EP0819185A1 - Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film - Google Patents

Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film

Info

Publication number
EP0819185A1
EP0819185A1 EP96911017A EP96911017A EP0819185A1 EP 0819185 A1 EP0819185 A1 EP 0819185A1 EP 96911017 A EP96911017 A EP 96911017A EP 96911017 A EP96911017 A EP 96911017A EP 0819185 A1 EP0819185 A1 EP 0819185A1
Authority
EP
European Patent Office
Prior art keywords
oxide
chosen
film
metal
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96911017A
Other languages
English (en)
French (fr)
Other versions
EP0819185B1 (de
Inventor
Daniel Lincot
Sophie Peulon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0819185A1 publication Critical patent/EP0819185A1/de
Application granted granted Critical
Publication of EP0819185B1 publication Critical patent/EP0819185B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the present invention relates to a process for preparing a film of a metal oxide or a metal hydroxide of an element of columns II or III of the classification, deposited on a substrate.
  • Metallic oxides in thin layers are very important materials in various technological fields because of their optical, electrical and catalytic characteristics. Among their many applications, one can quote for example the use of zinc oxide for the development of conductive and transparent electrodes in solar cells.
  • the thin metal oxide layers are generally obtained by vacuum deposition techniques such as sputtering, or "sputtering", chemical vapor deposition, or by deposition of successive layers by molecular beam epitaxy (E-JM ). All of these methods use expensive equipment.
  • JA Switzer (cited above) and RT Coyle, et al. (US-A-, 882, 014) further describe the preparation of metal oxide and hydroxide powders as ceramic precursors. These powders are formed by precipitation in the vicinity of the cathode of an electrochemical cell, caused by the reduction of nitrate ions. These powders are then dried and sintered at high temperature to obtain the ceramic materials. Any deposits formed on the cathode are scraped off to be recovered in the form of powder. The aim is therefore to obtain powder, and neither the direct obtaining of an oxide or hydroxide film on a substrate, nor its use as such are described. Furthermore, no mention is made of an oxygen reduction reaction for the formation of an oxide or hydroxide film.
  • the object of the present invention is to provide a process which does not have the drawbacks of the methods of the prior art, in order to obtain a film of a metal oxide or of a metal hydroxide on a support by electro-chemical means. , the said film having good mechanical strength and good adhesion to the support.
  • the method is characterized in that oxygen is dissolved in the electrolyte and a cathode potential is imposed on the electrochemical cell lower than the oxygen reduction potential and greater than the deposit potential of the metal M in the considered electrolyte.
  • the process of the present invention can be used to prepare a film of a single metal compound. It can also be used to prepare a film of a mixed compound containing at least two metallic elements. When a film of a mixed compound is prepared, at least one precursor salt of each of the desired metal species is introduced into the electrolyte and the potential imposed on the electrochemical cell is greater than the potential of the metallic deposits in the bath considered.
  • the process of the present invention can be used for the preparation of a film of a compound of at least one metal M chosen from the metallic elements of columns II and III of the periodic table, and more particularly for preparing a film of a zinc, cadmium, gallium or indium compound.
  • the electrochemical cell used for implementing the process of the invention comprises an electrode which functions as a cathode and which serves as a support for the film of compound of M electrodeposited, a counter-electrode and a reference electrode.
  • the electrode consists of any conductive material which can be used as a cathode material.
  • metallic materials such as for example iron, steels, copper or gold, conductive metallic oxides such as for example tin oxide Sn0 2 , indium ln 2 0 3 , mixed indium tin oxide (ITO) or titanium oxide Ti0 2 , or semiconductor materials such as silicon, GaAs, InP, Cu (In, Ga ) (S, Se) 2 or CdTe.
  • conductive metallic oxides such as for example tin oxide Sn0 2 , indium ln 2 0 3 , mixed indium tin oxide (ITO) or titanium oxide Ti0 2
  • semiconductor materials such as silicon, GaAs, InP, Cu (In, Ga ) (S, Se) 2 or CdTe.
  • the counter electrode can be an unassailable electrode such as for example a platinum or gold electrode, or of a material coated with these metals. It can also be an electrode constituted by the metal M of the compound of which it is sought to form a film. In this case, the oxidation of the metal M of the counter-electrode makes it possible to keep the metal concentration M of the electrolyte constant.
