EP0828510A1 - Reichlich vorhandene extrazelluläre produkte und methoden für deren produktion und verwendung - Google Patents

Reichlich vorhandene extrazelluläre produkte und methoden für deren produktion und verwendung

Info

Publication number
EP0828510A1
EP0828510A1 EP96917836A EP96917836A EP0828510A1 EP 0828510 A1 EP0828510 A1 EP 0828510A1 EP 96917836 A EP96917836 A EP 96917836A EP 96917836 A EP96917836 A EP 96917836A EP 0828510 A1 EP0828510 A1 EP 0828510A1
Authority
EP
European Patent Office
Prior art keywords
gcc
protein
ggc
gac
ctg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96917836A
Other languages
English (en)
French (fr)
Inventor
Marcus A. Horwitz
Günter HARTH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/447,398 external-priority patent/US6761894B1/en
Application filed by University of California filed Critical University of California
Publication of EP0828510A1 publication Critical patent/EP0828510A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/35Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention generally relates to immunotherapeutic agents and vaccines against pathogenic organisms such as bacteria, protozoa, viruses and fungus. More specifically, unlike prior art vaccines and immunotherapeutic agents based upon pathogenic subunits or products which exhibit the greatest or most specific molecular immunogenicity, the present invention uses the most prevalent or majorly abundant immunogenic determinants released by a selected pathogen such as Mycobacterium tuberculosis to stimulate an effective immune response in mammalian hosts. Accordingly, the acquired immunity and immunotherapeutic activity produced through the present invention is directed to those antigenic markers which are displayed most often on infected host cells during the course of a pathogenic infection without particular regard to the relative or absolute immunogenicity of the administered compound.
  • Intracellular bacteria including the genus Mycobacterium and the genus Legionella, complete all or part of their life cycle within the cells of the infected host organism rather than extracellularly.
  • intracellular bacteria are responsible for millions of deaths each year and untold suffering. Tuberculosis, caused by Mycobacterium tuberculosis, is the leading cause of death from infectious disease worldwide, with 10 million new cases and 2.9 million deaths every year.
  • intracellular bacteria are responsible for millions of cases of leprosy.
  • tuberculosis is a major cause of death in developing countries. Capable of surviving inside macrophages and monocytes, M. tuberculosis may produce a chronic intracellular infection. By concealing itself within the cells primarily responsible for the detection of foreign elements and subsequent activation of the immune system, M. tuberculosis is relatively successful in evading the normal defenses of the host organism. These same pathogenic characteristics have heretofore prevented the development of an effective immunotherapeutic agent or vaccine against tubercular infections. At the same time tubercle bacilli are relatively easy to culture and observe under laboratory conditions. Accordingly, M. tuberculosis is particularly well suited for demonstrating the principles and advantages of the present invention.
  • M. tuberculosis is in no way intended to limit the scope of the present invention to the treatment of M. tuberculosis.
  • teachings herein are not limited in any way to the treatment of tubercular infections.
  • this invention may be used to advantageously provide safe and effective vaccines and immunotherapeutic agents against the immunogenic determinants of any pathogenic agent expressing extracellular products and thereby inhibit the infectious transmission of those organisms.
  • M. tuberculosis When M. tuberculosis is not controlled by the infected subject, it often results in the extensive degradation of lung tissue. In susceptible individuals lesions are usually formed in the lung as the tubercle bacilli reproduce within alveolar or pulmonary macrophages. As the organisms multiply, they may spread through the lymphatic system to distal lymph nodes and through the blood stream to the lung apices, bone marrow, kidney and meninges surrounding the brain. Primarily as the result of cell-mediated hypersensitivity responses, characteristic granulomatous lesions or tubercles are produced in proportion to the severity of the infection. These lesions consist of epithelioid cells bordered by monocytes, lymphocytes and fibroblasts. In most instances a lesion or tubercle eventually becomes necrotic and undergoes caseation.
  • M. tuberculosis is a significant pathogen
  • other species of the genus Mycobacterium also cause disease in animals including man and are clearly within the scope of the present invention.
  • M. bovis is closely related to
  • M. tuberculosis and is responsible for tubercular infections in domestic animals such as cattle, pigs, sheep, horses, dogs and cats. Further, M. bovis may infect humans via the intestinal tract, typically from the ingestion of raw milk. The localized intestinal infection eventually spreads to the respiratory tract and is followed shortly by the classic symptoms of tuberculosis. Another important pathogenic vector of the genus
  • Mycobacterium is M. leprae which causes millions of cases of the ancient disease leprosy.
  • Other species of this genus which cause disease in animals and man include M. kansasii, M. avium intracellulare, M. fortuitum, M. marinum, M. chelonei,
  • M. africanum, M. ulcerans, M. microti and M. scrofulaceum The pathogenic mycobacterial species frequently exhibit a high degree of homology in their respective
  • DNA and corresponding protein sequences and some species, such as M. tuberculosis and M. bovis are highly related.
  • the guinea pig model closely resembles the human pathology of the disease in many respects. Accordingly, it is well understood by those skilled in the art that it is appropriate to extrapolate the guinea pig model of this disease to humans and other mammals.
  • guinea pigs are susceptible to tubercular infection with low doses of the aerosolized human pathogen M. tuberculosis. Unlike humans where the initial infection is usually controlled, guinea pigs consistently develop disseminated disease upon exposure to the aerosolized pathogen, facilitating subsequent analysis.
  • both guinea pigs and humans display cutaneous delayed-type hypersensitivity reactions characterized by the development of a dense mononuclear cell induration or rigid area at the skin test site.
  • the characteristic tubercular lesions of humans and guinea pigs exhibit similar morphology including the presence of Langhans giant cells.
  • any protection conferred in experiments using this animal model provides a strong indication that the same protective immunity may be generated in man or other less susceptible mammals. Accordingly, for purposes of explanation only and not for purposes of limitation, the present invention will be primarily demonstrated in the exemplary context of guinea pigs as the mammalian host. Those skilled in the art will appreciate that the present invention may be practiced with other mammalian hosts including humans and domesticated animals.
  • Any animal or human infected with a pathogenic vector and, in particular, an intracellular organism presents a difficult challenge to the host immune system. While many infectious agents may be effectively controlled by the humoral response and corresponding production of protective antibodies, these mechanisms are primarily effective only against those pathogens located in the body's extracellular fluid.
  • opsonizing antibodies bind to extracellular foreign agents thereby rendering them susceptible to phagocytosis and subsequent intracellular killing. Yet this is not the case for other pathogens.
  • humoral immune response does not appear to play a significant protective role against infections by intracellular bacteria such as M. tuberculosis.
  • the present invention may generate a beneficial humoral response to the target pathogen and, as such, its effectiveness is not limited to any specific component of the stimulated immune response. More specifically, antibody mediated defenses seemingly do not prevent the initial infection of intracellular pathogens and are ineffectual once the bacteria are sequestered within the cells of the host.
  • any effective prophylactic measure against intracellular agents should incorporate an aggressive cell-mediated immune response component leading to the rapid proliferation of antigen specific lymphocytes which activate the compromised phagocytes or cytotoxically eliminate them.
  • inducing a cell-mediated immune response does not equal the induction of protective immunity.
  • cell-mediated immunity may be a prerequisite to protective immunity, the production of vaccines in accordance with the teachings of the present invention requires animal based challenge studies.
  • This cell-mediated immune response generally involves two steps.
  • the initial step, signaling that the cell is infected, is accomplished by special molecules (major histocompatibility or MHC molecules) which deliver pieces of the pathogen to the surface of the cell.
  • MHC molecules major histocompatibility molecules
  • Their presentation to T-cells stimulates the immune system of the host to eliminate the infected host cell or induces the host cell to eradicate any bacteria residing within.
  • Mycobacterium tend to proliferate in vacuoles which are substantially sealed off from the rest of the cell by a membrane. Phagocytes naturally form these protective vacuoles making them particularly susceptible to infection by this class of pathogen. In such vacuoles the bacteria are effectively protected from degradation, making it difficult for the immune system to present integral bacterial components on the surface of infected cells.
  • the infected cell's MHC molecules will move to the vacuole and collect any free (released) bacterial products or move to other sites in the host cell to which the foreign extracellular bacterial products have been transported for normal presentation of the products at the cell surface. As previously indicated, the presentation of the foreign bacterial products will provoke the proper response by the host immune system.
  • high risk individuals also include those suffering from lung disorders such as emphysema, chronic bronchitis, pneumoconiosis, silicosis or previous tuberculosis. Accordingly, the use of attenuated vaccines is limited in the very population where they have the greatest potential benefit.
  • live attenuated vaccines may also produce other undesirable side effects. Because live vaccines reproduce in the recipient, they provoke a broader range of antibodies and a less directed cell-mediated immune response than noninfectious vaccines. Often this shotgun approach tends to occlude the immune response directed at the molecular structures most involved in cellular prophylaxis. Moreover, the use of live vaccines with an intact membrane may induce opsonizing antibodies which prepare a foreign body for effective phagocytosis. Thus, upon host exposure to virulent strains of the target organism, the presence of such antibodies could actually enhance the uptake of non-attenuated pathogens into host cells where they can survive and multiply.
  • an attenuated vaccine contains thousands of different molecular species and consequently is more likely to contain a molecular species that is toxic or able to provoke an adverse immune response in the patient.
  • Other problems with live vaccines include virulence reversion, natural spread to contacts, contaminating viruses and viral interference, and difficulty with standardization.
  • noninfectious vaccines such as killed organisms or conventional second generation subunit vaccines directed at strongly antigenic membrane bound structures
  • noninfectious vaccines are limited with respect to the inhibition of intracellular bacteria.
  • killed bacteria provoke an indiscriminate response which may inhibit the most effective prophylactic determinants.
  • killed vaccines still present large numbers of potentially antigenic structures to the immune system thereby increasing the likelihood of toxic reactions or opsonization by the immune system.
  • Traditional subunit vaccines incorporating membrane bound structures, whether synthesized or purified, can also induce a strong opsonic effect facilitating the entry of the intracellular pathogen into phagocytes in which they multiply.
  • killed vaccines directed to intracellular surface antigens may increase the relative virulence of the pathogenic agent.
  • conventional attenuated or killed vaccines directed against strongly antigenic bacterial surface components may be contraindicated in the case of intracellular pathogens.
  • these vaccines are selectively based on the identification of extracellular products or their analogs which stimulate a strong immune response against the target pathogen in a mammalian host. More specifically, these prior art candidate extracellular proteins were screened by determining their ability to provoke either a strong lymphocyte proliferative response or a cutaneous delayed-type hypersensitivity response in mammals which were immune to the pathogen of interest. Though this disclosed method and associated vaccines avoid many of the drawbacks inherent in the use of traditional vaccines, conflicting immunoresponsive results due to cross-reactivity and host variation may complicate the selection of effective immunizing agents. Thus, while molecular immunogenicity is one indication of an effective vaccine, other factors may complicate its use in eliciting an effective immune response in vivo.
  • the present invention accomplishes the above-described and other objects by providing compounds for use as vaccines and/or immunotherapeutic agents and methods for their production and use to generate protective or therapeutic immune responses in mammalian hosts against infection by pathogens.
