EP0821269B1 - Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé - Google Patents

Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé Download PDF

Info

Publication number
EP0821269B1
EP0821269B1 EP19970201901 EP97201901A EP0821269B1 EP 0821269 B1 EP0821269 B1 EP 0821269B1 EP 19970201901 EP19970201901 EP 19970201901 EP 97201901 A EP97201901 A EP 97201901A EP 0821269 B1 EP0821269 B1 EP 0821269B1
Authority
EP
European Patent Office
Prior art keywords
recording material
photo
photothermographic recording
silver salt
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970201901
Other languages
German (de)
English (en)
Other versions
EP0821269A1 (fr
Inventor
Ivan Hoogmartens
Hans Strijckers
David Terrell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP19970201901 priority Critical patent/EP0821269B1/fr
Publication of EP0821269A1 publication Critical patent/EP0821269A1/fr
Application granted granted Critical
Publication of EP0821269B1 publication Critical patent/EP0821269B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/494Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
    • G03C1/498Photothermographic systems, e.g. dry silver
    • G03C1/49836Additives

Definitions

  • the present invention relates to a photothermographic recording material comprising photosensitive silver halide spectrally sensitized with specific dyes and a recording process therefor.
  • Thermal imaging or thermography is a recording process wherein images are generated by the use of imagewise modulated thermal energy.
  • thermography three approaches are known:
  • Thermographic materials of type 1 become photothermographic when a photosensitive agent is present which after exposure to UV, visible or IR light is capable of catalyzing or participating in a thermographic process bringing about changes in colour or optical density.
  • photothermographic materials are the so called “Dry Silver” photographic materials of the 3M Company, which are reviewed by D.A. Morgan in “Handbook of Imaging Science", edited by A.R. Diamond, page 43, published by Marcel Dekker in 1991.
  • EP-A 559 228 discloses a photothermographic emulsion comprising a binder, a light insensitive silver salt, a reducing agent for silver ion, and silver halide, the silver halide being spectrally sensitized to radiation of from 750 to 1300 nm and the emulsion containing a supersensitizing amount of a compound selected from the group consisting of heteroaromatic mercapto compounds or heteroaromatic disulfide compounds.
  • Typical supersensitizers are either dyes or colorless compounds showing strong absorption bands in the near-ultraviolet spectral region associated with electron systems similar to those of the dyes. Sensitization enhancement of a particular spectral sensitizer or class of spectral sensitizers is often only observed with particular compounds or for a narrow class of compounds. Therefore, it is important that the range of compounds available for enhancing the IR-sensitivity of photothermographic recording materials be as large as possible.
  • a photothermographic material comprising a photo-addressable thermally developable element containing a substantially light-insensitive organic silver salt, a reducing agent therefor in thermal working relationship therewith, photosensitive silver halide spectrally sensitized with a dye and in catalytic association with the substantially light-insensitive organic silver salt and a binder, characterized in that the photo-addressable thermally developable element further includes a hydrazine compound corresponding to the general formula (I): wherein:
  • a particularly preferred hydrazine compound, according to the present invention corresponds to the formula
  • Suitable hydrazine compounds for use according to the present invention are:
  • the photo-addressable thermally developable element of the photothermographic recording material contain a spectral sensitizer for silver halide and a hydrazine compound.
  • the silver halide may be spectrally sensitized with various known dyes including cyanine, merocyanine, styryl, hemicyanine, oxonol, hemioxonol and xanthene dyes, particularly in the case of sensitization to infra-red radiation, in the presence of a hydrazine compound, according to the present invention.
  • Useful cyanine dyes include those having a basic nucleus, such as a thiazoline nucleus, an oxazoline nucleus, a pyrroline nucleus, a pyridine nucleus, an oxazole nucleus, a thiazole nucleus, a selenazole nucleus and an imidazole nucleus.
  • a basic nucleus such as a thiazoline nucleus, an oxazoline nucleus, a pyrroline nucleus, a pyridine nucleus, an oxazole nucleus, a thiazole nucleus, a selenazole nucleus and an imidazole nucleus.
  • Useful merocyanine dyes which are preferred include those having not only the above described basic nuclei but also acid nuclei, such as a thiohydantoin nucleus, a rhodanine nucleus, an oxazolidinedione nucleus, a thiazolidinedione nucleus, a barbituric acid nucleus, a thiazolinone nucleus, a malononitrile nucleus and a pyrazolone nucleus.
  • acid nuclei such as a thiohydantoin nucleus, a rhodanine nucleus, an oxazolidinedione nucleus, a thiazolidinedione nucleus, a barbituric acid nucleus, a thiazolinone nucleus, a malononitrile nucleus and a pyrazolone nucleus.
  • imino groups or carboxyl groups are particularly effective.
  • Suitable sensitizers of silver halide to infra-red radiation include those disclosed in the EP-A's 465 078, 559 101, 616 014 and 635 756, the JN's 03-080251, 03-163440, 05-019432, 05-072662 and 06-003763 and the US-P's 4,515,888, 4,639,414, 4,713,316, 5,258,282 and 5,441,866.
