EP0809530A1 - Fillers for biological exhaust air purification, process for their preparation, their use and bioreactors containing them - Google Patents

Fillers for biological exhaust air purification, process for their preparation, their use and bioreactors containing them

Info

Publication number
EP0809530A1
EP0809530A1 EP96901638A EP96901638A EP0809530A1 EP 0809530 A1 EP0809530 A1 EP 0809530A1 EP 96901638 A EP96901638 A EP 96901638A EP 96901638 A EP96901638 A EP 96901638A EP 0809530 A1 EP0809530 A1 EP 0809530A1
Authority
EP
European Patent Office
Prior art keywords
compost
pellets
filling materials
organic
exhaust air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP96901638A
Other languages
German (de)
French (fr)
Inventor
Thomas Zich
Friedrich PRÖLL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krems Chemie GmbH
Original Assignee
Krems Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krems Chemie GmbH filed Critical Krems Chemie GmbH
Publication of EP0809530A1 publication Critical patent/EP0809530A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • B01D53/85Biological processes with gas-solid contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • Biological exhaust air purification is a process for reducing the concentration of air pollutants through biodegradation.
  • Microorganisms utilize the pollutants that are present in the process exhaust gases from various industries, e.g. from paint shops and printing plants, as a substrate for the construction of biomass and for their energy metabolism. This creates harmless compounds such as H2O and CO2 from dangerous substances. This is demonstrably a bioconversion of the atmospheric substances and not a bioaccumulation, which would correspond to a shift of the exhaust air problem to other environmentally relevant areas.
  • Organic fillers make it unnecessary to add mineral salts, since these are usually contained in sufficient amounts for the microorganisms.
  • the organic filter material thus serves not only as a carrier of the biofilm from a mostly sessile microflora from bacteria, but also as a moisture reservoir and source of nutrients. This reduces the need for control technology.
  • the high water retention capacity of organic fillers favors microbial colonization.
  • most of these biological filter materials have a very inhomogeneous structure, which also changes over time. Lumps are formed or the material becomes increasingly fine-grained due to repeated drying and moistening and thus causes high pressure losses. Another consequence is different dwell times in the filter, since there is a lot of marginality. This has a negative impact on the elimination performance.
  • the aim of the invention is the development of filling materials on an organic basis for filling biological waste air purification systems which are intended to overcome the disadvantages of the previous materials while maintaining the advantages of biological filling materials.
  • the organic material is said to be mechanically stable with a binder and against moisture insensitive pellets are solidified without losing the desired properties of serving as a moisture reservoir and source of nutrients for the microorganisms.
  • the binder chosen should also be such that it can be easily biodegraded again at the end of the life cycle of the bioactive filling material.
  • This object was achieved by adding a reactive binder from the class of the amino / phenoplasts and a suitable hardener to organic material such as e.g. Com ⁇ post and the compression while curing the binder to stable pellets.
  • Packings produced in this way have all the advantages of the organic packing previously used. After an adaptation phase, they break down both good and poorly water-soluble organic air pollutants. Ethyl acetate and toluene were chosen as prototypes for such pollutants, and their biodegradation was measured in suitable plants.
  • Stability Pelleting with the addition of amino / phenoplasts as a binder achieves long-term high mechanical stability of the pellets at the moisture content required for operational technical reasons in biological exhaust air purification systems. Profitability: Due to the increased stability of the pellets, the service life of the filling material increases, so that the fillings of biological exhaust air purification systems have to be exchanged less frequently. Lengthy start-up phases with a lower cleaning performance after complex emptying and refilling of the bioreactors are thus less common. Pressure loss: Fills with the new pellets have a lower pressure loss with air throughput than conventional filter materials and thus reduce the required fan energy consumption. Nutrient source: With compost as the main organic constituent, the pellets have sufficient nutrient salt availability for microorganisms, so that an additional nutrient salt dosage is not necessary.
  • Material structure By changing the compost / aminoplast ratio and the pelleting parameters, a defined material structure can be achieved.
  • Disposal Since the pellets only contain biodegradable compounds, the disposal can e.g. done through composting plants. Experience has shown that there is no accumulation of air pollutants in the filter media of biological exhaust air purification systems.
  • Particularly suitable aminoplasts / phenoplasts are addition and condensation products of carbonyl compounds (especially aldehydes) with ureas, thioureas, melamine, urethanes and phenols.
  • Compost structural material 30 30 100 Compost glue pellets 30 30 100
  • Compost structural material 50 50 100 Compos glue pellets 50 50 100