  • the invention provides the means to induce a protective or therapeutic immune response against infectious vectors producing extracellular compounds. While the compounds of the present invention are particularly effective against pathogenic bacteria, they may be used to generate a protective or therapeutic immune response to any pathogen producing majorly abundant extracellular products.
  • the term "majorly abundant” should be understood as a relative term identifying those extracellular products released in the greatest quantity by the pathogen of interest.
  • M. tuberculosis grown under various conditions of culture to an optical density of approximately 0.5 one skilled in the art should expect to obtain on the order of 10 ⁇ g/L or more of a majorly abundant extracellular product.
  • approximately fifteen to twenty (alone or in combination) of the one hundred or so known extracellular products will constitute approximately ninety percent of the total quantity.
  • the present invention may be used to protect a mammalian host against infection by viral, bacterial, fungal or protozoan pathogens.
  • the majorly abundant extracellular products may be generated by the infected host cell.
  • the vaccines and methods of the present invention are particularly effective in generating protective immunity against intracellular pathogens, including various species and serogroups of the genus Mycobacterium.
  • the vaccines of the present invention are also effective as immunotherapeutic agents for the treatment of existing disease conditions.
  • the principal or majorly abundant products released by pathogenic bacteria appear to be processed by phagocytes and other host immune system mechanisms at a greater rate than less prevalent or membrane bound pathogenic components regardless of their respective immunogenic activity or specificity.
  • This immunoprocessing disparity is particularly significant when the pathogenic agent is an intracellular bacteria sequestered from normal immune activity.
  • the most prevalent bacterial extracellular products or their immunogenic analogs provoke a vigorous immune response largely irrespective of their individual molecular immunogenic characteristics.
  • Majorly abundant extracellular products are the principal constituents of proteins and other molecular entities which are released by the target pathogen into the surrounding environment. Current research indicates that in some instances a single majorly abundant extracellular product may comprise up to 40% by weight of the products released by a microorganism. More often, individual majorly abundant extracellular products account for between from about 0.5% to about 25% of the total products released by the infectious pathogen. Moreover, the top five or six majorly abundant extracellular products may be found to comprise between 60% to 70% of the total mass released by a microorganism. Of course those skilled in the art will appreciate that the relative levels of extracellular products may fluctuate over time as can the absolute or relative quantity of products released.
  • pH, oxidants, osmolality, heat and other conditions of stress on the organism, stage of life cycle, reproduction status and the composition of the surrounding environment may alter the composition and quantity of products released.
  • the absolute and relative levels of extracellular products may differ greatly from species to species and even between strains within a species.
  • extracellular products appear to expand the population of specifically immune lymphocytes capable of detecting and exerting an antimicrobial effect against macrophages containing live bacteria. Further, by virtue of their repeated display on the surface of infected cells, the majorly abundant or principal extracellular products function as effective antigenic markers. Accordingly, pursuant to the teachings of the present invention, vaccination and the inducement of protective immunity directed to the majorly abundant extracellular products of a pathogenic bacteria or their immunogenically equivalent determinants, prompts the host immune system to mount a rapid and efficient immune response with a strong cell- mediated component when subsequently infected by the target pathogen.
  • an immunogenic analog is any molecule or compound sufficiently analogous to at least one majorly abundant extracellular product expressed by the target pathogen, or any fraction thereof, to have the capacity to stimulate a protective immune response in a vaccinated mammalian host upon subsequent infection by the target pathogen.
  • the vaccines of the present invention are identified or produced by selecting the majorly abundant product or products released extracellularly by a specific pathogen (or molecular analogs capable of stimulating a substantially equivalent immune response) and isolating them in a relatively pure form or subsequently sequencing the DNA or RNA responsible for their production to enable their synthetic or endogenous production.
  • the desired prophylactic immune response to the target pathogen may then be elicited by formulating one or more of the isolated immunoreactive products or the encoding genetic material using techniques well known in the art and immunizing a mammalian host prior to infection by the target pathogen.
  • the present invention will consist of at least one, two or, possibly even several well defined immunogenic determinants.
  • the present invention produces consistent, standardized vaccines which may be developed, tested and administered with relative ease and speed.
  • the use of a few well defined molecules corresponding to the majorly abundant secretory or extracellular products greatly reduces the risk of adverse side effects associated with conventional vaccines and eliminates the possible occlusion of effective immunogenic markers.
  • the present invention is not an attenuated or a killed vaccine the risk of infection during production, purification or upon administration is effectively eliminated.
  • the vaccines of the present invention may be administered safely to immunocompromised individuals, including asymptomatic tuberculosis patients and those infected with HIV.
  • the present invention allows the stimulated humoral response to assist in the elimination of the target pathogen from antibody susceptible areas.
  • the vaccines may be harvested or produced and subsequently purified and sequenced.
  • the predominantly abundant extracellular products may be obtained from cultures of the target pathogen, including M. tuberculosis or M. bovis, with little effort.
  • the desired compounds are released into the media during growth, they can readily be separated from the intrabacterial and membrane-bound components of the target pathogen utilizing conventional techniques.
  • the desired immunoreactive constituents of the vaccines of the present invention may be produced and purified from genetically engineered organisms into which the genes expressing the specific extracellular products of M. tuberculosis, M. bovis, M. leprae or any other pathogen of interest have been cloned.
  • such engineered organisms can be modified to produce higher levels of the selected extracellular products or modified immunogenic analogs.
  • the immunoprotective products, portions thereof or analogs thereof can be chemically synthesized using techniques well known in the art or directly expressed in host cells injected with naked genes encoding therefor.
  • the immunogenic components of the predominant or majorly abundant extracellular products may be separated and subsequently formulated into deliverable vaccines using common biochemical procedures such as fractionation, chromatography or other purification methodology and conventional formulation techniques or directly expressed in host cells containing directly introduced genetic constructs encoding therefor.
  • the target pathogen is M. tuberculosis and the majorly abundant products released extracellularly by M. tuberculosis into broth culture are separated from other bacterial components and used to elicit an immune response in mammalian hosts. Individual proteins or groups of proteins are then utilized in animal based challenge experiments to identify those which induce protective immunity making them suitable for use as vaccines in accordance with the teachings of the present invention. More specifically, following the growth and harvesting of the bacteria, by virtue of their physical abundance the principal extracellular products are separated from intrabacterial and other components through centrifugation and filtration.
  • the resultant bulk filtrate is then subjected to fractionation using ammonium sulfate precipitation with subsequent dialysis to give a mixture of extracellular products, commonly termed EP.
  • Solubilized extracellular products in the dialyzed fractions are then purified to substantial homogeneity using suitable chromatographic techniques as known in the art and as described more fully below.
  • each individual majorly abundant extracellular product exhibits one band corresponding to its respective molecular weight when subjected to polyacrylamide gel electrophoresis thereby allowing individual products or groups of products corresponding to the majorly abundant extracellular products to be identified and prepared for use as vaccines in accordance with the teachings of the present invention.
  • the purified majorly abundant extracellular products may further be characterized and distinguished by determining all or part of their respective amino acid sequences using techniques common in the art. Sequencing may also provide information regarding possible structural relationships between the majorly abundant extracellular products.
  • immunization and the stimulation of acquired immunity in a mammalian host system may be accomplished through the teachings of the present invention utilizing a series of subcutaneous or intradermal injections of these purified extracellular products over a course of time.
  • injection with a purified majorly abundant bacterial extracellular product or products in incomplete Freund's adjuvant followed by a second injection in the same adjuvant approximately three weeks later can be used to elicit a protective response upon subsequent challenge with the virulent pathogen.
  • Other exemplary immunization protocols within the scope and teachings of the present invention may include a series of three or four injections of purified extracellular product or products or their analogs in Syntex Adjuvant
  • Formulation over a period of time. While a series of injections may generally prove more efficacious, the single administration of a selected majorly abundant extracellular product or its immunogenic subunits or analogs can impart the desired immune response and is contemplated as being within the scope of the present invention as well.
  • Such exemplary protocols can be demonstrated using art accepted laboratory models such as guinea pigs.
  • immunization of several guinea pigs with a combination of five majorly abundant extracellular products was accomplished with an immunization series of three injections of the bacterial products in SAF adjuvant with corresponding sham-immunization of control animals.
  • Exemplary dosages of each protein ranged from 100 ⁇ g to 2 ⁇ g. Following the last vaccination all of the animals were simultaneously exposed to an infectious and potentially lethal dose of aerosolized M. tuberculosis and monitored for an extended period of time.
  • control animals showed a significant loss in weight when compared with the animals immunized with the combination of the majorly abundant extracellular products of M. tuberculosis. Moreover, half of the control animals died during the observation period while none of the immunized animals succumbed to tuberculosis. Autopsies conducted after this experiment revealed that the non-immunized control animals had significantly more colony forming units (CFU) and corresponding damage in their lungs and spleens than the protected animals. Seventeen additional combinations of purified majorly abundant extracellular products provided immunoprophylaxis when tested, thereby demonstrating the scope of the present invention and broad range of vaccines which may be formulated in accordance with the teachings thereof.
  • CFU colony forming units
  • the present invention is not restricted to combinations of secretory or extracellular products.
  • several alternative experimental protocols demonstrate the capacity of a single abundant extracellular product to induce mammalian protective immunity in accordance with the teachings of the present invention.
  • guinea pigs were immunized with a single majorly abundant extracellular product purified from M. tuberculosis EP using the chromatography protocols detailed herein.
  • the animals were vaccinated in multiple experiments with an adjuvant composition containing a purified abundant secretory product having a molecular weight corresponding to 30 KD.
  • different guinea pigs were vaccinated with an adjuvant composition containing an abundant extracellular product isolated from M. tuberculosis having a molecular weight corresponding to 71 KD. Following their respective immunizations both sets of animals and the appropriate controls were exposed to lethal doses of aerosolized M. tuberculosis to determine vaccine effectiveness.
  • guinea pigs were immunized with 100 ⁇ g of 30 KD protein in SAF on three occasions spread over a period of six weeks.
  • Control animals were simultaneously vaccinated with corresponding amounts of a bulk preparation of extracellular proteins (EP) or buffer.
  • EP extracellular proteins
  • the animals were challenged with an aerosolized lethal dose of M. tuberculosis and monitored for a period of 14 weeks.
  • the 30 KD immunized guinea pigs and those immunized with the bulk extracellular preparation had survival rates of 67% and 50% respectively (illustrating the unexpectedly superior performance of the majorly abundant extracellular product versus EP), while the sham-immunized animals had a survival rate of only 17%.
  • the weight of the guinea pigs was monitored for a period of 6 months.
