventile in ihrer eingezeichneten Position. Betätigt der Fahrer das nicht dargestellte Bremspedal, so wird in der Leitung 105 der Druck erhöht, was zu einem entsprechenden Druckanstieg in der zweiten Leitung 115 zur Folge hat. Tritt ein Schlupf bzw. eine Blockierneigung eines Rades auf, so tritt die Steuereinheit 150 in Aktion. In diesem Fall sind im wesentlichen drei Zustände zu unterscheiden.This facility now works as follows. In normal operation are the solenoid valves in their drawn Position. The driver operates the not shown Brake pedal, the pressure in line 105 is increased, which to a corresponding pressure increase in the second line 115 results. If there is a slip or a tendency to lock of a wheel, the control unit 150 enters Action. In this case there are essentially three states differentiate.

Im Zustand Druckabbau steuert die Steuereinheit 150 das Einlaßventil 100 derart an, daß es schließt. Gleichzeitig steuert sie das Auslaßventil 160 so an, daß es öffnet. Damit wird die Verbindung zwischen dem Radbremszylinder 120 und der Speicherkammer 175 freigegeben. Die Rückförderpumpe 170 fördert die Hydraulikflüssigkeit aus der Speicherkammer 175 in den Hauptbremszylinder 110 zurück. Dadurch wird eine Druckdifferenz zwischen dem Vordruck PV im Hauptbremszylinder und dem Druck PS in der Speicherkammer aufgebaut. Diese Druckdifferenz wird als Differenzdruck bezeichnet. In the pressure reduction state, the control unit 150 controls the inlet valve 100 so that it closes. Controls at the same time the exhaust valve 160 to open. In order to the connection between the wheel brake cylinder 120 and the storage chamber 175 released. The return pump 170 conveys the hydraulic fluid from the storage chamber 175 back into the master cylinder 110. This will make one Pressure difference between the primary pressure PV in the master brake cylinder and the pressure PS built up in the storage chamber. This Differential pressure is called differential pressure.

Im Zustand Druckhalten werden beiden Magnetventile in ihren geschlossenen Zustand gebracht.In the state of maintaining pressure, both solenoid valves are in their brought closed state.

Im Zustand Druckaufbauen, steuert die Steuereinheit 150 das Einlaßventil in seine geöffnete und das Auslaßventil 160 in seine geschlossene Position.In the pressure build-up state, the control unit 150 controls this Intake valve in its open and exhaust valve 160 in its closed position.

Um eine optimale Ansteuerung der Auslaß- und insbesondere der Einlaßventile zu erzielen, sollte der Differenzdruck PD zwischen dem Druck PV in der ersten Leitung 105 und dem Druck PS in der Speicherkammer 175 bekannt sein. Erfindungsgemäß wurde erkannt, daß ausgehend von einer Größe, die ein Maß für die Drehzahl der Rückförderpumpe darstellt, der Differenzdruck PD ermittelbar ist. Dies gilt insbesondere, solange das Auslaßventil 160 den Durchfluß freigibt.To optimal control of the outlet and in particular to achieve the intake valves, the differential pressure PD between the pressure PV in the first line 105 and the Pressure PS in the storage chamber 175 may be known. According to the invention was recognized that starting from a size that a Represents the measure of the speed of the return pump, the differential pressure PD can be determined. This applies in particular as long as the outlet valve 160 releases the flow.

In Figur 2 ist eine Einrichtung zur Ansteuerung der Rückförderpumpe 170 dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Die Rückförderpumpe 170 steht mit ihrem ersten Anschluß 171 mit der Versorgungsspannung Ubat in Verbindung. Ihr zweiter Anschluß 172 steht über ein Schaltmittel 200 sowie ein Strommeßmittel 210 mit Masse in Verbindung. Vom Anschluß 171 und vom Anschluß 172 der Rückförderpumpe 170 geht je eine Leitung zu einer Rückförderpumpenauswertung 220. Die Rückförderpumpenauswertung 220 beaufschlagt die Steuereinheit 150 sowie die Rückförderpumpensteuerung 230 mit einem Signal.In Figure 2 is a device for controlling the return pump 170 shown. Already described in Figure 1 Elements are identified by corresponding reference symbols. The return pump 170 is at its first connection 171 in connection with the supply voltage Ubat. Your second Connection 172 is via a switching means 200 and Current measuring means 210 connected to ground. From port 171 and from the connection 172 of the return pump 170 there is one each Line to a return pump evaluation 220. The return pump evaluation 220 acts on the control unit 150 and the return pump control 230 with one Signal.