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention concerns organically based fillers for biological exhaust air purification plants, said fillers being characterized in that they are in the form of pellets solidified with an organic binder. These pellets are mechanically stable, cause a low pressure loss in the biofilter, can be produced with a specific material structure, and can be disposed of easily.

Description

Füllmaterialien für biologische Abluftreinigung. Filling materials for biological exhaust air purification.
Verfahren zu ihrer Herstellung, ihre Verwendung und sie enthaltende BioreaktorenProcesses for their production, their use and bioreactors containing them
Die biologische Abluftreinigung ist ein Verfahren zur Kon- zentrationsminderung von Luftschadstoffen durch biologischen Abbau. Dabei verwerten Mikroorganismen die Schadstoffe, die in den Prozeßabgasen verschiedener Industrien,wie z.B. von Lackie¬ rerei- und Druckereibetrieben vorkommen, als Substrat für den Aufbau von Biomasse und für ihren Energiestoffwechsel. Dabei entstehen aus gefährlichen Substanzen unbedenkliche Verbin¬ dungen wie H2O und CO2. Es handelt sich hier nachweislich um eine Biokonversion der Luftstoffe und nicht um eine Bioakkumu¬ lation, was einer Verlagerung des Abluftproblems in andere um¬ weltrelevante Bereiche entspräche.Biological exhaust air purification is a process for reducing the concentration of air pollutants through biodegradation. Microorganisms utilize the pollutants that are present in the process exhaust gases from various industries, e.g. from paint shops and printing plants, as a substrate for the construction of biomass and for their energy metabolism. This creates harmless compounds such as H2O and CO2 from dangerous substances. This is demonstrably a bioconversion of the atmospheric substances and not a bioaccumulation, which would correspond to a shift of the exhaust air problem to other environmentally relevant areas.
Bei den Anlagen zur biologischen Abluf reinigung dominie¬ ren zwei Verfahrensprinzipien: Biofilter und Tropfkörperbiore- aktor. In beiden Fällen werden die Bioreaktoren von der Schad¬ stoffbelasteten Abluft durchströmt, wobei sich auf dem Füllma¬ terial der -Reaktoren eine für den Abbau der Luftschadstoffe ge¬ eignete Mikroorganismenflora ausbildet. Der grundsätzliche Unterschied beider Verfahrensprinzipien liegt in der Wasserbe¬ rieselungsdichte der Reaktorschüttung zur Befeuchtung des Bio¬ films auf dem Füllmaterial. Dem Füllmaterial kommt entscheiden¬ de Bedeutung zu in Bezug auf die biologische Besiedelungsfähig- keit, die mikrobielle Nährstof fVersorgung, die Materialstruk¬ tur, die spezifische Oberfläche, den Druckverlust des Abgas¬ stroms durch den Bioreaktor, das Wasserhaltevermögen und die Standzeit. Die genannten Faktoren haben entscheidenden Einfluß auf die Gesamteffizienz einer biologischen Abluftreinigungs- anlage, und zwar sowohl auf die Investitions- als auch auf die Betriebskosten.In the systems for biological waste air purification, two process principles dominate: biofilter and trickling filter biorector. In both cases, the exhaust air contaminated with pollutants flows through the bioreactors, a microorganism flora suitable for breaking down the air pollutants being formed on the filling material of the reactors. The fundamental difference between the two principles of the process lies in the water sprinkling density of the reactor bed for moistening the biofilm on the filling material. The filling material is of decisive importance with regard to the biological colonization ability, the microbial nutrient supply, the material structure, the specific surface, the pressure loss of the exhaust gas flow through the bioreactor, the water holding capacity and the service life. The factors mentioned have a decisive influence on the overall efficiency of a biological exhaust air purification system, both on the investment and on the operating costs.
