EP0809067B1 - Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre. - Google Patents

Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre. Download PDF

Info

Publication number
EP0809067B1
EP0809067B1 EP97400984A EP97400984A EP0809067B1 EP 0809067 B1 EP0809067 B1 EP 0809067B1 EP 97400984 A EP97400984 A EP 97400984A EP 97400984 A EP97400984 A EP 97400984A EP 0809067 B1 EP0809067 B1 EP 0809067B1
Authority
EP
European Patent Office
Prior art keywords
zone
fuel
recombustion
pressure
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97400984A
Other languages
German (de)
English (en)
Other versions
EP0809067A1 (fr
Inventor
Thierry Ferlin
Jean-Charles Joigneault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Priority to SI9730090T priority Critical patent/SI0809067T1/xx
Publication of EP0809067A1 publication Critical patent/EP0809067A1/fr
Application granted granted Critical
Publication of EP0809067B1 publication Critical patent/EP0809067B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Definitions

  • the invention relates to a reduction method by recombustion, nitrogen oxides contained in the fumes from primary combustion produced in an oven, as well as an installation for the implementation of this process.
  • This process consists of injecting a hydrocarbon according to very precise operating conditions, downstream of a first combustion during which the oxides nitrogen are produced.
  • the injection of this hydrocarbon has aim of creating a reducing atmosphere which has for consequence, when the temperature is sufficiently high (generally above 1000 ° C), cracking components of the hydrocarbon and produce radicals (CH °, H °, ..) which will combine with the monoxide nitrogen and other precursors of nitrogen oxides from main combustion (first combustion) by complex chemical transformations to form molecular nitrogen and oxygen.
  • the area in which the injection of this hydrocarbon is carried out is called the recombustion or overcombustion zone reductive.
  • the unburnt products formed in the overcombustion zone reductive are then oxidized in a third step called post-combustion.
  • the hydrocarbon that will supply the radicals necessary for the destruction of oxides nitrogen, is thus used both as a reactive agent of pollution and as energy.
  • the effectiveness of a recombination process depends on many factors such as temperature, time of stay in the recombustion zone, nature and mode injection of oil, the amount of oil injected, the initial nitrogen oxides rate, etc.
  • the reduction efficiency rate nitrogen oxides is the ratio of the number of moles of nitrogen oxides destroyed by the recombustion / number of moles of nitrogen oxides before recombustion.
  • the object of the present invention is to overcome the previous disadvantages in ensuring a better fuel penetration and distribution in the recombustion zone and thus obtain rates of reduction of satisfactory nitrogen oxides even when the dimensions of the oven did not allow a good mixture fuel and fumes, as in the process of prior art.
  • the invention proposes a process for the reduction of nitrogen oxides contained in fumes from primary combustion in an oven, by recombination of said fumes characterized by a fuel injection in the combustion zone of said oven following at least two jets associated with pressure relatively high and relatively low respectively so that the high pressure jet entrains part of the fuel injected at low pressure.
  • the jet of fuel low pressure is externally concentric with the jet of higher pressure fuel.
  • the fuel is a gas at a pressure between a few millibars and a few hundred millibars for the low jet pressure and between a few hundred millibars and a few bars for the high pressure jet.
  • the pressure and the flow rates of the gases of the two aforementioned jets are controlled so as to adapt to the dimensions of the recombination zone and to the characteristics of the fumes.
  • furnace's recombustion zone is subjected to acoustic waves.
  • the aforementioned acoustic waves have a frequency below about 20 Hz.
  • the invention also provides an installation for the implementation of the method described above comprising a oven equipped with a primary combustion zone supplied by a main fuel and followed by a zone of recombustion powered by a secondary fuel, characterized in that said recombustion zone is fitted with at least two secondary fuel inlets to a relatively high pressure and a relatively low pressure respectively so that the high pressure jet drives part of the fuel injected at low pressure.
  • the two aforementioned entries are coaxial.
  • the two aforementioned entries are respectively fitted with a flow control device and the pressure of the secondary fuel forming the two aforementioned jets.
  • the installation according to the invention has a generator of acoustic waves mounted on the wall of the oven so as to ability to homogenize the mixture in the recombustion.
  • the temperature is sufficient to crack the radicals which will react with nitrogen oxides to give molecular nitrogen and oxygen.
  • hydrocarbon used as quickly as possible dispersed and cracked. In otherwise, the hydrocarbon (fuel) will burn with the residual oxygen from the fumes from the main combustion and, create nitrogen oxides which is contrary to the aim sought.
  • the homogenization of the mixture is all the more delicate when get the dimensions of the oven important and that the volume of fuel injected represents only about 1% of the volume of combustion fumes main.
  • the homogenization of the fuel mixture and smoke is often limited by the residence time of the fuel-smoke mixture in the combustion zone. Indeed, this residence time is limited by the oven dimensions which are most often limited in height.
  • FIG. 1 a combustion furnace for setting up implementation of the nitrogen oxides reduction process according to the invention is illustrated in FIG. 1.
  • This oven comprises the three combustion zones mentioned above, i.e. a first main combustion zone A, a second recombination zone B and a third zone C of post-combustion. Above the post-combustion zone, there is a gas cooling zone D.
  • Main combustion zone A has orifices supply 3 of a mixture of a so-called fuel primary fuel and air.