Die Rückförderpumpensteuerung 230 erhält ein Signal von der Steuereinheit 150 und beaufschlagt das Schaltmittel 200 sowie ggf. die Rückförderpumpenansteuerung 220 mit einem Ansteuersignal. Das Strommeßmittel 210 ist vorzugsweise als ohmscher Widerstand realisiert an dessen beiden Anschlüssen ein Spannungswert abgegriffen wird, der zu der Rückförderpumpensteuerung 230 geleitet wird.The return pump control 230 receives a signal from the Control unit 150 and acts on the switching means 200 and if necessary, the return pump control 220 with a control signal. The current measuring means 210 is preferably as ohmic resistance implemented at its two connections a voltage value is tapped to the return pump control 230 is directed.

Diese Einrichtung arbeitet nun wie folgt. Bei einer ersten Ausführungsform wird die Rückförderpumpe 170 lediglich gesteuert. Dies bedeutet, ausgehend von dem Anforderungssignal der Steuereinheit 150 steuert die Rückförderpumpensteuerung 230 den Schalter 200 entsprechend an, damit die Rückförderpumpe 170 bestromt wird.This facility now works as follows. At a first In the embodiment, the return pump 170 is only controlled. This means based on the request signal the control unit 150 controls the return pump control 230 the switch 200 accordingly, so that the return pump 170 is energized.

Die Rückförderpumpe wird getaktet angesteuert. Die Rückförderpumpenauswertung 220 erfaßt die an der Rückförderpumpe anliegende Spannung. Die in den Abschaltpausen an der Rückförderpumpe anliegende Spannung ist ein Maß für die Drehzahl der Rückförderpumpe. Ausgehend von dieser Spannung kann erfindungsgemäß der Differenzdruck bestimmt und der Steuereinheit 150 zugeleitet werden.The return pump is activated in a clocked manner. The Return pump evaluation 220 detects that on the return pump applied voltage. Those in the switch-off breaks voltage applied to the return pump is a measure of the speed of the return pump. Based on this tension According to the invention, the differential pressure can be determined and be sent to the control unit 150.

Desweiteren kann die Spannung bzw. die Drehzahl der Rückförderpumpe der Rückförderpumpensteuerung 230 zugeleitet werden. In diesem Fall kann die Spannung bzw. die Drehzahl der Rückförderpumpe 170 von der Rückförderpumpensteuerung 230 durch Variation des Tastverhältnisses oder des Pulspauseverhältnisses geregelt werden.Furthermore, the voltage or the speed of the return pump be returned to the return pump control 230. In this case, the voltage or the speed of the Return pump 170 from return pump controller 230 by varying the duty cycle or the pulse pause ratio be managed.

Bei einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß ausgehend von dem Spannungsabfall an dem Strommeßmittel 210 der durch die Rückförderpumpe 170 fließende Strom erfaßt und auf einen vorgebbaren Sollwert geregelt wird.In a further embodiment of the invention, that starting from the voltage drop across the current measuring means 210 the current flowing through the return pump 170 recorded and regulated to a predefinable setpoint.

