EP0839315A1 - Capteur de position sans contact, a effet hall - Google Patents

Capteur de position sans contact, a effet hall

Info

Publication number
EP0839315A1
EP0839315A1 EP97924082A EP97924082A EP0839315A1 EP 0839315 A1 EP0839315 A1 EP 0839315A1 EP 97924082 A EP97924082 A EP 97924082A EP 97924082 A EP97924082 A EP 97924082A EP 0839315 A1 EP0839315 A1 EP 0839315A1
Authority
EP
European Patent Office
Prior art keywords
hall effect
magnet
pole pieces
sensor according
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97924082A
Other languages
German (de)
English (en)
Inventor
Jean-Christophe Guyot
Jean-Yves Frere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospatiale Matra
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0839315A1 publication Critical patent/EP0839315A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S73/00Measuring and testing
    • Y10S73/03Hall effect

Definitions

  • the invention relates to a contactless position sensor using a Hall effect cell and a specific magnetic circuit making it possible to directly obtain an output signal whose value varies linearly with the distance separating the sensor from a magnetic target placed opposite of the last.
  • Such a sensor can be used for any non-contact distance measurement, as long as the target is made of a soft ferromagnetic material.
  • this sensor is independent of the size of the target and can be used both when it is stationary and when it is in motion.
  • the position sensor according to the invention therefore does not require any modification of the target whose position it is desired to know.
  • non-contact position sensors which are based on different physical principles, among which mention may be made, only by way of examples, of optics, ultrasound, eddy currents, etc.
  • the choice of a particular sensor is generally made according to the nature of the material constituting the target and taking into account the particular conditions under which the measurement must be made, such as the dimensions of the target, its fixed or mobile nature. , space available, etc.
  • the numerous contactless position sensors currently existing are either bulky devices or requiring a specific environment which makes them unsuitable for many applications (optical, ultrasonic sensors, etc.), or sensors which are not bulky but whose signal output must be subject to electronic processing later in order to be usable (eddy current sensors, etc.).
  • the subject of the invention is precisely a contactless position sensor whose original design allows it to present a reduced bulk and to deliver output signals directly proportional to the distance separating the sensor from the target.
  • this result is obtained by means of a contactless position sensor using a Hall effect cell and a specific magnetic circuit composed of a magnet and two pole pieces.
  • a Hall effect position sensor is proposed in accordance with the invention, characterized in that it comprises a magnet and a Hall effect cell placed side by side between two pole pieces comprising, at the opposite of the Hall effect cell with respect to the magnet, active surfaces capable of being placed at a distance e from a target made of magnetic material, so that a magnetic flux created by the magnet either channeled by the pole pieces to be distributed, on the one hand, in the target and, on the other hand, through the cell to Hall effect and that the latter then directly delivers an output signal (Va-Vb) proportional to the distance e.
  • the magnet is a permanent magnet which delivers a constant magnetic field Ha oriented in a given direction, the active surfaces of the pole pieces being placed in the extension of one of the other and oriented parallel to this direction, and the Hall effect cell being oriented so as to detect a magnetic induction B oriented parallel to said direction.
  • the pole pieces have two planar and parallel faces opposite, in contact with two opposite faces, planar and parallel, of the magnet and spaced apart by the same spacing L with respect to two opposite, plane and parallel faces of the Hall effect cell.
  • the active surfaces of the pole pieces have shapes complementary to those of a surface facing the target.
  • These active surfaces can thus be flat surfaces or concave cylindrical surfaces, depending on whether the surface facing the target is itself plane or cylindrical.
  • the senor can present ter a circular or rectangular section in a plane parallel to the direction of the magnetic field delivered by the permanent magnet.
  • FIG. 1 is a perspective view schematically showing a Hall effect cell
  • - Figure 3 is a sectional view schematically showing a Hall effect position sensor according to the invention
  • - Figure 4 is a view showing the magnetic circuit of the sensor of Figure 3;
  • - Figure 5 is a view showing the simplified magnetic diagram of the sensor according to the invention
  • - Figure 6 is a perspective view of a first embodiment of the Hall effect position sensor according to the invention
  • FIG. 7 is a perspective view showing another embodiment of the Hall effect position sensor.
  • FIG. 8 is a top view illus ⁇ trant a third embodiment of the Hall effect position sensor according to the invention. Detailed presentation of different embodiments
  • a Hall effect cell consists of a parallelepiped plate 10 of an electrically conductive material, crossed in the direction of its length by a bias current i_ and placed in a field magnetic induction B which crosses the plate in the direction of its thickness.
  • the Hall effect consists of the appearance of a potential difference (Va - Vb), called Hall voltage, between the opposite faces of the plate.
  • This Hall voltage is proportional to the magnetic induction B and to the bias current i_ which passes through it.
  • Va - Vb k.i.B (1)
  • the plate 10 has at its ends two opposite connections allowing it to be connected to a current source which delivers the bias current i_ passing through the plate.
  • the plate 10 also has on its faces two other opposite connections serving to connect it to a voltage measuring device such as a voltmeter, which measures the Hall voltage (Va - Vb).
  • FIG. 2 shows the characteristic of a Hall effect cell for values of the bias current progressively increasing from a value i ⁇ to a value .i4.
  • such a sensor essentially consists of a Hall effect cell and a specific magnetic circuit whose original design allows direct output signals to be obtained which vary linearly in function. the distance from the sensor to the target.
  • a Hall effect cell 10 is recognized in FIG. 3 such as that the principle of which has just been recalled with reference to FIG. 1.
  • the reference 12 designates the different electrical conductors by which this cell 10 is connected to the current source (not shown) allowing it to apply the bias current i_, for example in a direction perpendicular to the plane of the figure, as well as to the apparatus, (not shown) used to measure the Hall voltage (Va - Vb) between the planar faces 14 and 16, parallel and opposite, of cell 10.
  • the magnetic circuit associated with this Hall effect cell comprises a permanent magnet 18 and two pole pieces 20 and 22 made of a magnetic material. More specifically, the permanent magnet 18 is a magnet of parallelepiped shape which delivers a constant magnetic field Ha between two planar faces 24 and 26 parallel and opposite, the spacing of which defines the thickness of the permanent magnet 18.
  • the Hall effect cell 10 and the permanent magnet 18 are arranged side by side and slightly apart from one another.
  • the cell 10 and the permanent magnet 18 present a common plane of symmetry, so that the faces 14 and 16 of the cell 10 as well as the faces 24 and 26 of the permanent magnet 18 are parallel between they. It can also be seen in FIG. 3 that the thickness of the Hall effect cell 10 is substantially less than that of the permanent magnet 18.
