EP0819889B1 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
EP0819889B1
EP0819889B1 EP97810431A EP97810431A EP0819889B1 EP 0819889 B1 EP0819889 B1 EP 0819889B1 EP 97810431 A EP97810431 A EP 97810431A EP 97810431 A EP97810431 A EP 97810431A EP 0819889 B1 EP0819889 B1 EP 0819889B1
Authority
EP
European Patent Office
Prior art keywords
flame
burner
measuring
fuel
measuring sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810431A
Other languages
German (de)
French (fr)
Other versions
EP0819889A1 (en
Inventor
Ken Yves Haffner
Matthias Dr. Höbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP0819889A1 publication Critical patent/EP0819889A1/en
Application granted granted Critical
Publication of EP0819889B1 publication Critical patent/EP0819889B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05005Mounting arrangements for sensing, detecting or measuring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • the present invention relates to the field of combustion technology. It relates to a device for flame temperature measurement.
  • Flame temperature is a key parameter in the burning of fossil fuels as it correlates directly with chemical reaction kinetics and the formation of pollutants such as NO x .
  • the knowledge of the release of energy during the combustion process is indispensable for the design of combustion chambers and the determination of mechanical and thermal stresses of all components involved.
  • Non-optical temperature measuring devices include the point sensors, which include, for example, thermocouples. They provide a simple and inexpensive way of temperature determination at discrete points, but must be installed in close proximity to the flame, and thus influence the flame. Furthermore, due to their fragility, thermocouples can only be used to a limited extent in a turbulent high-temperature environment in which chemical surface reactions additionally impair the thermocouples.
  • optical temperature measuring devices have been developed. These include, but are not limited to, absorption and fluorescence techniques, as well as various metrology techniques that use the laser scattered light.
  • the optical measurement methods mentioned have in common that they require a light source, a laser. They are thus active nature, but unlike the thermocouples have no effect on the flame. These methods, taking into account the emitted light of the source and the measuring volume, close to the temperature of a flame.
  • a known optical, non-active temperature measurement is carried out by means of pyrometry, whereby the black body radiation emitted by the carbon black particles contained in the flame is utilized.
  • the problem is the use of pyrometric temperature measurement systems on flames from gaseous fuels.
  • the measuring sensors are arranged either at right angles to the flow direction of the fuel mixture next to the flame front in the combustion chamber, or they are located downstream of the burner in a front panel, wherein the measuring sensors are oriented obliquely to the flame front.
  • a particular disadvantage of such an installation is that the flame does not burn at a fixed point due to thermoacoustic oscillations in the combustion chamber, but instead fluctuates in a combustion chamber area. This has the consequence that the temperature determination is faulty with the described measurement installation, since a single flame level can not be detected continuously.
  • an ignition and monitoring device for a burner which provides an optical measuring sensor for monitoring the existence of a flame.
  • the measuring sensor comprising an optical fiber bundle also serves as an electrical insulator for the ignition electrode provided in the interior of the burner.
  • JP 63040824 describes an optical measuring sensor for measuring the temperature of a portion of a flame within a burner. The measuring principle is based on the spectral analysis of the light emitted by the flame.
  • EP 0 643 265 B1 describes a method and a device for detecting the intensity of the light radiation emitted by a flame within a burner for the purpose of determining its gas composition.
  • a measuring sensor installed in the flow region of the premixing zone of the burner is capable of detecting radiation originating from the direction of the focal axis from the location of the flame.
  • the invention has the object of providing an optical temperature measuring device of the type mentioned in that unaffected by Brennschpulsationen an accurate temperature measurement can be performed, the measuring sensor should allow a quick measurement without affecting the flame and also the measuring sensor is inexpensive and robust ,
  • the essence of the invention is to be seen in that arranged immediately upstream in the fuel flow optical measuring sensors, which are aligned substantially parallel and / or coaxial with the fuel flow, the entire flame front in the flow direction. At the same time, the optical measuring sensors have no influence on the flame and, at the same time, the optical temperature measurement remains unimpaired by local fluctuations of the flame due to the thermoacoustic pressure oscillations occurring in a gas turbine combustion chamber.
  • the advantages of the invention can be seen in the fact that an exact flame temperature measurement independent of combustion chamber pulsation can take place during gas turbine operation since, in spite of the flame fluctuating in the direction of flow, the entire flame front is always detected if the aperture of the optical sensor is appropriately large.
  • an optical measuring sensor are arranged coaxially in the fuel flow within the premixing zone of a burner and a number of further optical measuring sensors are arranged parallel to the fuel flow in the burner wall.
  • the evaluation unit connected to the measuring sensors for determining the flame temperature from the detected optical signals.
  • Fig. 1 denotes a conical burner, as used for example in a gas turbine application.
  • the burner 1 is supplied on one side via a fuel line 4 with fuel and an air line 10 with combustion air.
  • Fuel and combustion air are supplied to the burner 1 in a flow direction 5 through separate lines and in a premixing zone 3, the fuel and the combustion air are subsequently mixed as uniformly as possible. Downstream closes the burner 1 with a front panel 9 from.
  • the front plate 1 is part of a flame tube 2, which is further bounded by a combustion chamber wall 6. In the flame tube 2, the premixing zone 3 burns downstream of a flame 8.
  • measuring sensors 7 are arranged in the burner 1 and in the fuel line connected to it.
  • the measuring sensors 7 are installed on the one hand essentially parallel to the flow direction 5 of the fuel in the premixing zone 3, or are located on the other hand in the center of the fuel line 4.
  • the in the measuring sensors are all for Flame front 8 aligned.
  • the numerical aperture of the measuring sensor 7 is chosen so large that a conical observation volume is opened, which contains the relevant areas of the flame front for the combustion process.
  • the flame front 8 is viewed from its upstream side with the measuring sensors 7. If the flame 8 fluctuates due to thermoacoustic combustion chamber pulsations in a plane perpendicular to the flow direction 5, the optical temperature measurement thereof remains largely unaffected. In spite of the above-mentioned fluctuations, the entire flame front 8 is always detected by the measuring sensors 7, or the same flame cutout always corresponds to the arrangement of a measuring sensor 7 installed in the premixing zone 3.
  • FIG. 2 shows the arrangement of the measuring sensors 7 in a sectional illustration along the line B-B in FIG. 1.
  • a measuring sensor 7 is arranged in the center of the fuel line 4, while six further measuring sensors 7 radially surround the fuel line 4.
  • Each measuring sensor 7 comprises a number of glass fibers 11, each of which acts as a sensor.
  • the number of installed measuring sensors 7 in a burner is not relevant.
  • only one measuring sensor 7 is arranged in the center of the fuel line 4, this measuring sensor 7 being equipped with a glass fiber 11 or with multiple glass fibers 11 for redundancy purposes.
  • the number of measuring sensors 7 used, as well as the number of glass fibers 11 arranged in them, must be adapted to the requirements.
  • the relevant installation criterion for the measuring sensors 7 is their arrangement directly upstream of the flame front 8. Only in this position, an optical temperature measurement is largely independent of possible flame movements feasible and thus ensures the greatest possible stability of the sensor signals.
  • the measuring sensors 7 are connected, for example, with a suitable, not shown here spectrometer. With known methods, a spectral analysis is then performed, the assignment between the spectral analysis and the flame temperature allow. Likewise, by means of the arrangement according to the invention, known absorption and fluorescence techniques can be used to determine the flame temperature.
  • the invention is not limited to the embodiment shown and described.
  • the measuring sensors displaceable parallel to the flow direction in order to align them with varying load points of the burner 1 of the associated flame plane.
  • an adjusting device of the angle of inclination with respect to the burner axis is also conceivable for the measuring sensors 7 installed within the premixing zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft eine Vorrichtung zur Flammentemperaturmessung.The present invention relates to the field of combustion technology. It relates to a device for flame temperature measurement.