  • the reference electrode is chosen from the electrodes usually used as such, in particular the mercurous sulfate electrode (ESM) or the mercurous chloride electrode (ECS).
  • ESM mercurous sulfate electrode
  • ECS mercurous chloride electrode
  • the corresponding potentials are respectively +0.65 V and +0.25 V with respect to the normal hydrogen electrode (ENH).
  • the electrolyte contains at least one precursor salt of at least one metallic species M and a solvent.
  • the solvent of the electrolyte is chosen from water and the nonaqueous polar solvents usually used in electrochemical cells, among which there may be mentioned alcohols, more particularly isopropanol, acetonitrile, dimethyl sulfoxide and carbonate. propylene. Water is a particularly preferred solvent.
  • the precursor salt of the metallic element M can be chosen from the salts soluble in the solvent used for the electrolyte. Among these salts, mention may be made of inorganic salts such as halides, sulfates, nitrates and perchlorates, and organic salts such as acetates.
  • the electrolyte may optionally contain at least one second salt, called the support salt.
  • This second salt is a salt disso ⁇ ciable in the solvent used and has the main function of ensuring good electrical conductivity of the electrolyte, especially in the case where the concentration of the precursor salt of the metal M is low.
  • This salt can be chosen from sodium, potassium or ammonium salts, the anion of which will not cause the precipitation of an insoluble compound with the metal cation M.
  • inorganic salts such as halides, sulfates, nitrates and perchlorates, or organic salts such as acetates, lactates and formates.
  • this second salt is advantageous. sow potassium chloride, preferably at a concentration of about 0.1 mole / l.
  • the electrolyte can also contain, in addition to or in place of the second salt, a complexing compound with respect to the cation M, in order to adapt the conditions for the formation of the compound of M to the window permitted by the reduction of oxygen.
  • a complexing compound chosen for example from oxalates, citrates, fluorides, chlorides, iodides and
  • L 1 electrolysis is carried out in the presence of dis ⁇ oxygen in the electrolyte.
  • the oxygen concentration is fixed between very low values, of the order of
  • the oxygen can be dissolved advantageously intro ⁇ reducing in the electrolyte a gas mixture consisting of oxygen and a neutral gas.
  • the neutral gas can be argon
  • the oxygen concentration of the gas mixture and the gas flow rate in the electrolyte makes it possible to impose a predetermined concentration of oxygen in the electrolyte.
  • the oxygen / neutral gas volume ratio is between 1 and 2.
  • the potential imposed on the electrochemical cell is kept constant at a predetermined value between the potential for deposition of the metal M in the electrolyte considered and the reduction potential d 'oxygen.
  • 3 ⁇ metal M in the electrolyte considered can be easily determined by a person skilled in the art by raising the intensity as a function of the potential in an electrochemical cell analogous to that in which the process of the invention is implemented, in the absence of oxygen.
  • Oxygen is provided by the literature.
  • the potential for depositing a zinc oxide film on a SnO2 cathode can be set between -0.75 V and -0.1 V vs ENH and for depositing a film of cadmium hydroxide on a gold cathode between -0.24 V and -0.05 V vs ENH.
  • the implementation of the method according to the invention generally produces a linear growth in the thickness of the deposit as a function of time.
  • the thickness of a film can therefore be predetermined by adjusting the amount of electricity used for the deposit. Thicknesses from a few nm to a few ⁇ m can be obtained.
  • the particularly favorable deposition rate is between approximately 0.5 and 1 ⁇ m / h.
  • the nature of the compound constituting the film deposited on the electrode of the electrochemical cell can be chosen by appropriately setting the reaction conditions.
  • the process of the invention should be carried out under conditions in which the oxide is thermodynamically more stable than the hydroxide.
  • favorable conditions are obtained with relatively low deposition rates and high temperatures. Therefore, for obtaining oxides from aqueous solutions, low concentrations of M (i) will be used.
  • a concentration is used in Zn (II) preferably less than 10 "2 mol / 1, more particularly less than 5.10 ⁇ 3 mole / 1, a temperature at least equal to 50 ° C, and an oxygen concentration lower than the saturating concentration in the solution.