Der heutige Stand der Technik bietet bezüglich des Füllma¬ terials zwei grundsätzlich verschiedene Alternativen: Syntheti¬ sche Kunststoff-Füllkörper aus der konventionellen Stoffaus- tauschtechnik sowie organische Schüttungen aus Kompost, Erde, Torf, Zellulose, Holzspänen, Kohlen,Heidekraut und/oder Rinden- ulch (DE-Al-34 14 044) . Der Vorteil inerter Materialien liegt in langen Standzeiten und homogenen Struktureigenschaften. Auch die Materialbefeuchtung kann besser reguliert werden. Anderer¬ seits muß jedoch bei Betriebsbeginn inokuliert werden, sodaß es zu Verzögerungen bei der Abbauleistung kommt. Des weiteren besteht bei hohen Belastungen häufig die Gefahr des Zuwachsens.The current state of the art offers two fundamentally different alternatives with regard to the filler material: synthetic plastic fillers from conventional material exchange technology as well as organic fillings from compost, earth, peat, cellulose, wood chips, coal, heather and / or bark ulch (DE-Al-34 14 044). The advantage of inert materials is their long service life and homogeneous structure properties. The material moistening can also be regulated better. On the other hand, however, inoculation must take place at the start of operation, so that there are delays in the mining performance. Furthermore, there is often a risk of overgrowth at high loads.
Organische Füllmaterialien machen Mineralsalzgaben ent¬ behrlich, da diese meist in für die Mikroorganismen ausreichen¬ der Menge enthalten sind. Das organische Filtermaterial dient also nicht nur als Träger des Biofilms aus einer meist sessilen Mikroflora aus Bakterien, sondern auch als Feuchtigkeitsreser¬ voir und Nährstoffquelle. Dies mindert den regelungstechnischen Bedarf. Das hohe Wasserrückhaltevermögen von organischen Füll¬ materialien begünstigt die mikrobielle Besiedelung. Die meisten dieser biologischen Filtermaterialien besitzen jedoch eine sehr inhomogene Struktur, die sich außerdem im Laufe der Zeit auch noch verändert. Es kommt zur Klumpenbildung oder das Material wird durch wiederholte Austrocknung und Befeuchtung immer fein¬ körniger und bewirkt dadurch hohe Druckverluste. Eine weitere Folge sind unterschiedliche Verweilzeiten im Filter, da es zu starker Randgängigkeit kommt. Dies wirkt sich negativ auf die Eliminationsleistung aus.Organic fillers make it unnecessary to add mineral salts, since these are usually contained in sufficient amounts for the microorganisms. The organic filter material thus serves not only as a carrier of the biofilm from a mostly sessile microflora from bacteria, but also as a moisture reservoir and source of nutrients. This reduces the need for control technology. The high water retention capacity of organic fillers favors microbial colonization. However, most of these biological filter materials have a very inhomogeneous structure, which also changes over time. Lumps are formed or the material becomes increasingly fine-grained due to repeated drying and moistening and thus causes high pressure losses. Another consequence is different dwell times in the filter, since there is a lot of marginality. This has a negative impact on the elimination performance.