  • the photo-addressable thermally developable element contains a substantially light-insensitive organic silver salt, photosensitive silver halide in catalytic association therewith and an organic reducing agent in thermal working relationship with the substantially light-insensitive organic silver salt and a binder.
  • the element may comprise a layer system with the silver halide in catalytic association with the substantially light-insensitive organic silver salt ingredients, spectral sensitizer optionally together with a hydrazine compound in intimate sensitizing association with the silver halide particles and the other ingredients active in the thermal development process or pre- or post-development stabilization of the element being in the same layer or in other layers with the proviso that the organic reducing agent and the toning agent, if present, are in thermal working relationship with the substantially light-insensitive organic silver salt i.e. during the thermal development process the reducing agent and the toning agent, if present, are able to diffuse to the substantially light-insensitive organic silver salt.
  • Preferred substantially light-insensitive organic silver salts according to the present invention are silver salts of organic carboxylic acids in particular aliphatic carboxylic acids known as fatty acids, wherein the aliphatic carbon chain has preferably at least 12 C-atoms, e.g. silver laurate, silver palmitate, silver stearate, silver hydroxystearate, silver oleate and silver behenate, which silver salts are also called "silver soaps"; silver dodecyl sulphonate described in US-P 4,504,575; and silver di-(2-ethylhexyl)-sulfosuccinate described in EP-A 227 141.
  • Modified aliphatic carboxylic acids with thioether group as described e.g.
  • substantially light-insensitive organic silver salt for the purposes of the present invention also includes mixtures of organic silver salts.
  • the photosensitive silver halide used in the present invention may be employed in a range of 0.75 to 25 mol percent and, preferably, from 2 to 20 mol percent of substantially light-insensitive organic silver salt.
  • the silver halide may be any photosensitive silver halide such as silver bromide, silver iodide, silver chloride, silver bromoiodide, silver chlorobromoiodide, silver chlorobromide etc.
  • the silver halide may be in any form which is photosensitive including, but not limited to, cubic, orthorhombic, tabular, tetrahedral, octagonal etc. and may have epitaxial growth of crystals thereon.
  • the silver halide used in the present invention may be employed without modification. However, it may be chemically sensitized with a chemical sensitizing agent such as a compound containing sulphur, selenium, tellurium etc., or a compound containing gold, platinum, palladium, iron, ruthenium, rhodium or iridium etc., a reducing agent such as a tin halide etc., or a combination thereof.
  • a chemical sensitizing agent such as a compound containing sulphur, selenium, tellurium etc., or a compound containing gold, platinum, palladium, iron, ruthenium, rhodium or iridium etc.
  • a reducing agent such as a tin halide etc.
  • a suspension of particles containing a substantially light-insensitive silver salt of an organic carboxylic acid may be obtained by using a process, comprising simultaneous metered addition of an aqueous solution or suspension of an organic carboxylic acid or its salt; and an aqueous solution of a silver salt to an aqueous liquid, as described in EP-A 754 969.
  • the silver halide may be added to the photo-addressable thermally developable element in any fashion which places it in catalytic proximity to the substantially light-insensitive organic silver salt.
  • Silver halide and the substantially light-insensitive organic silver salt which are separately formed, i.e. ex-situ or "preformed", in a binder can be mixed prior to use to prepare a coating solution, but it is also effective to blend both of them for a long period of time.
  • it is effective to use a process which comprises adding a halogen-containing compound to the organic silver salt to partially convert the substantially light-insensitive organic silver salt to silver halide as disclosed in US-P 3,457,075.
  • a particularly preferred mode of preparing the emulsion of organic silver salt and photosensitive silver halide for coating of the photo-addressable thermally developable element from solvent media, according to the present invention is that disclosed in US-P 3,839,049, but other methods such as those described in Research Disclosure, June 1978, item 17029 and US-P 3,700,458 may also be used for producing the emulsion.
  • a particularly preferred mode of preparing the emulsion of organic silver salt and photosensitive silver halide for coating of the photo-addressable thermally developable element from aqueous media is that disclosed in unpublished PCT patent application PCT/EP/96/02580, which discloses a photothermographic recording material comprising a photo-addressable thermally developable element comprising a substantially light-insensitive organic silver salt, photosensitive silver halide in catalytic association with the substantially light-insensitive organic silver salt, a reducing agent in thermal working relationship with the substantially light-insensitive organic silver salt and a binder, characterized in that the binder comprises a water-soluble polymer, a water-dispersible polymer or a mixture of a water-soluble polymer and a water-dispersible polymer and particles of the photosensitive silver halide are non-aggregating in the photo-addressable thermally developable element and are uniformly distributed over and between particles of the substantially light-insensitive organic silver salt, at least 80%