  • Primary fuel can be of any kind: coal, fuel oil, waste, wood, natural gas, etc ...
  • the primary fuel will be natural gas.
  • the ventilation rate of this main combustion zone that is, the ratio of the actual air volume of combustion on theoretical combustion air (combustion stoichiometric) generally varies in the range of 1.05 to 1.1.
  • the nitrogen oxides contained in the fumes from this primary combustion are then reduced in the Reduction or overcombustion zone B.
  • the reduction of nitrogen oxides is achieved through the injection of a fuel called secondary fuel by the power supply marked 2 in FIG. 1.
  • the secondary fuel is injected through inlet 2 in one volume representing 10 to 20% of the fuel volume primary, in order to obtain a ventilation rate close to 0.9 in zone B.
  • the reducing atmosphere in default oxygen is created in the recombination zone.
  • Secondary fuel used for recombination injected into the reducing zone B can, like the primary fuel, being of any kind: coal, fuel oil, waste, wood, natural gas, etc. However, according to In the invention, natural gas is preferably used.
  • the oxidation stage of unburnt materials is called the post-combustion stage, is then performed.
  • the post-combustion stage is carried out thanks to the introduction, by the inlet marked 1 in FIG. 1, of air to complete the combustion.
  • fuel injection secondary, preferably natural gas, in the area of recombustion B must be within a range of temperature between 1100 and 1500 ° C and it must be performed at a flow and pressure corresponding to sufficient residence time in the recombination zone to allow homogenization of mixtures fuel-smoke satisfactory as well as to allow reduction reactions to occur.
  • Time to stay should generally be in the range of 0.5 to 1 second according to the operating conditions.
  • the reduction temperature used for the recombustion, in the recombustion zone B, can be lowered to around 1000 ° C but it is then necessary to increase the residence time.
  • a balance must therefore be found between the parameters residence time-temperature, in order to obtain a satisfactory homogenization between the fuel secondary used in zone B of recombustion and fumes from primary combustion zone A or main containing nitrogen oxides to reduce.
  • the secondary fuel behaves like a jet in a transverse flow and the homogenization of a mixing a jet (secondary fuel) in a stream transverse (fumes from primary combustion) is subject to antagonistic constraints, all the more difficult as the flow rate of the jet on the wall of the furnace is weak compared to cross flow main.
  • the present invention consists of injecting the secondary fuel, preferably natural gas, through a multiple pulse system. More specifically, in the installation illustrated in Figure 1, the fuel secondary is injected by a double pulse system in the recombustion zone.
  • the double pulse injection according to the invention has two gas supply circuits 2, 2 ', one circuit low pressure supply 2, adjusted and controlled by any suitable means noted 4 in Figure 1, and a high pressure gas supply circuit 2 'set and controlled by any suitable means noted 5 in Figure 1.
  • the double impulse improves the penetration of the jet of secondary fuel to the center of the furnace and also to distribute this fuel throughout the oven enclosure.
  • the high pressure central jet also causes part of the fuel injected into lower pressure, which also improves its mixed.
  • This double pulse of gaseous fuel can be easily adjusted, variations in flow and gas fuel pressures are very easy to be carried out to optimize the mixture, that is to say so as to adapt to the dimensions of the recombustion, smoke characteristics, and reduction rates sought.
  • the two secondary fuel inlets 2, 2 ' are coaxial and the low pressure fuel input is externally concentric with the fuel inlet at high pressure.
  • the invention is therefore particularly advantageous in cases in which the dimensions of the oven do not not allow proper fuel mixing in smoke, in particular.
  • the invention also makes it possible, by improving the mixing, reduce the amount of secondary fuel to inject to obtain a given rate of reduction of nitrogen oxides.
  • the levels of reduction of nitrogen obtained are of the order of 50 to 60% in moles, by substituting, for coal, 20% in intake energy from natural gas.
  • a generator infrasound noted 6 in Figure 1 attached is mounted on one of the walls of the combustion furnace at the level of the zone B of recombustion.
  • the rate of reduction of nitrogen oxides contained in the fumes from primary combustion is generally greater than 80%, more precisely in the meantime from about 80 to about 90%, in moles.
  • the process of reduction of nitrogen oxides by recombination of fumes from primary combustion therefore achieves an efficiency NOx reduction of around 70 to 80% by performing injection of secondary fuel, preferably natural gas, in the combustion zone, according to minus two jets associated with relatively high pressure and relatively low respectively so that the high pressure jet causes part of the fuel injected at low pressure.
  • secondary fuel preferably natural gas
  • the low pressure fuel jet is externally concentric with the fuel jet at higher pressure, which improves the secondary fuel penetration to the center of the oven thanks to the high pressure jet and also to distribute gases throughout the enclosure.
  • the central jet at high pressure causing part of the gas injected to lower pressure, the secondary fuel mixture gaseous with fumes from primary combustion containing the nitrogen oxide to be reduced is thus improved.
  • the gaseous fuel is injected for the low pressure jet at a pressure between a few millibars and a few hundred millibars and for the high pressure jet, between a few hundred millibars and a few bars.
  • the acoustic waves used have a frequency less than about 20 Hz.
  • the use of injection multiple pulse and infrasound production in the nitrogen oxides recombination process allows achieve NOx reduction efficiency rates of around 50% but using less fuel. For example, reducing the amount of fuel secondary is around 50% by volume, which allows reduce the cost of the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Description