STAND DER TECHNIKSTATE OF THE ART

Seit Beginn der Forschung auf dem Gebiet der Verbrennungstechnik, kommt der Bestimmung der Flammentemperatur ein hoher Stellenwert zu. Die Flammentemperatur ist bei der Verbrennung fossiler Brennstoffe ein Schlüsselparameter, da sie direkt mit der chemischen Reaktionskinetik und der Bildung von Schadstoffen, wie beispielsweise NOx korreliert. Darüber hinaus ist die Kenntnis der Energiefreisetzung während des Verbrennungsprozesses unentbehrlich für die Auslegung von Brennkammern und die Bestimmung von mechanischen und thermischen Beanspruchungen aller beteiligten Komponenten.Since the beginning of research in the field of combustion technology, the determination of the flame temperature has a high priority. Flame temperature is a key parameter in the burning of fossil fuels as it correlates directly with chemical reaction kinetics and the formation of pollutants such as NO x . In addition, the knowledge of the release of energy during the combustion process is indispensable for the design of combustion chambers and the determination of mechanical and thermal stresses of all components involved.

Derzeit existiert eine Vielzahl von Techniken für die Messung von Flammentemperaturen. Dabei stellen die extremen Einsatzbedingungen allerdings eine grosse Herausforderung an die Temperatursenoren dar, so dass nicht ohne weiteres jeder unter sauberen Laborbedingungen erprobte Temperatursensor Anwendung in einer Industriebrennkammer finden kann.There are currently a variety of techniques for measuring flame temperatures. However, the extreme conditions of use represent a great challenge to the temperature sensors, so that it is not easy for any temperature sensor tried and tested under clean laboratory conditions to find application in an industrial combustion chamber.

Grob können die heute gängigen Temperaturmesstechniken in zwei Kategorien eingeteilt werden; bei den einen gelangen nicht optische Temperatursensoren zum Einsatz und bei den anderen optische.Roughly, today's common temperature measurement techniques can be divided into two categories; in some cases non-optical temperature sensors are used and in the other optical ones.

Zu den nichtoptischen Temperaturmessvorrichtungen zählen die Punktsensoren, die beispielsweise Thermoelemente umfassen. Sie bieten eine einfache und preiswerte Möglichkeit der Temperaturbestimmung an diskreten Punkten, müssen allerdings in unmittelbarer Nähe zur Flamme installiert sein, und nehmen damit Einfluss auf die Flamme. Desweiteren sind Thermoelemente aufgrund ihrer Zerbrechlichkeit nur eingeschränkt in einer turbulenten Hochtemperaturumgebung einsetzbar, in welcher zusätzlich noch chemische Oberflächenreaktionen die Thermoelemente beeinträchtigen.Non-optical temperature measuring devices include the point sensors, which include, for example, thermocouples. They provide a simple and inexpensive way of temperature determination at discrete points, but must be installed in close proximity to the flame, and thus influence the flame. Furthermore, due to their fragility, thermocouples can only be used to a limited extent in a turbulent high-temperature environment in which chemical surface reactions additionally impair the thermocouples.

