EP0797686B1 - Method and apparatus for making a pure simple sugar solution by hydrolysing at least one compound sugar in the presence of a selective adsorbent - Google Patents

Method and apparatus for making a pure simple sugar solution by hydrolysing at least one compound sugar in the presence of a selective adsorbent Download PDF

Info

Publication number
EP0797686B1
EP0797686B1 EP95941780A EP95941780A EP0797686B1 EP 0797686 B1 EP0797686 B1 EP 0797686B1 EP 95941780 A EP95941780 A EP 95941780A EP 95941780 A EP95941780 A EP 95941780A EP 0797686 B1 EP0797686 B1 EP 0797686B1
Authority
EP
European Patent Office
Prior art keywords
fact
process according
compound
hydrolysis
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95941780A
Other languages
German (de)
French (fr)
Other versions
EP0797686A1 (en
Inventor
Germain-Robert Durand
Pierre Faugeras
Françoise LAPORTE
Claude Moreau
Marie-Claude Neau
Gabriel Roux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPISUCRES SA
Original Assignee
EPISUCRES SA
Agrichimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EPISUCRES SA, Agrichimie filed Critical EPISUCRES SA
Publication of EP0797686A1 publication Critical patent/EP0797686A1/en
Application granted granted Critical
Publication of EP0797686B1 publication Critical patent/EP0797686B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K3/00Invert sugar; Separation of glucose or fructose from invert sugar
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch

Definitions

  • the invention relates to a method and a installation for manufacturing a liquid solution of simple sugars (oses) from a liquid solution comprising at least one compound sugar (oside), and in particular a holoside (polysaccharide or oligosaccharide) such as sucrose, inulin, starch ...
  • a holoside polysaccharide or oligosaccharide
  • the compound sugars have, at these temperatures, high viscosity. It is not possible in convenient to use a starting solution strongly concentrated in compound sugar, and a concentration step should be scheduled after hydrolysis.
  • FR-A-1526 029 describes a method of discoloration of juices, syrups, molasses and even sewers sweets allowing to transform in whole or in part sucrose including a bleaching step by ion exchange resins, with partial hydrolysis or total, a purification and discoloration step by ion exchange resins and a concentration step.
  • the starting materials being very loaded with cations and anions, the resins are quickly saturated, so this process cannot find practical applications in industry.
  • this process is in several steps, and requires a low input concentration (20 at 30 brix).
  • the invention aims to overcome these disadvantages in proposing a method and an installation of manufacturing a solution of simple sugars in profitable conditions on an industrial scale.
  • the subject of the invention is therefore a method and an installation which make it possible, by hydrolysis, simple sugars in solution with a yield, reaction rate and purity high enough to consider producing them industrial at a reasonable cost price and for limited industrial investments.
  • the invention aims to propose a process which can be implemented works in installations of small size and capacity or medium.
  • the invention further aims to provide such a process and such an installation compatible with ecological constraints of respect for the environment, especially without producing effluents.
  • the invention thus aims to provide a sugar manufacturing process and installation simple in one step, continuous and solvent-free extraction by hydrolysis of a solution of sugar (s) compound (s).
  • the invention also aims to provide a process and installation for manufacturing a solution pure, especially colorless, of simple sugars by hydrolysis.
  • the invention aims to propose a method of manufacturing, in a single step and continuously of a aqueous solution of simple sugars of agri-food quality, especially colorless and more particularly comprising less than 1% of hydrolysis residues other than simple sugars.
  • the invention also aims to provide a process for manufacturing a solution of simple sugars by hydrolysis of a solution of sugar (s) compound (s) having a conversion rate greater than 95% obtained with duration reaction time (or residence time) of less than 4 hours.
  • the invention also aims to provide a process and installation for manufacturing a solution aqueous of simple sugars by hydrolysis at a temperature higher than 50 ° C - in particular of the order of 85 ° C - of a highly concentrated sugar solution (s) - especially whose weight proportion of dry matter is greater than 60% -.
  • the invention relates more particularly to propose a manufacturing process and installation production of a pure and colorless solution of oses, in particular glucose and fructose- by hydrolysis of a polysaccharide (s) and / or oligosaccharide (s) solution - especially starch or sucrose.
  • oses in particular glucose and fructose- by hydrolysis of a polysaccharide (s) and / or oligosaccharide (s) solution - especially starch or sucrose.