L'invention concerne un procédé de réduction par recombustion, des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisés dans un four, ainsi qu'une installation pour la mise en oeuvre de ce procédé.
On sait que la combustion de combustibles de toute nature est à l'origine de la production d'oxydes d'azote par réaction avec l'air, en quantité plus ou moins importante selon le type du combustible et les conditions de la combustion. Ces oxydes d'azote émis dans l'atmosphère sont la cause de diverses pollutions. Ils contribuent notamment à la formation des pluies acides. Par ailleurs, combinés avec le monoxyde de carbone et les composés organiques volatils présents dans l'atmosphère , ils produisent de l'ozone troposphérique qui est à l'origine de l'augmentation des affections respiratoires (asthme, insuffisance respiratoire, etc.).
Il est donc important de réduire ou d'éliminer ces oxydes d'azote.
Dans ce but, on connaít un procédé dit de recombustion ou de surcombustion réductrice.
Ce procédé consiste à injecter un hydrocarbure selon des conditions opératoires très précises, en aval d'une première combustion au cours de laquelle les oxydes d'azote sont produits. L'injection de cet hydrocarbure a pour but de créer une atmosphère réductrice qui a pour conséquence, lorsque la température est suffisamment élevée (généralement supérieure à 1000°C), de craquer les composants de l'hydrocarbure et de produire des radicaux (CH°, H°, ..) qui vont se combiner avec le monoxyde d'azote et les autres précurseurs des oxydes d'azote issus de la combustion principale (première combustion) par des transformations chimiques complexes pour former de l'azote moléculaire et de l'oxygène. La zone dans laquelle l'injection de cet hydrocarbure est effectuée est appelée zone de recombustion ou de surcombustion réductrice.
Les imbrûlés formés dans la zone de surcombustion réductrice sont ensuite oxydés dans une troisième étape dite de post-combustion. L'hydrocarbure qui va fournir les radicaux nécessaires à la destruction des oxydes d'azote, est ainsi utilisé à la fois comme agent réactif de dépollution et comme énergie.
Le procédé de recombustion comporte donc trois étapes :
  • une première étape dite de combustion principale ou primaire effectuée dans une première zone d'un four de combustion, dite zone de combustion principale ou primaire. Cette étape correspond à l'étape proprement dite de combustion des combustibles, étape au cours de laquelle les oxydes d'azote se forment et sont entraínés dans les fumées;
  • une deuxième étape dite de recombustion ou de surcombustion réductrice effectuée dans une deuxième zone, dite zone de recombustion ou de surcombustion réductrice, du four de combustion lui-même.
Dans cette étape, un combustible dit combustible secondaire est injecté dans la zone de recombustion pour réduire les oxydes d'azote contenus dans les fumées issues de la combustion principale; et
  • une troisième étape dite de post-combustion effectuée dans une troisième zone du four de combustion en aval de la zone de recombustion, consistant à injecter de l'air dans cette troisième zone pour achever la combustion.
L'efficacité d'un procédé de recombustion dépend de nombreux facteurs tels que la température, le temps de séjour dans la zone de recombustion, la nature et le mode d'injection de l'hydrocarbure, la quantité d'hydrocarbure injectée, le taux d'oxydes d'azote initial, etc.
Mais, le procédé de recombustion de l'art antérieur décrit ci-dessus ne permet d'atteindre que des taux d'efficacité de la réduction des oxydes d'azote de l'ordre de 50 à 60%. Le taux d'efficacité de la réduction des oxydes d'azote correspond au rapport du nombre de moles d'oxydes d'azote détruits par la recombustion/nombre de moles d'oxydes d'azote avant la recombustion.
Or, les études théoriques de cinétique montrent que si le mélange du combustible introduit dans la zone de recombustion et des fumées issues de la zone de combustion principale était parfaitement homogène on pourrait atteindre une efficacité de réduction des oxydes d'azote de près de 90%.
La présente invention a pour but de pallier les inconvénients précédents en permettant d'assurer une meilleure pénétration et répartition du combustible dans la zone de recombustion et ainsi d'obtenir des taux de réduction des oxydes d'azote satisfaisants même lorsque les dimensions du four ne permettaient pas un bon mélange du combustible et des fumées, comme dans le procédé de l'art antérieur.
Ces buts sont atteints par l'invention qui propose un procédé de réduction des oxydes d'azote contenus dans les fumées issues d'une combustion primaire, dans un four, par recombustion desdites fumées caractérisé par une injection de combustible dans la zone de recombustion dudit four suivant au moins deux jets associés à pression relativement haute et relativement basse respectivement de façon que le jet à haute pression entraíne une partie du combustible injecté à basse pression.
Plus précisément dans ce procédé le jet de combustible basse pression est extérieurement concentrique au jet de combustible à pression plus élevée.
De préférence, selon l'invention le combustible est un gaz à une pression comprise entre quelques millibars et quelques centaines de millibars pour le jet basse pression et entre quelques centaines de millibars et quelques bars pour le jet haute pression.
Egalement selon l'invention, la pression et les débits du gaz des deux jets précités sont commandés de façon à s'adapter aux dimensions de la zone de recombustion et aux caractéristiques des fumées.
De plus, la zone de recombustion du four est soumise à des ondes acoustiques.
De préférence, les ondes acoustiques précitées ont une fréquence inférieure à environ 20 Hz.
L'invention propose également une installation pour la mise en oeuvre du procédé décrite ci-dessus comprenant un four équipé d'une zone de combustion primaire alimentée par un combustible principal et suivie par une zone de recombustion alimentée par un combustible secondaire, caractérisée en ce que ladite zone de recombustion est munie d'au moins deux entrées de combustible secondaire à une pression relativement haute et à une pression relativement basse respectivement de façon que le jet à haute pression entraíne une partie du combustible injecté à basse pression.
Plus précisément, les deux entrées précitées sont coaxiales.
Selon l'invention, les deux entrées précitées sont respectivement munies d'un appareil de commande du débit et de la pression du combustible secondaire formant les deux jets précités.