  • pole pieces 20 and 22 are placed on either side of the permanent magnet 18, so as to be supported respectively against the faces 24 and 26 of the latter by planar faces opposite 28 and 30 As will be seen in more detail below, the pole pieces 20 and 22 may moreover have different geometries without departing from the scope of the invention.
  • the pole pieces 20 and 22 extend beyond the permanent magnet 18 in a direction opposite to the cell 10 relative to this magnet, to end with surfaces active 32 and 34.
  • These active surfaces 32 and 34 constitute the detection part of the position sensor according to the invention, therefore, the use of the sensor results in placing these surfaces 32 and 34 in front of a surface 36 of a target 38 whose position is desired.
  • the active surfaces 32 and 34 of the pole pieces 20 and 22 are placed in the extension of one another and they are oriented tees parallel to the direction of the magnetic field Ha delivered by the permanent magnet 18.
  • these surfaces 32 and 34 preferably have a shape complementary to that of the surface 36 of the target 38. This characteristic makes it possible to have a substantially uniform distance or spacing e_ between the active surfaces 32 and 34 of the pole pieces and the surface 36 of the target 38.
  • the polar pieces 20 and 22 have extensions 20a, 22a, the dimensioning of which is such that the Hall effect cell 10 is placed in all between the flat faces 28 and 30 of the pole pieces 20 and 32.
  • the faces 14 and 16 of the cell 10 are separated from the respective faces 28 and 30 of the pole pieces 20 and 22 by the same ecarte ⁇ ment.
  • the magnetic flux created by the magnet 18 is channeled by the pole pieces 20 and 22 and is distributed on one side in the target 38 and on the other through cell 10 forming the Hall effect probe, in the form of a leakage flow.
  • the magnetic flux which crosses the cell is designated by the reference ⁇ l and that which crosses the target is designated by the reference ⁇ 2.
  • the amount of flux ⁇ 2 which passes through the target 38 depends on the distance e between the active surfaces 32, 34 of the sensor and the surface 36 of the target. The more this distance e decreases, the more the flux ⁇ 2 increases lie, and vice versa. Since the total magnetic flux created by the permanent magnet 18 is constant and equal to the sum of the fluxes ⁇ l and ⁇ l, the variations in the flux ⁇ 2 depending on the distance e_ result in inverse variations in the flux ⁇ l which crosses Hall effect cell 10.
  • Scel designates the cross section of the magnetic flux ⁇ l, that is to say the section of the cell 10 parallel to the faces 14 and 16.
  • the section S being constant, the magnetic induction B in which the effect cell is located
  • Hall is directly proportional to the magnetic flux ⁇ l and, therefore, inversely proportional to the magnetic flux ⁇ 2.
  • the relation linking the distance e_ to the flux ⁇ l which crosses the Hall effect cell is given by the equations representative of the magnetic circuit formed by the sensor illustrated in FIG. 3.
  • This magnetic circuit is represented in detail in FIG. 4. More precisely , in the latter figure, the reference Ra designates the reluctance of the magnet, while the references Rc and R'c designate the reluctance of the pole pieces 20 and 22, respectively on the side of the target 38 and on the side of the Hall effect cell.
  • the reluctance of the target is designated by the reference Rcible, while the reluctance equivalents due respectively to the sensor / target air gap and to the air gap between the pole pieces on the side of the Hall effect cell are designated respectively by the references Re and Rec.
  • the reference Ha This represents the equivalent electromotive force of the permanent magnet 18, Ha corresponding to the magnetic field created by the magnet at its operating point, while La denotes the thickness of the magnet between its faces 24 and 26.
  • the reluctances Rc, R'c and Rcible of the magnetic parts are negligible compared to those of the air gaps. Consequently, the magnetic circuit of FIG. 4 can be reduced to the simplified circuit of FIG. 5, in which only the reluctance Ra of the magnet remains, and the equivalent reluctances Re and Rec corresponding respectively to the sensor / target air gap and at the air gap of the Hall effect cell.
  • the equivalent reluctance Re due to the sensor / target air gap is related to the distance e by the relationship :
  • equation (6) becomes:
  • the output signal of the sensor constituted by the Hall voltage (Va - Vb) is therefore directly proportional to the distance e which separates the sensor from the target.
  • the linearity condition of the response of the sensor according to the invention is therefore satisfied as soon as the distance e to be measured remains small enough for the condition fixed by relation (10) to be satisfied. It should be noted that the choice of the geometry of the sensor makes it possible to preserve this condition up to relatively large values of the distance e_.
  • a Hall effect position sensor conforming to the diagram in FIG. 3 constitutes a device of reduced size, usable industrially, and which directly supplies an output signal proportional to the distance to be measured, without that it is necessary to add to it any processing circuit.
  • FIGS 6 to 8 illustrate by way of example three possible embodiments of the sensor according to the invention.
  • the senor has a circular section along a plane parallel to the direction of the magnetic field Ha and perpendicular to the plane of FIG. 3.
  • the outer surfaces of the pole pieces 20 and 22 are located on the same cylindrical surface. It can also be seen in FIG. 6 that the cohesion of the sensor is ensured by an electrically insulating material 40 such as a resin, in which the magnet 18, the cell 10 and the pole pieces 20 and 22 are embedded.
  • the active surfaces of the pole pieces 20 and 22 are planar surfaces located in the same plane intended to face the target 38.
  • the senor has a rectangular section along a plane parallel to the direction of the magnetic field Ha and perpendicular to the plane of FIG. 3.
  • the external surfaces of the pole pieces 20 and 22 are parallel to the opposite faces 28 and 30 thereof.
  • a material 40 such as a resin ensures the cohesion of the different sensor parts and the active surfaces of the pole pieces are located in the same plane.
  • FIG. 8 another embodiment of a sensor according to the invention, applied to the case where the target 38 is a rotating cylindrical part.
  • the active surfaces 32 and 34 of the pole pieces 20 and 22 are then concave cylindrical surfaces complementary to the peripheral surface of the target 38.
  • the parts of the pole pieces closest to the target then have the shape of hooves.
  • the measurement carried out is thus distributed over an angular sector, which makes it possible to integrate any faults that may be present on the periphery of the target 38 and to greatly reduce the errors in the signal delivered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Un capteur de position sans contact comprend une cellule (10) à effet Hall et un circuit magnétique formé d'un aimant permanent (18) et de deux pièces polaires (20, 22). L'aimant (18) et la cellule (10) sont placés côte à côte entre les pièces polaires (20, 22) et ces dernières comportent des surfaces actives (32, 34) à l'opposé de la cellule par rapport à l'aimant. Cet agencement permet d'obtenir directement un signal de sortie (Va - Vb) proportionnel à la distance (e) qui sépare les surfaces actives (32, 34) de la cible (38).