  • the animals immunized with the purified form of the abundant extracellular product developed protective immunity with respect to the virulent M. tuberculosis.
  • the buffer immunized animals showed a significant loss in weight when compared with the immunized animals.
  • the positive controls and 71 KD immunized animals had survival rates of 63% and 50% respectively, the non- immunized animals all died before the end of the observation period.
  • the formulation of the vaccine is not critical to the present invention and may be optimized to facilitate administration.
  • Solutions of the purified immunogenic determinants derived from the majorly abundant pathogenic extracellular products may be administered alone or in combination in any manner designed to generate a protective immune response.
  • the purified protein solutions may be delivered alone, or formulated with an adjuvant before being administered.
  • Specific exemplary adjuvants used in the instant invention to enhance the activity of the selected immunogenic determinants are SAF, adjuvants containing Monophosphoryl Lipid A
  • MPL gamma interferons
  • IL-12 MPL plus TDM (Trehalose (Dimycolate), QS-21, QS-21 plus IL-12, IL-2
  • IL-12 IL-15 (Grabstein et al., Science 264:965-962,, 1994), dimethyldioctadecyl ammonium (ddA), ddA plus dextran, alum, Quil A, ISCOMS,
  • Additional adjuvants that may be useful in the present invention are water-in-oil emulsions, mineral salts (for example, alum), nucleic acids, block polymer surfactants, and microbial cell walls (peptido glycolipids). While not limiting the scope of the invention it is believed that adjuvants may magnify immune responses due to the slow release of antigens from the site of injection.
  • genetic material encoding the genes for one or more of the immunogenic determinants derived from the majorly abundant pathogenic extracellular products may be coupled with eucaryotic promoter and/or secretion sequences and injected directly into a mammalian host to induce and endogenous expression of the immunogenic determinants and subsequent protective immunity.
  • Figure 1 is a representation of 4 Coomassie blue stained gels, labeled la to Id, illustrating the purification of exemplary majorly abundant extracellular products of M. tuberculosis as identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • Figure 2 is a tabular representation identifying the five N-terminal amino acids of fourteen exemplary majorly abundant extracellular products of M. tuberculosis (Sequence ID Nos. 1-14) and the apparent molecular weight for such products.
  • Figure 3 is a tabular representation of the extended N-terminal amino acid sequence of three exemplary majorly abundant secretory products of M. tuberculosis (Sequence ID Nos. 15-17) which were not distinguished by the five N- terminal amino acids shown in Figure 2.
  • Figure 4 is a graphical comparison of the survival rate of guinea pigs immunized with exemplary purified majorly abundant 30 KD secretory product of M. tuberculosis versus positive controls immunized with a prior art bulk preparation of extracellular proteins and non-immunized negative controls following exposure to an aerosolized lethal dose of M. tuberculosis.
  • Figure 5 is a graphical comparison of mean guinea pig body weight of animals immunized with purified majorly abundant 71 KD extracellular product versus positive controls immunized with a prior art bulk preparation of extracellular proteins from M. tuberculosis and non-immunized negative controls following exposure to an aerosolized lethal dose of M. tuberculosis.
  • Figure 6 is a graphical comparison of the survival rate of guinea pigs immunized in Figure 5 with exemplary majorly abundant purified 71 KD extracellular product of M. tuberculosis versus positive controls immunized with a prior art bulk preparation of extracellular proteins from M. tuberculosis and non-immunized negative controls following exposure to an aerosolized lethal dose of M. tuberculosis.
  • Figure 7 is a graphical comparison of mean guinea pig body weight of animals immunized with exemplary purified majorly abundant 71 KD extracellular product and non-immunized negative controls following exposure to an aerosolized lethal dose of M. tuberculosis in a second, separate experiment.
  • Figures 8a and 8b are graphical comparisons of lymphocyte proliferative responses to exemplary purified majorly abundant 71 KD extracellular product in PPD+
  • Figure 8a is a graph of the values measured at 2 days after incubation of lymphocytes with this antigen while Figure 8b is a graph of the values measured at 4 days after incubation.
  • Figure 9 is a graphical comparison of mean guinea pig body weight of animals immunized with vaccine comprising a combination of extracellular products produced according to the teachings of the present invention and non-immunized controls following exposure to an aerosolized lethal dose of M. tuberculosis.
  • Figure 10 is a graphical comparison of mean guinea pig body weight of animals immunized with three different dosages of a vaccine comprising a combination of extracellular products produced according to the teachings of the present invention and non-immunized controls following exposure to an aerosolized lethal dose of M. tuberculosis.
  • Figure 11 is a graphical comparison of mean guinea pig body weight of animals immunized with vaccines comprising six different combinations of extracellular products produced according to the teachings of the present invention and non-immunized controls following exposure to an aerosolized lethal dose of M. tuberculosis.
  • Figures 12a and b are graphical illustrations of the mapping of the immunodominant epitopes of the 30 KD protein of M. tuberculosis.
  • Figure 12a illustrates the percentage of 24 guinea pigs immunized with the 30 KD protein responding to overlapping peptides (15-mer) covering the entire 30 KD protein sequence.
  • Figure 12b illustrates a corresponding set of data for a group of 19 sham immunized guinea pigs. The response of each group of animals to native 30 KD protein, purified protein derivative (PPD) and concanavalin A (con A) appears at the right of each graph.
  • PPD purified protein derivative
  • con A concanavalin A
  • Figure 13 provides a diagrammatic representation of the constructs used for the expression of recombinant 30 kDa protein.
  • the diagram depicts the pET22b vectors used for the expression of recombinant 30 kDa protein.
  • the vectors express the mature 30 kDa protein fused to its own leader (30W-pET22b) or the plasmid encoded pelB leader (30M-pET22b).
  • Ori ColEl type origin of replication
  • FI ori phage FI origin of replication
  • Amp ampicillin resistance gene
  • 30W/M full- length (30W)) or mature (30M) 30 kDa protein
  • lad lac repressor gene
  • P ⁇ phage T7 RNA polymerase specific promoter
  • Ndel and Ncol restriction enzyme sites at vector/insert junctions.
  • Figure 14 shows electrophoresis test results and a Western blot analysis which confirm the expression of full-length and mature 30 kDa protein in E. coli BL21(DE3)pLysS.
  • Figure 15 is a diagrammatic representation of an alternate construct system used to express the 30 kDa protein.
  • Figure 16 shows electrophoresis test results which confirm the expression of the M. tuberculosis 30 kDa protein in M. smegmatis.
  • Figure 17 depicts the results of a Western blot analysis, confirming the expression of the M. tuberculosis 30 kDa protein in M. smegmatis.
  • the present invention is directed to compounds and methods for their production and use against pathogenic organisms as vaccines and immunotherapeutic agents. More specifically, the present invention is directed to the production and use of majorly abundant extracellular products released by pathogenic organisms, their immunogenic analogs or the associated genetic material encoding therefor as vaccines or immunotherapeutic agents and to associated methods for generating protective immunity in mammalian hosts against infection. These compounds will be referred to as vaccines throughout this application for purposes of simplicity.
  • the majorly abundant extracellular products of M. tuberculosis were distinguished and subsequently purified.
  • Guinea pigs were immunized with purified forms of these majorly prevalent extracellular products with no determination of the individual product's specific molecular immunogenicity.
  • the exemplary immunizations were carried out using the purified extracellular products alone or in combination and with various dosages and routes of administration.
  • the foregoing strategy can be utilized with any pathogenic organism or bacteria to practice the method of the present invention and, accordingly, the present invention is not specifically limited to vaccines and methods directed against M. tuberculosis.
  • the majorly abundant extracellular products of M. tuberculosis were separated and purified using column chromatography.
  • M. tuberculosis Erdman strain (ATCC 35801) was obtained from the American Tissue Culture Collection (Rockville, Md.). The lyophilized bacteria were reconstituted in Middlebrook 7H9 culture medium (Difco Laboratories, Detroit, Mich.) and maintained on Middlebrook 7H11 agar. 7H11 agar was prepared using Bacto Middlebrook 7H10 agar (Difco), OADC Enrichment Medium (Difco), 0.1% casein enzymatic hydrolysate (Sigma), and glycerol as previously described by Cohn (Cohn, M.I., Am. Rev. Respir. Dis. 98:295-296) and incorporated herein by reference.
  • the agar was dispensed into bacteriologic Petri dishes (100 by 15 mm) and allowed to cool. M. tuberculosis was then plated using sterile techniques and grown at 37°C in 5% CO 2 -95% air, 100% humidity. After culture on 7H11 for 7 days, the colonies were scraped from the plates, suspended in 7H9 broth to 10 8 CFU/ml and aliquoted into 1.8-ml Nunc cryotubes (Roskilde, Denmark). Each liter of the broth was prepared by rehydrating 4.7 g of Bacto Middlebrook 7H9 powder with 998 ml of distilled water, and 2 ml of glycerol (Sigma Chemical Co., St.
  • tuberculosis cells stored at -70°C as described in the previous paragraph were thawed and used to inoculate 7H11 agar plates. After culture for 7 days, the colonies were scraped from the plates, suspended in a few ml of 7H9 broth, and sonicated in a water bath to form a single cell suspension.
  • the M. tuberculosis cells were suspended in the sterile 150 ml aliquots at an initial optical density of 0.05, as determined by a Perkin-Elmer Junior model 35 spectrophotometer (Norwalk, Conn). The cells were then incubated at 37°C in 5% CO 2 -95% air for 3 weeks until the suspension showed an optical density of 0.4 to 0.5.
  • Ammonium sulfate (grade I, Sigma) was added to the sterile culture filtrate of Example 1 in concentrations ranging from 10% to 95% at 0°C and gently stirred to fractionate the proteins. The suspension was then transferred to plastic bottles and centrifuged in a swinging bucket rotor at 3,000 rpm on a RC3B Sorvall Centrifuge to pellet the resulting precipitate. The supernatant fluid was decanted and, depending on the product of interest, the supernatant fluid or pellet was subjected to further purification. When the product of interest was contained in the supernatant fluid a second ammonium sulfate cut was executed by increasing the salt concentration above that of the first cut. After a period of gentle stirring the solution was then centrifuged as previously described to precipitate the desired product and the second supernatant fluid was subj ected to further purification.
  • the precipitated proteins were resolubilized in the appropriate cold buffer and dialyzed extensively in a Spectrapor dialysis membrane (Spectrum Medical Industries, Los Angeles, California) with a 6,000 to 8,000 molecular weight cut-off to remove the salt. Extracellular protein concentration was determined by a bicinchoninic acid protein assay (Pierce Chemical Co., Rockford, Illinois) and fraction components were determined using SDS-PAGE. The fractions were then applied to chromatography columns for further purification.
  • DEAE Sepharose CL-6B or QAE Sepharose ion exchange column in column buffer consisting of 10% sorbitol, 10 mM potassium phosphate, pH 7, 5 mM 2-mercaptoethanol, and 0.2 mM EDTA and eluted with a sodium chloride gradient. Fractions containing 110 KD protein elute at approximately 550 mM salt and were collected.
  • a DEAE CL-6B column (Pharmacia) was charged with 25 mM Tris, pH 8.7 containing 1M NaCl and equilibrated with 25 mM Tris, pH 8.7, 10 mM NaCl and the protein sample was dialyzed against 25 mM Tris, pH 8.7, 10 mM NaCl and applied to the column. The column was washed overnight with the same buffer. A first salt gradient of 10 mM to 200 mM NaCl in 25 mM Tris, pH 8.7 was run through the column to elute other proteins. A second salt gradient (200 to 300 mM NaCl) was run through the column and the 80 KD protein eluted at approximately 275 mM NaCl.
  • a Q-Sepharose HP column was charged with 25 mM Tris, pH 8.7, 1M NaCl and re-equilibrated to 25 mM Tris, pH 8.7, 10 mM NaCl.
  • the protein sample was dialyzed against 25 mM Tris, pH 8.7, 10 mM NaCl and applied to the column.
  • the column was washed in the same buffer and then eluted with 200-300 mM NcCl in 25 mM Tris, pH 8.7.
  • Fractions containing the 80 KD protein were collected and diaiyzed against 25 mM Tris, pH 8.7, 10 mM NaCl, and then concentrated in a Speed- Vac concentrator to 1-2 ml.
  • the protein sample was applied to a Superdex 75 column and eluted with 25 mM Tris, pH 8.7, 150 mM NaCl.
  • the 80 KD protein eluted as a homogenous protein.
  • 71 KD Extracellular Product 1 A 40%-95% ammonium sulfate precipitate was obtained as discussed above with the exception that the 71 KD product was cultured in 7H9 broth at pH 7.4 and at 0% CO 2 and heat-shocked at 42°C for 3h once per week. The precipitate was dialyzed against Initial Buffer (20 mM HEPES, 2 mM MgAc, 25 mM KC1, 10 mM (NH 4 ) 2 SO 4 , 0.8 mM DL-Dithiothreitol, pH 7.0). 2. The resolubilized precipitate was applied to an ATP Agarose column equilibrated with Initial Buffer. Effluent was collected and reapplied to the ATP Agarose column. The 71 KD protein bound to the column.
  • Initial Buffer 20 mM HEPES, 2 mM MgAc, 25 mM KC1, 10 mM (NH 4 ) 2 SO 4 , 0.8 mM