De plus, l'installation selon l'invention a un générateur d'ondes acoustiques monté sur la paroi du four de façon à pouvoir homogénéiser le mélange dans la zone de recombustion.
L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaítront plus clairement au cours de la description explicative qui va suivre et qui est faite en référence au dessin unique annexé qui représente un mode de réalisation préféré d'un four dans lequel on effectue l'ensemble des opérations ci-dessus décrites de combustion principale, recombustion et post-combustion.
Un des problèmes rencontrés lors de la mise en oeuvre du procédé de recombustion de l'art antérieur réside dans le mélange du combustible (gaz naturel ou tout autre hydrocarbure employé) avec les fumées contenant les oxydes d'azote issus de la zone de combustion et parvenant dans la zone de recombustion. En effet, une bonne homogénéisation du combustible et des fumées, dans la zone de recombustion est indispensable du point de vue de la température et des échanges massiques. En effet s'il existe des zones d'écoulements où les radicaux (CH°, etc...) ne sont produits et diffusés, aucune destruction des oxydes d'azote n'aura lieu dans ces zones.
De même, il faut qu'en tout point du mélange la température soit suffisante pour craquer les radicaux qui vont réagir avec les oxydes d'azote pour donner de l'azote moléculaire et de l'oxygène.
Par ailleurs il est crucial que l'hydrocarbure utilisé soit le plus rapidement possible dispersé et craqué. Dans le cas contraire, l'hydrocarbure (combustible) va brûler avec l'oxygène résiduel des fumées issues de la combustion principale et, créer des oxydes d'azote ce qui est contraire au but recherché.
L'homogénéisation du mélange est d'autant plus délicate à obtenir que les dimensions du four sont importantes et que le volume de combustible injecté ne représente que environ 1% du volume des fumées de la combustion principale.
De plus, l'homogénéisation du mélange du combustible et des fumées est souvent limitée par le temps de séjour du mélange combustible-fumées dans la zone de recombustion. En effet, ce temps de séjour est limité par les dimensions du four qui sont le plus souvent limitées en hauteur.
A titre d'exemple, un four de combustion pour la mise en oeuvre du procédé de réduction des oxydes d'azote selon l'invention est illustré en figure 1. Ce four comporte les trois zones de combustion citées précédemment, c'est-à-dire une première zone A de combustion principale, une seconde zone B de recombustion et une troisième zone C de post-combustion. Au-dessus de la zone de post-combustion, il existe une zone D de refroidissement des gaz.
La zone de combustion principale A comporte des orifices d'alimentation 3 d'un mélange d'un combustible dit combustible primaire et d'air. Le combustible primaire peut être de toute nature : charbon, fioul, déchets, bois, gaz naturel, etc...
De préférence dans l'invention, le combustible primaire sera du gaz naturel.
Le taux d'aération de cette zone de combustion principale c'est-à-dire, le rapport du volume d'air réel de combustion sur l'air de combustion théorique (combustion stoechiométrique) varie généralement dans l'intervalle de 1,05 à 1,1.
Les oxydes d'azote contenus dans les fumées issues de cette combustion primaire sont ensuite réduits dans la zone B de recombustion ou surcombustion réductrice. La réduction des oxydes d'azote est réalisée grâce à l'injection d'un combustible dit combustible secondaire par l'alimentation notée 2 en figure 1. De préférence, le combustible secondaire est injecté par l'entrée 2 en un volume représentant 10 à 20% du volume du combustible primaire, afin d'obtenir un taux d'aération voisin de 0,9 dans la zone B.
De cette façon, l'atmosphère réductrice (en défaut d'oxygène) voulue est créée dans la zone de recombustion.
Le combustible secondaire utilisé pour la recombustion injecté dans la zone réductrice B, peut, comme le combustible primaire, être de toute nature : charbon, fioul, déchet, bois, gaz naturel, etc. Cependant, selon l'invention, le gaz naturel est de préférence utilisé.
L'étape d'oxydation des imbrûlés est dite étape de post-combustion, est ensuite effectuée.
L'étape de post-combustion est réalisée grâce à l'introduction, par l'entrée notée 1 en figure 1, d'air pour achever la combustion.
Pour être efficace, l'injection du combustible secondaire, de préférence le gaz naturel, dans la zone de recombustion B doit se faire dans une plage de température comprise entre 1100 et 1500°C et elle doit être réalisée à un débit et une pression correspondant à un temps de séjour suffisant dans la zone de recombustion pour permettre une homogénéisation des mélanges combustible-fumées satisfaisante ainsi que pour permettre aux réactions de réduction de se produire. Le temps de séjour doit généralement être de l'ordre de 0,5 à 1 seconde selon les conditions opératoires.
La température de réduction utilisée pour l'étape de recombustion, dans la zone de recombustion B, peut être abaissée à environ 1000°C mais il faut alors augmenter le temps de séjour.
Si l'élévation de la température augmente l'efficacité de la destruction des précurseurs des oxydes d'azote dans la zone de recombustion, il y a cependant un risque dans ce cas de produire des oxydes d'azote au niveau de l'injection d'air dans la zone de post-combustion au-delà d'une certaine température.
Un équilibre doit donc être trouvé entre les paramètres temps de séjour-température, afin d'obtenir une homogénéisation satisfaisante entre le combustible secondaire utilisé dans la zone B de recombustion et les fumées issues de la zone A de combustion primaire ou principale contenant les oxydes d'azote à réduire.
En fait le combustible secondaire se comporte comme un jet dans un flux transversal et l'homogénéisation d'un mélange d'un jet (combustible secondaire) dans un flux transversal (fumées issues de la combustion primaire) est soumise à des contraintes antagonistes, d'autant plus difficile que le débit volumique du jet sur la paroi du four est faible en comparaison au flux transversal principal.
Ceci est le cas dans le procédé de recombustion où le volume de combustible, de préférence du gaz naturel, injecté représente 1% et parfois moins du débit des fumées.