  • the process of the invention should be carried out with a relatively high deposition rate and at a relatively low temperature. These conditions are met when using high M (i) concentrations.
  • a concentration of Zn (II) greater than 2.10 -2 mole / 1 is used, a temperature less than 50 ° C and an oxygen concentration less than or equal at saturating concentration.
  • the process of the invention leads to the deposition of layers of oxides.
  • the anion A is the anion introduced into the electrolyte by the precursor salt of the metal M, or else the anion of the second dissociable salt introduced into the electrolyte to increase its conductivity.
  • the anion A is chosen as a function of its propensity to form compounds defined with the metal M and with the hydroxyl ions, and as a function of the properties expected for the film deposited.
  • the films obtained by the process of the invention are very adherent to the substrate, which constitutes a fundamental criterion for the applications.
  • Another method for activating the substrate consists in depositing a very thin metal sublayer M, of the order of a few nanometers, by application for a very short time (for example of the order of 30 seconds) of a potential more cathodic, before applying the deposition potential of the compound of M.
  • the method of the present invention makes it possible to obtain a multi-layer structure consisting of a conductive support layer and an oxide or hydroxide film M (0H) x A y , which constitutes another object of the present invention. .
  • the composite structure has various applications. Multi-layer structures comprising a compact film are advantageous, in general, for applications requiring continuous layers. Such structures can be used for example as a chemical or electrochemical sensor or as a catalyst.
  • the composite structures can also be used as a transparent electrode in solar cells, in flat luminescent devices, and more generally, in various optoelectronic devices.
  • the support layer consists of a thin layer of a material chosen from iron, steels, copper or gold, conductive metal oxides such as for example oxide tin Sn0 2 , indium oxide ln 2 0 3 , mixed indium tin oxide (ITO) or titanium oxide Ti0 2 , semiconductor materials such as silicon, GaAs, InP, Cu (In, Ga) (S, Se) 2 or CdTe.
  • the support layer consists of a thin layer of one of the preceding materials, deposited on a glass plate. Multi-layer structures comprising a film with an open structure are used for applications requiring large developed surfaces. Examples of such applications include chemical or electrochemical sensors, and catalysts. The present invention is described below in more detail by concrete examples of implementation of the process of the invention, given by way of illustration, the invention of course not being limited to these examples.
  • the device used comprises an electrolysis tank, an electrode, a counter electrode and a reference electrode, all three being connected to a potentiostat.
  • the electrolysis tank is provided with a stirring system and means for introducing with a predetermined flow rate an argon / oxygen gas mixture having a predetermined composition.
  • the temperature is kept constant at 80 ° C. using a water bath.
  • the electrode consists of a film of Sn ⁇ 2 deposited on glass.
  • the counter electrode consists of a platinum plate.
  • the reference electrode is a mercury sulfate electrode.
  • the Sn0 2 electrode was subjected to a treatment which consists in maintaining it for 20 minutes under a potential of -1.3 V / ESM included in the field of reduction of the oxygen, in a KC1 solution (0.1 mole / 1) not containing the metallic element whose oxide is to be deposited, in the presence of dissolved oxygen at saturation.
  • an electrolyte is introduced consisting of an aqueous solution of KC1 (0.1 M) and zinc chloride (5.10 ⁇ 3 M).
  • the gas mixture is continued to bubbled through the electrolyte and the cell is applied to a potential of -1.3 V relative to the reference electrode (corresponding to a potential of -0 , 65 V vs ENH).
  • the reaction is stopped after 1 h 30, and the film obtained has a thickness of 1 ⁇ m, determined using a mechanical profilometer. This thickness is linked to the quantity of electricity consumed during the deposit ( ⁇ 7 C for 5 cm 2 ).
  • the oxide film obtained was characterized by different methods.
  • X-ray analysis The X-ray diffraction diagram of the zinc oxide film obtained, preferably oriented along the ⁇ 002> axis, shows only the lines characteristic of the hexagonal phase of zinc oxide (20, 1 ° ) and the lines corresponding to the substrate.
  • the infrared spectrum of the zinc oxide film obtained presents the band lying around 450-550 cm -1 , characteristic of ZnO. No characteristic band of the hydroxyl ions is visible.
  • the film obtained is compact, transparent, smooth and homogeneous.