Insbesondere seit Bekanntwerden der Lasertechnologie wurden zahlreiche optische Temperaturmessvorrichtungen entwickelt. Hierunter fallen unter anderem Absorptions- und Fluoreszenstechniken, sowie verschiedene Messtechnik, die sich des Laserstreulichts bedienen. Den genannten optischen Messverfahren ist gemeinsam, dass sie eine Lichtquelle, einen Laser, benötigen. Sie sind damit aktiver Natur, nehmen aber im Gegensatz zu den Thermoelementen keinen Einfluss auf die Flamme. Diese Verfahren schliessen unter Berücksichtigung des emittierten Lichtes der Quelle und des Messvolumens auf die Temperatur einer Flamme.
Eine bekannte optische, nicht aktive Temperaturmessung wird mittels Pyrometrie durchgeführt, wobei die von in der Flamme enthaltenen Russteilchen emittierte Schwarzkörperstrahlung ausgenützt wird. Problematisch ist allerdings die Anwendung pyrometrischer Temperaturmesssysteme an Flammen aus gasförmigen Brennstoffen. Aufgrund des sehr geringen Russgehalts ist hier das optische Signal sehr schwach. Bei der Signalanalyse kommt erschwerend hinzu, dass das temperatur- und wellenlängenabhängige Emissionsvermögen der strahlenden Russteilchen nur ungefähr bekannt ist, was in Verbindung mit unerwünschten Absorptionseffekten auf dem Weg zum Detektor die Genauigkeit der Methode beeinträchtigt.
In particular, since the advent of laser technology, numerous optical temperature measuring devices have been developed. These include, but are not limited to, absorption and fluorescence techniques, as well as various metrology techniques that use the laser scattered light. The optical measurement methods mentioned have in common that they require a light source, a laser. They are thus active nature, but unlike the thermocouples have no effect on the flame. These methods, taking into account the emitted light of the source and the measuring volume, close to the temperature of a flame.
A known optical, non-active temperature measurement is carried out by means of pyrometry, whereby the black body radiation emitted by the carbon black particles contained in the flame is utilized. However, the problem is the use of pyrometric temperature measurement systems on flames from gaseous fuels. Due to the very low soot content, the optical signal is very weak here. An additional complicating factor in signal analysis is that the temperature and wavelength-dependent emissivity of the radiating carbon black particles is only approximately known, which, in combination with undesirable absorption effects on the way to the detector, impairs the accuracy of the method.

Die Installation aller bekannten, optischen Temperaturmessvorrichtungen erfolgt in möglichst geringem Abstand zu einer Flamme. Hierfür sind die Messsensoren entweder rechtwinklig zur Strömungsrichtung des Brennstoffgemischs neben der Flammenfront in der Brennkammer angeordnet, oder sie befinden sich abströmseitig des Brenners in einer Frontplatte, wobei die Messsensoren schräg zur Flammenfront hin ausgerichtet sind.The installation of all known optical temperature measuring devices takes place in the smallest possible distance to a flame. For this purpose, the measuring sensors are arranged either at right angles to the flow direction of the fuel mixture next to the flame front in the combustion chamber, or they are located downstream of the burner in a front panel, wherein the measuring sensors are oriented obliquely to the flame front.

Besonders nachteilig bei einer derartigen Installation ist, dass die Flamme aufgrund thermoakustischer Schwingungen in der Brennkammer nicht an einem Fixpunkt brennt, sondern in einem Brennkammerbereich fluktuiert. Dies hat zur Folge, dass die Temperaturbestimmung mit der beschriebenen Messinstallation fehlerbehaftet ist, da eine einzelne Flammenebene nicht kontinuierlich erfasst werden kann.A particular disadvantage of such an installation is that the flame does not burn at a fixed point due to thermoacoustic oscillations in the combustion chamber, but instead fluctuates in a combustion chamber area. This has the consequence that the temperature determination is faulty with the described measurement installation, since a single flame level can not be detected continuously.

Aus der 40 25 852 A1 ist eine Zünd- und Überwachungsvorrichtung für einen Brenner bekannt, die einen optischen Messsensor zur Überwachung der Existenz einer Flamme vorsieht. Neben der optischen Überwachung dient der ein optisches Glasfaserbündel umfassende Messsensor zugleich auch als elektrischer Isolator für die im Inneren des Brenners vorgesehene Zündelektrode.From the 40 25 852 A1 an ignition and monitoring device for a burner is known, which provides an optical measuring sensor for monitoring the existence of a flame. In addition to the optical monitoring, the measuring sensor comprising an optical fiber bundle also serves as an electrical insulator for the ignition electrode provided in the interior of the burner.