Description

CAPTEUR DE POSITION SANS CONTACT, A EFFET HALL.
DESCRIPTION
Domaine technique
L'invention concerne un capteur de position sans contact utilisant une cellule à effet Hall et un circuit magnétique spécifique permettant d'obtenir directement un signal de sortie dont la valeur varie linéairement avec la distance qui sépare le capteur d'une cible magnétique placée en face de ce dernier.
Un tel capteur peut être utilisé pour toute mesure de distance sans contact, dès lors que la cible est réalisée en un matériau ferromagnétique doux. Ainsi, ce capteur est indépendant de la taille de la cible et peut être utilisé aussi bien lorsque celle-ci est immobile que lorsqu'elle est en mouvement. Le cap¬ teur de position selon l'invention ne nécessite donc aucune modification de la cible dont on désire connaî- tre la position.
Etat de la technique
Il existe de nombreux types de capteurs de position sans contact, qui reposent sur différents principes physiques, parmi lesquels on citera, unique¬ ment à titre d'exemples, l'optique, les ultrasons, les courants de Foucault, etc..
Le choix d'un capteur particulier est géné¬ ralement fait en fonction de la nature du matériau constituant la cible et en tenant compte des conditions particulières dans lesquelles la mesure doit être effectuée, telles que les dimensions de la cible, son caractère fixe ou mobile, la place disponible, etc.. Les nombreux capteurs de position sans contact existant actuellement sont soit des appareils encombrants ou nécessitant un environnement spécifique qui les rend inadaptés pour de nombreuses applications (capteurs optique, à ultrasons, etc.), soit des cap¬ teurs peu encombrants mais dont le signal de sortie doit faire l'objet d'un traitement électronique ulté¬ rieur afin d'être exploitable (capteurs à courants de Foucault, etc. ) .
Exposé de l'invention
L'invention a précisément pour objet un capteur de position sans contact dont la conception originale lui permette de présenter un encombrement réduit et de délivrer des signaux de sortie directement proportionnels à la distance séparant le capteur de la cible.
Conformément à l'invention, ce résultat est obtenu au moyen d'un capteur de position sans contact utilisant une cellule à effet Hall et un circuit ma¬ gnétique spécifique composé d'un aimant et de deux piè¬ ces polaires.
De façon plus précise, il est proposé conformément à l'invention un capteur de position à effet Hall, caractérisé par le fait qu'il comprend un aimant et une cellule à effet Hall placés côte à côte entre deux pièces polaires comportant, à l'opposé de la cellule à l'effet Hall par rapport à l'aimant, des sur¬ faces actives aptes à être placées à une distance e d'une cible en matériau magnétique, de telle sorte qu'un flux magnétique créé par l'aimant soit canalisé par les pièces polaires pour se répartir, d'une part, dans la cible et, d'autre part, à travers la cellule à effet Hall et que cette dernière délivre alors directe¬ ment un signal de sortie (Va-Vb) proportionnel à la distance e.
Dans une forme de réalisation préféren- tielle de l'invention, l'aimant est un aimant permanent qui délivre un champ magnétique Ha constant orienté selon une direction donnée, les surfaces actives des pièces polaires étant placées dans le prolongement l'une de l'autre et orientées parallèlement à cette direction, et la cellule à effet Hall étant orientée de façon à détecter une induction magnétique B orientée parallèlement à ladite direction.
Dans la forme de réalisation préférentielle de l'invention, les pièces polaires présentent deux faces planes et parallèles en vis-à-vis, en contact avec deux faces opposées, planes et parallèles, de l'aimant et espacées d'un même écartement L par rapport à deux faces opposées, planes et parallèles de la cellule à effet Hall. La relation :
Sa+Sec,,Sent «——
L 2e est alors satisfaite, Sa, Sec et Sent désignant les sections respectives de l'aimant, de la cellule à effet
Hall et de l'entrefer séparant les surfaces actives de la cible. De préférence, les surfaces actives des pièces polaires ont des formes complémentaires de cel¬ les d'une surface en regard de la cible. Ces surfaces actives peuvent ainsi être des surfaces planes ou des surfaces cylindriques concaves, selon que la surface en regard de la cible est elle même plane ou cylindrique.
Selon des dispositions particulières et uniquement à titre d'exemples, le capteur peut présen- ter une section circulaire ou rectangulaire dans un plan parallèle à la direction du champ magnétique déli¬ vré par l'aimant permanent.
Brève description des dessins
On décrira à présent, à titre d'exemples non limitatifs, différentes formes de réalisation pré¬ férentielles de l'invention, en se référant aux dessins annexés, dans lesquels :
- la figure 1 est une vue en perspective représentant schématiquement une cellule à effet Hall ;