In Figur 3 ist die an der Rückförderpumpe 170 anliegende Spannung U über der Zeit t aufgetragen. Zum Zeitpunkt T0 wird das Schaltmittel 200 geschlossen. Die an der Rückförderpumpe 170 abfallende Spannung entspricht etwa der Versorgungsspannung Ubat. Zum Zeitpunkt T1 wird der Schalter 200 geöffnet und die Spannung fällt kurzfristig auf Werte kleiner als Null ab. Zum Zeitpunkt T1 beginnt die Pulspause der Pulsfolge. Die während der Pulspausenzeit Taus zwischen den Zeitpunkten T1 und T2 der Ansteuer-Pulsfolge weiterlaufenden Pumpe wirkt nun als Generator. Dadurch wird an der Rückförderpumpe eine Spannung erzeugt, die ausgehend vom Wert UG über der Zeit langsam abfällt.In Figure 3 is the applied to the return pump 170 Voltage U plotted against time t. At time T0 the switching means 200 is closed. The one on the return pump 170 falling voltage corresponds approximately to the supply voltage Ubat. At time T1, the switch 200 opened and the voltage drops briefly to values lower as zero. The pulse pause begins at time T1 Pulse train. The thousands between the pulse pause time Time T1 and T2 of the control pulse sequence continue Pump now acts as a generator. This will cause the return pump generates a voltage based on the value UG slowly declines over time.

Zum Zeitpunkt T2 wird der Schalter 200 wieder geschlossen und die Spannung steigt auf die Versorgungsspannung Ubat an. Zum Zeitpunkt T3 nach Ablauf der Zeit Tein fällt die Spannung wieder auf Werte kleiner als Null ab und steigt dann wieder auf den Wert UG an. Zum Zeitpunkt T4 wird der Schalter 200 wieder geschlossen und bis zum Zeitpunkt T5 geschlossen gehalten.At time T2, switch 200 is closed again and the voltage rises to supply voltage Ubat. At time T3 after the time T, the voltage again falls to a value less than zero and then rises again to the value UG. At time T4, switch 200 is closed again and kept closed until time T5.

Der Wert der Spannung UG, der an der Rückförderpumpe 170 zu Beginn der Pulspause abfällt, hängt im wesentlichen von der Drehzahl N der Rückförderpumpe ab. Dieser Zusammenhang ist in Figur 4a vereinfacht dargestellt. Bei kleinen Drehzahlen der Rückförderpumpe ergibt sich eine kleine Spannung UG und bei großen Drehzahlen eine große Spannung UG.The value of the voltage UG that increases at the return pump 170 The beginning of the pulse pause essentially depends on the Speed N of the return pump. This connection is shown in simplified form in FIG. 4a. At low speeds the return pump results in a small voltage UG and a large voltage UG at high speeds.

Die Drehzahl der Rückförderpumpe hängt wiederum von dem von der Pumpe aufzubringenden Moment M ab. Dieser Zusammenhang ist vereinfacht in Figur 4b dargestellt. Ein kleines Moment M hat eine große Drehzahl und ein großes Moment eine kleine Drehzahl N zur Folge.The speed of the return pump depends on that of the moment M to be applied to the pump. This connection is shown in simplified form in FIG. 4b. A little moment M has a high speed and a large moment has a small one Speed N result.

Ein großes Moment ist erforderlich, wenn eine große Druckdifferenz PD zwischen dem Eingang und dem Ausgang der Pumpe vorliegt. Ein kleines Moment ist erforderlich, wenn eine kleine Druckdifferenz PD vorliegt. Dieser Zusammenhang ist vereinfacht in Figur 4c dargestellt. A large moment is required when there is a large pressure difference PD between the inlet and the outlet of the pump is present. A little moment is required when one there is a small pressure difference PD. This connection is shown in simplified form in FIG. 4c.

Das erforderliche Moment M wirkt sich aber nicht nur auf die Drehzahl und damit auf den Wert UG der abfallenden Spannung aus, sondern das Moment wirkt sich auch auf den Verlauf der Spannung aus. Bei einem größeren Moment fällt die Spannung schneller ab. Dies ist beispielsweise im Zeitraum zwischen T3 und T4 der Fall.The required moment M does not only affect the Speed and thus to the value UG of the falling voltage out, but the moment also affects the course of the Voltage off. With a bigger moment the tension drops faster. This is for example in the period between T3 and T4 the case.

In Figur 4d ist der Zusammenhang zwischen der Änderung der Spannung U ˙ und dem Moment M aufgetragen. Bei einem großen Moment M ergibt sich eine große Änderung der Spannung U ˙ und bei einem kleinen Moment M eine kleine Änderung der Spannung U ˙.In Figure 4d is the relationship between the change in Voltage U ˙ and the moment M are plotted. With a big one Moment M there is a large change in the voltage U ˙ and at a small moment M a small change in voltage U ˙.

