EP0819889A1 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
EP0819889A1
EP0819889A1 EP97810431A EP97810431A EP0819889A1 EP 0819889 A1 EP0819889 A1 EP 0819889A1 EP 97810431 A EP97810431 A EP 97810431A EP 97810431 A EP97810431 A EP 97810431A EP 0819889 A1 EP0819889 A1 EP 0819889A1
Authority
EP
European Patent Office
Prior art keywords
flame
optical
measuring device
temperature
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97810431A
Other languages
German (de)
French (fr)
Other versions
EP0819889B1 (en
Inventor
Ken Yves Haffner
Matthias Dr. Höbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0819889A1 publication Critical patent/EP0819889A1/en
Application granted granted Critical
Publication of EP0819889B1 publication Critical patent/EP0819889B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05005Mounting arrangements for sensing, detecting or measuring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • the present invention relates to the field of combustion technology. It relates to a device for flame temperature measurement, as described in the preamble of the first claim.
  • the flame temperature is a key parameter in the combustion of fossil fuels because it correlates directly with the chemical reaction kinetics and the formation of pollutants such as NO x .
  • knowledge of the energy release during the combustion process is essential for the design of combustion chambers and the determination of mechanical and thermal stresses on all components involved.
  • the current temperature measurement techniques can be roughly divided into two categories; some use non-optical temperature sensors and others use optical ones.
  • the non-optical temperature measuring devices include the point sensors, which include thermocouples, for example. They offer a simple and inexpensive way of determining the temperature at discrete points, but must be installed in the immediate vicinity of the flame and thus influence the flame. Furthermore, due to their fragility, thermocouples can only be used to a limited extent in a turbulent high-temperature environment in which chemical surface reactions additionally impair the thermocouples.
  • optical temperature measuring devices have been developed. These include absorption and fluorescence techniques, as well as various measurement techniques that use laser scattered light.
  • the optical measurement methods mentioned have in common that they require a light source, a laser. They are therefore active in nature, but unlike the thermocouples, they have no influence on the flame. Taking into account the emitted light from the source and the measurement volume, these methods infer the temperature of a flame.
  • a known optical, inactive temperature measurement is carried out by means of pyrometry, the black body radiation emitted by soot particles contained in the flame being used.
  • pyrometric temperature measuring systems on flames from gaseous fuels is problematic. Due to the very low soot content, the optical signal is very weak. The signal analysis complicates the fact that the temperature and wavelength-dependent emissivity of the radiating soot particles is only roughly known, which, in conjunction with undesirable absorption effects on the way to the detector, impairs the accuracy of the method.
  • the measuring sensors are either arranged at right angles to the direction of flow of the fuel mixture next to the flame front in the combustion chamber, or they are located on the downstream side of the burner in a front plate, the measuring sensors being oriented obliquely towards the flame front.
  • a particular disadvantage of such an installation is that the flame does not burn at a fixed point due to thermoacoustic vibrations in the combustion chamber, but fluctuates in a combustion chamber area. The consequence of this is that the temperature determination with the described measurement installation is faulty, since a single flame level cannot be continuously detected.
  • the invention is based on the object of further developing an optical temperature measuring device of the type mentioned at the outset such that an accurate temperature measurement can be carried out unaffected by combustion chamber pulsations, the measuring sensor being able to allow a quick measurement without adversely affecting the flame and, moreover, the measuring sensor being inexpensive and robust.
  • optical measurement sensors arranged directly upstream in the fuel flow, which are oriented essentially parallel and / or coaxially to the fuel flow, detect the entire flame front in the flow direction.
  • the optical Measurement sensors have no influence on the flame and at the same time the optical temperature measurement remains unaffected by local fluctuations in the flame due to the thermoacoustic pressure oscillations occurring in a gas turbine combustion chamber.
  • an optical measurement sensor is arranged coaxially in the fuel flow within the premixing zone of a burner and a number of further optical measurement sensors are arranged in the burner wall parallel to the fuel flow.
  • the evaluation unit connected to the measurement sensors for determining the flame temperature from the detected optical signals is not shown, for example.
  • Fig. 1 denotes a conical burner, such as is used in a gas turbine, for example.
  • the burner 1 is supplied with fuel on one side via a fuel line 4 and with combustion air via an air line 10.
  • Fuel and combustion air are fed to the burner 1 in a flow direction 5 through separate lines, and the fuel and the combustion air are then mixed with one another as evenly as possible in a premixing zone 3.
  • the burner 1 closes downstream with a front plate 9.
  • the front plate 1 is part of a flame tube 2, which is further delimited by a combustion chamber wall 6.
  • a flame 8 burns in the flame tube 2 on the downstream side of the premixing zone 3.
  • measuring sensors 7 are arranged in the burner 1 and in the fuel line connected to it.
  • the measuring sensors 7 are installed on the one hand essentially parallel to the direction of flow 5 of the fuel in the premixing zone 3, or on the other hand are located in the center of the fuel line 4. All of the measuring sensors are oriented towards the flame front 8.
  • the numerical aperture of the measuring sensor 7 is chosen to be so large that a conical observation volume is opened which contains the areas of the flame front which are relevant for the combustion process.
  • the flame front 8 is viewed from its upstream side with the measuring sensors 7. If the flame 8 fluctuates due to thermoacoustic combustion chamber pulsations in a plane perpendicular to the flow direction 5, the optical temperature measurement remains largely unaffected. In spite of the fluctuations mentioned, the entire flame front 8 is always detected by the measurement sensors 7 or, according to the arrangement of a measurement sensor 7 installed in the premixing zone 3, always the same flame detail.
  • FIG. 2 shows the arrangement of the measurement sensors 7 in a sectional illustration along the line BB in FIG. 1.
  • a measurement sensor 7 is in the center the fuel line 4 is arranged, while six further measuring sensors 7 surround the fuel line 4 at a radial distance.
  • Each measuring sensor 7 comprises a number of glass fibers 11, each of which acts as a measuring sensor.
  • the number of installed measuring sensors 7 in one burner is not important, however. According to the invention, it is conceivable to arrange only one measuring sensor 7 in the center of the fuel line 4, this measuring sensor 7 being equipped with a glass fiber 11 or, for redundancy purposes, with a plurality of glass fibers 11. Accordingly, an exclusive solution with the measurement sensors 7 surrounding the fuel line 4 is also conceivable.
  • the number of measurement sensors 7 used, as well as the number of glass fibers 11 arranged in them, must be adapted to requirements.
  • the decisive installation criterion for the measurement sensors 7 is their arrangement directly upstream of the flame front 8. Only in this position can an optical temperature measurement be carried out largely independently of possible flame movements and thus ensures the greatest possible stability of the sensor signals.
  • the measurement sensors 7 are connected, for example, to a suitable spectrometer, not shown here.
  • a spectral analysis is then carried out using known methods, which allow an association between the spectral analysis and the flame temperature.
  • Known absorption and fluorescence techniques for determining the flame temperature can also be used by means of the arrangement according to the invention.
  • the invention is not limited to the exemplary embodiment shown and described. According to the invention, it is conceivable to arrange the measuring sensors so as to be displaceable parallel to the flow direction in order to adjust them to the associated flame level at varying load points of the burner 1. In the same sense, an adjusting device for the angle of inclination with respect to the burner axis for the measuring sensors 7 installed within the premixing zone is also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The measuring device uses several optical measuring sensors (7) which are positioned directly adjacent the flame front (8) within a pre-mixing zone (3) for a burner (1). Each sensor is aligned parallel or coaxial with the fuel feed flow direction (5). Each sensor may have an associated optical fibre, and the fibres are combined to provide an optical fibre bundle for supplying the sensor signals to a spectrometer, for evaluation of the flame temperature via spectral analysis.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft eine Vorrichtung zur Flammentemperaturmessung, wie sie im Oberbegriff des ersten Anspruchs beschrieben ist.The present invention relates to the field of combustion technology. It relates to a device for flame temperature measurement, as described in the preamble of the first claim.