- la figure 2 est une courbe qui représente la caractéristique Va - Vb = f(B) d'une cellule à effet Hall, pour différentes valeurs du courant de polarisa¬ tion i. qui la traverse ;
- la figure 3 est une vue en coupe repré¬ sentant schématiquement un capteur de position à effet Hall conforme à l'invention ; - la figure 4 est une vue représentant le circuit magnétique du capteur de la figure 3 ;
- la figure 5 est une vue représentant le schéma magnétique simplifiée du capteur selon l'inven¬ tion ; - la figure 6 est une vue en perspective d'une première forme de réalisation du capteur de posi¬ tion à effet Hall conforme à l'invention ;
- la figure 7 est une vue en perspective représentant une autre forme de réalisation du capteur de position à effet Hall ; et
- la figure 8 est une vue de dessus illus¬ trant une troisième forme de réalisation du capteur de position à effet Hall selon l'invention. Exposé détaillé de différentes formes de réalisation
En référence à la figure 1, il est rappelé qu'une cellule à effet Hall est constitué par une pla- que parallélépipedique 10 en un matériau électriquement conducteur, traversée dans le sens de sa longueur par un courant de polarisation i_ et placée dans un champ d'induction magnétique B qui traverse la plaque dans le sens de son épaisseur. Dans ces conditions, l'effet Hall consiste en l'apparition d'une différence de potentiel (Va - Vb) , appelée tension de Hall, entre les faces opposées de la plaque. Cette tension de Hall est proportionnelle à l'induction magnétique B et au cou¬ rant de polarisation i_ qui la traverse. On peut donc écrire :
Va - Vb = k.i.B (1) ,
où k représente la constante de Hall de la cellule. Dans la pratique, la plaque 10 comporte sur ses extrémités deux connexions opposées permettant de la relier à une source de courant qui délivre le cou¬ rant de polarisation i_ traversant la plaque. La plaque 10 comporte également sur ses faces deux autres connexions opposées servant à la relier à un appareil de mesure de tension tel qu'un voltmètre, qui mesure la tension de Hall (Va - Vb) .
Comme on l'a illustré sur la figure 2 et conformément à la relation (1), la caractéristique d'une cellule à effet Hall, c'est à dire la courbe don¬ nant la tension de Hall (Va - Vb) en fonction de l'in¬ duction magnétique B, peut être modifiée à volonté en faisant varier le courant de polarisation i. Ainsi, on a représenté sur la figure 2 les caractéristiques d'une même cellule à effet Hall pour des valeurs du courant de polarisation augmentant progressivement d'une valeur iΛ jusqu'à une valeur .i4. Après ce rappel, on décrira à présent en se référant à la figure 3 un capteur de position à effet Hall conforme à l'invention.
Comme on l'a déjà indiqué auparavant, un tel capteur de se compose essentiellement d'une cellule à effet Hall et d'un circuit magnétique spécifique dont la conception originale permet d'obtenir directement des signaux de sortie qui varient linéairement en fonc¬ tion de la distance séparant le capteur de la cible.
De façon plus précise, on reconnaît sur la figure 3 une cellule 10 à effet Hall telle que celle dont le principe vient d'être rappelé en se référant à la figure 1. La référence 12 désigne les différents conducteurs électriques par lesquels cette cellule 10 est reliée à la source de courant (non représentée) permettant de lui appliquer le courant de polarisation i_, par exemple dans une direction perpendiculaire au plan de la figure, ainsi qu'à l'appareil, (non repré¬ senté) servant à mesurer la tension de Hall (Va - Vb) entre les faces planes 14 et 16, parallèles et oppo- sées, de la cellule 10.
Le circuit magnétique associé à cette cel¬ lule à effet Hall comprend un aimant permanent 18 ainsi que deux pièce polaires 20 et 22 réalisées en un maté¬ riau magnétique. Plus précisément, l'aimant permanent 18 est un aimant de forme parallélépipedique qui délivre un champ magnétique constant Ha entre deux faces planes 24 et 26 parallèles et opposées, dont l'écartement définit l'épaisseur de l'aimant permanent 18.
Comme l'illustre la figure 3, la cellule 10 à effet Hall et l'aimant permanent 18 sont disposés côte à côte et légèrement écartés l'un de l'autre. En outre, la cellule 10 et l'aimant permanent 18 présen¬ tent un plan de symétrie commun, de telle sorte que les faces 14 et 16 de la cellule 10 ainsi que les faces 24 et 26 de l'aimant permanent 18 soient parallèles entre elles. On observe également sur la figure 3 que l'épaisseur de la cellule 10 à effet Hall est sensible¬ ment inférieure à celle de l'aimant permanent 18.
Les pièces polaires 20 et 22 sont placées de part et d'autre de l'aimant permanent 18, de façon à être en appui respectivement contre les faces 24 et 26 de ce dernier par des faces planes en vis-à-vis 28 et 30. Comme on le verra plus en détail par la suite, les pièces polaires 20 et 22 peuvent présenter par ailleurs différentes géométries sans sortir du cadre de l' inven- tion.