Die JP 63040824 beschreibt einen optischen Messsensor zur Temperaturmessung eines Bereiches einer Flamme innerhalb eines Brenners. Das Messprinzip basiert auf der Spektralanalyse des von der Flamme emittierten Lichtes.JP 63040824 describes an optical measuring sensor for measuring the temperature of a portion of a flame within a burner. The measuring principle is based on the spectral analysis of the light emitted by the flame.

In der EP 0 643 265 B1 wird ein Verfahren sowie eine Vorrichtung zur Intensitätserfassung der von einer Flamme innerhalb eines Brenners emittierten Lichtstrahlung zu Zwecken der Bestimmung ihrer Gaszusammensetzung beschrieben. Ein im Strömungsbereich der Vormischzone des Brenners installierter Messsensor vermag hierzu die aus Richtung der Brennachse vom Ort der Flamme herrührende Strahlung zu detektieren.EP 0 643 265 B1 describes a method and a device for detecting the intensity of the light radiation emitted by a flame within a burner for the purpose of determining its gas composition. A measuring sensor installed in the flow region of the premixing zone of the burner is capable of detecting radiation originating from the direction of the focal axis from the location of the flame.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung liegt die Aufgabe zugrunde, eine optische Temperatur messvorrichtung der eingangs genannten Art dahingehend weiterzuentwickeln, dass unbeeinflusst von Brennkammerpulsationen eine genaue Temperaturmessung durchgeführt werden kann, wobei der Messsensor eine schnelle Messung erlauben soll ohne die Flamme zu beeinträchtigen und zudem der Messsensor preiswert und robust ist.The invention has the object of providing an optical temperature measuring device of the type mentioned in that unaffected by Brennkammerpulsationen an accurate temperature measurement can be performed, the measuring sensor should allow a quick measurement without affecting the flame and also the measuring sensor is inexpensive and robust ,

Erfindungsgemäss wird diese Aufgabe durch die Merkmale des ersten Anspruchs gelöst.According to the invention, this object is achieved by the features of the first claim.

Der Kern der Erfindung ist darin zu sehen, dass die unmittelbar stromaufwärts im Brennstoffstrom angeordneten optischen Messsensoren, welche im wesentlichen parallel und/oder koaxial zum Brennstoffstrom ausgerichtet sind, die gesamte Flammenfront in Strömungsrichtung erfassen. Dabei nehmen die optischen Messsensoren keinen Einfluss auf die Flamme und gleichzeitig bleibt die optische Temperaturmessung unbeeinträchtigt von lokalen Fluktuationen der Flamme aufgrund der in einer Gasturbinenbrennkammer auftretenden thermoakustischen Druckschwingungen.The essence of the invention is to be seen in that arranged immediately upstream in the fuel flow optical measuring sensors, which are aligned substantially parallel and / or coaxial with the fuel flow, the entire flame front in the flow direction. At the same time, the optical measuring sensors have no influence on the flame and, at the same time, the optical temperature measurement remains unimpaired by local fluctuations of the flame due to the thermoacoustic pressure oscillations occurring in a gas turbine combustion chamber.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass während des Gasturbinenbetriebes eine exakte von Brennkammerpulsation unabhängige optische Flammentemperaturmessung erfolgen kann, da bei entsprechend gross gewählter Apertur des optischen Sensors trotz der in Strömungsrichtung fluktuierenden Flamme immer die gesamte Flammenfront erfasst wird.Among other things, the advantages of the invention can be seen in the fact that an exact flame temperature measurement independent of combustion chamber pulsation can take place during gas turbine operation since, in spite of the flame fluctuating in the direction of flow, the entire flame front is always detected if the aperture of the optical sensor is appropriately large.

Hierzu sind ein optischer Messsensor innerhalb der Vormischzone eines Brenners koaxial in der Brennstoffströmung angeordnet und eine Anzahl weiterer optischer Messsensoren parallel zur Brennstoffströmung in der Brennerwand angeordnet.For this purpose, an optical measuring sensor are arranged coaxially in the fuel flow within the premixing zone of a burner and a number of further optical measuring sensors are arranged parallel to the fuel flow in the burner wall.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigen:

Fig. 1
einen Längsschnitt durch eine Brenner mit angrenzender Brennkammer;
Fig. 2
eine Schnittdarstellung des Brenners gemäss der Linie B-B in Fig. 1.
In the drawing, embodiments of the invention are shown schematically, in which:
Fig. 1
a longitudinal section through a burner with adjacent combustion chamber;
Fig. 2
a sectional view of the burner according to the line BB in Fig. 1st

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind beispielsweise die an die Messsensoren angeschlossenen Auswerteeinheit zur Bestimmung der Flammentemperatur aus den erfassten optischen Signalen.Only the elements essential to the understanding of the invention are shown. Not shown are, for example, the evaluation unit connected to the measuring sensors for determining the flame temperature from the detected optical signals.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY FOR CARRYING OUT THE INVENTION