STAND DER TECHNIKSTATE OF THE ART

Seit Beginn der Forschung auf dem Gebiet der Verbrennungstechnik, kommt der Bestimmung der Flammentemperatur ein hoher Stellenwert zu. Die Flammentemperatur ist bei der Verbrennung fossiler Brennstoffe ein Schlüsselparameter, da sie direkt mit der chemischen Reaktionskinetik und der Bildung von Schadstoffen, wie beispielsweise NOx korreliert. Darüber hinaus ist die Kenntnis der Energiefreisetzung während des Verbrennungsprozesses unentbehrlich für die Auslegung von Brennkammern und die Bestimmung von mechanischen und thermischen Beanspruchungen aller beteiligten Komponenten.Since the beginning of research in the field of combustion technology, the determination of the flame temperature has been of great importance. The flame temperature is a key parameter in the combustion of fossil fuels because it correlates directly with the chemical reaction kinetics and the formation of pollutants such as NO x . In addition, knowledge of the energy release during the combustion process is essential for the design of combustion chambers and the determination of mechanical and thermal stresses on all components involved.

Derzeit existiert eine Vielzahl von Techniken für die Messung von Flammentemperaturen. Dabei stellen die extremen Einsatzbedingungen allerdings eine grosse Herausforderung an die Temperatursenoren dar, so dass nicht ohne weiteres jeder unter sauberen Laborbedingungen erprobte Temperatursensor Anwendung in einer Industriebrennkammer finden kann.There are currently a number of techniques for measuring flame temperatures. However, the extreme operating conditions represent a major challenge for the temperature sensors, so that not every temperature sensor tested under clean laboratory conditions can easily be used in an industrial combustion chamber.

Grob können die heute gängigen Temperaturmesstechniken in zwei Kategorien eingeteilt werden; bei den einen gelangen nicht optische Temperatursensoren zum Einsatz und bei den anderen optische.The current temperature measurement techniques can be roughly divided into two categories; some use non-optical temperature sensors and others use optical ones.