En observant la figure 3, on voit que les pièces polaires 20 et 22 se prolongent au-delà de l'ai¬ mant permanent 18 selon une direction opposée à la cel¬ lule 10 par rapport à cet aimant, pour se terminer par de surfaces actives 32 et 34. Ces surfaces actives 32 et 34 constituent la partie de détection du capteur de position selon l'invention, par conséquent, l'utilisa¬ tion du capteur conduit à placer ces surfaces 32 et 34 en face d'une surface 36 d'une cible 38 dont on désire connaître la position.
De façon plus précise, les surfaces actives 32 et 34 des pièces polaires 20 et 22 sont placées dans le prolongement l'une de l'autre et elles sont orien- tées parallèlement à la direction du champ magnétique Ha délivré par l'aimant permanent 18. Comme on le verra par la suite, ces surfaces 32 et 34 présentent de pré¬ férence une forme complémentaire de celle de la surface 36 de la cible 38. Cette caractéristique permet d'avoir une distance ou un écartement e_ sensiblement uniforme entre les surfaces actives 32 et 34 des pièces polaires et la surface 36 de la cible 38.
A l'opposé de ces surfaces actives 32 et 34 par rapport à l'aimant permanent 18, les pièces polai¬ res 20 et 22 comportent des prolongements 20a, 22a dont le dimensionnement est tel que la cellule 10 à effet Hall se trouve placée en totalité entre les faces pla¬ nes 28 et 30 des pièces polaires 20 et 32. Compte tenu des dimensionnements relatifs de la cellule 10 et de l'aimant 18 mentionné précédemment, les faces 14 et 16 de la cellule 10 sont séparées des faces respectives 28 et 30 des pièces polaires 20 et 22 par un même écarte¬ ment. Comme on l'a illustré schématiquement en pointillé sur la figure 3, le flux magnétique créé par l'aimant 18 est canalisé par les pièces polaires 20 et 22 et se répartit d'un côté dans la cible 38 et de l'autre à travers la cellule 10 formant la sonde à effet Hall, sous forme de flux de fuite. Le flux magné¬ tique qui traverse la cellule est désigné par la réfé¬ rence φ l et celui qui traverse la cible est désigné par la référence φ 2 .
La quantité de flux φ 2 qui traverse la cible 38 dépend de la distance e entre les surfaces actives 32, 34 du capteur et la surface 36 de la cible. Plus cette distance e diminue, plus le flux φ 2 aug- mente, et inversement. Etant donné que le flux magnéti¬ que total créé par l'aimant permanent 18 est constant et égal à la somme des flux φ l et φl , les variations du flux φ 2 selon la distance e_ se traduisent par des variations inverses du flux φ l qui traverse la cellule 10 à effet Hall.
Par ailleurs, le flux magnétique φ l qui traverse la cellule à effet Hall et l'induction magné¬ tique B dans laquelle est placée cette cellule sont reliés par la relation :
φ l ≈ B.Scel (2) ,
où Scel désigne la section de passage du flux magnéti- que φ l , c'est-à-dire la section de la cellule 10 parallèlement aux faces 14 et 16.
La section S étant constante, l'induction magnétique B dans laquelle se trouve la cellule à effet
Hall est directement proportionnelle au flux magnétique φ l et, par conséquent, inversement proportionnelle au flux magnétique φ 2.
La relation liant la distance e_ au flux φ l qui traverse la cellule à effet Hall est donnée par les équations représentatives du circuit magnétique formé par le capteur illustré sur la figure 3. Ce circuit magnétique est représenté en détail sur la figure 4. Plus précisément, sur cette dernière figure la réfé¬ rence Ra désigne la réluctance de l'aimant, alors que les références Rc et R'c désignent les réluctances des pièces polaires 20 et 22, respectivement du côté de la cible 38 et du côté de la cellule à effet Hall. La réluctance de la cible est désignée quant à elle par la référence Rcible, alors que les réluctances équivalen¬ tes dues respectivement à l'entrefer capteur/cible et à l'entrefer entre les pièces polaires du côté de la cel¬ lule à effet Hall sont désignées respectivement par les références Re et Rec. Enfin, la référence Ha. La repré¬ sente la force électromotrice équivalente de l'aimant permanent 18, Ha correspondant au champ magnétique créé par l'aimant à son point de fonctionnement, alors que La désigne l'épaisseur de l'aimant entre ses faces 24 et 26.
Dans le circuit magnétique de la figure 4, les réluctances Rc, R'c et Rcible des parties magnéti- ques sont négligeables devant celles des entrefers. Par conséquent, le circuit magnétique de la figure 4 peut être ramené au circuit simplifié de la figure 5, dans lequel seules subsistent la réluctance Ra de l'aimant, et les réluctances équivalents Re et Rec correspondant respectivement à l'entrefer capteur/cibles et à l'entrefer de la cellule à effet Hall.
L'équation des flux issu de ce schéma sim¬ plifié conduit à la relation :
2Re φ\ = -.Ha. La (3)
2 Re(Rα+Rec)+ Rα.Rec