Es hat auch Versuche gegeben, biologisches Material durch mechanische Verfestigung, gegebenenfalls unter Zugabe von mine¬ ralischen Zuschlagstoffen, wie Bentonit, Zeolith und/oder Ton, zu Pellets zu verpressen, um eine gleichmäßige Schüttung zu erreichen und damit Kanalbindungen und Randgängigkeiten zu ver¬ meiden (AT-PS 395 684) . Solche Pellets sind aber im Dauerbe¬ trieb unter den Einfluß von Feuchtigkeit nicht stabil, sodaß sie im Laufe der Zeit zerfallen, wodurch die oben erwähnten Nachteile wieder auftreten.There have also been attempts to compress biological material into pellets by mechanical solidification, optionally with the addition of mineral additives such as bentonite, zeolite and / or clay, in order to achieve a uniform filling and thus to avoid channel bonds and marginal movement (AT-PS 395 684). However, such pellets are not stable in continuous operation under the influence of moisture, so that they disintegrate over time, as a result of which the above-mentioned disadvantages occur again.
Weitere Vorschläge für Biofilterfüllungen sind den EP-AI-0 464 661 und 0 497 214 zu entnehmen.Further suggestions for biofilter fillings can be found in EP-AI-0 464 661 and 0 497 214.
Das Ziel der Erfindung ist die Entwicklung von Füllmateri¬ alien auf organischer Basis zur Befüllung von biologischen Ab- luftreinigungsanlagen, die unter Beibehaltung der Vorteile von biologischen Füllmaterialien die Nachteile der bisherigen Ma¬ terialien überwinden sollen. Das organische Material soll mit einem Bindemittel zu mechanisch stabilen und gegen Feuchtigkeit unempfindlichen Pellets verfestigt werden, ohne daß jedoch die erwünschten Eigenschaften, als Feuchtigkeitsreservoir und Nähr¬ stoffquelle für die Mikroorganismen zu dienen, verloren gehen. Das gewählte Bindemittel soll auch so beschaffen sein, daß es bei Beendigung des Lebenszyklus des bioaktiven Füllmat-erials wieder problemlos biologisch abgebaut werden kann.The aim of the invention is the development of filling materials on an organic basis for filling biological waste air purification systems which are intended to overcome the disadvantages of the previous materials while maintaining the advantages of biological filling materials. The organic material is said to be mechanically stable with a binder and against moisture insensitive pellets are solidified without losing the desired properties of serving as a moisture reservoir and source of nutrients for the microorganisms. The binder chosen should also be such that it can be easily biodegraded again at the end of the life cycle of the bioactive filling material.
Diese Aufgabe wurde gelöst durch die Beimengung eines re¬ aktiven Bindemittels aus der Klasse der Amino-/Phenoplaste und eines geeigneten Härters zu organischem Material wie z.B. Kom¬ post und die Verpressung unter gleichzeitiger Aushärtung des Bindemittels zu stabilen Pellets.This object was achieved by adding a reactive binder from the class of the amino / phenoplasts and a suitable hardener to organic material such as e.g. Com¬ post and the compression while curing the binder to stable pellets.
Als organisches Material können verschiedene Produkte wie Fasertorf oder Heidekraut sowie insbesondere Komposte (Müllkom¬ post, Grünkompost, Rindenkompost, Laub, usw.) bzw. Mischungen dieser Materialien eingesetzt werden.Various products such as peat or heather and in particular composts (garbage compost, green compost, bark compost, leaves, etc.) or mixtures of these materials can be used as organic material.
Auf diese Weise hergestellte Füllkδrper weisen alle Vor¬ teile der bisher verwendeten organischen Füllkörper auf. Sie bauen nach einer Adaptionsphase sowohl gut als auch schlecht wasserlösliche organische Luftschadstoffe ab. Als Prototyp für solche Schadstoffe wurden Ethylacetat und Toluol gewählt, deren biologischer Abbau in geeigneten Anlagen gemessen wurde.Packings produced in this way have all the advantages of the organic packing previously used. After an adaptation phase, they break down both good and poorly water-soluble organic air pollutants. Ethyl acetate and toluene were chosen as prototypes for such pollutants, and their biodegradation was measured in suitable plants.