Zu den nichtoptischen Temperaturmessvorrichtungen zählen die Punktsensoren, die beispielsweise Thermoelemente umfassen. Sie bieten eine einfache und preiswerte Möglichkeit der Temperaturbestimmung an diskreten Punkten, müssen allerdings in unmittelbarer Nähe zur Flamme installiert sein, und nehmen damit Einfluss auf die Flamme. Desweiteren sind Thermoelemente aufgrund ihrer Zerbrechlichkeit nur eingeschränkt in einer turbulenten Hochtemperaturumgebung einsetzbar, in welcher zusätzlich noch chemische Oberflächenreaktionen die Thermoelemente beeinträchtigen.The non-optical temperature measuring devices include the point sensors, which include thermocouples, for example. They offer a simple and inexpensive way of determining the temperature at discrete points, but must be installed in the immediate vicinity of the flame and thus influence the flame. Furthermore, due to their fragility, thermocouples can only be used to a limited extent in a turbulent high-temperature environment in which chemical surface reactions additionally impair the thermocouples.

Insbesondere seit Bekanntwerden der Lasertechnologie wurden zahlreiche optische Temperaturmessvorrichtungen entwickelt. Hierunter fallen unter anderem Absorptions- und Fluoreszenstechniken, sowie verschiedene Messtechnik, die sich des Laserstreulichts bedienen. Den genannten optischen Messverfahren ist gemeinsam, dass sie eine Lichtquelle, einen Laser, benötigen. Sie sind damit aktiver Natur, nehmen aber im Gegensatz zu den Thermoelementen keinen Einfluss auf die Flamme. Diese Verfahren schliessen unter Berücksichtigung des emittierten Lichtes der Quelle und des Messvolumens auf die Temperatur einer Flamme.In particular since laser technology became known, numerous optical temperature measuring devices have been developed. These include absorption and fluorescence techniques, as well as various measurement techniques that use laser scattered light. The optical measurement methods mentioned have in common that they require a light source, a laser. They are therefore active in nature, but unlike the thermocouples, they have no influence on the flame. Taking into account the emitted light from the source and the measurement volume, these methods infer the temperature of a flame.

Eine bekannte optische, nicht aktive Temperaturmessung wird mittels Pyrometrie durchgeführt, wobei die von in der Flamme enthaltenen Russteilchen emittierte Schwarzkörperstrahlung ausgenützt wird. Problematisch ist allerdings die Anwendung pyrometrischer Temperaturmesssysteme an Flammen aus gasförmigen Brennstoffen. Aufgrund des sehr geringen Russgehalts ist hier das optische Signal sehr schwach. Bei der Signalanalyse kommt erschwerend hinzu, dass das temperatur- und wellenlängenabhängige Emissionsvermögen der strahlenden Russteilchen nur ungefähr bekannt ist, was in Verbindung mit unerwünschten Absorptionseffekten auf dem Weg zum Detektor die Genauigkeit der Methode beeinträchtigt.A known optical, inactive temperature measurement is carried out by means of pyrometry, the black body radiation emitted by soot particles contained in the flame being used. However, the use of pyrometric temperature measuring systems on flames from gaseous fuels is problematic. Due to the very low soot content, the optical signal is very weak. The signal analysis complicates the fact that the temperature and wavelength-dependent emissivity of the radiating soot particles is only roughly known, which, in conjunction with undesirable absorption effects on the way to the detector, impairs the accuracy of the method.

Die Installation aller bekannten, optischen Temperaturmessvorrichtungen erfolgt in möglichst geringem Abstand zu einer Flamme. Hierfür sind die Messensoren entweder rechtwinklig zur Strömungsrichtung des Brennstoffgemischs neben der Flammenfront in der Brennkammer angeordnet, oder sie befinden sich abströmseitig des Brenners in einer Frontplatte, wobei die Messensoren schräg zur Flammenfront hin ausgerichtet sind.All known, optical temperature measuring devices are installed as close as possible to a flame. For this purpose, the measuring sensors are either arranged at right angles to the direction of flow of the fuel mixture next to the flame front in the combustion chamber, or they are located on the downstream side of the burner in a front plate, the measuring sensors being oriented obliquely towards the flame front.

Besonders nachteilig bei einer derartigen Installation ist, dass die Flamme aufgrund thermoakustischer Schwingungen in der Brennkammer nicht an einem Fixpunkt brennt, sondern in einem Brennkammerbereich fluktuiert. Dies hat zur Folge, dass die Temperaturbestimmung mit der beschriebenen Messinstallation fehlerbehaftet ist, da eine einzelne Flammenebene nicht kontinuierlich erfasst werden kann.A particular disadvantage of such an installation is that the flame does not burn at a fixed point due to thermoacoustic vibrations in the combustion chamber, but fluctuates in a combustion chamber area. The consequence of this is that the temperature determination with the described measurement installation is faulty, since a single flame level cannot be continuously detected.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung liegt die Aufgabe zugrunde, eine optische Temperatmessvorrichtung der eingangs genannten Art dahingehend weiterzuentwickeln, dass unbeeinflusst von Brennkammerpulsationen eine genaue Temperaturmessung durchgeführt werden kann, wobei der Messensor eine schnelle Messung erlauben soll ohne die Flamme zu beeinträchtigen und zudem der Messensor preiswert und robust ist.The invention is based on the object of further developing an optical temperature measuring device of the type mentioned at the outset such that an accurate temperature measurement can be carried out unaffected by combustion chamber pulsations, the measuring sensor being able to allow a quick measurement without adversely affecting the flame and, moreover, the measuring sensor being inexpensive and robust.