Compte tenu de cette relation (3) et de la relation (2) qui relie le flux φ l à l'induction magné¬ tique B qui traverse la cellule Hall, la relation (1) donnant la tension de Hall devient :
Par ailleurs, si l'on désigne par μent lfl perméabilité de l'entrefer capteur/cible et par Sent la section de cet entrefer, la réluctance équivalente Re due à l'entrefer capteur/cible est reliée à la distance e par la relation :
Re= -.e (5) μentSent
La prise en compte de cette relation (5) dans la relation (4) conduit à l'équation suivante :
k.i. Ha. la e
Va-Vb = . (6).
Scel _,„_ , r,_ _N . [ient. Sent. Ra. Rec e(Ra + Rec) + μ
En posant k.i. Ha. la
/Cl =
Scel
μentSent.Ra.Kec
Λ2 = , et
2
l'équation (6) devient :
Va-Vb≈Kl (7). e.K3 + K2 En choisissant les dimensions et les maté¬ riaux afin que e,K3 soit négligeable devant K2, cette relation (7) devient :
K\ Va - Vb =— .e (8)
K2
Par conséquent, le signal de sortie du cap¬ teur que constitue la tension de Hall (Va - Vb) est donc bien directement proportionnel à la distance e qui sépare le capteur de la cible.
Si l'on applique des relations du type de la relation (5) à la réluctance Ra de l'aimant et à la réluctance équivalente Rec de l'entrefer correspondant à la cellule à effet Hall, la condition de linéarité imposant que e.K3 soit négligeable devant K2 s'écrit :
P-a-Sa + μec.-Sec <<ζ μent .Sent
(9),
La Lee 2e
avec μa et μec qui désignent respectivement la perméa¬ bilité de l'aimant et de l'entrefer du côté de la cel¬ lule à effet Hall, Sa et Sec qui désignent respective¬ ment les sections de l'aimant et de la cellule à effet Hall, Lee désignant l'épaisseur de l'entrefer corres- pondant à la cellule à effet Hall.
Si l'on choisit les matériaux de telle sorte que les perméabilités μa, μec et μent soient sen¬ siblement égales, de même que les épaisseurs La et Lee que l'on désigne alors par la lettre L, la relation (9) devient : Sa + Sec « Sent
(10)
L le
La condition de linéarité de la réponse du capteur selon l'invention est donc satisfaite dès lors que la distance e à mesurer reste suffisamment petite pour que la condition fixée par la relation (10) soit satisfaite. Il est à noter que le choix de la géométrie du capteur permet de préserver cette condition jusqu'à des valeurs de la distance e_ relativement importante.
Par conséquent, on voit qu'un capteur de position à effet Hall conforme au schéma de la figure 3 constitue un appareil d'encombrement réduit, utilisable industriellement, et qui fournit directement un signal de sortie proportionnel à la distance à mesurer, sans qu'il soit nécessaire de lui adjoindre un circuit de traitement quelconque.
Les figures 6 à 8 illustrent à titre d'exemples trois formes de réalisation possible du cap- teur selon l'invention.
Dans le cas de la figure 6, le capteur pré¬ sente une section circulaire selon un plan parallèle à la direction du champ magnétique Ha et perpendiculaire au plan de la figure 3. Dans ce cas, les surfaces exté- rieures des pièces polaires 20 et 22 sont situées sur une même surface cylindrique. On voit en outre sur la figure 6 que la cohésion du capteur est assurée par un matériau électriquement isolant 40 tel qu'une résine, dans lequel sont noyés l'aimant 18, la cellule 10 et les pièces polaires 20 et 22.
Dans l'exemple de réalisation illustré sur la figure 6, les surfaces actives des pièces polaires 20 et 22 sont des surfaces planes situées dans un même plan prévu pour être tourné vers la cible 38.
Dans un autre exemple de réalisation illus¬ tré sur la figure 7, le capteur présente une section rectangulaire selon un plan parallèle à la direction du champ magnétique Ha et perpendiculaire au plan de la figure 3. Dans ce cas, les surfaces extérieures des pièces polaires 20 et 22 sont parallèles aux faces en vis-à-vis 28 et 30 de celles-ci. Ici encore, un maté- riau 40 tel qu'une résine assure la cohésion des diffé¬ rentes pièces du capteur et les surfaces actives des pièces polaires sont situées dans un même plan.
Enfin, on a représenté sur la figure 8 un autre exemple de réalisation d'un capteur selon l'in- vention, appliqué au cas où la cible 38 est une pièce cylindrique tournante. Comme on le voit, les surfaces actives 32 et 34 des pièces polaires 20 et 22 sont alors des surfaces cylindriques concaves complémentai¬ res de la surface périphérique de la cible 38. Les par- ties des pièces polaires les plus proches de la cible présentent alors la forme de sabots. La mesure effec¬ tuée est ainsi répartie sur un secteur angulaire, ce qui permet d'intégrer des défauts éventuellement pré¬ sents sur la périphérie de la cible 38 et de réduire très fortement les erreurs dans le signal délivré.
Bien entendu, les formes de réalisation qui viennent d'être brièvement décrits en se référant aux figures 6 à 8 ne sont donnés qu'à titre d'exemples. En effet, on comprendra aisément que d'autres géométries peuvent être envisagées soit pour tenir compte de la forme de la cible, soit pour tenir compte de la place disponible.