Ausgehend von der an der Pumpe anliegenden Spannung während der Abschaltpausen wird der Differenzdruck PD ermittelt. Ausgehend von dem Wert UG nach dem Abschalten ergibt sich gemäß Figur 4a die Drehzahl der Rückförderpumpe. Dieser Wert kann auch der Rückförderpumpensteuerung 230 zur Drehzahlregelung zugeführt werden. Ausgehend von der Drehzahl N ergibt sich gemäß Figur 4b, das von der Pumpe aufzubringende Moment M. Ausgehend von dem Moment M ergibt sich gemäß Figur 4c der Differenzdruck PD.Starting from the voltage applied to the pump during the switch-off pauses, the differential pressure PD is determined. Based on the value UG after switching off, the following results 4a the speed of the return pump. This value can also the return pump control 230 for speed control be fed. Based on the speed N results 4b, the moment to be applied by the pump M. Based on the moment M, according to FIG. 4c, the Differential pressure PD.

Diese Bestimmung wird in der Rückförderpumpenauswertung 220 durchgeführt. Dies kann anhand der in Figur 4a, 4b und 4c dargestellten Kennfelder bzw. gemäß eines vorgegebenen Algorithmus erfolgen.This determination is made in the return pump evaluation 220 carried out. This can be done with reference to FIGS. 4a, 4b and 4c shown maps or according to a predetermined algorithm respectively.

Desweiteren ist es möglich, ausgehend von dem Spannungsabfall bzw. dem Verlauf der Spannung U in der Abschaltpause das Moment gemäß Figur 4d bzw. gemäß eines Algorithmus zu bestimmen. Ausgehend von dem Moment M ergibt sich dann entsprechend wie in Figur 4c dargestellt, der Differenzdruck PD. Furthermore, it is possible, starting from the voltage drop or the course of the voltage U in the switch-off pause the torque according to FIG. 4d or according to an algorithm determine. Based on the moment M, the result is accordingly as shown in Figure 4c, the differential pressure PD.

Als weitere Ausgestaltung ist vorgesehen, daß ausgehend von der an der Pumpe in den Abschaltpausen anliegenden Spannung UG, dem Sollwert für die Spannung UG und dem Tastverhältnis, das erforderlich ist um die Generatorspannung UG auf den Sollwert einzuregeln, der Differenzdruck PD ermittelt wird. Voraussetzung hierzu ist, daß eine Regelung der an der Rückförderpumpe 170 abfallenden Spannung U während der Abschaltpausen vorgesehen ist und daß die Versorgungsspannung Ubat bekannt ist.As a further embodiment it is provided that starting from the voltage applied to the pump during the switch-off pauses UG, the setpoint for the voltage UG and the duty cycle, that is necessary to the generator voltage UG on the Adjust setpoint, the differential pressure PD is determined. The prerequisite for this is that a regulation of the Return pump 170 falling voltage U during the Switch-off breaks are provided and that the supply voltage Ubat is known.

Mittels des so bestimmten Differenzdruckes PD kann die Ansteuerung der Ein- und Auslaßventile verbessert werden.The control can be controlled by means of the differential pressure PD determined in this way the intake and exhaust valves are improved.

Da in der Regel der Druck PS in der Speicherkammer 175 klein gegenüber dem Vordruck PV ist, entspricht die Druckdifferenz PD dem Vordruck PV. Mit der beschriebenen Vorgehensweise kann der Vordruck PV abgeschätzt werden.As a rule, the pressure PS in the storage chamber 175 is small compared to the form PV, the pressure difference corresponds PD the form PV. With the described procedure the form PV can be estimated.