Afin d'améliorer l'homogénéisation, la présente invention consiste à injecter le combustible secondaire, de préférence du gaz naturel, par l'intermédiaire d'un système à plusieurs impulsions. Plus particulièrement, dans l'installation illustrée en figure 1, le combustible secondaire est injecté par un système à double impulsion dans la zone de recombustion.
L'injection à double impulsion selon l'invention possède deux circuits 2, 2' d'alimentation en gaz, un circuit d'alimentation à basse pression 2, réglé et contrôlé par tout moyen approprié noté 4 dans la figure 1, et un circuit d'alimentation en gaz haute pression 2' réglé et contrôlé par tout moyen approprié noté 5 sur la figure 1.
La double impulsion permet d'améliorer la pénétration du jet du combustible secondaire jusqu'au centre du four et également de répartir ce combustible dans l'ensemble de l'enceinte du four. Le jet central à haute pression entraíne également une partie du combustible injecté à plus basse pression, ce qui améliore également son mélange. Cette double impulsion de combustible gazeux peut être très facilement réglée, les variations de débit et des pressions du combustible gazeux sont très faciles à réaliser pour optimiser le mélange, c'est-à-dire de façon à s'adapter aux dimensions de la zone de recombustion, aux caractéristiques des fumées, et aux taux de réduction recherchés.
Dans le mode de réalisation représenté en figure 1, les deux entrées 2, 2' du combustible secondaire sont coaxiales et l'entrée du combustible basse pression est extérieurement concentrique à l'entrée du combustible à haute pression.
L'utilisation d'un tel système d'injection à double impulsion permet d'obtenir une réduction des oxydes d'azote contenus dans les fumées issues de la combustion primaire de l'ordre de 70 à 80%, en moles, alors qu'avec le procédé et le dispositif de l'art antérieur ne comportant ni cette étape d'injection à double impulsion du combustible secondaire et ni le système d'injection du combustible secondaire à plusieurs impulsions, les taux de réduction des NOx sont de l'ordre de 50 à 60%, en moles.
L'invention est donc particulièrement avantageuse dans les cas dans lesquels les dimensions du four ne permettent pas un bon mélange du combustible dans les fumées, en particulier.
L'invention permet également, en améliorant le mélange, de réduire les quantités de combustible secondaire à injecter pour obtenir un taux donné de réduction des oxydes d'azote.
Ceci est particulièrement avantageux, par exemple, dans le cas d'une chaudière où le combustible primaire est du charbon et le combustible secondaire ou de recombustion est du gaz naturel.
Actuellement dans un procédé de recombustion les taux de réduction d'azote obtenus sont de l'ordre de 50 à 60% en moles, en substituant, au charbon, 20% en apport énergétique de gaz naturel.
Avec l'utilisation du procédé et/ou de l'installation de l'invention, on peut obtenir ce même taux de réduction avec seulement 10 à 15% en valeur énergétique de gaz naturel injecté, ce qui représente un avantage économique.
Afin d'améliorer encore le mélange, en particulier dans les zones proches des parois du réacteur, et également entre les couches du jet haute pression et du jet basse pression du combustible secondaire gazeux, un générateur d'infrasons noté 6 dans la figure 1 annexée est monté sur une des parois du four de combustion au niveau de la zone B de recombustion.
Avec l'ajout de ce générateur d'infrasons, le taux de réduction des oxydes d'azote contenus, dans les fumées issues de la combustion primaire, est généralement supérieur à 80%, plus précisément dans l'intervalle d'environ 80 à environ 90%, en moles.
Le procédé de réduction des oxydes d'azote par recombustion des fumées issues d'une combustion primaire, selon l'invention, permet donc d'atteindre une efficacité de réduction des NOx de l'ordre de 70 à 80% en réalisant l'injection du combustible secondaire, de préférence du gaz naturel, dans la zone de recombustion, suivant au moins deux jets associés à pression relativement haute et relativement basse respectivement de façon que le jet à haute pression entraíne une partie du combustible injecté à basse pression.
Dans ce procédé, le jet de combustible à basse pression est extérieurement concentrique au jet de combustible à pression plus élevée, ce qui permet d'améliorer la pénétration du combustible secondaire jusqu'au centre du four grâce au jet haute pression et également de répartir les gaz dans l'ensemble de l'enceinte. Le jet central à haute pression entraínant une partie du gaz injecté à plus basse pression, le mélange du combustible secondaire gazeux avec les fumées de la combustion primaire contenant l'oxyde d'azote à réduire est ainsi amélioré.
En associant à cette injection du combustible secondaire, dans la zone de recombustion, suivant au moins deux jets associés, concentriques, à pression relativement haute et pression relativement basse respectivement, le jet étant extérieurement concentrique au jet combustible à pression plus élevée, une production d'ondes acoustiques dans la zone de recombustion, l'efficacité du procédé de l'invention atteint près de 80 à 90%.
De préférence, le combustible gazeux est injecté pour le jet à basse pression à une pression comprise entre quelques millibars et quelques centaines de millibars et pour le jet à haute pression, entre quelques centaines de millibars et quelques bars.
Les ondes acoustiques utilisées ont une fréquence inférieure à environ 20 Hz.
Lorsque les contraintes réglementaires ne nécessitent pas d'atteindre une réduction aussi importante que celle citée précédemment, l'utilisation de l'injection à impulsion multiple et la production d'infrasons dans le procédé de recombustion des oxydes d'azote permet d'atteindre des taux d'efficacité de réduction des NOx de l'ordre de 50% mais en utilisant moins de combustible. Par exemple, la réduction de la quantité de combustible secondaire est de l'ordre de 50% en volume, ce qui permet de réduire le coût du procédé.
Bien entendu l'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemple.
Ainsi bien que l'on ait décrit un procédé et un dispositif comportant une injection à double impulsion, des dispositifs et des procédés utilisant une injection à impulsion multiple du combustible secondaire dans la zone de recombustion pourront être utilisés. Ainsi une injection à triple impulsion du combustible secondaire peut être envisagée, dans laquelle le combustible gazeux sera injecté selon deux jets à haute pression concentriques l'un avec l'autre et un jet à basse pression concentriquement extérieur aux deux jets haute pression.