  • the transmission is high, in agreement with the transparency of the film to the eye.
  • an abrupt absorption front appears, which indicates the semiconductor character of the film and the presence of a forbidden band which corresponds to that of ZnO at around 3.4 eV.
  • Capacitive measurements carried out in an electrolytic medium have shown that the film ZnO obtained was conductive, of type n, and that the apparent doping rate is high, of the order of 10 18 -10 19 cm -3 .
  • the method of the invention was implemented under conditions similar to those of Example 1, but omitting the preliminary treatment of the SnO 2 electrode, the latter being simply degreased. Under these conditions, the oxide deposit obtained is made up of a multitude of needles with a hexagonal section, the bases being fixed to the substrate. These needles are well separated from each other and therefore constitute an open structure having a large developed surface. The height of the needles can reach several ⁇ m for a base surface of the order of ⁇ m 2 . It increases with the duration of the deposit.
  • the device used is analogous to that used for the preparation of an oxide film and the operating conditions are identical, except as regards the composition of the electrolyte.
  • the electrolyte is an aqueous solution of
  • the film obtained has a thickness of 0.5 ⁇ m, determined using a mechanical profilometer. This thickness is related to the amount of electricity consumed during the deposit.
  • the hydroxide film obtained was characterized according to different methods.
  • the X-ray diffraction diagram of the hydroxide film has a preferential orientation along the line to
  • the infrared spectrum of the zinc hydroxide film obtained has a dominant band located around 3500 cm --'-, characteristic of hydroxyl ions.
  • the characteristic band of the Zn-0 bonds of the oxide around 500 cm ⁇ 1 is not present.
  • the film obtained is covering and consists of well-defined hexagonal grains.
  • the device used is analogous to that used for the preparation of a zinc oxide film and the operating conditions are identical, except as regards the following points: the potential applied to the cathode is -0.9 V / ref. (-0.3 V vs ENH); the electrolyte is an aqueous solution containing NaC10 4 (0.1 M) and CdCl 2 (5.10 -4 M), saturated with oxygen, at a temperature of 80 ° C; the reaction time is one hour.
  • the film obtained has a thickness of 0.3 ⁇ m, determined under electron microscopy.
  • the hydroxide film obtained was characterized according to different methods. X-ray analysis We observe the presence of the characteristic line of Cd (OH) 2 on the X-ray diffraction diagram. Electron spectroscopy analysis
  • the film obtained has an open structure.
  • the apparatus used is similar to that used for the preparation of a zinc oxide film and the operating conditions are identical, except as regards the following points : the potential applied to the tank is -0.15 V vs ENH.
  • the electrolyte is an aqueous solution containing KC1 (0.1 mole / 1) and CdCl 2 (10 "2 mole / 1), saturated with oxygen, at a temperature of 50 ° C;
  • the film obtained has a thickness of 0.4 ⁇ m, determined under electron microscopy.
  • the complex hydroxide film obtained has a covering structure.
  • composition Cd (OH) x Cl 1 . x was confirmed by X - ray analysis and by electron spectroscopy analysis.
  • the device used is analogous to that used for the preparation of a zinc oxide film and the conditions The operating procedures are identical, except as regards the following points:
  • the potential applied to the tank is -0.65 V vs ENH.
  • the electrolyte is an aqueous solution at pH 3 containing potassium chloride (0.1 mole / 1), gallium sulfate (7.7xl0 ⁇ 3 mole / 1) and sodium oxalate (6xl0 ⁇ 3 mole / 1) saturated with oxygen, at a temperature of 50 ° C;
  • the film obtained after one hour has a thickness of 0.5 ⁇ m, determined under electron microscopy. It is transparent and covering.
  • the stoichiometric ratio Ga / 0 determined using a Ga 2 0 3 standard is 0.324.
  • the gallium compound obtained therefore corresponds to gallium hydroxide Ga (OH) 3 or to hydrated gallium oxide Ga 2 0 3 .3H 2 0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
EP96911017A 1995-04-06 1996-04-02 Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film Expired - Lifetime EP0819185B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9504088A FR2732696B1 (fr) 1995-04-06 1995-04-06 Procede de preparation d'un film d'oxyde ou d'hydroxyde d'un element des colonnes ii ou iii de la classification, et les structures composites comprenant un tel film
FR9504088 1995-04-06
PCT/FR1996/000495 WO1996031638A1 (fr) 1995-04-06 1996-04-02 Procede de preparation d'un film d'oxyde ou d'hydroxyde d'un element des colonnes ii ou iii de la classification, et les structures composites comprenant un tel film