Erfindungsgemäss wird diese Aufgabe durch die Merkmale des ersten Anspruchs gelöst.According to the invention, this object is achieved by the features of the first claim.

Der Kern der Erfindung ist darin zu sehen, dass die unmittelbar stromaufwärts im Brennstoffstrom angeordneten optischen Messensoren, welche im wesentlichen parallel und/oder koaxial zum Brennstoffstrom ausgerichtet sind, die gesamte Flammenfront in Strömungsrichtung erfassen. Dabei nehmen die optischen Messensoren keinen Einfluss auf die Flamme und gleichzeitig bleibt die optische Temperaturmessung unbeeinträchtigt von lokalen Fluktuationen der Flamme aufgrund der in einer Gasturbinenbrennkammer auftretenden thermoakustischen Druckschwingungen.The essence of the invention is to be seen in the fact that the optical measurement sensors arranged directly upstream in the fuel flow, which are oriented essentially parallel and / or coaxially to the fuel flow, detect the entire flame front in the flow direction. The optical Measurement sensors have no influence on the flame and at the same time the optical temperature measurement remains unaffected by local fluctuations in the flame due to the thermoacoustic pressure oscillations occurring in a gas turbine combustion chamber.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass während des Gasturbinenbetriebes eine exakte von Brennkammerpulsation unabhängige optische Flammentemperaturmessung erfolgen kann, da bei entsprechend gross gewählter Apertur des optischen Sensors trotz der in Strömungsrichtung fluktuierenden Flamme immer die gesamte Flammenfront erfasst wird.The advantages of the invention can be seen, inter alia, in the fact that an exact optical flame temperature measurement that is independent of combustion chamber pulsation can take place during gas turbine operation, since with a correspondingly large aperture of the optical sensor, the entire flame front is always detected despite the flame fluctuating in the flow direction.

Es ist besonders zweckmässig, wenn ein optischer Messensor innerhalb der Vormischzone eines Brenners koaxial in der Brennstoffströmung angeordnet ist und eine Anzahl weiterer optischer Messensoren parallel zur Brennstoffströmung in der Brennerwand angeordnet sind.It is particularly expedient if an optical measurement sensor is arranged coaxially in the fuel flow within the premixing zone of a burner and a number of further optical measurement sensors are arranged in the burner wall parallel to the fuel flow.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigen:

Fig. 1
einen Längsschnitt durch eine Brenner mit angrenzender Brennkammer;
Fig. 2
eine Schnittdarstellung des Brenners gemäss der Linie B-B in Fig. 1.
Exemplary embodiments of the invention are shown schematically in the drawing, namely:
Fig. 1
a longitudinal section through a burner with an adjacent combustion chamber;
Fig. 2
a sectional view of the burner along the line BB in Fig. 1st

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind beispielsweise die an die Messensoren angeschlossenen Auswerteeinheit zur Bestimmung der Flammentemperatur aus den erfassten optischen Signalen.Only the elements essential for understanding the invention are shown. The evaluation unit connected to the measurement sensors for determining the flame temperature from the detected optical signals is not shown, for example.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

In Fig. 1 ist mit 1 ein kegelförmiger Brenner bezeichnet, wie er beispielsweise in einer Gasturbine Anwendung findet. Der Brenner 1 wird an einer Seite über eine Brennstoffleitung 4 mit Brennstoff und über eine Luftleitung 10 mit Verbrennungsluft versorgt. Brennstoff und Verbrennungsluft werden dem Brenner 1 in einer Strömungsrichtung 5 durch separate Leitungen zugeführt und in einer Vormischzone 3 werden anschliessend der Brennstoff und die Verbrennungsluft möglichst gleichmässig miteinander vermischt. Stromabwärts schliesst der Brenner 1 mit einer Frontplatte 9 ab. Die Frontplatte 1 ist Bestandteil eines Flammrohres 2, welches desweiteren von einer Brennkammerwand 6 begrenzt wird. In dem Flammrohr 2 brennt abströmseitig der Vormischzone 3 eine Flamme 8.In Fig. 1, 1 denotes a conical burner, such as is used in a gas turbine, for example. The burner 1 is supplied with fuel on one side via a fuel line 4 and with combustion air via an air line 10. Fuel and combustion air are fed to the burner 1 in a flow direction 5 through separate lines, and the fuel and the combustion air are then mixed with one another as evenly as possible in a premixing zone 3. The burner 1 closes downstream with a front plate 9. The front plate 1 is part of a flame tube 2, which is further delimited by a combustion chamber wall 6. A flame 8 burns in the flame tube 2 on the downstream side of the premixing zone 3.