Ein weiterer Vorteil ergibt sich bei einer sogenannten Stotterbremse. Eine Stotterbremse liegt vor, wenn der Fahrer den Vordruck PV stark variiert. Mit obiger Schätzung des Differenzdruckes kann auf einfache Weise der Vordruckabfall erkannt und die ABS-Regelung entsprechend modifiziert werden.Another advantage is a so-called stutter brake. There is a stutter brake when the driver takes the Form PV varies widely. With the above estimate of Differential pressure can easily reduce the form pressure recognized and the ABS control modified accordingly.

Claims (9)

  1. Method of determining a pressure variable in a system, in particular in a braking system, having a delivery pump (170), in particular a scavenging pump, which is connected by a first line (105) to a brake master cylinder (110), and which is also connected to a pressure chamber (175), the delivery pump (170) being activated cyclically and the voltage (UG) across the delivery pump (170) being detected during the "off" periods, in which a differential pressure (PD) between a first pressure (PV) in the first line (105), in particular the pilot pressure prevailing in the brake master cylinder (110), and a second pressure (PS) in the storage chamber (175) is determined, characterized in that the differential pressure (PD) is determined as follows:
    the torque (M) to be applied by the delivery pump (170) is determined on the basis of the voltage drop and/or the variation in the voltage (UG) across the delivery pump (170) in the "off" periods,
    the differential pressure (PD) is determined on the basis of the torque (M) to be applied by the delivery pump (170).
  2. Method of determining a pressure variable in a system, in particular in a braking system, having a delivery pump (170), in particular a scavenging pump, which is connected by a first line (105) to a brake master cylinder (110), and which is also connected to a pressure chamber (175), the delivery pump (170) being activated cyclically and the voltage (UG) across the delivery pump (170) being detected during the "off" periods, in which a differential pressure (PD) between a first pressure (PV) in the first line (105), in particular the pilot pressure prevailing in the brake master cylinder (110), and a second pressure (PS) in the storage chamber (175) is determined, characterized in that the differential pressure (PD) is determined as follows:
    the rotational speed (N) of the delivery pump (170) is determined on the basis of the voltage (UG) across the delivery pump (170) determined during the "off" periods,
    the torque (M) to be applied by the delivery pump (170) is determined on the basis of the rotational speed (N) of the delivery pump (170),
    the differential pressure (PD) is determined on the basis of the torque (M) to be applied by the delivery pump (170).
  3. Method according to Claim 2, characterized in that the value of the rotational speed (N) of the delivery pump (170) is fed to a controller (230), in particular a scavenging pump controller, for the purpose of speed regulation, the controller (230) regulating the rotational speed (N) of the delivery pump (170) by varying the pulse duty factor or the mark/space ratio, and/or in that the value of the voltage (UG) determined across the delivery pump (170) is fed to a controller (230), in particular a scavenging pump controller, for the purpose of voltage regulation, the controller (230) regulating the voltage (UG) by varying the pulse duty factor or the mark/space ratio, and/or in that, with the aid of the controller (230), and on the basis of a voltage drop across a current measuring means (210), the current flowing through the delivery pump (170) is regulated to a predefinable desired value.
  4. Method according to Claim 1 or 2, characterized in that in order to determine the rotational speed (N) of the delivery pump (170), on the basis of the value of the voltage (UG) across the delivery pump (170) determined in the "off" periods, and/or in order to determine the torque (M) to be applied by the delivery pump (170), on the basis of the rotational speed (N) of the delivery pump (170), and/or in order to determine the differential pressure (PD), on the basis of the torque (M) to be applied by the delivery pump (170), characteristic maps are used.