Die neuentwickelten Pellets weisen gegenüber konventionel¬ len Füllmaterialien folgende Vorteile auf:The newly developed pellets have the following advantages over conventional filling materials:
Stabilität: Durch Pelletierung unter Zugabe von Amino/Phe- noplasten als Bindemittel wird eine langfristig hohe me¬ chanische Stabilität der Pellets bei dem aus betriebs¬ technischen Gründen bei biologischen Abluftreinigungsanla¬ gen erforderlichen Feuchtegehalt erreicht. Rentabilität: Durch erhöhte Stabilität der Pellets nimmt die Standzeit des Füllmaterials zu, sodaß die Schüttungen von biologischen Abluftreinigungsanlagen seltener ausge¬ tauscht werden müssen. Langwierige Anfahrphasen mit gerin¬ gerer Reinigungsleistung nach aufwendigem Entleeren und Wiederbefüllen der Bioreaktoren werden somit seltener. Druckverlust: Schüttungen mit den neuen Pellets weisen einen niedrigeren Druckverlust bei Luftdurchsatz als her¬ kömmliche Filtermaterialien auf und vermindern somit den nötigen Gebläseenergiebedarf. Nährstoffquelle: Mit Kompost als organischem Hauptbestand¬ teil weisen die Pellets eine hinreichende Nährsalzverfüg¬ barkeit für Mikroorganismen auf, sodaß eine zusätzliche Nährsalzdosierung entfällt.Stability: Pelleting with the addition of amino / phenoplasts as a binder achieves long-term high mechanical stability of the pellets at the moisture content required for operational technical reasons in biological exhaust air purification systems. Profitability: Due to the increased stability of the pellets, the service life of the filling material increases, so that the fillings of biological exhaust air purification systems have to be exchanged less frequently. Lengthy start-up phases with a lower cleaning performance after complex emptying and refilling of the bioreactors are thus less common. Pressure loss: Fills with the new pellets have a lower pressure loss with air throughput than conventional filter materials and thus reduce the required fan energy consumption. Nutrient source: With compost as the main organic constituent, the pellets have sufficient nutrient salt availability for microorganisms, so that an additional nutrient salt dosage is not necessary.
Materialstruktur: Durch Veränderung des Kompost/Amino¬ plast-Verhältnisses und der Pelletierungsparameter kann eine definierte Materialstruktur erreicht werden. Entsorgbarkeit: Da in den Pellets nur biologisch abbaubare Verbindungen enthalten sind, kann die Entsorgung z.B. über Kompostwerke erfolgen. Erfahrungsgemäß erfolgt keine Akku¬ mulation von Luftschadstoffen in den Filtermedien biologi¬ scher Abluftreinigungsanlagen.Material structure: By changing the compost / aminoplast ratio and the pelleting parameters, a defined material structure can be achieved. Disposal: Since the pellets only contain biodegradable compounds, the disposal can e.g. done through composting plants. Experience has shown that there is no accumulation of air pollutants in the filter media of biological exhaust air purification systems.
Als Aminoplaste/Phenoplaste kommen insbesondere Additions¬ und Kondensationsprodukte von CarbonylVerbindungen (speziell Aldehyden) mit Harnstoffen, Thioharnstoffen, Melamin, Urethanen und Phenolen in Betracht.Particularly suitable aminoplasts / phenoplasts are addition and condensation products of carbonyl compounds (especially aldehydes) with ureas, thioureas, melamine, urethanes and phenols.
Folgende Beispiele sollen die Erfindung näher erläutern, ohne sie hierauf zu beschränken. Beispiel 1The following examples are intended to explain the invention in more detail without restricting it thereto. example 1