Zur optischen Temperaturmessung sind im Brenner 1 und in der an ihn angeschlossenen Brennstoffleitung 4 Messensoren 7 angeordnet. Die Messensoren 7 sind zum einen im wesentlichen parallel zur Strömungsrichtung 5 des Brennstoffs in der Vormischzone 3 installiert, oder befinden sich zum anderen im Zentrum der Brennstoffleitung 4. Die in den Messensoren sind alle zur Flammenfront 8 hin ausgerichtet. Die numerische Apertur des Messensors 7 wird so gross gewählt, dass ein kegelförmiges Beobachtungsvolumen eröffnet wird, welches die für den Verbrennungsprozess relevanten Bereiche der Flammenfront beinhaltet. Für die Temperaturbestimmung wird die Flammenfront 8 von ihrer Anströmseite her mit den Messensoren 7 betrachtet. Fluktuiert die Flamme 8 aufgrund thermoakustischer Brennkammerpulsationen in einer zur Strömungsrichtung 5 senkrechten Ebene, so bleibt die optische Temperaturmessung davon weitgehend unbeeinflusst. Von den Messensoren 7 wird nämlich trotz der genannten Fluktuationen immer die gesamte Flammenfront 8 erfasst oder entsprechend der Anordnung eines in der Vormischzone 3 installierten Messensors 7 immer der gleiche Flammenausschnitt.For optical temperature measurement, 4 measuring sensors 7 are arranged in the burner 1 and in the fuel line connected to it. The measuring sensors 7 are installed on the one hand essentially parallel to the direction of flow 5 of the fuel in the premixing zone 3, or on the other hand are located in the center of the fuel line 4. All of the measuring sensors are oriented towards the flame front 8. The numerical aperture of the measuring sensor 7 is chosen to be so large that a conical observation volume is opened which contains the areas of the flame front which are relevant for the combustion process. For the temperature determination, the flame front 8 is viewed from its upstream side with the measuring sensors 7. If the flame 8 fluctuates due to thermoacoustic combustion chamber pulsations in a plane perpendicular to the flow direction 5, the optical temperature measurement remains largely unaffected. In spite of the fluctuations mentioned, the entire flame front 8 is always detected by the measurement sensors 7 or, according to the arrangement of a measurement sensor 7 installed in the premixing zone 3, always the same flame detail.

Fig. 2 zeigt die Anordnung der Messensoren 7 in einer Schnittdarstellung entlang der Linie B-B in Fig. 1. Zu erkennen ist hier, dass ein Messensor 7 im Zentrum der Brennstoffleitung 4 angeordnet ist, während sechs weitere Messensoren 7 radial beabstandet die Brennstoffleitung 4 umgeben. Jeder Messensor 7 umfasst dabei eine Anzahl Glasfibern 11, von denen jeder als Messaufnehmer fungiert. Die Anzahl der installierten Messensoren 7 in einem Brenner ist allerdings nicht von Belang. So ist erfindungsgemäss denkbar, lediglich einen Messensor 7 im Zentrum der Brennstoffleitung 4 anzuordnen, wobei dieser Messensor 7 mit einer Glasfiber 11 oder aus Redundanzzwecken mit mehreren Glasfibern 11 ausgestattet ist. Dementsprechend ist auch eine ausschliessliche Lösung mit den die Brennstoffleitung 4 umgebenden Messensoren 7 denkbar. Die Anzahl der verwendeten Messensoren 7 ist genauso wie die Anzahl der in ihnen angeordneten Glasfibern 11 dem Bedarf anzupassen.FIG. 2 shows the arrangement of the measurement sensors 7 in a sectional illustration along the line BB in FIG. 1. It can be seen here that a measurement sensor 7 is in the center the fuel line 4 is arranged, while six further measuring sensors 7 surround the fuel line 4 at a radial distance. Each measuring sensor 7 comprises a number of glass fibers 11, each of which acts as a measuring sensor. The number of installed measuring sensors 7 in one burner is not important, however. According to the invention, it is conceivable to arrange only one measuring sensor 7 in the center of the fuel line 4, this measuring sensor 7 being equipped with a glass fiber 11 or, for redundancy purposes, with a plurality of glass fibers 11. Accordingly, an exclusive solution with the measurement sensors 7 surrounding the fuel line 4 is also conceivable. The number of measurement sensors 7 used, as well as the number of glass fibers 11 arranged in them, must be adapted to requirements.

Das massgebliche Installationskriterium für die Messensoren 7 ist ihre Anordnung direkt stromaufwärts der Flammenfront 8. Nur in dieser Position ist eine optische Temperaturmessung weitgehend unabhängig von möglichen Flammenbewegungen durchführbar und gewährleistet somit eine grösstmögliche Stabilität der Sensorsignale.The decisive installation criterion for the measurement sensors 7 is their arrangement directly upstream of the flame front 8. Only in this position can an optical temperature measurement be carried out largely independently of possible flame movements and thus ensures the greatest possible stability of the sensor signals.