  • the resolubilized precipitate was dialyzed and applied to a DEAE- Sepharose CL-6B or QAE-Sepharose column and eluted with NaCl. Collected fractions containing the 58 KD Protein eluted at approximately 400 mM NaCl. 3. Collected fractions were then applied to a Sepharose CL-6B size fractionation column. The protein eluted at approximately 670-700,000 Daltons.
  • the eluted protein was applied to a thiopropyl-sepharose column.
  • the homogeneous 58 KD protein eluted at approximately 250-350 mM 2-mercaptoethanol.
  • the eluted protein was monitored using SDS-PAGE and exhibited the single band shown in Figure 1 A, col. 2.
  • the protein sample was dialyzed against 25 mM Tris, 10 mM NaCl, pH 8.7 and applied to column with subsequent washing using the same buffer. c. The column was eluted with 10-150 mM NaCl in 25 mM Tris, pH 8.7.
  • a Q-Sepharose HP column (Pharmacia) was charged with 25 mM Tris, pH 8.7 containing 1 M NaCl, and re-equilibrated with 25 mM Tris, 10 mM NaCl, pH 8.7.
  • the protein sample was dialyzed against 25 mM Tris, 10 mM NaCl, pH 8.7 and applied to the column with subsequent washing in the same buffer.
  • the column was eluted with a 100-300 mM NaCl gradient. Labeled 32 A, the homogeneous protein elutes at approximately 120 mM NaCl and is shown as a single band in Figure IB, col. 4.
  • the protein fractions were dialyzed against 25 mM Tris, pH 8.7, 10 mM NaCl and concentrated to 1-2 ml on a Savant Speed Vac Concentrator. b. The concentrate was applied to a Superdex 75 column equilibrated with 25 mM Tris, 150 mM NaCl, pH 8.7. The product elutes as a homogeneous protein as is shown in Figure IB col . 8.
  • the column was eluted with a salt gradient (10 mM to 200 mM) in 25 mM Tris, pH 8.7 buffer.
  • the 14 KD protein eluted at approximately 60 mM NaCl. 3.
  • a Q-Sepharose HP column was charged with 25 mM
  • Tris pH 8.7 containing 1 M NaCl, and re-equilibrated with 25 mM NaCl, pH 8.7.
  • the protein sample was dialyzed against 25 mM Tris,
  • the protein fractions were applied to a DEAE-Sepharose CL-6B or QAE-Sepharose ion exchange column and eluted with an NaCl gradient as previously described. Fractions containing two homogeneous proteins having molecular weights of approximately 12 KD eluted at approximately 300-350 mM NaCl and were collected. The proteins were labeled 12A and 12B and purified as a doublet shown in Figure ID, col. 2.
  • Figure 1 illustrates four exemplary 12.5% acrylamide gels developed using SDS-PAGE and labeled IA, IB, IC, and ID.
  • the standard in lane 1 of gels 1A- 1C has proteins with molecular weights of 66, 45, 36, 29, 24, 20, and 14 KD.
  • gel ID the standard in lane 1 contains proteins with molecular weights of 68, 45, 31, 29, 20, and 14 KD.
  • the lanes containing the respective purified extracellular products show essentially one band at the reported molecular weight of the individual protein. It should be noted that in gel 1 D the 12 KD protein runs as a doublet visible in lane 2. Sequence analysis shows that the lower 12 KD (or 12B KD band) is equivalent to the upper 12 KD (or 12A KD) band except that it lacks the first 3 N-terminal amino acids.
  • Figure 2 is a tabular compilation of N-terminal sequence data obtained from these purified extracellular products showing that the majority of the isolated products are indeed distinct (Sequence ID Nos. 1-14). Proteins 32A, 32B and 30 all had the same 5 N-terminal amino acids therefore further sequencing was necessary to fully characterize and differentiate them.
  • Figure 3 shows the extended N-terminal amino acid sequences for these three purified secretory products (Sequence ID Nos. 15-17). Different amino acids at positions 16 (Sequence ID No. 17), 31 (Sequence ID No. 16) and 36 (Sequence ID No. 16) demonstrate that these isolated proteins are distinct from one another despite their similarity in molecular weight.
  • N-terminal amino acid sequences of other majorly abundant extracellular products were determined to provide primary structural data and to uncover possible relationships between the proteins. Sequencing was performed on the extracellular products purified according to Example 2 using techniques well known in the art. Varying lengths of the N-terminal amino acid sequence, determined for each individual extracellular product, are shown below identified by the apparent molecular weight of the intact protein, and represented using standard one letter abbreviations for the naturally occurring amino acids. In keeping with established rules of notation, the N-terminal sequences are written left to right in the direction of the amino terminus to the carboxy terminus. Those positions where the identity of the determined amino acid is less than certain are underlined.
  • KD proteins using techniques well known in the art. These DNA sequences, and the corresponding amino acids, including upstream and downstream sequences, are shown below identified by the apparent molecular weight of the intact protein and represented using standard abbreviations and rules of notation.
  • AGT GGT GGT GCC AAC TCG CCC GCC CTG TAC CTG CTC GAC GGC ser gly gly ala asn ser pro ala leu tyr leu leu asp gly
  • sequence ID No. 95 This sequence data, combined with the physical properties ascertained using SDS-PAGE, allow these representative majorly abundant extracellular products of the present invention to be characterized and distinguished.
  • the analysis described indicates that these proteins constitute the majority of the extracellular products of M. tuberculosis, with the 71 KD, 30 KD, 32A KD, 23 KD and 16 KD products comprising approximately 60% by weight of the total available extracellular product. It is further estimated that the 30 KD protein may constitute up to 25% by weight of the total products released by M. tuberculosis.
  • individual exemplary majorly abundant extracellular products of M. tuberculosis useful in the practice of the present invention may range anywhere from approximately 0.5% up to approximately 25% of the total weight of the extracellular products.
  • a cutaneous hypersensitivity assay was performed. Guinea pigs were immunized with the exemplary majorly abundant M. tuberculosis 30 KD secretory product purified according to Example 2 and believed to comprise approximately 25% of the total extracellular product of M. tuberculosis. In three independent experiments, guinea pigs were immunized three times three weeks apart with 100 ⁇ g of substantially purified 30 KD protein in SAF adjuvant. Control animals were similarly injected with buffer in SAF. Three weeks after the last immunization the guinea pigs were challenged with the exemplary 30 KD protein in a cutaneous hypersensitivity assay.
  • Guinea pigs were shaved over the back and injections of 0.1, 1 and 10 ⁇ g of 30 KD protein were administered intradermally with resulting erythema (redness of the skin) and induration measured after 24 hours as shown in Table A below. Data are reported in terms of mean measurement values for the group ⁇ standard error (SE) as determined using traditional methods. ND indicates that this particular aspect of the invention was not done.
  • SE standard error
  • guinea pigs immunized with the exemplary 30 KD secretory product exhibited a strong cell-mediated immune response as evidenced by marked erythema and induration. In contrast, the control animals exhibited minimal response.
  • non-immunized guinea pigs were infected with M. tuberculosis and challenged with this protein as follows.
  • T O obtain bacteria for use in experiments requiring the infection of guinea pigs
  • M. tuberculosis was first cultured on 7H11 agar and passaged once through a guinea pig lung to insure that they were virulent.
  • guinea pigs were challenged by aerosol with a 10 ml suspension of bacteria in 7H9 broth containing approximately 5 x 10 4 bacteria/ml. After the guinea pigs became ill, the animals were sacrificed and the lungs, containing prominent M. tuberculosis lesions, were removed. Each lung was ground up and cultured on 7H11 agar for 7 days to 10 days.
  • the bacteria were scraped from the plates, diluted in 7H9 broth containing 10% glycerol, sonicated in a water bath to obtain a single cell suspension, and frozen slowly at -70°C at a concentration of approximately 2 x 10 7 viable bacteria/ml. Viability of the frozen cells was measured by thawing the bacterial suspension and culturing serial dilutions of the suspension on 7H11 agar. Just before a challenge, a vial of bacterial cells was thawed and diluted to the desired concentration in 7H9 broth.
  • the guinea pigs were exposed to aerosols of the viable M. tuberculosis in a specially designed lucite aerosol chamber.
  • the aerosol chamber measured 14 by 13 by 24 in. and contained two 6 inch diameter portals on opposite sides for introducing or removing guinea pigs.
  • the aerosol inlet was located at the center of the chamber ceiling.
  • a vacuum pump (Gast Mfg. Co., Benton Harbor, Michigan) delivered air at 30 lb/in 2 to a nebulizer-venturi unit (Mes Inc., Burbank, California), and an aerosol was generated from a 10-ml suspension of bacilli.
  • splenic lymphocytes were obtained and purified as described by Brieman and Horwitz (J. Exp. Med. 76 ⁇ :799-811) which is incorporated herein by reference.
  • the lymphocytes were adjusted to a final concentration of lOVml in RPMI 1640 (GIBCO Laboratories, Grand Island, New York) containing penicillin (lOO U/ml), streptomycin (100 ⁇ g/ml), and 10% fetal calf serum (GIBCO) and incubated with various concentrations of purified 30 KD secretory product in a total volume of 100 ⁇ l in microtest wells (96- well round-bottom tissue culture plate; Falcon Labware, Oxnard, California) for 2 days at 37°C in 5% CO 2 -95% air and 100% humidity.
  • Noninfected animals were used as negative controls.
  • 0.25 ⁇ Ci of [ 3 H]thymidine (New England Nuclear, Boston, Massachusetts) was added to each well and the cells were further incubated for 2 hours at 37°C in 5% CO 2 -95% air at 100% humidity.
  • a multisample automated cell harvester (Skatron Inc., Sterling, Virginia) was used to wash each well, and the effluent was passed through a filtermat (Skatron). Filtermat sections representing separate microtest wells were placed in scintillation vials, and 2 ml of Ecoscint H liquid scintillation cocktail (National Diagnostics, Manville, New Jersey) was added. Beta particle emission was measured in a beta scintillation counter (Beckman Instruments Inc., Fullerton, California).
  • Tissue samples from the infected and noninfected guinea pigs were assayed against 1 and 10 ⁇ g/ml of isolated 30 KD secretory protein. Samples were then monitored for their ability to incorporate [ 3 H]thymidine. The results of these assays were tabulated and presented in Table B below.
  • stimulation index which, for the purposes of this disclosure, is defined as: mean [ 3 H]thymidine incorporation of lymphocytes incubated with antigen / mean [ 3 H]thymidine incorporation of lymphocytes incubated without antigen.
  • the cells of the infected animals exhibited a strong response to the exemplary 30 KD protein as manifested by dose dependent splenic lymphocyte proliferation in response to exposure to this majorly abundant secretory product.
  • the uninfected control animals showed little lymphocyte proliferation.
  • the 30 KD secretory product clearly induces a cell-mediated immune response in mammals infected with M. tuberculosis.
  • guinea pigs were immunized with purified 30 KD protein and exposed to M. tuberculosis as follows.
  • the animals were immunized three times at three week intervals with 100 ⁇ g of the exemplary 30 KD secretory protein in SAF.
  • Control guinea pigs were immunized with 120 ⁇ g of bulk EP in SAF or sham-immunized with buffer in the same adjuvant.
  • the animals were challenged with aerosolized M. tuberculosis as described in Example 4.
  • the survival rates for the three groups of animals were monitored and are graphically presented in Figure 4. Absolute mortality was determined 14 weeks after challenge as presented in Table C below.
  • guinea pigs immunized three times with the exemplary 30 KD protein were protected against death. Approximately 67% of the guinea pigs immunized with the 30 KD protein survived whereas only 17% of the control sham-immunized guinea pigs survived. Weight retention of the immunized animals was also monitored (data not shown) and further illustrates the prophylactic capacity of vaccines incorporating majorly abundant extracellular products produced by pathogenic bacteria as taught by the present invention. While the immunized animals appeared to maintain their weight, the high mortality rate of the sham-immunized animals precluded the graphical comparison between the immunized animals and the control animals.
  • tuberculosis in the right lung and spleen were determined by homogenizing each organ in 10 ml of 7H9 with a mortar and pestle and 90-mesh Norton Alundum (Fisher), serially diluting the tissue homogenate in 7H9, and culturing the dilutions on duplicate plates of 7H11 agar by using drops of 0.1 ml/drop. All plates were kept in modular incubator chambers and incubated 12 to 14 days at 37°C in 5% CO 2 , 95% air at 100% humidity. The assay was conducted using this protocol and the results of the counts are presented in Table D below in terms of mean colony forming units (CFU) ⁇ standard error (SE).
  • CFU colony forming units
  • SE standard error
  • guinea pigs from each group were shaved over the back and skin tested with an intradermal injection of 0.1, 1.0 and 10 ⁇ g of 71 KD protein. 10.0 ⁇ g of buffer was used as a control and all injections were performed using a total volume of 0.1 ml. The diameters of erythema and induration were measured after 24 hours with the results as shown in Table E below. Data are reported in terms of mean measurement values for the group ⁇ standard error (SE) as determined using traditional methods.
  • SE standard error
  • the responses of the immunized animals were almost twice the response of the guinea pigs challenged with buffer alone and were comparable to those challenged with bulk EP identical to that used to immunize the animals (data not shown).