  • Organic reducing agent for photo-addressable thermally developable elements coated from non-aqueous media Organic reducing agent for photo-addressable thermally developable elements coated from non-aqueous media
  • Suitable organic reducing agents for the reduction of the substantially light-insensitive organic heavy metal salts in photo-addressable thermally developable coated from non-aqueous media are organic compounds containing at least one active hydrogen atom linked to O, N or C, such as is the case with, mono-, bis-, tris- or tetrakis-phenols; mono- or bis-naphthols; di- or polyhydroxynaphthalenes; di- or polyhydroxybenzenes; hydroxymonoethers such as alkoxynaphthols, e.g. 4-methoxy-1-naphthol described in US-P 3,094,41; pyrazolidin-3-one type reducing agents, e.g.
  • PHENIDONE (tradename); pyrazolin-5-ones; indan-1,3-dione derivatives; hydroxytetrone acids; hydroxytetronimides; 3-pyrazolines; pyrazolones; reducing saccharides; aminophenols e.g. METOL (tradename); p-phenylenediamines, hydroxylamine derivatives such as for example described in US-P 4,082,901; reductones e.g. ascorbic acids; hydroxamic acids; hydrazine derivatives; amidoximes; n-hydroxyureas; and the like, see also US-P 3,074,809, 3,080,254, 3,094,417 and 3,887,378.
  • Polyphenols such as the bisphenols used in the 3M Dry SilverTM materials, sulfonamide phenols such as used in the Kodak DacomaticTM materials, and naphthols are particularly preferred for photothermographic recording materials with photo-addressable thermally developable elements on the basis of photosensitive silver halide/organic silver salt/reducing agent.
  • Organic reducing agent for photo-addressable thermally developable elements coated from aqueous media Organic reducing agent for photo-addressable thermally developable elements coated from aqueous media
  • Suitable organic reducing agents for the reduction of the substantially light-insensitive organic heavy metal salts in photo-addressable thermally developable coated from aqueous media are organic compounds containing at least one active hydrogen atom linked to O, N or C.
  • Particularly suitable organic reducing agents for the reduction of the substantially light-insensitive organic silver salt in such photo-addressable thermally developable elements are non-sulfo-substituted 6-membered aromatic or heteroaromatic ring compounds with at least three substituents one of which is a hydroxy group at a first carbon atom and a second of which is a hydroxy or amino-group substituted on a second carbon atom one, three or five ring atoms removed in a system of conjugated double bonds from the first carbon atom in the compound, in which (i) the third substituent may be part of an annulated carbocyclic or heterocyclic ring system; (ii) the third substituent or a further substituent is not an aryl- or oxo-aryl
  • Particularly preferred reducing agents are substituted catechols or substitued hydroquinones with 3-(3',4'-dihydroxyphenyl)-propionic acid, 3',4'-dihydroxy-butyrophenone, methyl gallate, ethyl gallate and 1,5-dihydroxy-naphthalene being especially preferred.
  • the reducing agent must be present in such a way that it is able to diffuse to the substantially light-insensitive organic silver salt particles so that reduction of the substantially light-insensitive organic silver salt can take place.
  • the silver image density depends on the coverage of the above defined reducing agent(s) and organic silver salt(s) and has to be preferably such that, on heating above 80 °C, an optical density of at least 1.5 can be obtained.
  • an optical density of at least 1.5 can be obtained.
  • at least 0.10 moles of reducing agent per mole of organic heavy metal salt is used.
  • auxiliary reducing agents may be used in conjunction with so-called auxiliary reducing agents.
  • Auxiliary reducing agents that may be used in conjunction with the above mentioned primary reducing agents are sulfonyl hydrazide reducing agents such as disclosed in US-P 5,464,738, trityl hydrazides and formyl-phenyl-hydrazides such as disclosed in US-P 5,496,695 and organic reducing metal salts, e.g. stannous stearate described in US-P 3,460,946 and 3,547,648.
  • the film-forming binder for the photo-addressable thermally developable element according to the present invention may be coatable from a solvent or aqueous dispersion medium.
  • the film-forming binder for the photo-addressable thermally developable element according to the present invention may be coatable from a solvent dispersion medium, according to the present invention, may be all kinds of natural, modified natural or synthetic resins or mixtures of such resins, wherein the organic silver salt can be dispersed homogeneously: e.g.
  • polymers derived from ⁇ , ⁇ -ethylenically unsaturated compounds such as polyvinyl chloride, after-chlorinated polyvinyl chloride, copolymers of vinyl chloride and vinylidene chloride, copolymers of vinyl chloride and vinyl acetate, polyvinyl acetate and partially hydrolyzed polyvinyl acetate, polyvinyl acetals that are made from polyvinyl alcohol as starting material in which only a part of the repeating vinyl alcohol units may have reacted with an aldehyde, preferably polyvinyl butyral, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters, polystyrene and polyethylene or mixtures thereof.