In Fig. 1 ist mit 1 ein kegelförmiger Brenner bezeichnet, wie er beispielsweise in einer Gasturbine Anwendung findet. Der Brenner 1 wird an einer Seite über eine Brennstoffleitung 4 mit Brennstoff und über eine Luftleitung 10 mit Verbrennungsluft versorgt. Brennstoff und Verbrennungsluft werden dem Brenner 1 in einer Strömungsrichtung 5 durch separate Leitungen zugeführt und in einer Vormischzone 3 werden anschliessend der Brennstoff und die Verbrennungsluft möglichst gleichmässig miteinander vermischt. Stromabwärts schliesst der Brenner 1 mit einer Frontplatte 9 ab. Die Frontplatte 1 ist Bestandteil eines Flammrohres 2, welches desweiteren von einer Brennkammerwand 6 begrenzt wird. In dem Flammrohr 2 brennt abströmseitig der Vormischzone 3 eine Flamme 8.In Fig. 1, 1 denotes a conical burner, as used for example in a gas turbine application. The burner 1 is supplied on one side via a fuel line 4 with fuel and an air line 10 with combustion air. Fuel and combustion air are supplied to the burner 1 in a flow direction 5 through separate lines and in a premixing zone 3, the fuel and the combustion air are subsequently mixed as uniformly as possible. Downstream closes the burner 1 with a front panel 9 from. The front plate 1 is part of a flame tube 2, which is further bounded by a combustion chamber wall 6. In the flame tube 2, the premixing zone 3 burns downstream of a flame 8.

Zur optischen Temperaturmessung sind im Brenner 1 und in der an ihn angeschlossenen Brennstoffleitung 4 Messsensoren 7 angeordnet. Die Messsensoren 7 sind zum einen im Wesentlichen parallel zur Strömungsrichtung 5 des Brennstoffs in der Vormischzone 3 installiert, oder befinden sich zum anderen im Zentrum der Brennstoffleitung 4. Die in den Messsensoren sind alle zur Flammenfront 8 hin ausgerichtet. Die numerische Apertur des Messsensors 7 wird so gross gewählt, dass ein kegelförmiges Beobachtungsvolumen eröffnet wird, welches die für den Verbrennungsprozess relevanten Bereiche der Flammenfront beinhaltet. Für die Temperaturbestimmung wird die Flammenfront 8 von ihrer Anströmseite her mit den Messsensoren 7 betrachtet. Fluktuiert die Flamme 8 aufgrund thermoakustischer Brennkammerpulsationen in einer zur Strömungsrichtung 5 senkrechten Ebene, so bleibt die optische Temperaturmessung davon weitgehend unbeeinflusst. Von den Messsensoren 7 wird nämlich trotz der genannten Fluktuationen immer die gesamte Flammenfront 8 erfasst oder entsprechend der Anordnung eines in der Vormischzone 3 installierten Messsensors 7 immer der gleiche Flammenausschnitt.For optical temperature measurement 4 measuring sensors 7 are arranged in the burner 1 and in the fuel line connected to it. The measuring sensors 7 are installed on the one hand essentially parallel to the flow direction 5 of the fuel in the premixing zone 3, or are located on the other hand in the center of the fuel line 4. The in the measuring sensors are all for Flame front 8 aligned. The numerical aperture of the measuring sensor 7 is chosen so large that a conical observation volume is opened, which contains the relevant areas of the flame front for the combustion process. For the determination of the temperature, the flame front 8 is viewed from its upstream side with the measuring sensors 7. If the flame 8 fluctuates due to thermoacoustic combustion chamber pulsations in a plane perpendicular to the flow direction 5, the optical temperature measurement thereof remains largely unaffected. In spite of the above-mentioned fluctuations, the entire flame front 8 is always detected by the measuring sensors 7, or the same flame cutout always corresponds to the arrangement of a measuring sensor 7 installed in the premixing zone 3.

Fig. 2 zeigt die Anordnung der Messsensoren 7 in einer Schnittdarstellung entlang der Linie B-B in Fig. 1. Zu erkennen ist hier, dass ein Messsensor 7 im Zentrum der Brennstoffleitung 4 angeordnet ist, während sechs weitere Messsensoren 7 radial beabstandet die Brennstoffleitung 4 umgeben. Jeder Messsensor 7 umfasst dabei eine Anzahl Glasfibern 11, von denen jeder als Messaufnehmer fungiert. Die Anzahl der installierten Messsensoren 7 in einem Brenner ist allerdings nicht von Belang. So ist erfindungsgemäss lediglich ein Messsensor 7 im Zentrum der Brennstoffleitung 4 angeordnet, wobei dieser Messsensor 7 mit einer Glasfiber 11 oder aus Redundanzzwecken mit mehreren Glasfibern 11 ausgestattet ist. Die Anzahl der verwendeten Messsensoren 7 ist genauso wie die Anzahl der in ihnen angeordneten Glasfibern 11 dem Bedarf anzupassen.FIG. 2 shows the arrangement of the measuring sensors 7 in a sectional illustration along the line B-B in FIG. 1. It can be seen here that a measuring sensor 7 is arranged in the center of the fuel line 4, while six further measuring sensors 7 radially surround the fuel line 4. Each measuring sensor 7 comprises a number of glass fibers 11, each of which acts as a sensor. However, the number of installed measuring sensors 7 in a burner is not relevant. Thus, according to the invention, only one measuring sensor 7 is arranged in the center of the fuel line 4, this measuring sensor 7 being equipped with a glass fiber 11 or with multiple glass fibers 11 for redundancy purposes. The number of measuring sensors 7 used, as well as the number of glass fibers 11 arranged in them, must be adapted to the requirements.