  5. Method of determining a pressure variable in a system, in particular in a braking system, having a delivery pump (170), in particular a scavenging pump, which is connected by a first line (105) to a brake master cylinder (110), and which is also connected to a storage chamber (175), the delivery pump (170) being activated cyclically and the voltage (UG) across the delivery pump (170) being detected during the "off" periods, in which a differential pressure (PD) between a first pressure (PV) in the first line (105), in particular the pilot pressure prevailing in the brake master cylinder (110), and a second pressure (PS) in the storage chamber (175) is determined, characterized in that the differential pressure (PD) is determined on the basis of the voltage (UG) across the delivery pump (170) in the "off" periods, a desired value for the voltage (UG) and the pulse duty factor which is needed to readjust the voltage (UG) to the desired value, the voltage drop (UG) across the delivery pump (170) being regulated during the "off" periods and the supply voltage (Ubat) being known.
  6. Method according to Claim 1 or 2 or 5, characterized in that, while the differential pressure (PD) is being determined, the delivery pump (170) delivers hydraulic fluid from the wheel-brake cylinder (120), via the storage chamber (175), into the brake master cylinder (110).
  7. Method according to Claim 1 or 2 or 5, characterized in that the value of the differential pressure (PD) determined is taken into account when activating inlet valves (100) and/or outlet valves (160) contained in the braking system, and/or in that the differential pressure (PD) determined is used as a measure of the pilot pressure (PV) prevailing in the brake master cylinder.
  8. Method according to Claim 1 or 5, characterized in that the value of rotational speed (N) of the delivery pump (170) is detected, and is fed to a controller (230), in particular a scavenging pump controller, for the purpose of speed regulation, the controller (230) regulating the rotational speed (N) of the delivery pump (170) by varying the pulse duty factor or the mark/space ratio, and/or in that the value of the voltage (UG) detected across the delivery pump (170) is fed to a controller (230), in particular a scavenging pump controller, for the purpose of voltage regulation, the controller (230) regulating the voltage (UG) by varying the pulse duty factor or the mark/space ratio, and/or in that, with the aid of the controller (230), and on the basis of a voltage drop across a current measuring means (210), the current flowing through the delivery pump (170) is regulated to a predefinable desired value.
  9. Device for determining a pressure variable in a system, in particular in a braking system, which contains a delivery pump (170), in particular a scavenging pump, which is connected by a first line (105) to a brake master cylinder (110) and which is also connected to a storage chamber (175), which system contains means (150) for the cyclic activation of the delivery pump (170), which system contains means (220) with which the voltage (UG) across the delivery pump (170) may be detected during the "off" periods, which system contains means (220) for determining a differential pressure (PD), the differential pressure (PD) between a first pressure (PV) in the first line (105), in particular the pilot pressure prevailing in the brake master cylinder (110), and a second pressure (PS) in the storage chamber (175) being determined, characterized in that the differential pressure (PD) is determined as follows in the means (220) for determining the differential pressure (PD) :
    the rotational speed (N) of the delivery pump (170) is determined on the basis of the value of the voltage (UG) across the delivery pump (170) determined in the "off" periods,
    the torque (M) to be applied by the delivery pump (170) is determined on the basis of the rotational speed (N) of the delivery pump (170),
    the differential pressure (PD) is determined on the basis of the torque (M) to be applied by the delivery pump (170), and the torque (M) to be applied by the delivery pump (170) is determined on the basis of the voltage drop and/or the variation in the voltage (UG) across the delivery pump (170) in the "off" periods,
    the differential pressure (PD) is determined on the basis of the torque (M) to be applied by the delivery pump (170), and/or the differential pressure (PD) is determined on the basis of the voltage (UG) across the delivery pump (170) in the "off" periods, a desired value for the voltage (UG) and the pulse duty factor which is needed in order to readjust the voltage (UG) to the desired value, the voltage drop (UG) across the delivery pump (170) being regulated during the "off" periods and the supply voltage (Ubat) being known.
EP96922763A 1995-08-04 1996-07-11 Process and device for determining a pressure value Expired - Lifetime EP0842070B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19528697 1995-08-04
DE19528697A DE19528697A1 (en) 1995-08-04 1995-08-04 Method and device for determining a pressure variable
PCT/DE1996/001246 WO1997006038A1 (en) 1995-08-04 1996-07-11 Process and device for determining a pressure value