  • the bulk EP immunized guinea pigs were sacrificed and splenic lymphocyte proliferation was measured in response to various concentrations of the 71 KD protein. Nonimmunized animals were used as controls. Following the protocol of Example 4, the lymphocytes were incubated with and without 71 KD protein for 2 days and then assayed for their capacity to incorporate [ 3 H]thymidine.
  • Guinea Pig Status n 0.01 ug/ml 0.1 ug/ml 1.0 ⁇ g/ml
  • Guinea Pig Status n 0.01 ug/ml 0.1 ⁇ g/ml 1.0 ⁇ g/ml
  • the bulk preparation cannot be manufactured easily on a large scale through modern biomolecular techniques. Any commercial production of these unrefined bulk preparations containing all extracellular products would involve culturing vast amounts of the target pathogen or a closely related species and harvesting the resultant supernatant fluid. Such production methodology is highly susceptible to contamination by the target pathogen, toxic byproducts or other parasitic agents. Further, the large number of immunogenic determinants in such a preparation is far more likely to provoke a toxic immune reaction in a susceptible segment of the immunized population. Using these unrefined bulk preparations also negates the use of the most popular skin tests currently used for tuberculosis screening and control.
  • the vaccines of the present invention can be mass- produced in relative safety using high yield transformed hosts.
  • the vaccines of the present invention can be produced in identical, easy to standardize batches as opposed to the wider variable production of bulk extracellular products.
  • the number of immunogenic determinants presented to the host immune system is relatively small, toxic reactions and the chance of invalidating popular screening tests are greatly reduced.
  • Guinea pigs were twice vaccinated with 100 ⁇ g of purified 71 KD protein in SAF three weeks apart. Control animals were sham-immunized with buffer in SAF on the same schedule. Three weeks after the last immunization both sets of animals were intradermally challenged with 1 and 10 ⁇ g of isolated 71 KD protein. The resulting erythema and indurations were measured after 24 hours with the results shown in Table G below.
  • lymphocyte proliferation assays were performed. Animals immumzed as in Table G were sacrificed and splenic lymphocyte proliferative assays were run using the protocol established in Example 4. The tissue samples from the 71 KD immunized guinea pigs and those from the control guinea pigs were challenged with 0.1, 1 and 10 ⁇ g/ml of isolated 71 KD protein and monitored for their ability to incorporate [ 3 H]thymidine. Stimulation indices were calculated as previously described. The results of these assays are presented in Table H below.
  • Guinea Pig Status n 0.1 ⁇ g/ml 1.0 ug/ml 10.0 ug/ml
  • Non-immunized guinea pigs were infected with aerosolized
  • PPD-CT68 Purified protein derivative
  • Connaught Laboratories Ltd. was employed as the positive control to ensure that the infected animals were demonstrating a cell-mediated immune response indicative of M. tuberculosis.
  • PPD is generally prepared by ammonium sulfate fractionation and comprises a mixture of small proteins having an average molecular weight of approximately 10 KD. Immune responses to PPD are substantially analogous to those provoked by the bulk EP fractions isolated in Example 1.
  • tissue samples from both sets of guinea pigs were assayed against 0.1, 1 and 10 ⁇ g/ml of isolated 71 KD protein and PPD. The samples were then monitored for their ability to incorporate [ 3 H]thymidine as previously described with the results of these assays presented in Table J below.
  • Guinea Pig Status n 0.1 ug/ml 1.0 ⁇ g/ml 10.0 ug/ml
  • Guinea Pig Status n 0.1 ug/ml 1.0 ⁇ g/ml 10.0 ug/ml
  • Table J shows that the stimulation indices were much higher for the infected tissue than for the uninfected samples. More specifically, the mean peak stimulation index of infected animals was 2- fold higher to the exemplary 71 KD protein and 3 -fold higher to PPD than it was to uninfected controls confirming that a strong cell-mediated immune response is induced in animals infected with M. tuberculosis by the exemplary majorly abundant extracellular protein vaccines of the present invention.
  • guinea pigs were immunized twice, 3 weeks apart, with 100 ⁇ g of the exemplary majorly abundant 71 KD protein purified according to Example 2.
  • Control animals were immunized with 120 ⁇ g bulk EP from Example 1 or buffer. All animals were immunized using the adjuvant SAF.
  • guinea pigs immunized with the exemplary 71 KD protein were skin-tested with 10 ⁇ g of the material to evaluate whether a cell-mediated immune response had developed.
  • the control animals and 71 KD immunized guinea pigs were then infected with aerosolized M.
  • the mean peak stimulation index of PPD-positive individuals was twofold higher to the 71 KD protein and threefold higher to PPD than that of PPD negative individuals.
  • PPD-positive individuals there was a linear correlation between the peak stimulation indices to the exemplary 71 KD protein and to PPD demonstrating that a strong cell-mediated response is stimulated by the most prominent or majorly abundant extracellular products of M. tuberculosis in humans previously exposed to M. tuberculosis.
  • This data corresponds to the reactivity profile seen in guinea pigs and confirms the applicability of the guinea pig model to other mammals subject to infection.
  • the development of a strong immune response to the majorly abundant 71 KD extracellular product demonstrates the broad scope of the present invention as evidenced by the fact that the 71 KD product is also effective at stimulating cell-mediated immunity in humans.
  • the present invention is not limited to the extracellular products of M. tuberculosis or to the use of the exemplary 71 KD protein. Rather the teachings of the present invention are applicable to any majorly abundant extracellular product as demonstrated in the examples. Additional studies were performed in order to ascertain whether combinations of majorly abundant extracellular products of M. tuberculosis would provide protective immunity as well. In general, these studies utilized guinea pigs which were immunized either intradermally or subcutaneously with various dosages of vaccines comprising combinations of 5 purified extracellular proteins of M. tuberculosis in SAF three times, 3 or 4 weeks apart.
  • the first protein combination used for the immunization procedure labeled Combination I, was comprised of 71 KD, 32 A KD, 30 KD, 23 KD, and 16 KD proteins purified according to the protocols described in Example 2. This combination is believed to comprise up to 60% of the total extracellular protein normally present in M. tuberculosis culture supernatants. These proteins selected for use in Combination I, are identified with an asterisk in Figure 2.
  • Combination 1 vaccine containing 100 ⁇ g, 20 ⁇ g, or 2 ⁇ g of each protein was administered intradermally with the adjuvant SAF.
  • Combination I vaccine containing 20 ⁇ g of each protein was also administered subcutaneously in similar experiments.
  • Negative control guinea pigs were sham- immunized with equivalent volumes of SAF and buffer on the same schedule while positive controls were immunized using 120 ⁇ g of the bulk extracellular protein preparation from Example 1 in SAF. All injection volumes were standardized using buffer.
  • a cutaneous hypersensitivity assay was performed. Guinea pigs were shaved over the back and injected intradermally with 1.0 ⁇ g and 10.0 ⁇ g of the same combination of the five purified extracellular proteins. 10.0 ⁇ g of buffer was used as a control and all injections were performed using a total volume of 0.1 ml. The diameters of erythema and induration at skin tests sites were measured at 24 hours after injection.
  • the guinea pigs used for the preceding hypersensitivity assay were challenged with aerosolized M. tuberculosis, Erdman strain and weighed weekly for 10 weeks. This aerosol challenge was performed using the protocol of Example 4.
  • Guinea pigs that died before the end of the observation period were autopsied and examined for evidence of gross tuberculosis lesions. Such lesions were found in all animals which expired during the study.
  • Example 13 confirmed that Combination I proteins demonstrated immunoprotection in animals immunized intradermally with 100 ⁇ g of each protein (30 + 32A + 16 + 23 + 71) 3 times, 4 weeks apart, an alternative study was conducted to demonstrate the immunoprotective capacity of lower doses of Combination I proteins, specifically 20 ⁇ g or 2 ⁇ g of each protein.
  • guinea pigs (6 animals per group) were immunized with Combination I proteins (30 + 32A + 16 + 23 + 71) intradermally in SAF 4 times, 3 weeks apart. Animals received either 20 ⁇ g or each protein per immunization or 2 ⁇ g of each protein per immunization. Control animals were sham-immunized utilizing the previous protocol.
  • Example 13 Three weeks later, the animals were challenged with aerosolized M. tuberculosis and weights were measured weekly for 9 weeks. All immunized animals survived to the end of the experiment while one sham-immunized animal died before the end of the experiment. As the following results illustrate, doses 5 fold and even 50 fold lower than those of Example 13 protected immunized animals from aerosolized M. tuberculosis and that delivery by both the intradermal and subcutaneous route was effective.
  • guinea pigs immunized with 20 ⁇ g of each protein of Combination I Compared with guinea pigs immunized with 20 ⁇ g of each protein of Combination I, sham-immunized animals lost 12 % of their total body weight during the 9 weeks of the experiment (weights were normalized to just before challenge). Compared with guinea pigs immunized with 2 ⁇ g of each protein of Combination I, sham-immunized animals lost 11% of their normalized total body weight.
  • guinea pigs immunized intradermally with low doses of Combination I proteins were protected against weight loss after aerosol challenge with M. tuberculosis.
  • Combination I proteins also were protected against splenomegaly associated with dissemination of M. tuberculosis to the spleen. As shown in Table O, whereas animals immunized with 20 ⁇ g or 2 ⁇ g of each protein of Combination I had spleens weighing an average of 4.6 ⁇ 1.2g and 4.0 ⁇ 0.8g (Mean ⁇ SE), respectively, sham-immunized animals had spleens weighing an average of 9.6 ⁇ 1.8g (Table 1), or more than twice as much.
  • Guinea pigs immunized intradermally with low doses of Combination I proteins also had fewer CFU of M. tuberculosis in their spleens.
  • Table P when compared with sham-immunized animals, guinea pigs immumzed with 20 ⁇ g or 2 ⁇ g of each protein of Combination I had an average of 0.6 and 0.4 log fewer CFU, respectively, in their spleens.
  • guinea pigs immunized subcutaneously with Combination I proteins were also protected against weight loss, splenomegaly, and growth of M. tuberculosis in the spleen.
  • guinea pigs were also immunized subcutaneously rather than intradermally with 20 ⁇ g of Combination I proteins, 4 times, 3 weeks apart. These animals were protected from challenge almost as much as the animals immunized intradermally with 20 ⁇ g of Combination I proteins.
  • mice immunized with Combination II had 16.8 ⁇ 1.3 mm (Mean ⁇ SE) erythema and 12.8 ⁇ 1.2 mm induration in response to skin-testing with Combination II whereas sham-immunized animals had only 1.3 ⁇ 0.8 mm erythema and 0.3 ⁇ 3 mm induration in response to Combination II.
  • animals immunized with Combination II had greater than 12 fold more erythema and greater than 40 fold more induration than controls.
  • animals immunized with Combination II had greater than 12 fold more erythema and greater than 40 fold more induration than controls.
  • mice immunized with a lower dose of Combination II proteins (20 ⁇ g of each protein vs. 100 ⁇ g) also developed strong cutaneous hypersensitivity to Combination II. They had 21.0 ⁇ 2.0 mm erythema and 15.3 ⁇ 0.9 mm induration in response to Combination II, whereas the sham-immunized animals had only 1.3 ⁇ 0.8 mm erythema and 0.3 ⁇ 0.3 mm induration, as noted above.
  • animals immunized with a lower dose of Combination II proteins had greater than 16 fold erythema and greater than 50 fold more induration than controls, a difference that was even greater than for animals immunized with the higher dose of Combination
  • mice immunized with Combination II gained 52.4 g and animals immunized with Combination II at a lower dose (20 ⁇ g of each protein) gained an average of 67.2g.
  • animals immunized with Combination I gained 68g.
  • Each combination vaccine included 100 ⁇ g of each listed protein.
  • the combination vaccines were volumetrically adjusted and injected intradermally in the adjuvant SAF. As before the guinea pigs were immunized four times, three weeks apart. A cutaneous hypersensitivity assay was performed to determine if the animals had developed a measurable immune response following vaccination with the Combinations III to XII. Groups of six guinea pigs were shaved over the back and injected intradermally with the same combination of purified extracellular products to which they were immunized. For this challenge 10 ⁇ g of each of the proteins in the combination were injected. All injections were performed using a total volume of 0.1 ml.
  • guinea pigs immunized with Combinations III through XII were challenged with M. tuberculosis three weeks after the last immunization using the protocol of Example 4. Consistent with earlier results guinea pigs immunized with
  • Combinations III through XII were all protected against death after challenge. At 4 weeks after challenge, 2 of 6 sham-immunized animals (33%) died compared with 0 animals in groups immunized with Combinations IV-XII and 1 of 6 animals (17%) in the group immunized with Combination III.
  • guinea pigs were immunized as before using alternative vaccination dosages. Specifically, 50 ⁇ g, 100 ⁇ g and 200 ⁇ g of an alternative combination of 3 majorly abundant extracellular products identified as Combination XIII and comprising the 30 KD, 32(A) KD, and 16 KD proteins.