  • the invention relates to a process for manufacturing a solution of simple sugars from a liquid solution comprising at least one sugar compound, by hydrolysis in the presence of a catalysis system heterogeneous (i.e. one or more catalysts solids), characterized in that the reaction medium is put hydrolysis on contact with at least one adsorbent compound microporous solid chosen to be compatible with hydrolysis and catalysis conditions and to adsorb selectively residues or by-products other than simple sugars under the reaction conditions of hydrolysis.
  • the component (s) adsorbent (s) is (are) chosen (s) not to adsorb the (the) starting sugar (s).
  • a microporous solid adsorbent compound which can be used in a process according to the invention is a mineral compound of natural or synthetic origin formed by three-dimensional sequences of tetrahedra T04 with T representing at least two different elements of the periodic classification such as Si, Al, B , Fe, Ga, Ge etc. In this sequence, the oxygen atoms of the T0 4 tetrahedra are in common with the neighboring tetrahedra.
  • a solid microporous adsorbent compound is a solid having pores of dimensions generally less than about 10 -9 m.
  • an absorbent microporous solid compound is distinguished from macroporous solids (whose pores have dimensions generally greater than 10 -8 m) such as resins, and mesoporous solids (whose pores have dimensions generally between 2.10 -9 m and 10 -8 m).
  • the adsorbent compound (s) microporous solid (s) which captures (s) the by-products, it is possible to carry out the reaction at high temperature with a high conversion rate and a high initial sugar concentration, especially above 65 brix, for example of the order of 68 brix.
  • the solution obtained is a syrup of great purity in simple sugars, and in particular is colorless.
  • a tectosilicate or a clay is used under proton form as a heterogeneous acid catalyst of the hydrolysis reaction. Indeed, we see that such a catalyst provides conversion of the compound sugar greater than 99% in less than 2 h, with a optimal selectivity for simple sugars greater than 80%.
  • zeolite aluminosilicate in protonic form, such as faujasite Y in H form of Si / Al ratio between 2 and 100, especially between 10 and 20, advantageously from around 15.
  • the heterogeneous catalyst can itself have a role of selective adsorbent. However, we choose the catalyst so that it does not absorb sugars, and in particular, simple sugars.
  • the invention relates in particular to a process for manufacturing a solution comprising at least a hexose from a solution comprising at least one holoside (such as sucrose) hydrolyzable to at least hexose (such as fructose and glucose).
  • a solution comprising at least a hexose from a solution comprising at least one holoside (such as sucrose) hydrolyzable to at least hexose (such as fructose and glucose).
  • holoside such as sucrose
  • hexose such as fructose and glucose
  • the invention is used as solid adsorbent compound microporous a molecular sieve whose porosity (pore and channel size) is defined for selectively adsorb by-products other than simple sugars and the starting sugar (s), and in particular to adsorb the molecules of by-products stained and / or HMF molecules.
  • solid microporous adsorbent compound a tectosilicate or a clay, in particular an adsorbent zeolite, or alumina.
  • a solid microporous adsorbent compound making simultaneously as a catalyst or catalyst support for hydrolysis.
  • the reaction medium is brought into contact with a adsorbent zeolite, in particular in proton form, or in partially calcined ammonium form, which acts both heterogeneous acid catalyst and sieve molecular adsorbing unwanted products such as dyes and HMF.
  • a adsorbent zeolite in particular in proton form, or in partially calcined ammonium form, which acts both heterogeneous acid catalyst and sieve molecular adsorbing unwanted products such as dyes and HMF.
  • At least one compound is used solid microporous adsorbent separate from the catalyst heterogeneous.
  • a zeolite in the form proton as a heterogeneous acid catalyst, and uses, as a microporous solid adsorbent compound, an adsorbent zeolite forming a molecular sieve of which the acidity is low but nevertheless compatible with the acid catalysis.
  • This second variant offers the advantage of allow separate control of the catalysis of hydrolysis, and adsorption of dyes or HMF or other unwanted by-products.
  • the hydrolysis reaction is carried out in a multicontact reactor -in particular a pulsed column of reaction / extraction- continuously.
  • the minus a solid microporous adsorbent compound preferably preformed, in particular in extruded form, flowing against the current of the reaction medium.
  • the solid microporous adsorbent compound can be regenerated into continuous especially by calcination after its passage in the reactor, then recycled to the reactor inlet.