Publications (2)

Publication Number Publication Date
EP0842070A1 EP0842070A1 (en) 1998-05-20
EP0842070B1 true EP0842070B1 (en) 1999-12-01

Family

ID=7768707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96922763A Expired - Lifetime EP0842070B1 (en) 1995-08-04 1996-07-11 Process and device for determining a pressure value

Country Status (6)

Country Link
US (1) US6123395A (en)
EP (1) EP0842070B1 (en)
JP (1) JP4073481B2 (en)
KR (1) KR100417314B1 (en)
DE (2) DE19528697A1 (en)
WO (1) WO1997006038A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610863B4 (en) * 1996-03-20 2004-08-12 Robert Bosch Gmbh Method and device for determining a coefficient of friction signal
FR2780368B1 (en) * 1998-06-26 2000-11-10 Bosch Syst Freinage ADAPTIVE ANTI-LOCK BRAKING METHOD AND DEVICE
DE19838948A1 (en) * 1998-08-27 2000-03-02 Bosch Gmbh Robert Method and device for controlling a pump of a brake system
GB2344142B (en) 1998-11-27 2003-01-22 Lucas Ind Plc Pump motor control in electro-hydraulic braking systems
DE19961293A1 (en) 1998-12-28 2000-06-29 Bosch Gmbh Robert Measuring pressure in braking systems involves determining wheel brake pressure depending on estimated pilot pressure in reservoir, detected blocking device operating states
DE19946777B4 (en) * 1999-09-29 2008-01-10 Robert Bosch Gmbh Method and device for estimating a form in a motor vehicle brake system
DE19959706B4 (en) * 1999-12-10 2010-11-18 Robert Bosch Gmbh Method and device for controlling the braking torque of a brake force regulator on at least one wheel of a motor vehicle
JP2003532360A (en) * 2000-04-22 2003-10-28 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Motor and pump modules for electro-hydraulic transducers, especially for driving dynamics electronic control systems
US20060202552A1 (en) * 2003-07-11 2006-09-14 Continental Teves Ag & Co.Ohg Electronic control method for a slip-controlled motor vehicle brake system
DE10359224B4 (en) 2003-10-01 2018-10-18 Robert Bosch Gmbh Optimized detection of the tracking voltage in DC motors
KR100685438B1 (en) * 2004-09-06 2007-02-23 주식회사 에이디칩스 Apparatus and method for capturing, storing and playing of the stored image data in the display unit
DE102005013143A1 (en) 2005-03-22 2006-09-28 Robert Bosch Gmbh Optimized detection of the tracking voltage in DC motors
DE102005041556A1 (en) * 2005-09-01 2007-03-08 Continental Teves Ag & Co. Ohg Method for determining an admission pressure in a motor vehicle brake system
DE102005055780A1 (en) * 2005-11-21 2007-05-24 Continental Teves Ag & Co. Ohg Method for determining a pre-pressure in a motor vehicle brake system
DE102007032950A1 (en) * 2007-07-14 2009-01-15 Continental Teves Ag & Co. Ohg Method for measuring the admission pressure on an analogized, electromagnetically controlled hydraulic valve
DE102007050662A1 (en) * 2007-10-24 2009-04-30 Continental Teves Ag & Co. Ohg Method and device for calibrating or diagnosing a motor vehicle brake system with a clocked pump
DE102010039822A1 (en) * 2010-08-26 2012-03-01 Continental Teves Ag & Co. Ohg Method for measuring speed-dependent parameter of pulse width modulation controlled electric motor in motor vehicle braking apparatus, involves carrying out time-sampling process of electrical characteristic of motor at certain points
DE102011007509A1 (en) * 2011-04-15 2012-10-18 Continental Teves Ag & Co. Ohg Method for identifying error condition in hydraulic unit of braking system of motor vehicle, involves comparing value of position signal of position sensor with reference value determined corresponding to activation signal
DE102011084069A1 (en) * 2011-10-06 2013-04-11 Continental Teves Ag & Co. Ohg Method for determining a model form by means of a mathematical model in an electronically controlled motor vehicle brake system
KR102385170B1 (en) 2016-11-04 2022-04-12 한국전력공사 Apparatus for installing fall protector net, and method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2257236B2 (en) * 1972-11-22 1980-05-14 Teldix Gmbh, 6900 Heidelberg Hydraulic circuit
JPS5761929A (en) * 1980-10-01 1982-04-14 Toyota Motor Corp Measuring method for fluctuation of mean effective pressure of engine shown in diagram
DE3473909D1 (en) * 1983-01-19 1988-10-13 Hitachi Construction Machinery Failure detection system for hydraulic pump
US5623531A (en) * 1986-10-22 1997-04-22 Nilssen; Ole K. Auxiliary power for telephone distribution system
DE3819490A1 (en) * 1988-06-08 1989-12-14 Siemens Ag Pump system of a hydraulic actuator, e.g. for a motor vehicle
JPH0577710A (en) * 1991-04-23 1993-03-30 Nissan Motor Co Ltd Brake control device
DE4232130A1 (en) * 1992-09-25 1994-03-31 Teves Gmbh Alfred Method and circuit arrangement for regulating the delivery rate of a hydraulic pump
ATE200539T1 (en) * 1993-02-02 2001-04-15 Esco Corp EXCAVATOR TOOTH
DE4303206C2 (en) * 1993-02-04 2002-08-08 Continental Teves Ag & Co Ohg Method and circuit arrangement for determining the pedal force as a controlled variable for a brake system with anti-lock control
GB2280762A (en) * 1993-07-31 1995-02-08 Lucas Ind Plc Testing and speed control of ABS pump motors
JP2935335B2 (en) * 1993-10-01 1999-08-16 住友電気工業株式会社 Motor failure judgment device for anti-skid control device
US5487593A (en) * 1994-11-23 1996-01-30 Alliedsignal Inc. Anti-lock braking system providing pump motor duty cycle based on deceleration and motor voltage feed back