  • Combination XIII 3 majorly abundant extracellular products identified as Combination XIII and comprising the 30 KD, 32(A) KD, and 16 KD proteins.
  • groups of animals were immunized intradermally 4 times, 3 weeks apart with the alternative dosages of Combination XIII in SAF.
  • a cutaneous hypersensitivity assay was performed to determine if the animals had developed a measurable immune response following vaccination.
  • the animals were shaved over the back and injected intradermally with Combination XIII containing 10.0 ⁇ g of each of the purified extracellular products. All injections were performed using a total volume of 0.1 ml. Sham-immunized controls were also skin- tested with the same dosage of Combination XIII. The diameters of erythema and induration at skin- test sites were measured 24 hours after injection.
  • the immunized guinea pigs (6 per group) used for the preceding cutaneous hypersensitivity assay were challenged with aerosolized M. tuberculosis three weeks after the last immunization.
  • the aerosol challenge was performed using the protocol detailed in Example 4.
  • a control group of 12 sham-immumzed animals was challenged simultaneously.
  • Results of the weekly weight determinations following challenge are graphically represented in Figure 10 and distinctly show guinea pigs immunized with each of the three dosages of Combination XIII were protected from weight loss.
  • Animals immunized with the higher dosages of Combination XIII (100 and 200 ⁇ g) actually showed a net gain in weight and animals immunized with the lower dosage (50 ⁇ g) showed a relatively small loss in weight.
  • the sham immunized animals lost approximately 22% of their total body weight in the weeks immediately after challenge and averaged a loss of 182 g over the 10 week observation period.
  • Table U illustrates the percent weight change for immunized and control animals as determined by taking the mean weight at the end of the challenge, subtracting the mean weight at the start of the challenge and dividing the result by the mean weight at the start of the challenge. Similarly, the percent protection was determined by subtracting the mean percent weight loss of the controls from the mean percent weight gain or loss of the immunized animals.
  • Combination I was also used in this series of experiments. Guinea pigs were immunized intradermally with 50 ⁇ g of each protein of Combination XIV or XV and with 100 ⁇ g of each protein of Combinations I, XVI, XVII, and XVIII all in SAF adjuvant. The animals were immunized a total of four times, with each injection three weeks apart.
  • a cutaneous hypersensitivity assay was performed to determine if the animals had developed a measurable immune response following vaccination using the previously discussed protocol. Guinea pigs were shaved over the back and injected intradermally with the same combination of purified extracellular proteins to which they were immunized. For each challenge the appropriate combination vaccine containing 10 ⁇ g of each protein was injected. All injections were performed using a total volume of 0.1 ml. Sham-immunized controls were also skin-tested with the same dosage of each combination. The diameters of erythema and induration at skin test sites were measured at 24 hours after injection as described in Example 3. The results of these measurements are presented in Table V below, reported in terms of mean measurement values for the group ⁇ standard error (SE) as determined using traditional methods.
  • SE standard error
  • Example 21 To confirm the immunoreactivity of the combination vaccines of Example 21 and to demonstrate their applicability to infectious tuberculosis, the immunized guinea pigs used for the preceding cutaneous hypersensitivity assay were challenged with aerosolized M. tuberculosis three weeks after the last immunization and monitored using the protocol of Example 4. A control group of 12 sham-immunized animals, the same as used in Example 20, was similarly challenged. The results of these challenge are graphically represented in Figure 11 and shown in Table W directly below. Percent weight change was determined by taking the mean weight at the end of the challenge, subtracting the mean weight at the start of the challenge and dividing the result by the mean weight at the start of the challenge. Similarly, the percent protection was determined by subtracting the mean percent weight loss of the controls from the mean percent weight gain or loss of the immunized animals.
  • guinea pigs immunized with each of the combination vaccines were protected from weight loss. Sham-immunized animals lost approximately 22% of their total combined body weight. In contrast the prophylactic effect of the combination vaccines resulted in actual weight gain for one of the test groups and a reduced amount of weight loss in the others. Specifically, animals immunized with Combination XIV evidenced a 3% weight gain while those animals immunized with the other combinations lost only 4% to 15% of their total combined weight.
  • Guinea pigs were immunized intradermally with 100 ⁇ g of each protein comprising Combinations I and XIII and approximately 100 ⁇ g of purified 30 KD protein in each of the three different adjuvant formulations.
  • the guinea pigs were immunized with each formulation a total of three times with injections three weeks apart.
  • a cutaneous hypersensitivity assay was performed to determine if the guinea pigs had developed a measurable immune response.
  • Guinea pigs were shaved over the back and injected intradermally with the same immunogen to which they had been immunized.
  • 10 ⁇ g of each protein in Combinations I and XIII or 10 ⁇ g of purified 30 KD protein was injected in a total volume of 100 ⁇ l.
  • the diameters of erythema and induration at skin test sites were measured 24 hours after challenge as described in Example 3.
  • the combination vaccines and purified extracellular products of the present invention provide a strong cell-mediated immunogenic response when formulated with different adjuvants. Moreover, each one of the three adjuvants provided about the same immunogenic response for each respective immunogen.
  • the immunized guinea pigs exhibited erythema diameters approximately seven to ten times that of the sham-immunized guinea pigs while indurations were approximately four to six times greater than measured in the control animals.
  • adjuvants used to produce effective vaccine formulations in accordance with the teachings herein may be selected based largely on consideration of secondary criteria such as stability, lack of side effects, cost and ease of storage. These and other criteria, not directly related to the stimulation of an immune response, are particularly important when developing vaccine formulations for widespread use under relatively primitive conditions.
  • the guinea pigs were immunized a total of four times, with each injection three weeks apart.
  • Each combination vaccine used to immunize the animals consisted of 100 ⁇ g of each protein in SAF adjuvant to provide a total volume of 0.1 ml.
  • Example 3 Using the protocol discussed in Example 3, a cutaneous hypersensitive assay was performed to determine if the animals had developed a measurable immune response following vaccination with the selected combination vaccine.
  • the guinea pigs were shaved over the back and injected intradermally with the same combination of purified extracellular proteins with which they were immunized.
  • the protein combinations used to challenge the animals consisted of 10 ⁇ g of each protein. Sham immunized controls were also skin-tested with the same dosage of each combination.
  • the diameters of erythema and induration at the skin test sites were measured at 24 hours after injection.
  • the vaccines of the present invention are considerably less likely to provoke a toxic response when compared with prior art attenuated or killed bacterial vaccines.
  • the molecular vaccines of the present invention are not life threatening to immunocompromised individuals.
  • the compositions of the present invention may be used therapeutically to stimulate a directed immune response to a pathogenic agent in an infected individual .
  • Another advantage of the present invention is that purified extracellular products are easily obtained in large quantities and readily isolated using techniques well known in the art as opposed to the attenuated bacteria and bacterial components of prior art vaccines. Since the immunoreactive products of the present invention are naturally released extracellularly into the surrounding media for most organisms of interest, removal of intracellular contaminants and cellular debris is simplified. Further, as the most prominent or majorly abundant extracellular products or immunogenic analogs thereof are used to stimulate the desired immune response, expression levels and culture concentrations of harvestable product is generally elevated in most production systems. Accordingly, whatever form of production is employed, large scale isolation of the desired products is easily accomplished through routine biochemical procedures such as chromatography or ultrafiltration. These inherent attributes and molecular characteristics of the immunogenic determinants used in the present invention greatly facilitate the production of a consistent, standardized, high quality composition for use on a large scale.
  • the use of purified molecular compounds based on the immunogenic properties of the most prominent or majorly abundant extracellular products of target pathogens also makes the large scale synthetic generation of the immunoactive vaccine components of the present invention relatively easy.
  • the extracellular products of interest or their immunogenic analogs may be cloned into a non-pathogenic host bacteria using recombinant DNA technology and harvested in safety.
  • Molecular cloning techniques well known in the art may be used for isolating and expressing DNA corresponding to the extracellular products of interest, their homologs or any segments thereof in selected high expression vectors for insertion in host bacteria such as Escherichia coli. Exemplary techniques may be found in II R.
  • the extracellular proteins, their analogs, homologs or immunoreactive protein subunits may be chemically synthesized on a large scale in a relatively pure form using common laboratory techniques and automated sequencer technology. This mode of production is particularly attractive for constructing peptide subunits or lower molecular weight analogs corresponding to antigenic determinants of the extracellular products. Exemplary techniques for the production of smaller protein subunits are well known in the art and may be found in II R. Anon, Synthetic Vaccines 15-30, 1987, and in A. Streitwieser, Jr., Introduction to Organic Chemistry 953-55, 1985 (3d ed.).
  • Nucleic acid molecules useful for the practice of the present invention may be expressed from a variety of vectors, including, for example, viral vectors such as herpes viral vectors (e.g., U.S. Patent No. 5,288,641), retroviruses (e.g., EP 0,415,731; WO 90/07936, WO 91/0285, WO 94/03622; WO 93/25698; WO 93/25234; U.S. Patent No. 5,219,740; WO 89/09271; WO 86/00922; WO 90/02797; WO 90/02806; U.S. Patent No. 4,650,764; U.S. Patent No.
  • adenoviral vectors e.g., WO 94/26914, WO 93/9191; Kolls et al., PNAS 91 (Y):2l 5-2 9, 1994; Kass-Eisler et al., PNAS 90(24): 11498-502, 1993; Guzman et al., Circulation 88(6):2838-48, 1993; Guzman et al., Cir. Res. 75(6): 1202-1207, 1993; Zabner et al., Cell 75(2):207-216, 1993; Li et al., Hum. Gene Ther.
  • adenoviral vectors e.g., WO 94/26914, WO 93/9191; Kolls et al., PNAS 91 (Y):2l 5-2 9, 1994; Kass-Eisler et al., PNAS 90(24): 11498-502, 1993; Guzman et al., Circulation 88(6):28
  • the nucleic acid molecules may be introduced into host cells by a wide variety of mechanisms, including, for example, transfection, including, for example, DNA linked to killed adenovirus (Michael et al., J.Biol. Chem. 2 ⁇ 5 ⁇ °(10):6866-6869, 1993; and Curiel et al., Hum. Gene Ther. 5(2):147-154, 1992), cytofectin-mediated introduction (DMRIE-DOPE, Vical, Calif), direct DNA injection (Acsadi et al., Nature 552:815-818, 1991); DNA ligand (Wu et al., J. Biol.
  • DNA or other genetic material encoding one or more genes capable of inducing the expression of one or more of the extracellular products, homologs, analogs, or subunits of the present invention can be directly injected into a mammalian host utilizing so called "naked DNA" techniques. Following the in vivo introduction and the resultant uptake of the genetic construct by the host's cells the host will begin the endogenous production of the one or more encoded immunoreactive products engendering an effective immune response to subsequent challenge.
  • WO 9011092 (ViCal Inc.), and Robinson, "Protection Against a Lethal Influenza Virus Challenge by Immunization with a Hemagglutinin-Expressing Plasmid DNA," Vaccine 11:9, 1993, and in Ulmer et al., "Heterologous Protection against Influenza by Injection of DNA Encoding a Viral Protein,” Science 259, 1993, incorporated by reference herein.
  • M. tuberculosis and is highly cross-reactive in terms of provoking an immune response.
  • Mycobacterium can offer various degrees of protection against infection by M. tuberculosis and vice versa. Thus, it is contemplated as being within the scope of the present invention to provide an immunoprophylactic response against several bacterial species of the same genera using an highly homologous immunogenic determinant of an appropriate majorly abundant extracellular product.
  • the immunogenic determinant selected to practice the present invention may be used in many different forms to elicit an effective protective or immunodiagnostic immune response.
  • the mode of presentation of the one or more immunogenic determinants of selected majorly abundant extracellular products to the host immune system is not critical and may be altered to facilitate production or administration.
  • the vaccines of the present invention may be formulated using whole extracellular products or any immunostimulating fraction thereof including peptides, protein subunits, immunogenic analogs and homologs as noted above.