9 kg Kompost (Reifekompost der Firma SAB GmbH, 8 mm ge¬ siebt) mit 18 Gew.-% Feuchte, 0,99 kg eines handelsüblichen Harnstoff-Formaldehydleimes (z.B. Hiacoll H18 der Firma Krems Chemie) und 0,01 kg Härter (Harnstoffphosphat) werden in einer Mischmaschine gemischt und anschließend durch einen Kollergang mit einer 7 mm Lochplatte zu Pellets mit ca. 2 - 5 cm Länge verpreßt. Beispiel 2 - 109 kg of compost (maturing compost from SAB GmbH, 8 mm sieved) with 18% by weight moisture, 0.99 kg of a commercially available urea-formaldehyde glue (eg Hiacoll H18 from Krems Chemie) and 0.01 kg hardener (urea phosphate ) are mixed in a mixer and then pressed through a pan mill with a 7 mm perforated plate into pellets with a length of approx. 2 - 5 cm. Example 2-10
Wie in Beispiel 1, wobei jedoch das Bindemittel, der Här¬ ter und das Verhältnis der Komponenten wie folgt variiert wer¬ den:As in Example 1, but the binder, the hardener and the ratio of the components are varied as follows:
Harnstoff -Form¬ Urea form
4 9 16 aldehyd (Hia¬ 0,99 51 Weinsäure 0,01 coll wlp 99)4 9 16 aldehyde (Hia¬ 0.99 51 tartaric acid 0.01 coll wlp 99)
Harnstoff -Form¬ Harnstof f -Urea form urea
5 6 1 aldehyd (Hia¬ 3,96 51 phosphat 0,04 coll wlp 99)5 6 1 aldehyde (Hia 3.96 51 phosphate 0.04 coll wlp 99)
Harnstoff -Form¬ Harnstoff -Urea form urea
6 9 18 aldehyd (Hia¬ 0,99 35 phosphat 0,01 coll H18)6 9 18 aldehyde (Hia¬ 0.99 35 phosphate 0.01 coll H18)
Formalde yd-Me- Harnstoff -Formalde yd-Me urea -
7 9 18 lamin-Harnstoff 0,99 36 phosphat 0,01 (Hiacoll MUF26)7 9 18 lamin urea 0.99 36 phosphate 0.01 (Hiacoll MUF26)
Formaldehyd- e- Harnstoff¬Formaldehyde e-urea
8 5 3 la in-Harnstoff 4,95 36 phosphat 0,05 (Hiacoll MUF26)8 5 3 la in-urea 4.95 36 phosphate 0.05 (Hiacoll MUF26)
PhenoplastPhenoplast
9 9 18 (Hiacoll HMP45) 0,99 35 Ameisensäure 0,019 9 18 (Hiacoll HMP45) 0.99 35 formic acid 0.01
PhenoplastPhenoplast
10 7 6 (Hiabond P1413) 2,82 53 Pottasche10 7 6 (Hiabond P1413) 2.82 53 potash
0,080.08
Die Wirksamkeit der so hergestellten Pellets wurde in einer Laborapparatur überprüft und mit einer mit gewöhnlichem Kompost gefüllten Apparatur verglichen.The effectiveness of the pellets produced in this way was checked in a laboratory apparatus and compared with an apparatus filled with ordinary compost.
Schadstoff: Ethylacetat Rohgasfracht Abbaurate Umsatz [g org.C/m*» .h] (g org.C/m-- .h] %Pollutant: Ethyl acetate Raw gas freight Degradation rate Turnover [g org.C / m * ».h] (g org.C / m-- .h]%
Kompost -Strukturmaterial 30 30 100 Kompost -Leim- Pellets 30 30 100Compost structural material 30 30 100 Compost glue pellets 30 30 100
Kompost -Strukturmaterial 50 50 100 Kompos -Leim- Pellets 50 50 100Compost structural material 50 50 100 Compos glue pellets 50 50 100
Schadstoff: Toluol Rohgasfracht Abbaurate Umsatz [g org.C/m-- .h] [g org.C/m-» .h] %Pollutant: Toluene Raw gas freight Degradation rate Turnover [g org.C / m-- .h] [g org.C / m- » .h]%
Kompos -Strukturmaterial 30 25 84 Kompost -Leim- Pellets 30 30 100Kompos structural material 30 25 84 Compost glue pellets 30 30 100
Kompost -Strukturmaterial 50 28 56 Kompos -Leim- Pellets 50 30 60Compost structure material 50 28 56 Compos glue pellets 50 30 60
Druckverlust der Füllmaterialien zu Betriebsbeginn, nach 30 Betriebstagen mit Ethylacetat als Schadstoff sowie nachfol¬ gend 40 Betriebstagen mit Toluol als Luftschadstoff bei einer spezifischen Flächenbelastung von 90 m3 Abluft/mJ Fil¬ tervolumen,h:Pressure loss of the filling materials at the start of operation, after 30 days of operation with ethyl acetate as a pollutant and subsequently 40 days of operation with toluene as an air pollutant with a specific area load of 90 m 3 exhaust air / m J filter volume, h:
Becriebsbeginn nach 30 Tagen nach 70 mm Ws/m mm Ws/m Tagen mm Ws/mStart of operation after 30 days after 70 mm Ws / m mm Ws / m days mm Ws / m
Kompos - S t rukturmaterial 73 146 >500 Kompost -Leim- Pellets 28 47 144 Compos - structural material 73 146> 500 compost glue pellets 28 47 144