Claims (10)

  1. Procédé de réduction des oxydes d'azote contenus dans les fumées issues d'une combustion primaire, dans un four, par recombustion desdites fumées caractérisé par une injection d'un combustible secondaire dans la zone de recombustion dudit four suivant au moins deux jets associés à pression relativement haute et relativement basse respectivement de façon que le jet à haute pression entraíne une partie du combustible injecté à basse pression.
  2. Procédé selon la revendication 1, caractérisé en ce que le jet de combustible basse pression est extérieurement concentrique au jet de combustible à pression plus élevée.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le combustible est un gaz à une pression comprise entre quelques millibars et quelques centaines de millibars pour le jet basse pression et entre quelques centaines de millibars et quelques bars pour le jet haute pression.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la pression et les débits du gaz des deux jets précités sont commandés de façon à s'adapter aux dimensions de la zone de recombustion et aux caractéristiques des fumées.
  5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la zone de recombustion du four est soumise à des ondes acoustiques.
  6. Procédé selon la revendication 5, caractérisé en ce que les ondes acoustiques précitées ont une fréquence inférieure à environ 20 Hz.
  7. Installation pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 6, comprenant un four comprenant une zone de combustion primaire (A) alimentée par un combustible principal et suivie par une zone de recombustion (B) alimentée par un combustible secondaire, caractérisée en ce que ladite zone de recombustion est munie d'au moins deux entrées (2, 2') de combustible secondaire à une pression relativement haute et à une pression relativement basse respectivement de façon que le jet à haute pression entraíne une partie du combustible injecté à basse pression.
  8. Installation selon la revendication 7, caractérisée en ce que les deux entrées (2, 2') précitées sont coaxiales.
  9. Installation selon la revendication 7 ou la revendication 8, caractérisée en ce que les deux entrées précitées sont respectivement munies d'un appareil de commande du débit et de la pression (4, 5) du combustible secondaire formant les deux jets précités.
  10. Installation selon l'une quelconque des revendications 7 à 9, caractérisée en ce qu'un générateur d'ondes acoustiques (6) est monté sur la paroi du four de façon à pouvoir homogénéiser le mélange dans la zone de recombustion.
EP97400984A 1996-05-21 1997-04-30 Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre. Expired - Lifetime EP0809067B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9730090T SI0809067T1 (en) 1996-05-21 1997-04-30 Process and installation for reducing by recombustion of nitric oxides in exhaust gases from a primary combustion in a furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9606293A FR2749066B1 (fr) 1996-05-21 1996-05-21 Procede de reduction, par recombustion, des oxydes d'azote contenus dans les fumees issues d'une combustion primaire realisee dans un four, et installation pour sa mise en oeuvre
FR9606293 1996-05-21