Das massgebliche Installationskriterium für die Messsensoren 7 ist ihre Anordnung direkt stromaufwärts der Flammenfront 8. Nur in dieser Position ist eine optische Temperaturmessung weitgehend unabhängig von möglichen Flammenbewegungen durchführbar und gewährleistet somit eine grösstmögliche Stabilität der Sensorsignale.The relevant installation criterion for the measuring sensors 7 is their arrangement directly upstream of the flame front 8. Only in this position, an optical temperature measurement is largely independent of possible flame movements feasible and thus ensures the greatest possible stability of the sensor signals.

Zur Auswertung der aufgenommenen Signale, sind die Messsensoren 7 beispielsweise mit einem geeigneten, hier nicht dargestellten Spektrometer verbunden. Mit bekannten Verfahren wird dann eine Spektralanalyse durchgeführt, die eine Zuordnung zwischen der Spektralanalyse und der Flammentemperatur erlauben. Ebenso sind mittels der erfindungsgemässen Anordnung bekannte Absorptions- und Fluoreszenztechniken zur Bestimmung der Flammentemperatur anwendbar.To evaluate the recorded signals, the measuring sensors 7 are connected, for example, with a suitable, not shown here spectrometer. With known methods, a spectral analysis is then performed, the assignment between the spectral analysis and the flame temperature allow. Likewise, by means of the arrangement according to the invention, known absorption and fluorescence techniques can be used to determine the flame temperature.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. So ist erfindungsgemäss denkbar, die Messsensoren parallel zur Strömungsrichtung verschiebbar anzuordnen, um sie bei variierenden Lastpunkten des Brenners 1 der zugehörigen Flammenebene anzugleichen. Im gleichen Sinn ist auch eine Einstellvorrichtung des Neigungswinkels bezüglich der Brennerachse für die innerhalb der Vormischzone installierten Messsensoren 7 denkbar.Of course, the invention is not limited to the embodiment shown and described. Thus, according to the invention it is conceivable to arrange the measuring sensors displaceable parallel to the flow direction in order to align them with varying load points of the burner 1 of the associated flame plane. In the same sense, an adjusting device of the angle of inclination with respect to the burner axis is also conceivable for the measuring sensors 7 installed within the premixing zone.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Brennerburner
22
Flammrohrflame tube
33
Vormischzonepremixing
44
Brennstoffleitungfuel line
55
Strömungsrichtungflow direction
66
Brennkammerwandcombustion chamber wall
77
Messsensormeasuring sensor
88th
Flammenfrontflame front
99
Frontplattefront panel
1010
Luftleitungair line
1111
Glasfaserglass fiber

Claims (4)

  1. Device for measuring the temperature of the flame front (8) of a flame in a gas turbine combustion chamber (2) which is connected via a front plate (9) to a conical burner (1) having a premixing zone (3), along the burner axis of which there are provided a fuel feeder line (4) for feeding fuel into the premixing zone (3), as well as an air line (10) for feeding air into the premixing zone (3) in which the fuel and the combustion air are mixed and ignite in the flow direction (5) along the burner axis with the formation of the flame inside the gas turbine combustion chamber (2), an optical measuring sensor (7) being arranged in the centre of the fuel line (4) projecting along the burner axis into the premixing zone (3), and there being arranged in a burner wall bounding the premixing zone (3) a plurality of further optical measuring sensors (7) which in each case have a numerical aperture oriented towards the flame front (8) such that the entire flame front (8) is detected by the measuring sensors (7).
  2. Device according to Claim 1, characterized in that each measuring sensor (7) comprises a number of glass fibres (11) which are combined to form a bundle.
  3. Device according to Claim 1 or 2, characterized in that the measuring sensors (7) are arranged displaceably parallel to the flow direction (5).
  4. Device according to any of Claims 1 to 3, characterized in that a device for setting the measuring sensors (7) is provided, by means of which in each case the angle of inclination between one respective measuring sensor (7) and the burner axis can be set.
EP97810431A 1996-07-18 1997-07-02 Temperature measuring device Expired - Lifetime EP0819889B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19628960A DE19628960B4 (en) 1996-07-18 1996-07-18 temperature measuring
DE19628960 1996-07-18

Publications (2)

Publication Number Publication Date
EP0819889A1 EP0819889A1 (en) 1998-01-21
EP0819889B1 true EP0819889B1 (en) 2007-02-07

Family

ID=7800153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810431A Expired - Lifetime EP0819889B1 (en) 1996-07-18 1997-07-02 Temperature measuring device

Country Status (4)