  • a heterogeneous catalyst in powder and we circulate this catalyst in cocurrent dispersion of the reaction medium in the reactor.
  • the heterogeneous catalyst and the (the) microporous solid adsorbent compound (s) and circulates this mixture of solids against the current of the reaction medium.
  • the weight proportion of the material dry sugar (s) compound (s) can be greater than 60% (syrup of more than 60 brix) -in particular around 65% at 70% (syrup from 65 brix to 70 brix) -.
  • the catalyst is used heterogeneous at a rate of 1% to 20% -in particular of the order of 7.5% - by weight of the dry matter of the solution departure.
  • the adsorbent compound is used microporous solid at a rate of 2% to 40% -in particular of around 15% - by weight of the dry matter of the starting solution.
  • a weight of adsorbent compound (when this adsorbent compound microporous solid is distinct from the heterogeneous catalyst) greater than the weight of the heterogeneous catalyst, in particular the order of twice the weight of the heterogeneous catalyst.
  • microporous solid adsorbent compounds can be used simultaneously, each of them having properties selective adsorption defined to adsorb a by-product or a family of by-products.
  • a solid microporous adsorbent compound able to adsorb HMF and another adsorbent compound microporous solid capable of adsorbing dyes and / or polymers.
  • the ability of a molecular sieve to adsorb selectively this or that product depends on its structure in space, the size of pores, cages and channels that it contains and physico-chemical affinities.
  • one or more can be used heterogeneous catalysts simultaneously producing effects separate.
  • catalysts can be used which have distinct exhaustion rates, and / or catalysts promoting subsequent reactions of hydrolysis, for example isomerization of glucose to fructose...
  • the reaction is carried out at a temperature between 60 ° C and 150 ° C -in particular of the order of 80 ° C to 85 ° C-, and we use solid catalyst (s) and adsorbent compound (s) microporous compatible with this temperature. He is at note in particular that the tectosilicates are resistant perfectly at this temperature range.
  • the time of stay of the reaction medium in the reactor is lower at 2 o'clock and is in particular between 0.5 hour and 1 hour.
  • the starting solution has at least one oside selected from the group consisting of inulin (polysaccharide), starch (polysaccharide), sucrose (oligosaccharide), maltose (oligosaccharide), cellobiose (oligosaccharide) or lactose (oligosaccharide).
  • inulin polysaccharide
  • starch polysaccharide
  • sucrose oligosaccharide
  • maltose oligosaccharide
  • cellobiose oligosaccharide
  • lactose oligosaccharide
  • the invention relates in particular to a process for manufacturing a colorless solution of oses to from starch or sucrose in a liquid medium by hydrolysis in the presence of a heterogeneous acid catalyst.
  • the starting solution (and therefore the reaction medium and the final solution) is an aqueous solution.
  • the invention also relates to an installation for implementing a method according to the invention.
  • a installation according to the invention is characterized in that that it includes at least one reactor and means for put a reaction medium for hydrolysis of a solution liquid comprising at least one compound sugar, on contact a heterogeneous hydrolysis catalysis system and at minus a solid microporous absorbent compound.
  • the installation is characterized in that it comprises at least one column pulsed, and means for circulating simultaneously in continuous in the pulsed column the reaction medium hydrolysis liquid, the heterogeneous catalysis system hydrolysis and the solid absorbent compound (s) microporous.
  • the installation is characterized in that it includes means for circulating the absorbent compound (s) microporous solid (s) against the current of the medium hydrolysis liquid reaction.
  • the pulsed column makes not only as a separator, but also and especially a continuous multicontact reactor.
  • the hydrolysis reaction and the selective extraction in continuous by-products and unwanted impurities (dyes, ).
  • the starting sugar solution can be highly concentrated, the reaction time is reduced and the use of toxic or polluting solvents and effluent discharge pollutants.
  • the invention also relates to a method and a sugar solution manufacturing facility simple comprising in combination all or part of the features mentioned above or below.
  • the installation work of the manufacturing process according to the invention is essentially consists of a pulsed column 1 to the part lower 2 of which a solution is introduced concentrated sugar compound, especially starch or sucrose.
  • a solution is introduced concentrated sugar compound, especially starch or sucrose.
  • This heterogeneous catalyst is an acid catalyst, for example a zeolite Y (H) in powder form.