  • a particularly suitable polyvinyl butyral containing a minor amount of vinyl alcohol units is marketed by MONSANTO USA under the trade names BUTVARTM B76 and BUTVARTM B79 and provides a good adhesion to paper and properly subbed polyester supports.
  • the film-forming binder for the photo-addressable thermally developable element coatable from an aqueous dispersion medium may be all kinds of transparent or translucent water-dispersible or water soluble natural, modified natural or synthetic resins or mixtures of such resins, wherein the organic silver salt can be dispersed homogeneously for example proteins, such as gelatin and gelatin derivatives (e.g.
  • phthaloyl gelatin cellulose derivatives, such as carboxymethylcellulose, polysaccharides, such as dextran, starch ethers etc., galactomannan, polyvinyl alcohol, polyvinylpyrrolidone, acrylamide polymers, homo-or co-polymerized acrylic or methacrylic acid, latexes of water dispersible polymers, with or without hydrophilic groups, or mixtures thereof.
  • Polymers with hydrophilic functionality for forming an aqueous polymer dispersion (latex) are described e.g. in US-P 5,006,451, but serve therein for forming a barrier layer preventing unwanted diffusion of vanadium pentoxide present as an antistatic agent.
  • the binder to organic heavy metal salt weight ratio is preferably in the range of 0.2 to 6, and the thickness of the photo-addressable thermally developable element is preferably in the range of 5 to 50 ⁇ m.
  • binders or mixtures thereof may be used in conjunction with waxes or "heat solvents” also called “thermal solvents” or “thermosolvents” improving the reaction speed of the redox-reaction at elevated temperature.
  • heat solvent in this invention is meant a non-hydrolyzable organic material which is in solid state in the recording layer at temperatures below 50°C but becomes a plasticizer for the recording layer in the heated region and/or liquid solvent for at least one of the redox-reactants, e.g. the reducing agent for the organic heavy metal salt, at a temperature above 60°C.
  • the photo-addressable thermally developable element contains preferably in admixture with the organic heavy metal salts and reducing agents a so-called toning agent known from thermography or photothermography.
  • Suitable toning agents are succinimide and the phthalimides and phthalazinones within the scope of the general formulae described in US-P 4,082,901. Further reference is made to the toning agents described in US-P 3,074,809, 3,446,648 and 3,844,797.
  • Other particularly useful toning agents are the heterocyclic toner compounds of the benzoxazine dione or naphthoxazine dione type as described in GB-P 1,439,478 and US-P 3,951,660.
  • stabilizers and antifoggants may be incorporated into the photothermographic materials of the present invention.
  • suitable stabilizers and antifoggants and their precursors include the thiazolium salts described in US-P 2,131,038 and 2,694,716; the azaindenes described in US-P 2,886,437 and 2,444,605; the urazoles described in US-P 3,287,135; the sulfocatechols described in US-P 3,235,652; the oximes described in GB-P 623,448; the thiuronium salts described in US-P 3,220,839; the palladium, platinum and gold salts described in US-P 2,566,263 and 2,597,915; the tetrazolyl-thio-compounds described in US-P 3,700,457; the mesoionic 1,2,4-triazolium-3
  • the photo-addressable thermally developable element may contain other additives such as free fatty acids, surface-active agents, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H, silicone oil, e.g. BAYSILONE ⁇ l A (tradename of BAYER AG - GERMANY), ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, silica, colloidal silica, fine polymeric particles [e.g. of poly(methylmethacrylate)] and/or optical brightening agents.
  • antistatic agents e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in F 3 C(CF 2 ) 6 CONH(CH 2 CH 2 O)-H
  • silicone oil e.g. BAYSILONE ⁇ l A (tradename of BAYER AG - GERMANY)
  • the photothermographic recording material further comprises an antihalation or acutance dye which absorbs light which has passed through the photosensitive layer, thereby preventing its reflection.
  • an antihalation or acutance dye which absorbs light which has passed through the photosensitive layer, thereby preventing its reflection.
  • Such dyes may be incorporated into the photo-addressable thermally developable element or in any other layer comprising the photothermographic recording material of the present invention.
  • the antihalation dye may also be bleached either thermally during the thermal development process or photo-bleached after removable after the thermal development process and it may be contained in a layer which can be removed subsequent to the exposure process.
  • Suitable antihalation dyes for use with infra-red light are described in the EP-A's 377 961 and 652 473, the EP-B's 101 646 and 102 781 and the US-P's 4,581,325 and 5,380,635.
  • the support for the photothermographic recording material according to the present invention may be transparent, translucent or opaque, e.g. having a white light reflecting aspect and is preferably a thin flexible carrier made e.g. from paper, polyethylene coated paper or transparent resin film, e.g. made of a cellulose ester, e.g. cellulose triacetate, corona and flame treated polypropylene, polystyrene, polymethacrylic acid ester, polycarbonate or polyester, e.g. polyethylene terephthalate or polyethylene naphthalate as disclosed in GB 1,293,676, GB 1,441,304 and GB 1,454,956.