Publications (2)

Publication Number Publication Date
EP0809067A1 EP0809067A1 (fr) 1997-11-26
EP0809067B1 true EP0809067B1 (fr) 2000-08-30

Family

ID=9492315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400984A Expired - Lifetime EP0809067B1 (fr) 1996-05-21 1997-04-30 Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre.

Country Status (11)

Country Link
EP (1) EP0809067B1 (fr)
AT (1) ATE195999T1 (fr)
CZ (1) CZ135297A3 (fr)
DE (1) DE69702950T2 (fr)
ES (1) ES2152070T3 (fr)
FR (1) FR2749066B1 (fr)
HU (1) HUP9700845A1 (fr)
PL (1) PL320054A1 (fr)
PT (1) PT809067E (fr)
SI (1) SI0809067T1 (fr)
SK (1) SK55397A3 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908003A (en) * 1996-08-15 1999-06-01 Gas Research Institute Nitrogen oxide reduction by gaseous fuel injection in low temperature, overall fuel-lean flue gas
FR2834774B1 (fr) * 2002-01-16 2004-06-04 Saint Gobain Emballage BRULEUR ET PROCEDE POUR LA REDUCTION DE L'EMISSION DES NOx DANS UN FOUR DE VERRERIE
NL2001797C2 (nl) * 2008-07-14 2010-01-18 Essent En Produktie B V Werkwijze voor het verbranden van een tweede vaste brandstof in combinatie met een eerste vaste brandstof.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173605A (ja) * 1983-03-23 1984-10-01 Hitachi Zosen Corp 燃焼炉における粉体燃料の均一供給方法
DE3410945A1 (de) * 1984-03-24 1985-10-03 Steag Ag, 4300 Essen Verfahren zur verminderung der no(pfeil abwaerts)x(pfeil abwaerts)-bildung in mit kohlenstaub betriebenen feuerungsanlagen, insbesondere schmelzkammerfeuerungen, und feuerungsanlage zur durchfuehrung des verfahrens
DE3441675A1 (de) * 1984-11-15 1986-05-22 L. & C. Steinmüller GmbH, 5270 Gummersbach Verfahren zur verringerung des no(pfeil abwaerts)x(pfeil abwaerts)-gehalts in verbrennungsgasen
US4779545A (en) * 1988-02-24 1988-10-25 Consolidated Natural Gas Service Company Apparatus and method of reducing nitrogen oxide emissions
IT1247541B (it) * 1991-05-07 1994-12-17 Ente Naz Energia Elettrica Processo per ridurre gli ossidi di azoto nei gas di combustione
US5181475A (en) * 1992-02-03 1993-01-26 Consolidated Natural Gas Service Company, Inc. Apparatus and process for control of nitric oxide emissions from combustion devices using vortex rings and the like
JPH0727313A (ja) * 1992-08-27 1995-01-27 Tokyo Gas Co Ltd 高温炉装置