  • This catalyst dispersed in the compound sugar solution which flows from bottom to top in column 1 is extracted with the liquid phase in which it is dispersed to the part upper 3.
  • a filter 5 makes it possible to separate the catalyst of the aqueous solution of simple sugars at the outlet of the column 1.
  • the catalyst recovered on filter 5 is recycled in mixer 4 either directly if it is still active, either after a regeneration step by example by passing through a calcination oven 6 or all other regeneration device appropriate according to the nature of the catalyst.
  • microporous solid adsorbent compound which flows (s) by gravity from top to bottom in column 1 and which we recover at the lower part 2.
  • the compound adsorbent is for example an extruded Y (H) zeolite shaped (granules, sticks, cylinders, balls, ...) forming adsorbent molecular sieve.
  • the adsorbent compound microporous solid must be compatible with the catalyst acid used for hydrolysis. In particular, it should not not neutralize the acidity of the catalyst.
  • the pieces of solid microporous adsorbent compound partially recovered lower 2 are transported by a device forming hydraulic lift to a sieve 7 allowing to isolate the granules and / or cylinders which are then introduced into a calcination oven 8 in which the solid microporous adsorbent compound is regenerated, products trapped in the pores of this compound being burned.
  • the solid adsorbent compound microporous can be recycled and reintroduced to the part upper 2 of column 1 continuously.
  • Pulsed columns are devices known vertical multicontacts in which we can maintain pulsations (see for example the document "Pulsed Perforated-Plate Columns", D.H. Logsdail, M.J. Slaten, Handbook of Solvent Extraction, Teh C. Lo Malcolm H.I. Baird, Carl Hanson, Krieger Publishing Company, Malabar, Florida, 1991, 11-2, p 335-372, incorporated by reference to this description).
  • the packing (baskets and crowns, or discs and crowns) as well as the amplitude and frequency pulses are determined to get circulation continues from bottom to top of the reaction medium and the continuous circulation of solid catalyst (s) and microporous solid absorbent compound (s).
  • the temperature inside the pulsed column can be maintained at the reaction temperature, in particular between 80 ° and 85 ° C.
  • the weight proportions of the starting solution of compound sugar (s), of catalyst acid and microporous solid adsorbent compound (s) as indicated above by adjusting the flow rates of different components and the speed of circulation in the column 1 pulsed so that the desired conversion of the sugar (s) compound (s) is obtained at exit 3 upper part of the pulsed column 1. Thanks to the invention, a total conversion of compound sugar can be achieved despite a residence time of the reaction medium in the column pulsed 1 which is weak, in particular less than two hours.
  • the variant in Figure 2 differs from that of Figure 1 only in the fact that the catalyst heterogeneous acid is no longer introduced co-current with the starting solution of sugar (s) compound (s), but circulates counter-current with the adsorbent compound (s) microporous solid (s).
  • the acid catalyst is present so not in powder form, but in the form of granules and / or balls and / or cylinders to be able to flow by gravity through the pulsed column 1 of the upper part 3 to lower part 2.
  • the catalyst heterogeneous acid is recovered with the adsorbent compound microporous solid at the bottom 2 of column 1 and transported by hydraulic lift to the sieve 7 which is in this case a double sieve allowing to separate the beads and / or granules and / or cylinders of acid catalyst granules and / or cylinders of solid adsorbent compound microporous.
  • the particle size of the catalyst acid will be different from that of the solid adsorbent compound microporous.
  • the acid catalyst is either directly reintroduced at the top 3 of column 1 if it is still active, or regenerated, by example through a calcination furnace 6 or other regeneration device, before recycling to the part superior 3.
  • the solid microporous adsorbent compound follows the same circuit as that described with reference to the figure 1. It should be noted that the heterogeneous acid catalyst can also act as a selective adsorbent of one or more reaction residue (s) or by-product (s).
  • the solution concentrated sugar (s) compound (s) is directly introduced at the bottom 2 and flows from bottom to high in the pulsed column 1. At the top 3, we collects the simple sugar solution directly.
  • the operations of the Figure 1 of mixing in mixer 4 and filtration in filter 5 are deleted.
  • Figure 3 illustrates a similar variant in Figure 1 in which the solid adsorbent compound microporous and the acid catalyst are formed of a single and same microporous solid adsorbing in protonic form.