Zur Auswertung der aufgenommenen Signale, sind die Messensoren 7 beispielsweise mit einem geeigneten, hier nicht dargestellten Spektrometer verbunden. Mit bekannten Verfahren wird dann eine Spektralanalyse durchgeführt, die eine Zuordnung zwischen der Spektralanalyse und der Flammentemperatur erlauben. Ebenso sind mittels der erfindungsgemässen Anordnung bekannte Absorptions- und Fluoreszenztechniken zur Bestimmung der Flammentemperatur anwendbar.To evaluate the recorded signals, the measurement sensors 7 are connected, for example, to a suitable spectrometer, not shown here. A spectral analysis is then carried out using known methods, which allow an association between the spectral analysis and the flame temperature. Known absorption and fluorescence techniques for determining the flame temperature can also be used by means of the arrangement according to the invention.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. So ist erfindungsgemäss denkbar, die Messensoren parallel zur Strömungsrichtung verschiebbar anzuordnen, um sie bei variierenden Lastpunkten des Brenners 1 der zugehörigen Flammenebene anzugleichen. Im gleichen Sinn ist auch eine Einstellvorrichtung des Neigungswinkels bezüglich der Brennerachse für die innerhalb der Vormischzone installierten Messensoren 7 denkbar.Of course, the invention is not limited to the exemplary embodiment shown and described. According to the invention, it is conceivable to arrange the measuring sensors so as to be displaceable parallel to the flow direction in order to adjust them to the associated flame level at varying load points of the burner 1. In the same sense, an adjusting device for the angle of inclination with respect to the burner axis for the measuring sensors 7 installed within the premixing zone is also conceivable.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
Brennerburner
22nd
FlammrohrFlame tube
33rd
VormischzonePremixing zone
44th
BrennstoffleitungFuel line
55
StrömungsrichtungFlow direction
66
BrennkammerwandCombustion chamber wall
77
MessensorMeasuring sensor
88th
FlammenfrontFlame front
99
FrontplatteFront panel
1010th
LuftleitungAir duct
1111
Glasfaserglass fiber

Claims (4)

Temperaturmessvorrichtung, insbesondere für die Flammentemperaturmessung in einer Gasturbinenbrennkammer, wobei die Temperaturmessvorrichtung eine Anzahl optischer Messensoren (7) umfasst
dadurch gekennzeichnet,
dass die Anzahl optischer Messensoren (7) unmittelbar stromaufwärts einer Flammenfront (8) in einer Vormischzone (3) eines Brenners (1) angeordnet ist und dabei jeder optische Messensor (7) im wesentlichen parallel und/oder koaxial zu einer in die Gasturbinenbrennkammer geführten Brennstoffströmung (5) ausgerichtet ist.
Temperature measuring device, in particular for flame temperature measurement in a gas turbine combustion chamber, the temperature measuring device comprising a number of optical measuring sensors (7)
characterized,
that the number of optical measurement sensors (7) is arranged directly upstream of a flame front (8) in a premixing zone (3) of a burner (1) and each optical measurement sensor (7) is essentially parallel and / or coaxial with a fuel flow led into the gas turbine combustion chamber (5) is aligned.
Tempertaurmessvorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass jeder Messensor (7) eine Anzahl Glasfasern (11) umfasst, die zu einem Bündel zusammengefasst sind.
Temperature measuring device according to claim 1,
characterized,
that each measuring sensor (7) comprises a number of glass fibers (11) which are combined into a bundle.
Tempertaurmessvorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass eine Mehrzahl von optischen Messensoren (7) in der die Vormischzone (3) begrenzenden Wand des Brenners (1) angeordnet sind.
Temperature measuring device according to claim 1,
characterized,
that a plurality of optical measurement sensors (7) are arranged in the wall of the burner (1) delimiting the premixing zone (3).
Tempertaurmessvorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass ein optischer Messensor (7) an der in die Vormischzone (3) hineinragenden Brennstoffleitung (4) angeordnet ist.
Temperature measuring device according to claim 1,
characterized,
that an optical measuring sensor (7) is arranged on the fuel line (4) projecting into the premixing zone (3).
EP97810431A 1996-07-18 1997-07-02 Temperature measuring device Expired - Lifetime EP0819889B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19628960 1996-07-18
DE19628960A DE19628960B4 (en) 1996-07-18 1996-07-18 temperature measuring

Publications (2)

Publication Number Publication Date
EP0819889A1 true EP0819889A1 (en) 1998-01-21
EP0819889B1 EP0819889B1 (en) 2007-02-07

Family

ID=7800153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810431A Expired - Lifetime EP0819889B1 (en) 1996-07-18 1997-07-02 Temperature measuring device

Country Status (4)

Country Link
US (1) US6142665A (en)
EP (1) EP0819889B1 (en)
JP (1) JP4112043B2 (en)
DE (2) DE19628960B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274560B2 (en) 2006-09-19 2012-09-25 Abb Research Ltd Flame detector for monitoring a flame during a combustion process