Also Published As

Publication number Publication date
SK55397A3 (en) 1998-01-14
DE69702950T2 (de) 2001-03-29
PL320054A1 (en) 1997-11-24
CZ135297A3 (en) 1997-12-17
PT809067E (pt) 2001-02-28
DE69702950D1 (de) 2000-10-05
EP0809067A1 (fr) 1997-11-26
SI0809067T1 (en) 2001-04-30
HU9700845D0 (en) 1997-06-30
HUP9700845A1 (hu) 2000-05-28
FR2749066A1 (fr) 1997-11-28
ES2152070T3 (es) 2001-01-16
ATE195999T1 (de) 2000-09-15
FR2749066B1 (fr) 1998-08-21

Similar Documents

Publication Publication Date Title
EP2153130B1 (fr) Procede de combustion a bas nox pour la fusion du verre et injecteur mixte
EP1144915B1 (fr) Appareil de type torchere et procede pour la combustion de gaz
RU2007115729A (ru) Узелок горелок с ультранизкой эмиссией nox
NO20051955L (no) Fremgangsmate og apparat for varmebehandling
JP2011074917A (ja) 部分的空気分離を備えた低排出型ガスタービンサイクルを使用するシステム及び方法
FR2488678A1 (fr) Procede et appareil de combustion pour diminuer sensiblement l'emission de composes de l'azote formes pendant la combustion
WO2009101326A2 (fr) Injecteur gaz a bas nox
CN1443275A (zh) 使燃料和稀释剂均匀以减少燃烧系统中释放物的方法和设备
FR2959298A1 (fr) Four a flamme et procede de regulation de la combustion dans un four a flamme
FR2889579A1 (fr) Procede de calcination d'un materiau a faible emission de nox
EP0053085A1 (fr) Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées
EP0809067B1 (fr) Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre.
CN1044516C (zh) 燃气轮机装置及减少其氧化氮排放量的方法
EP1618334B1 (fr) Procede de combustion etagee d un combustible liquide et d'un oxydant dans un four
US20060246385A1 (en) NOx emissions reduction process and apparatus
US5242295A (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
FR2644846A1 (fr) Dispositif et procede de combustion d'un hydrocarbure a faible teneur en nox, a l'etat sec
CN111664461A (zh) 一种有机废气高效处理系统及方法
KR20110138928A (ko) 브라운가스 혼합연소를 이용한 플레어 시스템 제어장치 및 제어방법
EP2310745B1 (fr) Procede et dispositif de traitement thermique d'au moins un effluent comportant des polluants combustibles
CA2113108A1 (fr) Procede d'incineration de dechets organiques
CN210107424U (zh) 一种有机废气高效处理系统
KR100395647B1 (ko) 연소 장치 및 그 연소 방법
CN117588762A (zh) 一种低浓度有机废气维持自持燃烧的蓄热式焚烧炉方法
MX2008002067A (es) Metodos y sistemas para remover mercurio del gas de chimenea de combustion.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 970529

17P Request for examination filed

Effective date: 19971114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19991207

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19970529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000830

REF Corresponds to:

Ref document number: 195999

Country of ref document: AT

Date of ref document: 20000915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69702950

Country of ref document: DE

Date of ref document: 20001005

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2152070

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20001128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20010323

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20010329

Year of fee payment: 5

Ref country code: CH

Payment date: 20010329

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010419

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: GDF SUEZ SOCIETE ANONYME; FR

Effective date: 20090601

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GDF SUEZ

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GDF SUEZ

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69702950

Country of ref document: DE

Representative=s name: RECHTS- UND PATENTANWAELTE LORENZ SEIDLER GOSS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69702950

Country of ref document: DE

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R082

Ref document number: 69702950

Country of ref document: DE

Representative=s name: RECHTS- UND PATENTANWAELTE LORENZ SEIDLER GOSS, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 69702950

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNER: GAZ DE FRANCE, PARIS, FR

Effective date: 20111028

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 195999

Country of ref document: AT

Kind code of ref document: T

Owner name: GDF SUEZ, FR

Effective date: 20130328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160321

Year of fee payment: 20

Ref country code: LU

Payment date: 20160324

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160324

Year of fee payment: 20

Ref country code: BE

Payment date: 20160323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160321

Year of fee payment: 20

Ref country code: ES

Payment date: 20160408

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160323

Year of fee payment: 20

Ref country code: IT

Payment date: 20160324

Year of fee payment: 20

Ref country code: PT

Payment date: 20160401

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69702950

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170429

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 195999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170501