Claims

REVENDICATIONS
1. Capteur de position à effet Hall, carac¬ térisé par le fait qu'il comprend un aimant (18) et une cellule à effet Hall (10) placés côte à côte entre deux pièces polaires (20,22) comportant, à l'opposé de la cellule à l'effet Hall par rapport à l'aimant, des sur¬ faces actives (32,34) aptes à être placées à une dis¬ tance e d'une cible (38) en matériau magnétique, de telle sorte qu'un flux magnétique créé par l'aimant (18) soit canalisé par les pièces polaires (20,22) pour se répartir, d'une part, dans la cible (38) et, d'autre part, à travers la cellule à effet Hall (10) et que cette dernière délivre alors directement un signal de sortie (Va-Vb) proportionnel à la distance e.
2. Capteur selon la revendication 1, carac¬ térisé par le fait que l'aimant (18) est un aimant per¬ manent qui délivre un champ magnétique Ha constant orienté selon une direction donnée, les surfaces acti- ves (32,34) des pièces polaires (20,22) étant placées dans le prolongement l'une de l'autre et orientées parallèlement à cette direction, et la cellule à effet Hall (10) étant orientée de façon à détecter une induc¬ tion magnétique B orientée parallèlement à ladite direction.
3. Capteur selon l'une quelconque des revendications précédentes, caractérisé par le fait que les pièces polaires (20,22) présentent deux faces planes et parallèles en vis-à-vis, en contact avec deux faces opposées (24,26), planes et parallèles, de l'aimant (18), et espacées d'un même écartement L par rapport à deux faces opposées (14,16), planes et parai- lèles, de la cellule à effet Hall (10), dans lequel la relation :
Sa+Sec Sent L 2e est satisfaite, Sa, Sec et Sent désignant les sections respectives de l'aimant (18), de la cellule à effet Hall (10) et de l'entrefer séparant les surfaces actives (32,34) de la cible (38).
4. Capteur selon l'une quelconque des revendications précédentes, caractérisé par le fait que les surfaces actives (32,34) des pièces polaires (20,22) ont des formes complémentaires de celles d'une surface en regard de la cible (38) .
5. Capteur selon l'une quelconque des revendications précédentes, caractérisé par le fait que les surfaces actives (32,34) des pièces polaires (20,22) sont planes.
6. Capteur selon l'une quelconque des revendications 1 à 4, caractérisé par le fait que les surfaces actives (32,34) des pièces polaires (20,22) sont des surfaces cylindriques concaves.
7. Capteur selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il présente une section circulaire selon un plan parallèle à ladite direction.
8. Capteur selon l'une quelconque des revendications 1 à 6, caractérisé par le fait qu'il présente une section rectangulaire selon un plan paral¬ lèle à ladite direction.
9. Capteur selon l'une quelconque des revendications précédentes, caractérisé par le fait que la cellule (10) à effet Hall, l'aimant (18) et les piè¬ ces polaires (20,22) sont noyés dans une résine (40).
EP97924082A 1996-05-15 1997-05-13 Capteur de position sans contact, a effet hall Ceased EP0839315A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9606093 1996-05-15
FR9606093A FR2748805B1 (fr) 1996-05-15 1996-05-15 Capteur de position sans contact, a effet hall
PCT/FR1997/000844 WO1997043603A1 (fr) 1996-05-15 1997-05-13 Capteur de position sans contact, a effet hall

Publications (1)

Publication Number Publication Date
EP0839315A1 true EP0839315A1 (fr) 1998-05-06

Family

ID=9492182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97924082A Ceased EP0839315A1 (fr) 1996-05-15 1997-05-13 Capteur de position sans contact, a effet hall

Country Status (6)