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112796B2 (en) * 1999-02-08 2006-09-26 General Electric Company System and method for optical monitoring of a combustion flame
US6838157B2 (en) 2002-09-23 2005-01-04 Siemens Westinghouse Power Corporation Method and apparatus for instrumenting a gas turbine component having a barrier coating
US7270890B2 (en) 2002-09-23 2007-09-18 Siemens Power Generation, Inc. Wear monitoring system with embedded conductors
US7572524B2 (en) * 2002-09-23 2009-08-11 Siemens Energy, Inc. Method of instrumenting a component
US20050198967A1 (en) * 2002-09-23 2005-09-15 Siemens Westinghouse Power Corp. Smart component for use in an operating environment
EP1411573A2 (en) * 2002-10-16 2004-04-21 Matsushita Electric Industrial Co., Ltd. Burner, hydrogen generator, and fuel cell power generation system
WO2005078341A1 (en) * 2004-02-12 2005-08-25 Alstom Technology Ltd Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring
US7484369B2 (en) * 2004-05-07 2009-02-03 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine
US7775052B2 (en) 2004-05-07 2010-08-17 Delavan Inc Active combustion control system for gas turbine engines
US7334413B2 (en) * 2004-05-07 2008-02-26 Rosemount Aerospace Inc. Apparatus, system and method for observing combustion conditions in a gas turbine engine
US7966834B2 (en) * 2004-05-07 2011-06-28 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine
US8742944B2 (en) 2004-06-21 2014-06-03 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
US8004423B2 (en) * 2004-06-21 2011-08-23 Siemens Energy, Inc. Instrumented component for use in an operating environment
CN101243287B (en) * 2004-12-23 2013-03-27 阿尔斯托姆科技有限公司 Premix burner with mixing section
US7412320B2 (en) * 2005-05-23 2008-08-12 Siemens Power Generation, Inc. Detection of gas turbine airfoil failure
US8162287B2 (en) * 2005-12-29 2012-04-24 Delavan Inc Valve assembly for modulating fuel flow to a gas turbine engine
US7665305B2 (en) 2005-12-29 2010-02-23 Delavan Inc Valve assembly for modulating fuel flow to a gas turbine engine
US7368827B2 (en) * 2006-09-06 2008-05-06 Siemens Power Generation, Inc. Electrical assembly for monitoring conditions in a combustion turbine operating environment
US7969323B2 (en) * 2006-09-14 2011-06-28 Siemens Energy, Inc. Instrumented component for combustion turbine engine
EP2097675A1 (en) * 2007-01-02 2009-09-09 Siemens Aktiengesellschaft Pressure measurement device, burner and fuel supply for a gas turbine
EP2028421A1 (en) * 2007-08-21 2009-02-25 Siemens Aktiengesellschaft Monitoring of a flame existence and a flame temperature
US20090077945A1 (en) * 2007-08-24 2009-03-26 Delavan Inc Variable amplitude double binary valve system for active fuel control
US8797179B2 (en) * 2007-11-08 2014-08-05 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US8519866B2 (en) 2007-11-08 2013-08-27 Siemens Energy, Inc. Wireless telemetry for instrumented component
US9071888B2 (en) * 2007-11-08 2015-06-30 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US8239114B2 (en) * 2008-02-12 2012-08-07 Delavan Inc Methods and systems for modulating fuel flow for gas turbine engines
US8200410B2 (en) 2008-03-12 2012-06-12 Delavan Inc Active pattern factor control for gas turbine engines
US20100047058A1 (en) * 2008-08-25 2010-02-25 General Electric Company, A New York Corporation System and method for temperature sensing in turbines
US9188000B2 (en) * 2009-07-24 2015-11-17 Getas Gesellschaft Fuer Thermodynamische Antriebssysteme Mbh Axial-piston motor with continuously working combustion chamber having two combustion air inputs
US8434310B2 (en) * 2009-12-03 2013-05-07 Delavan Inc Trim valves for modulating fluid flow
US8220319B2 (en) * 2010-10-21 2012-07-17 General Electric Company Communication system for turbine engine
US8565999B2 (en) 2010-12-14 2013-10-22 Siemens Energy, Inc. Gas turbine engine control using acoustic pyrometry
US20130040254A1 (en) * 2011-08-08 2013-02-14 General Electric Company System and method for monitoring a combustor
US20130247576A1 (en) * 2012-03-23 2013-09-26 Delavan Inc Apparatus, system and method for observing combustor flames in a gas turbine engine
US9325388B2 (en) 2012-06-21 2016-04-26 Siemens Energy, Inc. Wireless telemetry system including an induction power system
US9420356B2 (en) 2013-08-27 2016-08-16 Siemens Energy, Inc. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine
US9453784B2 (en) 2013-09-04 2016-09-27 Siemens Energy, Inc. Non-intrusive measurement of hot gas temperature in a gas turbine engine
US9696216B2 (en) 2013-09-04 2017-07-04 Siemens Energy, Inc. Acoustic transducer in system for gas temperature measurement in gas turbine engine
US9746360B2 (en) 2014-03-13 2017-08-29 Siemens Energy, Inc. Nonintrusive performance measurement of a gas turbine engine in real time
US9752959B2 (en) 2014-03-13 2017-09-05 Siemens Energy, Inc. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor
KR101905759B1 (en) * 2016-09-12 2018-10-10 주식회사 포스코 Temperature measuring apparatus of combustion chamber of gas turbine
US10605175B2 (en) 2017-07-31 2020-03-31 Rolls-Royce Corporation Temperature control system for gas combustion engines and method of using the same
CN109540288B (en) * 2018-12-04 2024-04-09 北京建筑材料科学研究总院有限公司 Flame observation device of rotary kiln