  • a paper base substrate is present which may contain white reflecting pigments, optionally also applied in an interlayer between the recording material and the paper base substrate.
  • the support may be in sheet, ribbon or web form and subbed if need be to improve the adherence to the thereon coated thermosensitive recording layer.
  • the support may be made of an opacified resin composition, e.g. polyethylene terephthalate opacified by means of pigments and/or micro-voids and/or coated with an opaque pigment-binder layer, and may be called synthetic paper, or paperlike film; information about such supports can be found in EP's 194 106 and 234 563 and US-P's 3,944,699, 4,187,113, 4,780,402 and 5,059,579. Should a transparent base be used, the base may be colourless or coloured, e.g. having a blue colour.
  • One or more backing layers may be provided to control physical properties such as curl or static.
  • the photo-addressable thermally developable element is provided with a protective layer to avoid local deformation of the photo-addressable thermally developable element, to improve its resistance against abrasion and to prevent its direct contact with components of the apparatus used for thermal development.
  • This protective layer may have the same composition as an antisticking coating or slipping layer which is applied in thermal dye transfer materials at the rear side of the dye donor material or protective layers used in materials for direct thermal recording.
  • the protective layer preferably comprises a binder, which may be solvent soluble (hydrophobic), solvent dispersible, water soluble (hydrophilic) or water dispersible.
  • a binder which may be solvent soluble (hydrophobic), solvent dispersible, water soluble (hydrophilic) or water dispersible.
  • hydrophobic binders cellulose acetate butyrate, polymethylmethacrylate and polycarbonates, for example as described in EP-A 614 769, are particularly preferred.
  • Suitable hydrophilic binders are, for example, gelatin, polyvinylalcohol, cellulose derivatives or other polysaccharides, hydroxyethylcellulose, hydroxypropylcellulose etc., with hardenable binders being preferred and polyvinylalcohol being particularly preferred.
  • a protective layer of the photothermographic recording material may be crosslinked.
  • Crosslinking can be achieved by using crosslinking agents such as described in WO 95/12495 for protective layers, e.g. tetra-alkoxysilanes, polyisocyanates, zirconates, titanates, melamine resins etc., with tetraalkoxysilanes such as tetramethylorthosilicate and tetraethylorthosilicate being preferred.
  • a protective layer according to the present invention may comprise in addition at least one solid lubricant having a melting point below 150°C and at least one liquid lubricant in a binder, wherein at least one of the lubricants is a phosphoric acid derivative, further dissolved lubricating material and/or particulate material, e.g. talc particles, optionally protruding from the outermost layer.
  • suitable lubricating materials are surface active agents, liquid lubricants, solid lubricants which do not melt during thermal development of the recording material, solid lubricants which melt (thermomeltable) during thermal development of the recording material or mixtures thereof.
  • the lubricant may be applied with or without a polymeric binder.
  • Such protective layers may also comprise particulate material, e.g. talc particles, optionally protruding from the protective outermost layer as described in WO 94/11198.
  • Other additives can also be incorporated in the protective layer e.g. colloidal particles such as colloidal silica.
  • an antistatic layer is applied to the outermost layer on the side of the support not coated with the photo-addressable thermally developable element.
  • Suitable antistatic layers therefor are described in EP-A's 444 326, 534 006 and 644 456, US-P's 5,364,752 and 5,472,832 and DOS 4125758.
  • any layer of the photothermographic recording material of the present invention may proceed by any coating technique e.g. such as described in Modern Coating and Drying Technology, edited by Edward D. Cohen and Edgar B. Gutoff, (1992) VCH Publishers Inc. 220 East 23rd Street, Suite 909 New York, NY 10010, U.S.A.
  • Photothermographic materials may be exposed with radiation of wavelength between an X-ray wavelength and a 5 microns wavelength with the image either being obtained by pixel-wise exposure with a finely focussed light source, such as a CRT light source; a UV, visible or IR wavelength laser, such as a He/Ne-laser or an IR-laser diode, e.g. emitting at 780nm, 830nm or 850nm; or a light emitting diode, for example one emitting at 659nm; or by direct exposure to the object itself or an image therefrom with appropriate illumination e.g. with UV, visible or IR light.
  • a finely focussed light source such as a CRT light source
  • a UV, visible or IR wavelength laser such as a He/Ne-laser or an IR-laser diode, e.g. emitting at 780nm, 830nm or 850nm
  • a light emitting diode for example
  • any sort of heat source can be used that enables the recording materials to be uniformly heated to the development temperature in a time acceptable for the application concerned e.g. contact heating, radiative heating, microwave heating etc.