  • effective protein subunits of the majorly abundant extracellular products of M. tuberculosis can be identified in a genetically diverse population of a species of mammal.
  • the resultant immunodominant T-cell epitopes identified should be recognized by other mammals including humans and cattle. These immunodominant T-cell epitopes are therefore useful for vaccines as well as for immunodiagnostic reagents.
  • An exemplary study identifying the immunodominant T-cell epitopes of the 30 KD major secretory protein of M. tuberculosis was conducted as follows.
  • Splenic lymphocytes were obtained from outbred male Hartley strain guinea pigs (Charles River Breeding Laboratories) that had been immumzed intradermally 3-4 times with 100 ⁇ g of purified 30 KD protein emulsified in SAF (Allison and Byars, 1986). Control animals received phosphate buffered saline in SAF.
  • Lymphocytes were seeded in 96-well tissue culture plates (Falcon Labware) and incubated in triplicate with the synthetic 15-mer peptides at 20 ⁇ g ml "1 , purified 30 KD protein at 20 ⁇ g ml "1 , purified protein derivative [(PPD); Connaught Laboratories LTD] at 20 ⁇ g ml "1 , or concanavalin A at 10 ⁇ g ml "1 for 2 days in the presence of 10 U polymyxin B. Subsequently, cells were labeled for 16 h with 1 ⁇ Ci [ 3 H] thymidine (New England Nuclear) and then harvested (Breiman and Horwitz, 1987).
  • a positive proliferative response was defined as follows: (dpm of antigen) - (dpm of medium) > 1 500 and (dpm of antigen)/(dpm of medium) > 1.2.
  • Immunodominant epitopes recognized by greater than 25% of the guinea pigs immunized with purified M. tuberculosis 30 KD protein are presented in Table Z below and graphically illustrated in Figures 12a and 12b.
  • M. bovis protein differ markedly from the foregoing study in that the prior art studied actual patients, BCG vaccinees, patients with tuberculosis, or PPD-positive individuals.
  • Example 25 utilized outbred guinea pigs immunized with purified protein, thereby focusing the immune system on this single protein and producing a very strong cell-mediated immune response. Moreover, these guinea pigs were studied within a few weeks of immunization, at the peak of T-cell responsiveness.
  • one or more of the immunodominant epitopes identified above can be incorporated into a vaccine against tuberculosis.
  • individual immunodominant epitopes can be synthesized and used individually or in combination in a multiple antigen peptide system.
  • two or more immunodominant epitopes can be linked together chemically.
  • the peptides, either linked together or separately, can be combined with an appropriate adjuvant and used in subunit vaccines for humans or other mammals.
  • the immunodominant epitopes can be used in new immunodiagnostic reagents such as new skin tests.
  • DNA encoding the peptides can be synthesized and used to express the peptides, individually or collectively, or can be combined in a DNA vaccine injected directly into humans or other mammals.
  • a construct consisting of only the immunogenic epitopes (or the DNA coding therefor) would focus the immune response on the protective portions of the molecule. By avoiding irrelevant or even immunosuppressive epitopes such a construct may induce a stronger and more protective immune response. Smaller protein subunits of the majorly abundant extracellular products, molecular analogs thereof, genes encoding therefore, and respective combinations thereof are within the scope of the present invention as long as they provoke effective immunoprophylaxis or function as an immunodiagnostic reagent.
  • recombinant protein products such as fusion proteins or extracellular products modified through known molecular recombinant techniques are entirely compatible with the teachings of the present invention.
  • immunogenically generated analogs of the selected immunoactive determinants or peptides and nucleotides derived using directed evolution are also within the scope of the invention.
  • the selected immunoactive determinants can be modified so as to bind more tightly to specific MHC molecules of humans or other species or be presented more efficiently by antigen presenting cells. Further, the selected immunoactive determinants can be modified so as to resist degradation in the vaccinated host.
  • the formulation and presentation of the immunogenic agent to the host immune system is not limited to solutions of proteins or their analogs in adjuvant.
  • the immunogenic determinant derived from the appropriate extracellular proteins may be expressed by M. tuberculosis, different species of Mycobacteria, different species of bacteria, phage, mycoplasma or virus that is non- pathogenic and modified using recombinant technology. In such cases the whole live organism may be formulated and used to stimulate the desired response.
  • large scale vaccination programs in hostile environments may require very stable formulations without complicating adjuvants or additives.
  • the vaccine formulation could be directed to facilitate the stability or immunoreactivity of the active component when subjected to harsh conditions such as lyophilization or oral administration or encapsulation.
  • the present invention encompasses vastly different formulations of the immunogenic determinants comprising the subject vaccines depending upon the intended use of the product.
  • vaccine dosages should be determined for each pathogen and host utilizing routine experimentation. At present, it is believed that the lowest practical dosage will be on the order of 0.1 ⁇ g though dosages of 2.0 ⁇ g, 20.0 ⁇ g, 100 ⁇ g and even 1 mg may be optimum for the appropriate system.
  • the proper dosage can be administered using any conventional immunization technique and sequence known in the art.
  • the gene encoding the 30 kDa protein was engineered such that the initiator phenylalanine of the mature protein was fused to a glycine residue artificially inserted at the Ncol site or carboxyl terminus of the pelB leader sequence in pET22b (Novagen, Madison, WI) (see Figure 13).
  • This strategy provided a fusion molecule from which the mature 30 kDa protein could be easily released and led to the expression of relatively large quantities of recombinant 30 kDa protein over a period of 4 hours. Thereafter, expression of recombinant protein reached a plateau. Expression of the recombinant molecules continued for up to 8 hours without exerting serious detrimental effects on the bacterial culture.
  • a typical yield from 1 liter of E. coli culture was approximately 50 mg, amounting to nearly 25% of the total cell protein.
  • constructs in pET22b were expressed in E. coli BL21(DE3)pLysS upon induction with 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG). Samples of induced cultures were taken at hourly intervals for up to 8 hours and aliquots of the culture supernatants and cell pellets were run on 12.5% denaturing polyacrylamide gels and stained with Coomassie brilliant blue R. Recombinant protein was purified as described by Horwitz et al.
  • the mature 30 kDa protein was expressed in the pET22b vector either with its own or the plasmid encoded pelB leader peptide.
  • the results of the electrophoresis of the cell pellets are shown in Figure 14.
  • Lanes A and B show Coomassie stained protein extracts upon IPTG induction of bacteria carrying the pET22b vector with the mature 30 kDa protein gene fused to the pelB leader DNA sequence (A) and the pET22b vector with the full-length 30 kDa protein gene (B).
  • Lane C shows mature 30 kDa protein isolated from M. tuberculosis culture filtrates as a reference.
  • Lanes D, E, and F show a Western blot analysis of the same proteins as in A, B, and C probed with anti-30/32A-B kDa complex specific antibodies.
  • Lane G protein extract from E. coli cultures carrying the pET22b vector alone, probed with the same antibodies. Positions of full-length and mature 30 kDa proteins are marked 30W and 30M, respectively, and these recombinant proteins are further identified by their first 5 or 7 N-terminal amino acids. Numbers on the left refer to molecular mass standards in kDa.
  • EXAMPLE 27 EXPRESSION OF SOLUBLE, PROCESSED, EXTRACELLULAR, M. TUBERCULOSIS 30 KDA MAJOR SECRETORY PROTEIN USING THE
  • This example is directed to demonstrating the expression and secretion of the M. tuberculosis 30 kDa major secretory protein in a mycobacterium.
  • the insert consisted of a 4.7 kb HinDIII - BamHI genomic DNA fragment from M. tuberculosis Erdman strain containing the sequence for the 30 kDa protein.
  • the insert was cloned into pSMT3 in E. coli DH5a and recombinant plasmid DNA was transformed into M. smegmatis l-2c and M. vaccae R877R (National Collection of Type Cultures (NCTC) 11659) by electroporation at a setting of 6250 V/cm and 25 mFarad.
  • M. smegmatis l-2c is a cured isolate of strain M.
  • smegmatis mc 2 6 which is a single cell isolate of ATCC 607 (American Type Culture Collection) which was prepared from M. smegmatis mc 2 6 by the procedure described in Zhang et al., Molecular Microbiology 5(2):381-391, 1991. M. smegmatis mc 2 6 was isolated from ATCC 607 by the procedure described in Jacobs et al., Nature 327:532-535, 1987. Using 1 mg of recombinant plasmid DNA and approximately 4 x 10 9 CFU of Mycobacteria, this method yielded 100-200 hygromycin-resistant transformants. The transformants were stable in broth culture and constitutively expressed the M. tuberculosis 30 kDa protein, yielding approximately 10 mg processed protein/L of culture. Most importantly, the protein was soluble and approximately 90% of the expressed protein was secreted in the culture supernatant (see Figure 16).
  • M. tuberculosis 30 kDa major secretory protein The left most lane depicts molecular mass standards (66, 45, 36, 29, 24, 20, 14 kDa). The recombinant protein migrates just above the 29 kDa marker. Western blot analysis was used to confirm that the major extracellular protein in the culture supernatant was the recombinant mature M. tuberculosis 30 kDa major secretory protein. The results are shown in Figure 17. In Figure 17, the proteins depicted in the four rightmost lanes of Figure 16 were subjected to SDS-PAGE and blotted onto nitrocellulose (4 rightmost lanes). The blot was probed with rabbit polyclonal antibody specific to the M.
  • tuberculosis 30/32 kDa protein complex Only the recombinant M. tuberculosis 30 kDa protein is stained (arrow). The lane to the left contains prestained molecular mass markers (106, 80, 49.5, 32.5, 27.5, and 18.5 kDa).
  • the recombinant protein migrates between the 32.5 and 27.5 kDa mass standards.
  • N-terminal sequence analysis of the first 6 N-terminal amino acids yielded FSRPGL, confirming that the N-terminal sequence was identical to that of the mature M. tuberculosis 30 kDa protein.
  • Example 24 A brief discussion of general approaches to the expression of desired proteins is set forth above in Example 24.
  • Smaller protein subunits of the majorly abundant extracellular products and molecular analogs thereof are within the scope of the present invention as long as they provoke effective immunoprophylaxis.
  • recombinant protein products such as fusion proteins or extracellular products modified through known molecular recombinant techniques are entirely compatible with the teachings of the present invention.
  • immunogenically generated analogs of the selected immunoactive determinants such as anti-idiotype antibodies, or peptides and nucleotides derived using directed evolution are also within the scope of the invention.
  • the formulation and presentation of the immunogenic agent to the host immune system is not limited to solutions of proteins or their analogs in adjuvant.
  • the immunogenic determinant derived from the appropriate extracellular proteins may be expressed on a different species of bacteria, phage, mycoplasma or virus that is non-pathogenic and modified using recombinant technology. In such cases the whole live organism may be formulated and used to stimulate the desired response.
  • large scale vaccination programs in hostile environments may require very stable formulations without complicating adjuvants or additives.
  • the vaccine formulation could be directed to facilitate the stability or immunoreactivity of the active component when subjected to harsh conditions such as lyophilization or oral administration or encapsulation. Accordingly, the present invention encompasses vastly different formulations of the immunogenic determinants comprising the subject vaccines depending upon the intended use of the product.
  • vaccine dosages should be determined for each pathogen and host utilizing routine experimentation. At present, it is believed that the lowest practical dosage will be on the order of 0.1 mg though dosages of 2.0 mg, 20.0 mg, 100 mg and even 1 mg may be optimum for the appropriate system. The proper dosage can be administered using any conventional immunization technique and sequence known in the art.
  • ORGANISM Mycobacterium tuberculosis
  • MOLECULE TYPE protein
  • HYPOTHETICAL NO
  • ANTI-SENSE NO
  • FRAGMENT TYPE N-terminal
  • ORIGINAL SOURCE
  • ORGANISM Mycobacterium tuberculosis
  • ORGANISM Mycobacterium tuberculosis
  • MOLECULE TYPE protein
  • HYPOTHETICAL NO
  • ANTI-SENSE NO
  • FRAGMENT TYPE N-terminal
  • ORIGINAL SOURCE
  • ORGANISM Mycobacterium tuberculosis
  • ORGANISM Mycobacterium tuberculosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
EP96917836A 1995-05-23 1996-05-23 Reichlich vorhandene extrazelluläre produkte und methoden für deren produktion und verwendung Withdrawn EP0828510A1 (de)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US447398 1989-12-07
US08/447,398 US6761894B1 (en) 1993-11-23 1995-05-23 Abundant extracellular products and methods for their production and use
US54592695A 1995-10-20 1995-10-20
US545926 1995-10-20
US55114995A 1995-10-31 1995-10-31
US551149 1995-10-31
US56835795A 1995-12-06 1995-12-06
US568357 1995-12-06
PCT/US1996/007781 WO1996037219A1 (en) 1995-05-23 1996-05-23 Abundant extracellular products and methods for their production and use