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340824A (en) * 1986-08-05 1988-02-22 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion state
DE4025852A1 (en) * 1989-12-27 1991-07-04 Deutsches Brennstoffinst Combined igniter and flame monitor for industrial furnaces - has bundle of optical fibres surrounding electrical feed to spark gap in mouth of reaction chamber
US5480298A (en) * 1992-05-05 1996-01-02 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD219059A3 (en) * 1982-09-14 1985-02-20 Freiberg Brennstoffinst PERISKOP FOR HIGH-TEMPERATURE REACTORS
JPS61290329A (en) * 1985-06-18 1986-12-20 Japan Sensaa Corp:Kk Head for infrared thermometer
GB2192984B (en) * 1986-07-25 1990-07-18 Plessey Co Plc Optical sensing arrangements
DE3801949A1 (en) * 1988-01-23 1989-08-03 Fev Motorentech Gmbh & Co Kg DEVICE FOR TRANSMITTING ELECTROMAGNETIC SHAFTS
DD299920A7 (en) * 1989-12-27 1992-05-14 Freiberg Brennstoffinst DEVICE FOR THE OPTICAL MONITORING OF HIGH-TEMPERATURE REACTORS
JP2737419B2 (en) * 1991-02-05 1998-04-08 住友金属工業株式会社 Surface temperature distribution measuring device for curved objects
DE4137765A1 (en) * 1991-11-16 1993-05-19 Bodenseewerk Geraetetech CONTROL DEVICE FOR CONTROLLING AN AUXILIARY GAS TURBINE OF AN AIRPLANE
AT400769B (en) * 1992-10-16 1996-03-25 Avl Verbrennungskraft Messtech MEASURING DEVICE FOR DETECTING COMBUSTION PROCESSES
US5361586A (en) * 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
DE4404577C2 (en) * 1994-02-11 1998-01-15 Mtu Muenchen Gmbh Procedure for calibrating a pyrometer installed in a gas turbine
DE9411435U1 (en) * 1994-07-18 1994-10-20 Minimax Gmbh, 23843 Bad Oldesloe Detector for electromagnetic radiation with a plurality of receiving devices
US5857320A (en) * 1996-11-12 1999-01-12 Westinghouse Electric Corporation Combustor with flashback arresting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340824A (en) * 1986-08-05 1988-02-22 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion state
DE4025852A1 (en) * 1989-12-27 1991-07-04 Deutsches Brennstoffinst Combined igniter and flame monitor for industrial furnaces - has bundle of optical fibres surrounding electrical feed to spark gap in mouth of reaction chamber
US5480298A (en) * 1992-05-05 1996-01-02 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274560B2 (en) 2006-09-19 2012-09-25 Abb Research Ltd Flame detector for monitoring a flame during a combustion process

Also Published As

Publication number Publication date
DE19628960B4 (en) 2005-06-02
JPH1082701A (en) 1998-03-31
DE19628960A1 (en) 1998-01-22
US6142665A (en) 2000-11-07
DE59712810D1 (en) 2007-03-22
JP4112043B2 (en) 2008-07-02
EP0819889B1 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
EP0819889B1 (en) Temperature measuring device
DE19632174C2 (en) Temperature measurement method
DE3220785C2 (en) Device for continuous measurement of the proportion of the condensed phase in a steam flow
DE102008044171B4 (en) Optical sensor, exhaust system and method of operating the sensor
DE102010060750B4 (en) Detection of contamination in burner systems
CH701199B1 (en) Method and device for regulating and / or controlling combustion parameters of a gas turbine combustor.
DE19651485A1 (en) Optical measuring method for gas bubbles in cooling liquid of internal combustion engine
DE19710206A1 (en) Method and device for combustion analysis and flame monitoring in a combustion chamber
DE102006036563A1 (en) Monitoring combustion processes in one location by fast oxygen sensor
Muruganandam et al. Chemiluminescence based sensors for turbine engines
EP0466851A1 (en) Device for determining the composition of fluids, in particular the constituents of exhaust gases of internal combustion engines
EP3270045B1 (en) Assembly for the measurement of gas concentrations
EP0969192B1 (en) Method to equalize the fuel distribution in a gas turbine with several burners
DE4022431A1 (en) SENSOR SYSTEM
EP3995817A1 (en) Method and assembly for detecting hydrogen in a heater operable with hydrogen or hydrogen-containing fuel gas
EP1847827A1 (en) Non-dispersive infrared gas analyser
DE69123990T2 (en) Device for measuring the size distribution of diffractive / scattering particles
EP3220132B1 (en) In-situ gas measuring system for gas reactors with critical environments
DE19830213C2 (en) Spark plug for internal combustion engines
DE3024401A1 (en) METHOD FOR CONTROLLED COMBUSTION OF SOLID FOSSIL FUELS, ESPECIALLY CARBON DUST
DE10133970B4 (en) Apparatus for determining the density and concentration of visible constituents in fluids
DE102004057609B4 (en) Device for determining laser-induced emission of electromagnetic radiation from gases in a hollow body, fluids and mixtures thereof
DE102019200771A1 (en) Device for the detection of particles in a fluid-carrying area using the principle of laser-induced incandescence
AT526051B1 (en) Holding device for holding a microfluid chip and method for using a microfluid chip
DE2311135A1 (en) METHOD OF FLAME PHOTOMETRY AND PERFORMANCE OF A SUITABLE DETECTOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19980702

AKX Designation fees paid

Free format text: CH DE GB LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB LI

17Q First examination report despatched

Effective date: 19991221

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59712810

Country of ref document: DE

Date of ref document: 20070322

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALSTOM TECHNOLOGY LTD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59712810

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59712810

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160721

Year of fee payment: 20

Ref country code: DE

Payment date: 20160722

Year of fee payment: 20

Ref country code: CH

Payment date: 20160721

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59712810

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170701

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830