Publications (2)

Publication Number Publication Date
EP0819185A1 true EP0819185A1 (de) 1998-01-21
EP0819185B1 EP0819185B1 (de) 2000-12-06

Family

ID=9477815

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96911017A Expired - Lifetime EP0819185B1 (de) 1995-04-06 1996-04-02 Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film

Country Status (5)

Country Link
US (1) US6030517A (de)
EP (1) EP0819185B1 (de)
DE (1) DE69611162T2 (de)
FR (1) FR2732696B1 (de)
WO (1) WO1996031638A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387771B1 (en) * 1999-06-08 2002-05-14 Infineon Technologies Ag Low temperature oxidation of conductive layers for semiconductor fabrication
DE10016024A1 (de) * 2000-03-31 2001-10-04 Merck Patent Gmbh Aktives Anodenmaterial in elektrochemischen Zellen und Verfahren zu deren Herstellung
JP2002356400A (ja) * 2001-03-22 2002-12-13 Canon Inc 酸化亜鉛の針状構造体の製造方法及びそれを用いた電池、光電変換装置
AU2002314847A1 (en) * 2001-05-31 2002-12-09 Upsher-Smith Laboratories, Inc. Dermatological compositions and methods comprising alpha-hydroxy acids or derivatives
DE10245509B3 (de) * 2002-09-27 2004-06-03 Sustech Gmbh & Co. Kg Elektrochemisches Verfahren zur Steuerung der Teilchengröße bei der Herstellung nanopartikulärer Metalloxide
EP1548157A1 (de) * 2003-12-22 2005-06-29 Henkel KGaA Korrosionsschutz durch elektrochemisch abgeschiedene Metalloxidschichten auf Metallsubstraten
WO2008095146A2 (en) * 2007-01-31 2008-08-07 Van Duren Jeroen K J Solar cell absorber layer formed from metal ion precursors
US20110048956A1 (en) * 2008-02-21 2011-03-03 Helmholtz-Zentrum Berlin Für Materialien Und Energ Electrodeposition method for the production of nanostructured zno
US8882983B2 (en) * 2008-06-10 2014-11-11 The Research Foundation For The State University Of New York Embedded thin films
EP2138608A1 (de) * 2008-06-24 2009-12-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Verfahren zur Herstellung einer transparenten und leitfähigen Folie auf einem Substrat
US20100059385A1 (en) * 2008-09-06 2010-03-11 Delin Li Methods for fabricating thin film solar cells
FR2982422B1 (fr) * 2011-11-09 2013-11-15 Saint Gobain Substrat conducteur pour cellule photovoltaique
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US8691413B2 (en) 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US8753761B2 (en) 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
MX2017004888A (es) 2014-11-26 2017-07-27 Lockheed Martin Advanced Energy Storage Llc Complejos de metales de catecolatos sustituidos y baterias de flujo redox que los contienen.
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313454A (en) * 1938-05-24 1943-03-09 Kansas City Testing Lab Electrodeposition of cuprous oxides and baths therefor
US4414064A (en) * 1979-12-17 1983-11-08 Occidental Chemical Corporation Method for preparing low voltage hydrogen cathodes
US4392920A (en) * 1981-06-10 1983-07-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of forming oxide coatings
US4495046A (en) * 1983-05-19 1985-01-22 Union Oil Company Of California Electrode containing thallium (III) oxide
US4882014A (en) * 1988-02-24 1989-11-21 Union Oil Company Of California Electrochemical synthesis of ceramic films and powders
JP2994812B2 (ja) * 1991-09-26 1999-12-27 キヤノン株式会社 太陽電池
DE69218102T2 (de) * 1991-10-22 1997-10-09 Canon Kk Photovoltaisches Bauelement
US5804466A (en) * 1996-03-06 1998-09-08 Canon Kabushiki Kaisha Process for production of zinc oxide thin film, and process for production of semiconductor device substrate and process for production of photoelectric conversion device using the same film
US5616437A (en) * 1996-06-14 1997-04-01 Valence Technology, Inc. Conductive metal oxide coated current collector for improved adhesion to composite electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9631638A1 *