Claims

PATENTANSPRÜCHE_ PATENT CLAIMS_
1. Füllmaterialien auf organischer Basis für biologische Ab- luftreinigungsanlagen, dadurch gekennzeichnet, daß sie in pelletierter, mit einem organischen Bindemittel verfestig¬ ter Form vorliegen.1. Filling materials on an organic basis for biological exhaust air purification systems, characterized in that they are in pelletized form, solidified with an organic binder.
2. Füllmaterialien nach Anspruch 1, dadurch gekennzeichnet, daß sie als organisches Grundmaterial Torf, Heidekraut und/oder Kompost enthalten.2. Filling materials according to claim 1, characterized in that they contain peat, heather and / or compost as the organic base material.
3. Füllmaterialien nach Anspruch 2, dadurch gekennzeichnet, daß sie als organisches Grundmaterial Müllkompost, Grünkompost oder Laub enthalten.3. Filling materials according to claim 2, characterized in that they contain waste compost, green compost or leaves as the organic base material.
4. Füllmaterialien nach einem der Ansprüche 1 bis 3, daudrch gekennzeichnet, daß sie 10 bis 50 Gew.-% organisches Bin¬ demittel enthalten.4. Filling materials according to one of claims 1 to 3, characterized in that they contain 10 to 50% by weight of organic binder.
5. Füllmaterialien nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als organisches Bindemittel Amino¬ plaste oder Phenoplaste enthalten.5. Filling materials according to one of claims 1 to 4, characterized in that they contain Amino¬ plastics or phenoplasts as the organic binder.
6. Verfahren zur Herstellung der Füllmaterialien nach den An¬ sprüchen 1 bis 5, dadurch gekennzeichnet, daß man das or¬ ganische Grundmaterial, insbesondere Torf, Heidekraut, Kompost bzw. Mischungen hievon, mit einem organischen Bin¬ demittel, insbesondere einem Harnstoff-Formaldehydleim, vermischt und das Gemisch unter gleichzeitiger Aushärtung des Bindemittels zu Pellets verpreßt.6. Process for the preparation of the filling materials according to claims 1 to 5, characterized in that the organic basic material, in particular peat, heather, compost or mixtures thereof, with an organic binder, in particular a urea-formaldehyde glue , mixed and the mixture pressed into pellets while the binder was curing.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man Kompost und Harnstoff-Formaldehydleim im Gewichtsver¬ hältnis 9:1 bis 1:1 vermischt und das Gemisch zu Pellets verpreßt .7. The method according to claim 6, characterized in that compost and urea-formaldehyde glue are mixed in a ratio by weight of 9: 1 to 1: 1 and the mixture is pressed into pellets.
8. Verwendung von Füllmaterialien nach den Ansprüchen 1 bis 5 zur Reinigung von Gasströmen, insbesondere in Abluftreini¬ gungsanlagen. Bioreaktoren zur Reinigung von Gasstrδmen, insbesondere Biofilter für die biologische Abluftreinigung, dadurch ge¬ kennzeichnet, daß sie als Füllmaterial die mit einem orga¬ nischen Bindemittel verfestigten Pellets nach einem der Ansprüche 1 bis 5 enthalten. 8. Use of filling materials according to claims 1 to 5 for cleaning gas streams, in particular in Abluftreini¬ supply systems. Bioreactors for the purification of gas streams, in particular biofilters for biological exhaust air purification, characterized in that they contain, as filler material, the pellets solidified with an organic binder according to one of claims 1 to 5.
EP96901638A 1995-02-17 1996-02-16 Fillers for biological exhaust air purification, process for their preparation, their use and bioreactors containing them Ceased EP0809530A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT295/95 1995-02-17
AT0029595A AT401891B (en) 1995-02-17 1995-02-17 FILLING MATERIALS FOR BIOLOGICAL EXHAUST AIR PURIFICATION
PCT/AT1996/000026 WO1996025222A1 (en) 1995-02-17 1996-02-16 Fillers for biological exhaust air purification, process for their preparation, their use and bioreactors containing them

Publications (1)

Publication Number Publication Date
EP0809530A1 true EP0809530A1 (en) 1997-12-03

Family

ID=3486758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96901638A Ceased EP0809530A1 (en) 1995-02-17 1996-02-16 Fillers for biological exhaust air purification, process for their preparation, their use and bioreactors containing them