Country Link
US (1) US6060880A (fr)
EP (1) EP0839315A1 (fr)
JP (1) JPH11509638A (fr)
CA (1) CA2227032A1 (fr)
FR (1) FR2748805B1 (fr)
WO (1) WO1997043603A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489761B1 (en) * 1999-09-09 2002-12-03 Delphi Technologies, Inc. Magnetic arrangement for an analog angle encoder
DE10009173A1 (de) 2000-02-26 2001-09-06 Bosch Gmbh Robert Messvorrichtung zur berührungslosen Erfassung eines ferromagnetischen Gegenstandes
JP2001351812A (ja) * 2000-06-06 2001-12-21 Mikuni Corp 電磁アクチュエータ及びこれを用いた弁駆動装置並びに位置又は速度センサ
US6670807B2 (en) * 2002-01-16 2003-12-30 Applied Materials, Inc. Proximity sensor detecting loss of magnetic field complete
TW567333B (en) * 2002-09-20 2003-12-21 Benq Corp Method for phase matching by detecting magnetic flux
US6931940B2 (en) * 2002-10-02 2005-08-23 Delphi Technologies, Inc. Magnetostrictive strain sensor with hall effect
US6777928B2 (en) 2002-12-03 2004-08-17 Delphi Technologies, Inc. Rotary magnetic position sensor having pole differentiated magnets
JP2006220506A (ja) * 2005-02-09 2006-08-24 Denso Corp 回転角検出装置
CA2517999A1 (fr) * 2005-08-30 2007-02-28 Ibm Canada Limited - Ibm Canada Limitee Detection de position pour un commutateur kvm
US7215112B1 (en) * 2005-11-07 2007-05-08 Delphi Technologies, Inc. Non-contact linear absolute position sensor
CA2745153A1 (fr) * 2008-11-30 2010-06-03 University Of Wyoming Detecteur magnetique pour determiner l'usure
US8917086B2 (en) * 2010-07-20 2014-12-23 Lawrence Livermore National Security, Llc Position sensor for linear synchronous motors employing halbach arrays

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1278293B (de) * 1960-06-10 1968-09-19 Siemens Ag Kontaktloser Lagemelder fuer Foerderanlagen
DE1303674C2 (de) * 1965-07-19 1973-04-12 Nix H Magnetischer schichtdickenmesser
US3568180A (en) * 1967-11-01 1971-03-02 Dixi Sa Encoder
JPS5260157A (en) * 1975-11-12 1977-05-18 Hitachi Ltd Welding machine position sensor
SE7611326L (sv) * 1976-10-12 1978-04-13 Gustafson Adolf Gunnar Givare
FI66689C (fi) * 1982-10-29 1984-11-12 Valmet Oy Givare foer fortgaoende observation av ett roerligt organ i enraktor eller motsvarande
GB2156994B (en) * 1984-04-06 1987-04-08 Emhart Ind Method of monitoring the position of an operating member
US4897914A (en) * 1984-09-20 1990-02-06 Loubier Robert J Method of making a magnetic-encoding device having hall effect devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9743603A1 *

Also Published As

Publication number Publication date
CA2227032A1 (fr) 1997-11-20
JPH11509638A (ja) 1999-08-24
FR2748805A1 (fr) 1997-11-21
WO1997043603A1 (fr) 1997-11-20
FR2748805B1 (fr) 1998-08-07
US6060880A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
EP0729582B1 (fr) Capteur incremental de vitesse et/ou de position
WO1997043603A1 (fr) Capteur de position sans contact, a effet hall
EP1947469B1 (fr) Dispositif d&#39;amplification magnétique comportant un capteur magnétique à sensibilité longitudinale
FR2537301A1 (fr) Convertisseur electro-mecanique a plusieurs degres de liberte
WO2007057563A1 (fr) Capteur de position angulaire magnetique pour une course allant jusqu&#39;a 360°
FR2605406A1 (fr) Dispositif magnetique pour la mesure sans contact du couple sur un arbre
FR2953805A1 (fr) Dispositif de pilotage d&#39;un aeronef a elements magneto-sensibles de detection de position angulaire montes hors axe
FR2872902A1 (fr) Capteur de couple a bagues magnetiques
FR2978883A1 (fr) Ensemble compact de positionnement comprenant un actionneur et un capteur integre dans la culasse de l&#39;actionneur
EP1046021B1 (fr) Capteur angulaire lineaire a magnetoresistances
FR2794504A1 (fr) Roulement equipe d&#39;un dispositif capteur d&#39;informations
CH407345A (fr) Appareil pour vérifier les caractéristiques ou la position d&#39;un faisceau de particules chargées
FR2888329A1 (fr) Tachymetre pour roue d&#39;aeronef
FR2742497A1 (fr) Palier magnetique a actionneurs et capteurs alternes
EP0530093A1 (fr) Capteurs linéaires de faibles déplacements à circuits magnétiques et roulements à billes équipés de tels capteurs
FR2866111A1 (fr) Capteur magnetique de position angulaire
FR2746912A1 (fr) Capteur magnetique de position
EP0069073A1 (fr) Dispositif de mesure de force
FR2564585A1 (fr) Appareil a mesurer une contrainte par procede electromagnetique
EP1692527A1 (fr) Capteur de courant a sensibilite reduite aux champs magnetiques parasites
EP0736173B1 (fr) Procede et dispositif de controle magnetique de produits metalliques
EP1166295B1 (fr) Procede pour la determination de la position d&#39;un organe mobile dans au moins un entrefer principal d&#39;un actionneur electromagnetique
EP3225956B1 (fr) Capteur de détection d&#39;un champ magnétique périodique
EP0389390A1 (fr) Micromagnétomètre à poutre fléchissante
FR3139204A1 (fr) Système de détection de position longitudinale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 20000126

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEROSPATIALE MATRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010607