Country Link
US (1) US6142665A (en)
EP (1) EP0819889B1 (en)
JP (1) JP4112043B2 (en)
DE (2) DE19628960B4 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112796B2 (en) * 1999-02-08 2006-09-26 General Electric Company System and method for optical monitoring of a combustion flame
US7270890B2 (en) 2002-09-23 2007-09-18 Siemens Power Generation, Inc. Wear monitoring system with embedded conductors
US20050198967A1 (en) * 2002-09-23 2005-09-15 Siemens Westinghouse Power Corp. Smart component for use in an operating environment
US6838157B2 (en) 2002-09-23 2005-01-04 Siemens Westinghouse Power Corporation Method and apparatus for instrumenting a gas turbine component having a barrier coating
US7572524B2 (en) * 2002-09-23 2009-08-11 Siemens Energy, Inc. Method of instrumenting a component
EP1411573A2 (en) * 2002-10-16 2004-04-21 Matsushita Electric Industrial Co., Ltd. Burner, hydrogen generator, and fuel cell power generation system
CA2555153C (en) * 2004-02-12 2012-11-13 Alstom Technology Ltd. Premix burner with a swirl generator delimiting a conical swirl space and having sensor monitoring
US7966834B2 (en) * 2004-05-07 2011-06-28 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine
US7334413B2 (en) * 2004-05-07 2008-02-26 Rosemount Aerospace Inc. Apparatus, system and method for observing combustion conditions in a gas turbine engine
US7484369B2 (en) * 2004-05-07 2009-02-03 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine
US7775052B2 (en) 2004-05-07 2010-08-17 Delavan Inc Active combustion control system for gas turbine engines
US8004423B2 (en) * 2004-06-21 2011-08-23 Siemens Energy, Inc. Instrumented component for use in an operating environment
US8742944B2 (en) 2004-06-21 2014-06-03 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
EP1828684A1 (en) * 2004-12-23 2007-09-05 Alstom Technology Ltd Premix burner comprising a mixing section
US7412320B2 (en) * 2005-05-23 2008-08-12 Siemens Power Generation, Inc. Detection of gas turbine airfoil failure
US7665305B2 (en) 2005-12-29 2010-02-23 Delavan Inc Valve assembly for modulating fuel flow to a gas turbine engine
US8162287B2 (en) * 2005-12-29 2012-04-24 Delavan Inc Valve assembly for modulating fuel flow to a gas turbine engine
US7368827B2 (en) * 2006-09-06 2008-05-06 Siemens Power Generation, Inc. Electrical assembly for monitoring conditions in a combustion turbine operating environment
US7969323B2 (en) * 2006-09-14 2011-06-28 Siemens Energy, Inc. Instrumented component for combustion turbine engine
CN101512227B (en) * 2006-09-19 2011-11-16 Abb研究有限公司 Flame detector for monitoring flame during combustion process
US20100139286A1 (en) * 2007-01-02 2010-06-10 Christer Gerward Burner and fuel supply for a gas turbine
EP2028421A1 (en) * 2007-08-21 2009-02-25 Siemens Aktiengesellschaft Monitoring of a flame existence and a flame temperature
US20090077945A1 (en) * 2007-08-24 2009-03-26 Delavan Inc Variable amplitude double binary valve system for active fuel control
US8797179B2 (en) * 2007-11-08 2014-08-05 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US9071888B2 (en) * 2007-11-08 2015-06-30 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US8519866B2 (en) 2007-11-08 2013-08-27 Siemens Energy, Inc. Wireless telemetry for instrumented component
US8239114B2 (en) * 2008-02-12 2012-08-07 Delavan Inc Methods and systems for modulating fuel flow for gas turbine engines
US8200410B2 (en) 2008-03-12 2012-06-12 Delavan Inc Active pattern factor control for gas turbine engines
US20100047058A1 (en) * 2008-08-25 2010-02-25 General Electric Company, A New York Corporation System and method for temperature sensing in turbines
RU2548839C2 (en) * 2009-07-24 2015-04-20 ГЕТАС Гезельшафт фюр термодинамише Антрибссистеме мбХ Axial piston engine and mode of operation of axial piston engine
US8434310B2 (en) * 2009-12-03 2013-05-07 Delavan Inc Trim valves for modulating fluid flow
US8220319B2 (en) * 2010-10-21 2012-07-17 General Electric Company Communication system for turbine engine
US8565999B2 (en) 2010-12-14 2013-10-22 Siemens Energy, Inc. Gas turbine engine control using acoustic pyrometry
US20130040254A1 (en) * 2011-08-08 2013-02-14 General Electric Company System and method for monitoring a combustor
US20130247576A1 (en) * 2012-03-23 2013-09-26 Delavan Inc Apparatus, system and method for observing combustor flames in a gas turbine engine
US9325388B2 (en) 2012-06-21 2016-04-26 Siemens Energy, Inc. Wireless telemetry system including an induction power system
US9420356B2 (en) 2013-08-27 2016-08-16 Siemens Energy, Inc. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine
US9453784B2 (en) 2013-09-04 2016-09-27 Siemens Energy, Inc. Non-intrusive measurement of hot gas temperature in a gas turbine engine
US9696216B2 (en) 2013-09-04 2017-07-04 Siemens Energy, Inc. Acoustic transducer in system for gas temperature measurement in gas turbine engine
US9746360B2 (en) 2014-03-13 2017-08-29 Siemens Energy, Inc. Nonintrusive performance measurement of a gas turbine engine in real time
US9752959B2 (en) 2014-03-13 2017-09-05 Siemens Energy, Inc. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor
KR101905759B1 (en) * 2016-09-12 2018-10-10 주식회사 포스코 Temperature measuring apparatus of combustion chamber of gas turbine
US10605175B2 (en) 2017-07-31 2020-03-31 Rolls-Royce Corporation Temperature control system for gas combustion engines and method of using the same
CN109540288B (en) * 2018-12-04 2024-04-09 北京建筑材料科学研究总院有限公司 Flame observation device of rotary kiln