Also Published As

Publication number Publication date
KR19990028823A (en) 1999-04-15
EP0842070A1 (en) 1998-05-20
DE19528697A1 (en) 1997-02-06
KR100417314B1 (en) 2004-03-31
WO1997006038A1 (en) 1997-02-20
DE59603794D1 (en) 2000-01-05
JPH11510894A (en) 1999-09-21
US6123395A (en) 2000-09-26
JP4073481B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
EP0842070B1 (en) Process and device for determining a pressure value
DE19501760B4 (en) Method and device for controlling an ABS / ASR system
DE4442326B4 (en) Method and device for determining a pressure variable
EP1876078B1 (en) Method of determining a control current in an electric actuator
EP1890921B1 (en) Pressure-controlled hydraulic brake system for a land craft
DE10033909B4 (en) Method and device for controlling at least one valve
DE19603863B4 (en) Method and devices for checking the brake system of a vehicle
DE19548248A1 (en) Method and device for controlling a pump of an electro-hydraulic brake system
DE3904512C2 (en) Method for regulating the brake pressure in an anti-lock brake system of a vehicle
EP1062137A2 (en) Method for compensating the temperature dependence of an inductive resistance of a valve coil
DE102006015483A1 (en) Controlling method e.g. for controlling braking system of vehicle, involves having vacuum brake booster and vacuum source with variable triggering threshold value dependent upon vacuum level or vacuum gradients
DE19615449A1 (en) Method and device for controlling the brake system of a vehicle
DE19616815C2 (en) Braking force control device
DE3512716C2 (en)
DE3809100A1 (en) METHOD AND CIRCUIT ARRANGEMENT FOR CONTROLLING A BRAKE SYSTEM WITH ANTI-BLOCKING PROTECTION AND / OR DRIVE SLIP CONTROL
DE19946777B4 (en) Method and device for estimating a form in a motor vehicle brake system
DE4440531C2 (en) Method for determining the hydraulic pressures in an anti-lock brake system
DE19914400A1 (en) Method and device for compensating the storage pressure in an electro-hydraulic brake system
DE60114316T2 (en) Motor vehicle brake control device
EP1937529A1 (en) Method for determining the wheel pressure in an electronically actuable motor vehicle brake control system
EP1055576A2 (en) Electro-hydraulic braking system and control method therefor
DE19547111A1 (en) Traction control via vehicle braking system
DE19752959B4 (en) Anti-lock brake control device
DE19638196B4 (en) Device for monitoring a brake system
DE4409909C2 (en) Circuit arrangement for a brake system with electronic control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19980520

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59603794

Country of ref document: DE

Date of ref document: 20000105

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040628

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050711

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150730

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59603794

Country of ref document: DE