Country Status (6)

Country Link
EP (1) EP0809530A1 (en)
JP (1) JPH11501862A (en)
AT (1) AT401891B (en)
AU (1) AU4613996A (en)
CZ (1) CZ257397A3 (en)
WO (1) WO1996025222A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185107B2 (en) * 2015-03-17 2022-12-07 株式会社県南衛生工業 Method for removing volatile organic components using fermentation product of organic waste
CN112604492A (en) * 2020-11-23 2021-04-06 连云港龙展环保科技有限公司 Method for treating organic waste gas by adopting absorption-degradation sectional type biological reaction device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3244093A1 (en) * 1982-11-29 1984-09-27 Franz Xaver 6345 Eschenburg Kneer Sorption material for a device for removing impurities from gases, and process for producing it
ES2068357T3 (en) * 1989-08-17 1995-04-16 Enviromax PREPARATION OF PEAT BALLS USABLE IN SOME BIOFILTERS.
DE4109732A1 (en) * 1991-03-25 1992-10-01 Henkel Kgaa EXHAUST AIR PROCESS
DE69329547T2 (en) * 1992-03-25 2001-05-31 Dolloff F Bishop IMMOBILIZED FILM BIOREACTOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9625222A1 *

Also Published As

Publication number Publication date
AT401891B (en) 1996-12-27
JPH11501862A (en) 1999-02-16
AU4613996A (en) 1996-09-04
ATA29595A (en) 1996-05-15
WO1996025222A1 (en) 1996-08-22
CZ257397A3 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US4806148A (en) Apparatus for biological treatment of waste gases
DE102021112734A1 (en) Biological deodorizing filler and trickling filter tower for removing the malodorous odor of landfill leachate using the same
Kim et al. Evaluation of trickle-bed air biofilter performance under periodic stressed operating conditions as a function of styrene loading
CN100435911C (en) Composite filler for biological filtering bed
DE3423285A1 (en) Process and apparatus for removing nitrogen oxides from exhaust gases
JPH0871414A (en) Fluid treating agent composition
DE102011100093A1 (en) Chemical-biological purification of waste gases, comprises determining the chemical composition and quantity of compounds present in the exhaust gases as incurred emissions, dismantling reaction chamber of a bioreactor
DE3725988C2 (en) Process for humidifying sewage sludge
EP0497214B1 (en) Bio-filter and the manufacture thereof
EP0667319B1 (en) Process and reactor for the microbiological treatment of water with a high oxygen demand
AT401891B (en) FILLING MATERIALS FOR BIOLOGICAL EXHAUST AIR PURIFICATION
DE102010011787A1 (en) Self-stable filter material
EP2704819B1 (en) Framework material for a biologically recyclable reactive filters and method for producing same
EP1068152A1 (en) Growth bodies for immobilizing microorganisms
WO1994010095A1 (en) Open-pore bulk mineral materials containing microorganisms, and the manufacture and use of such materials
DE3623242C2 (en)
DE102009049346A1 (en) Preparing carrier material, useful in biofilter, comprises crushing and processing biological waste, adding biological waste and additional material into mixing drum and dry mixing and placing mixed material in granulator or agglomerator
DE19956948C2 (en) Use of a molded body from at least one by-product of natural fiber extraction and a completely biodegradable binder
EP1118602B1 (en) Nutrient concentrate, especially for biological trickling filters
DE4124956C1 (en) Decontamination of crumbly structure of e.g. soil - comprises injection of lignin decomposing agent and treatment of closed system with oxygen@-contg. gases e.g. air
DE19820645B4 (en) Method for reducing the release of volatile emitters from a liquid
DE3819700C1 (en) Method for disposing of household refuse and the like by classification and composting
AT395684B (en) FILTER MEDIUM FOR BIOFILTER OR BIOWASER AND METHOD FOR PRODUCING THE SAME
EP1694426B1 (en) Device for purifying exhaust gas or used air
DE3411952A1 (en) Composition for building up and improving cation exchange in the soil by means of biological fermentation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 970816

17Q First examination report despatched

Effective date: 19971215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20000928