  • a photothermographic recording process comprising the steps of: (i) image-wise exposing a photothermographic recording material, as referred to above, with actinic radiation to which the photothermographic recording material is sensitive; and (ii) thermally developing the image-wise exposed photothermographic recording material.
  • the photothermographic recording materials of the present invention can be used for both the production of transparencies and reflection type prints.
  • the support will be transparent or opaque, e.g. having a white light reflecting aspect.
  • a paper base substrate is present which may contain white reflecting pigments, optionally also applied in an interlayer between the recording material and the paper base substrate. Should a transparent base be used, the base may be colourless or coloured, e.g. has a blue colour.
  • PET polyethyleneterephthalate
  • subbing layer consisting of a terpolymer latex of vinylidene chloride-methyl acrylate-itaconic acid (88/10/2) in admixture with colloidal silica (surface area 100m 2 /g).
  • colloidal silica surface area 100m 2 /g.
  • the antistatic layers of the photothermographic recording materials of INVENTION EXAMPLE 1 and COMPARATIVE EXAMPLE 1 were prepared by coating one side of the thus subbed PET-foil with an antistatic composition obtained by dissolving 0.30g of KELZANTM S in a stirred mixture of 22.4mL of N-methylpyrrolidone, 0.84g of ULTRAVONTM W, 1g of PERAPRETTM PE40, 2.22g of KIESELSOL 100F and 74.3mL of deionized water and then adding with stirring: 0.2mL of NH 4 OH, 0.6g of dried PT-dispersion, 66.7mL of LATEX01, 1.2mL of MAT01 and 30mL of 2-propanol to produce a layer after drying at 120°C consisting of: KELZANTM S: 7.5mg/m 2 Dried PT-dispersion: 15 mg/m 2 ULTRAVONTM W: 21 mg/m 2 polyethylene wax (from PERAP
  • a silver halide emulsion consisting of 3.11% by weight of silver halide particles consisting of 97mol% silver bromide and 3mol% silver iodide with an weight average particle size of 50nm, 0.47% by weight of GEL as dispersing agent in deionized water was prepared using conventional silver halide preparation techniques such as described, for example, in T.H. James, "The Theory of the Photographic Process", Fourth Edition, Macmillan Publishing Co. Inc., New York (1977), Chapter 3, pages 88-104.
  • the silver behenate/silver halide emulsion was prepared by adding a solution of 6.8kg of behenic acid in 67L of 2-propanol at 65°C to a 400L vessel heated to maintain the temperature of the contents at 65°C. converting 92% of the behenic acid to sodium behenate by adding with stirring 73.6L of 0.25M sodium hydroxide in deionized water, then adding with stirring 10.1kg of the above-described silver halide emulsion at 40°C and finally adding with stirring 46L of a 0.4M solution of silver nitrate in deionized water. Upon completion of the addition of silver nitrate the contents of the vessel were allowed to cool and the precipitate filtered off, washed, slurried with water, filtered again and finally dried at 40°C for 72 hours.
  • An emulsion layer coating composition for the photothermographic recording materials of INVENTION EXAMPLE 1 and COMPARATIVE EXAMPLE 1 were prepared by adding the following solutions or liquids to 92.4g of the above-mentioned silver behenate/silver halide emulsion in the following sequence with stirring: 0.8g of a 11.5% solution of PHP in methanol followed by 2 hours stirring, 0.2g of a 11% solution of calcium bromide in methanol followed by 30 minutes stirring and a particular weight of a particular IR-sensitizing dye solution of a particular concentration which may also contain a particular hydrazine compound at a particular concentration, as specified for the particular INVENTION EXAMPLE or COMPARATIVE EXAMPLE in table 1 and 1.7g of methanol followed by 30 minutes stirring. 2.4g of LOWINOXTM 22IB46 were then added followed by 15 minutes stirring and finally 0.5g of TMPS followed by 15 minutes stirring, thereby making a total weight of 98.8g.
  • a protective layer coating composition for the photothermographic recording materials of INVENTION EXAMPLE 1 and COMPARATIVE EXAMPLE 1 was prepared by dissolving 4.08g of CAB and 0.16g of PMMA in 56.1g of 2-butanone and 5.2g of methanol adding the following solids with stirring in the following sequence: 0.5g of phthalazine, 0.2g of 4-methylphthalic acid, 0.1g of tetrachlorophthalic acid and 0.2g of tetrachlorophthalic acid anhydride.
  • the emulsion layer was then doctor blade-coated at a blade setting of 100 ⁇ m with the protective layer coating composition to a wet layer thickness of 70 ⁇ m, which after drying for 3 minutes at 80°C on an aluminium plate in a drying cupboard produced a layer with the following composition: CAB 4.08g/m 2 PMMA 0.16g/m 2 Phthalazine 0.50g/m 2 4-methylphthalic acid 0.20g/m 2 tetrachlorophthalic acid 0.10g/m 2 tetrachlorophthalic acid anhydride 0.20g/m 2
  • the photothermographic recording materials of INVENTION EXAMPLE 1 and COMPARATIVE EXAMPLE 1 were exposed to a 750W tungsten lamp equipped with a filter only allowing transmission of light with a wavelength ⁇ 775 nm through a filter with optical density varying between 0 and 3.0 in optical density steps of 0.15 for 1s.
  • Thermal processing was carried out for 10s on an aluminium block heated to 121°C with the backside of the photothermographic recording material in contact with the block.
  • the optical density variation of the resulting wedge images was evaluated with a MACBETHTM TR924 densitometer with a visual filter to produce a sensitometric curve for the photothermographic recording materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Claims (5)