Publications (1)

Publication Number Publication Date
EP0828510A1 true EP0828510A1 (de) 1998-03-18

Family

ID=27503944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96917836A Withdrawn EP0828510A1 (de) 1995-05-23 1996-05-23 Reichlich vorhandene extrazelluläre produkte und methoden für deren produktion und verwendung

Country Status (7)

Country Link
EP (1) EP0828510A1 (de)
JP (1) JPH11506320A (de)
AU (1) AU6024596A (de)
BR (1) BR9608894A (de)
CA (1) CA2222000C (de)
NZ (1) NZ309945A (de)
WO (1) WO1996037219A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641814B1 (en) 1997-04-02 2003-11-04 Statens Serum Institut Nucleic acids fragments and polypeptide fragments derived from M. tuberculosis
US6991797B2 (en) 1993-07-02 2006-01-31 Statens Serum Institut M. tuberculosis antigens
CA2278116A1 (en) * 1997-01-21 1998-07-23 The Regents Of The University Of California Abundant extracellular products and methods for their production and use
US6982085B2 (en) 1997-04-02 2006-01-03 Statens Serum Institut TB diagnostic based on antigens from M. tuberculosis
ES2291810T3 (es) * 1997-04-02 2008-03-01 Statens Serum Institut Fragmentos de acido nucleico y fragmentos de polpeptidos derivados de m. tuberculosis.
US7037510B2 (en) 1997-04-18 2006-05-02 Statens Serum Institut Hybrids of M. tuberculosis antigens
CA2292843A1 (en) * 1997-07-07 1999-01-21 Abbott Laboratories Reagents and methods useful for detecting diseases of the breast
AU750173B2 (en) * 1997-11-10 2002-07-11 Statens Serum Institut Nucleic acid fragments and polypeptide fragments derived from M. tuberculosis
FR2796397B1 (fr) * 1999-07-16 2006-09-01 Merial Sas Genes de calicivirus felin et vaccins notamment vaccins recombines
GB0003082D0 (en) * 2000-02-10 2000-03-29 Glaxo Group Ltd Vaccine
KR20080027973A (ko) * 2000-06-22 2008-03-28 와이어쓰 홀딩스 코포레이션 보조제 배합물로서의 큐에스-21 및 아이엘-12
US7288261B2 (en) * 2000-07-10 2007-10-30 Colorado State University Research Foundation Mid-life vaccine and methods for boosting anti-mycobacterial immunity
WO2006053871A2 (en) 2004-11-16 2006-05-26 Crucell Holland B.V. Multivalent vaccines comprising recombinant viral vectors
GB2433740A (en) 2005-12-23 2007-07-04 Rapid Biosensor Systems Ltd Detection of tuberculosis infection
WO2008140478A2 (en) * 2006-11-01 2008-11-20 Immport Therapeutics, Inc. Compositions and methods for immunodominant antigens
IN2014DN05865A (de) 2011-12-22 2015-05-22 Univ Sydney

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108745B1 (en) * 1988-08-16 1998-06-30 Univ California Tuberculosis and legionellosis vaccines and methods for their production
US5330754A (en) * 1992-06-29 1994-07-19 Archana Kapoor Membrane-associated immunogens of mycobacteria
DE69435138D1 (de) * 1993-11-23 2008-10-23 Univ California Reichlich vorhandene extrazelluläre produkte und methoden zu ihrer herstellung sowie ihre verwendung
WO1996005223A1 (en) * 1994-08-12 1996-02-22 The Regents Of The University Of California Abundant extracellular products and methods for their production and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9637219A1 *

Also Published As

Publication number Publication date
WO1996037219A1 (en) 1996-11-28
MX9709053A (es) 1998-10-31
BR9608894A (pt) 1999-12-07
JPH11506320A (ja) 1999-06-08
NZ309945A (en) 2001-04-27
AU6024596A (en) 1996-12-11
CA2222000C (en) 2012-03-20
CA2222000A1 (en) 1996-11-28

Similar Documents

Publication Publication Date Title
US6761894B1 (en) Abundant extracellular products and methods for their production and use
CA2230885C (en) Compounds and methods for immunotherapy and diagnosis of tuberculosis
CA2222000C (en) Abundant extracellular products and methods for their production and use
WO1997009428A9 (en) Compounds and methods for immunotherapy and diagnosis of tuberculosis
EP1005365B1 (de) Epitopen eines extrazellulären antigens
US6599510B1 (en) Abundant extracellular products and methods for their production and use
US7300660B2 (en) Abundant extracellular products and methods for their production and use
US6818223B2 (en) Abundant extracellular products and methods for their production and use
US7002002B2 (en) Abundant extracellular products and methods for their production and use
US20060182754A1 (en) Abundant extracellular products and methods for their production and use
US6752993B1 (en) Abundant extracellular product vaccines and methods for their production and use
US20030152584A1 (en) Abundant extracellular products and methods for their production and use
AU728433B2 (en) Abundant extracellular products and methods for their production and use
US20020150592A1 (en) Abundant extracellular products and methods for their production and use
AU6555599A (en) Abundant extracellular products and methods for their production and use
WO1996005223A1 (en) Abundant extracellular products and methods for their production and use
AU6968100A (en) Abundant extracellular products and methods for their production and use
MXPA97009053A (en) Abundant extracelular products and methods for production and
MXPA97001103A (en) Abundant extracelular products and methods for their production and

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020716

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1009749

Country of ref document: HK

17Q First examination report despatched

Effective date: 20020716

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061201