Also Published As

Publication number Publication date
US6030517A (en) 2000-02-29
DE69611162D1 (de) 2001-01-11
WO1996031638A1 (fr) 1996-10-10
FR2732696A1 (fr) 1996-10-11
EP0819185B1 (de) 2000-12-06
FR2732696B1 (fr) 1997-06-20
DE69611162T2 (de) 2001-06-07

Similar Documents

Publication Publication Date Title
EP0819185B1 (de) Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film
Wang et al. Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior
Takeuchi et al. SnS thin films fabricated by pulsed and normal electrochemical deposition
Lister et al. Formation of the first monolayer of CdSe on Au (111) by electrochemical ALE
Saha et al. Influence of surface defects in ZnO thin films on its biosensing response characteristic
US20110048956A1 (en) Electrodeposition method for the production of nanostructured zno
EA009012B1 (ru) Полупроводниковые пленки из четырех и более компонентных сплавов элементов групп i-iii-vi
Sathiyanarayanan et al. In-situ grazing incidence X-ray diffractometry observation of pitting corrosion of copper in chloride solutions
Murase et al. Electrodeposition of CdTe films from ammoniacal alkaline aqueous solution at low cathodic overpotentials
Han et al. Properties of nanocrystalline zinc oxide thin films prepared by thermal decomposition of electrodeposited zinc peroxide
Keikhaei et al. Fabrication of copper oxide thin films by galvanostatic deposition from weakly acidic solutions
Riveros et al. Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution
Chen et al. Electrodeposition of silver selenide thin films from aqueous solutions
Werta et al. Electrochemical deposition and characterization of thin-film Cd1-xZnxS for solar cell application: the effect of cathodic deposition voltage
Pistone et al. Preparation and characterization of thin film ZnCuTe semiconductors
EP2901495A2 (de) Wismut/kupfer-mischoxide und sulfide zur verwendung in der photovoltaik
Haleem et al. Electrochemical deposition of indium sulfide thin films using two-step pulse biasing
Aydın et al. Characterization of CuTe nanofilms grown by underpotential deposition based on an electrochemical codeposition technique
Gandhi et al. Room temperature electrodeposition of aluminum antimonide compound semiconductor
Inamdar et al. The influences of complexing agents on growth of zinc oxide thin films from zinc acetate bath and associated kinetic parameters
WO2015150591A1 (fr) Oxydes et sulfures mixtes de bismuth et cuivre pour application photovoltaïque
Mondal et al. An electrochemical technique to deposit thin films of PbTe
Ishizaki et al. Electrodeposition of CuInTe2 film from an acidic solution
Ishizaki et al. An investigation into the effect of ionic species on the formation of ZnTe from a citric acid electrolyte
Ishizaki et al. Electrodeposition of ZnTe film with high current efficiency at low overpotential from a citric acid bath

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19980220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20001206

REF Corresponds to:

Ref document number: 69611162

Country of ref document: DE

Date of ref document: 20010111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150324

Year of fee payment: 20

Ref country code: FR

Payment date: 20150319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69611162

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160401