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD219059A3 (en) * 1982-09-14 1985-02-20 Freiberg Brennstoffinst PERISKOP FOR HIGH-TEMPERATURE REACTORS
JPS61290329A (en) * 1985-06-18 1986-12-20 Japan Sensaa Corp:Kk Head for infrared thermometer
GB2192984B (en) * 1986-07-25 1990-07-18 Plessey Co Plc Optical sensing arrangements
JPS6340824A (en) * 1986-08-05 1988-02-22 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion state
DE3801949A1 (en) * 1988-01-23 1989-08-03 Fev Motorentech Gmbh & Co Kg DEVICE FOR TRANSMITTING ELECTROMAGNETIC SHAFTS
DD299137A7 (en) * 1989-12-27 1992-04-02 Deutsches Brennstoffinstitut Freiberg Gmbh,De FUTURE AND MONITORING DEVICE FOR BURNERS
DD299920A7 (en) * 1989-12-27 1992-05-14 Freiberg Brennstoffinst DEVICE FOR THE OPTICAL MONITORING OF HIGH-TEMPERATURE REACTORS
JP2737419B2 (en) * 1991-02-05 1998-04-08 住友金属工業株式会社 Surface temperature distribution measuring device for curved objects
DE4137765A1 (en) * 1991-11-16 1993-05-19 Bodenseewerk Geraetetech CONTROL DEVICE FOR CONTROLLING AN AUXILIARY GAS TURBINE OF AN AIRPLANE
US5480298A (en) * 1992-05-05 1996-01-02 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
AT400769B (en) * 1992-10-16 1996-03-25 Avl Verbrennungskraft Messtech MEASURING DEVICE FOR DETECTING COMBUSTION PROCESSES
US5361586A (en) * 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
DE4404577C2 (en) * 1994-02-11 1998-01-15 Mtu Muenchen Gmbh Procedure for calibrating a pyrometer installed in a gas turbine
DE9411435U1 (en) * 1994-07-18 1994-10-20 Preussag Ag Minimax Detector for electromagnetic radiation with a plurality of receiving devices
US5857320A (en) * 1996-11-12 1999-01-12 Westinghouse Electric Corporation Combustor with flashback arresting system

Also Published As

Publication number Publication date
EP0819889A1 (en) 1998-01-21
DE19628960A1 (en) 1998-01-22
JPH1082701A (en) 1998-03-31
DE59712810D1 (en) 2007-03-22
JP4112043B2 (en) 2008-07-02
US6142665A (en) 2000-11-07
DE19628960B4 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP0819889B1 (en) Temperature measuring device
US4352558A (en) Apparatus for measuring particle characteristics
DE102010060750B4 (en) Detection of contamination in burner systems
DE102008044171B4 (en) Optical sensor, exhaust system and method of operating the sensor
DE19632174A1 (en) Temperature measurement process
DE19710206A1 (en) Method and device for combustion analysis and flame monitoring in a combustion chamber
EP0466851A1 (en) Device for determining the composition of fluids, in particular the constituents of exhaust gases of internal combustion engines
DE3518232A1 (en) BURNER WITH IGNITION DEVICE
EP1714073B1 (en) Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring
DE102017117132A1 (en) Measuring device for fine dust measurement in at least one air volume for a vehicle, in particular for a motor vehicle
EP3995817A1 (en) Method and assembly for detecting hydrogen in a heater operable with hydrogen or hydrogen-containing fuel gas
EP1816464A1 (en) Assembly for measuring the concentration of exhaust gas components in the exhaust gas zone in a combustion plant
EP2136140A1 (en) Burner head for hand- or machine-operated burner devices
DE19830213C2 (en) Spark plug for internal combustion engines
EP4008954A2 (en) Burner assembly for combustion of hydrogen-containing fuel gas and burner body
EP3220132B1 (en) In-situ gas measuring system for gas reactors with critical environments
DE102021114278A1 (en) Flame control device for a heater, Heater and use of a radiation focusing device
EP0631128A1 (en) Device for investigating a gas
WO2017076716A1 (en) Absorption spectroscopic sensor assembly and method for detecting the concentration of a substance in a gaseous medium
DE19809792C2 (en) Device for measuring the emission and / or absorption of a hot gas or plasma
DE3024401A1 (en) METHOD FOR CONTROLLED COMBUSTION OF SOLID FOSSIL FUELS, ESPECIALLY CARBON DUST
DE102011056640A1 (en) Optical probe system for a combustion chamber
DE102004057609B4 (en) Device for determining laser-induced emission of electromagnetic radiation from gases in a hollow body, fluids and mixtures thereof
DE10133970B4 (en) Apparatus for determining the density and concentration of visible constituents in fluids
DE102019200771A1 (en) Device for the detection of particles in a fluid-carrying area using the principle of laser-induced incandescence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19980702

AKX Designation fees paid

Free format text: CH DE GB LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB LI

17Q First examination report despatched

Effective date: 19991221

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59712810

Country of ref document: DE

Date of ref document: 20070322

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALSTOM TECHNOLOGY LTD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59712810

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59712810

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160721

Year of fee payment: 20

Ref country code: DE

Payment date: 20160722

Year of fee payment: 20

Ref country code: CH

Payment date: 20160721

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59712810

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170701

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830