  1. Matériau d'enregistrement photothermographique comprenant un support et un élément photo-adressable et développable par voie thermique comprenant un sel d'argent organique essentiellement non photosensible, un agent de réduction pour ce dernier en relation de travail thermique avec lui, un halogénure d'argent photosensible sensibilisé avec un colorant et en association catalytique avec ledit sel d'argent organique essentiellement non photosensible, ainsi qu'un liant, caractérisé en ce que ledit élément photo-adressable et développable par voie thermique comprend en outre un composé d'hydrazine répondant à la formule générale (I) :
    Figure 00310001
    dans laquelle :
    Z représente les atomes nécessaires pour fermer un noyau hétérocyclique substitué ou non substitué qui représente, soit un noyau pentagonal contenant au moins deux hétéroatomes ou un noyau hexagonal, ledit noyau pouvant porter un ou plusieurs noyaux condensés, et ledit noyau devant contenir une liaison C-H permettant la mise en oeuvre d'une aromatisation par oxydation pour obtenir un cation hétéroaromatique acylé sur l'atome d'azote à l'aide d'un déplacement d'hydrure ou d'un transfert successif d'électron-proton en position 2 ;
    chacun des radicaux R1 et R2 représentent, de manière indépendante, un atome d'hydrogène ou un groupe labile en présence d'alcalis, donnant lieu à la formation d'un atome d'hydrogène lors de l'hydrolyse ;
    X représente un groupe acyle choisi parmi le groupe constitué par un groupe CO-R3, un groupe CS-R4, un groupe PO-R5R6 et un groupe -C(=N-R7) -R8, chacun des radicaux R3 à R8 représentant de manière indépendante un groupe alkyle, un groupe aryle, un groupe cycloalkyle, un groupe hétérocycloalkyle, un groupe hétéroaryle, un groupe O-alkyle, un groupe O-aryle, un groupe O-hétéroaryle, un groupe O-hétérocycloalkyle, un groupe S-alkyle, un groupe S-aryle, un groupe S-hétérocycloalkyle, un groupe S-hétéroaryle, un groupe N-R9R10, chacun des radicaux R9 et R10 représentant de manière indépendante un atome d'hydrogène, un groupe aryle, un groupe alkyle, un groupe hétéroaryle, un groupe hétérocycloalkyle ou un groupe acyle comme défini pour X, tous les groupes R définis pouvant porter des substituants, et R5 de manière conjointe avec R6, et R9 de manière conjointe avec R10 pouvant représenter les atomes nécessaires pour fermer un noyau, ledit noyau hétérocyclique représentant un dihydro-précurseur d'un noyau hétérocyclique choisi parmi le groupe constitué par l'isoquinoléine substituée et non substituée et par le benzimidazole substitué et non substitué.
  2. Matériau d'enregistrement photothermographique selon la revendication 1, dans lequel ledit composé d'hydrazine répondant à la formule
    Figure 00320001
  3. Matériau d'enregistrement photothermographique selon la revendication 1 ou 2, dans lequel ledit sel d'argent organique essentiellement non photosensible est un sel d'argent d'un acide carboxylique aliphatique.
  4. Matériau d'enregistrement photothermographique selon l'une quelconque des revendications précédentes, dans lequel ledit élément photo-adressable est muni d'une couche de protection.
  5. Matériau d'enregistrement photothermographique selon l'une quelconque des revendications précédentes, dans lequel ledit liant comprend un liant soluble dans l'eau, un liant apte à être dispersé dans l'eau du encore un mélange d'un liant soluble dans l'eau et d'un liant apte à être dispersé dans l'eau.
EP19970201901 1996-07-24 1997-06-21 Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé Expired - Lifetime EP0821269B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19970201901 EP0821269B1 (fr) 1996-07-24 1997-06-21 Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP96202106 1996-07-24
EP96202106 1996-07-24
EP19970201901 EP0821269B1 (fr) 1996-07-24 1997-06-21 Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé

Publications (2)

Publication Number Publication Date
EP0821269A1 EP0821269A1 (fr) 1998-01-28
EP0821269B1 true EP0821269B1 (fr) 2004-05-12

Family

ID=26143034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970201901 Expired - Lifetime EP0821269B1 (fr) 1996-07-24 1997-06-21 Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé

Country Status (1)

Country Link
EP (1) EP0821269B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847461B2 (ja) * 1998-07-21 2006-11-22 富士写真フイルム株式会社 熱現像画像記録材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671654B1 (fr) * 1994-03-11 1997-09-10 Agfa-Gevaert N.V. Matériau photographique contenant un nouveau type d'hydrazide
US5464738A (en) * 1995-01-06 1995-11-07 Minnesota Mining And Manufacturing Company Sulfonyl hydrazide developers for photothermographic and thermographic elements
US5496695A (en) * 1995-01-06 1996-03-05 Minnesota Mining And Manufacturing Company Hydrazide compounds useful as co-developers for black-and-white photothermographic elements

Also Published As

Publication number Publication date
EP0821269A1 (fr) 1998-01-28

Similar Documents

Publication Publication Date Title
EP0840906B1 (fr) Procede pour la fabrication d'un materiau d'enregistrement photothermographique
US6143488A (en) Photothermographic recording material coatable from an aqueous medium
US6130033A (en) (Photo) thermographic material with improved transport performance
EP0904565B1 (fr) Materiau d'enregistrement photothermographique
US6274297B1 (en) Photothermographic recording material with in-situ and ex-situ photosensitive silver halide and a substantially light-insensitive organic salt
US5876915A (en) Photothermographic recording material comprising sensitizing dyes and a recording process therefor
EP0904564B1 (fr) Procede de production d'un materiau photothermographique et procede d'enregistrement correspondant
EP0889355B1 (fr) Matériau (photo)thermographique avec un fond bleu
US6187516B1 (en) Emulsion for a photothermographic material, a production process for the thermographic material and a recording process therefor
EP0922995B1 (fr) Matériau d'enregistrement photothermographique avec halogénure d'argent in situ et ex situ et avec un sel organique d'argent substantiellement insensible à la lumière
EP0821269B1 (fr) Matériau d'enregistrement photothermographique comprenant un composé d'hydrazine et procédé d'enregistrement associé
US5945263A (en) Antihalation dye for photothermographic recording material and a recording process therefor
EP0821268B1 (fr) Emulsion pour un produit photothermographique, procédé pour la production dudit produit photothermographique et procédé de reproduction l'utilisant
US6376159B1 (en) (Photo) thermographic material with a blue background
EP0810468B1 (fr) Colorants anti-halo pour un matériau d'enregistrement photothermographique et procédé d'enregistrement utilisant ce matériau
US6010843A (en) Photothermographic recording material comprising a hydrazine compound and a recording process therefor
EP0836116B1 (fr) Procédé d'augmentation de la sensibilité d'enregistrement pour un matériau photographique à développement thermique photosensible
EP0844514A1 (fr) Matériau d'enregistrement photothermographique contenant des grains tabulaires
US5968714A (en) Sensitivity-increasing recording process for a photosensitive thermally developable photographic material
JP3794793B2 (ja) 増感色素を含むフオトサーモグラフイ記録材料及びそのための記録法
EP0959383A1 (fr) Matériau d'enregistrement photothermographique contenant des grains tabulaires et un composé d'hydrazine
EP0821266A1 (fr) Produit d'enregistrement photothermographique comprenant des colorants sensibilisateurs et procédé d'enregistrement l'utilisant
JPH1097025A (ja) ヒドラジン化合物含有フオトサーモグラフイツク記録材料およびそれの記録方法
JPH1097026A (ja) フオトサーモグラフイ材料用の乳剤、フオトサーモグラフイ材料の製造方法およびそのための記録方法
JPH10161269A (ja) 平板状粒子を有するフォトサーモグラフィック記録材料

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19980728

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB

17Q First examination report despatched

Effective date: 19990930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040512

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69729032

Country of ref document: DE

Date of ref document: 20040617

Kind code of ref document: P

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20040921

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

26N No opposition filed

Effective date: 20050215

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070529

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070608

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070525

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080621

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630