  • the variant of Figure 3 is distinguished from that of FIG. 1 only by the fact that the mixer 4, the filter 5 and the regeneration step 6 are deleted. In this variant, only one compound solid circulates in the pulsed column 1.
  • sucrose syrup comprising 300 g of sucrose, 167.5 g of water and 22.5 g of zeolite Y in protonic form whose Si / Al ratio is of 15, in powder form.
  • zeolite Y in protonic form whose Si / Al ratio is of 15, in powder form.
  • the solution obtained is a glucose and fructose syrup with a conversion rate 95% sucrose.
  • the solution is clear, transparent, but colored yellow.
  • Liquid chromatographic analysis under pressure of HPLC type makes it possible to note the presence 600 ppm HMF. This presence is explained by the use too small a quantity of zeolite whose power adsorption is too low.
  • the syrup is prepared in the same way as Example 1 and this syrup is kept in the mixer at 82 ° C for a period of 40 minutes.
  • the final solution is a glucose and fructose solution, the conversion rate sucrose being 100%.
  • Chromatographic analysis HPLC reveals the presence of 1200 ppm of HMF in the solution.
  • the glucose and fructose solution is limpid, transparent, but colored yellow.
  • a sucrose syrup is prepared in an identical manner to examples 1 and 2 with the 22.5 g of zeolite Y in the protonic powder form of example 1. Then 45 g of adsorbent zeolite Y in ammonium (NH 4 ) form partially calcined, extruded, shaped into cylinders and whose Si / Al ratio is 15. This zeolite has a binder and is therefore less acidic and less active than the previous one.
  • the final solution is a glucose syrup and perfectly clear, transparent, colorless fructose and which remains stable for several months. Chromatography HPLC liquid reveals the presence of 60 ppm of HMF, corresponding to food purity. We note by against that the extruded adsorbent zeolite is colored beige-brown.
  • Example 3 We prepare the same sucrose syrup as in Example 3 with 22.5 g of powdery zeolite and 45 g of adsorbent zeolite. We wait 40 minutes instead 25 minutes of Example 3, then cool suddenly at 25 ° C. It is found that the syrup obtained from fructose and glucose is perfectly clear, transparent, colorless, stable over several months. The conversion rate sucrose is 100%. HPLC chromatography reveals the presence of 100 to 120 ppm of HMF. The adsorbent zeolite is colored beige-brown.
  • Examples 3 and 4 demonstrate that with a residence time between 25 minutes and 40 minutes, we obtains, in a batch reactor, a conversion of sucrose 95 to 100% glucose and fructose with a food purity.
  • the reactions of the above examples can be performed continuously in facilities represented in the figures with still residence times weaker.
  • aqueous starch syrup comprising 500 g / l of starch, and more than 20 g / l of zeolite Y in protonic form with an Si / Al ratio of 15 (Faujasite) as shown in Example 1.
  • the reaction temperature is 150 ° C. and the reaction time is 60 minutes.
  • the final solution is a solution of simple sugars, (the conversion rate into simple sugars is 100%) of which more than 85% glucose and less than 15% maltose.
  • Maltose is a diholoside composed of two units of D glucose. So it's a glucose precursor which can be recycled into the hydrolysis starting solution.
  • the invention is also applicable to hydrolysis of other sugars composed into simple sugars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

PCT No. PCT/FR95/01615 Sec. 371 Date Jul. 10, 1997 Sec. 102(e) Date Jul. 10, 1997 PCT Filed Dec. 6, 1995 PCT Pub. No. WO96/17962 PCT Pub. Date Jun. 13, 1996A method and an apparatus for making a simple sugar solution from a liquid solution including at least one compound sugar by performing hydrolysis in the presence of a heterogeneous catalyst. The method comprises contacting the hydrolysis reaction medium with at least one microporous solid adsorbent compound selected for compatibility with the hydrolysis and . catalysis conditions and for selectively adsorbing by-products other than simple sugars under the hydrolysis reaction conditions. A pure, colourless, food-grade simple sugar solution is achieved.

Description

L'invention concerne un procédé et une installation de fabrication d'une solution liquide de sucres simples (oses) à partir d'une solution liquide comprenant au moins un sucre composé (oside), et notamment un holoside (polysaccharide ou oligosaccharide) tel que le saccharose, l'inuline, l'amidon...The invention relates to a method and a installation for manufacturing a liquid solution of simple sugars (oses) from a liquid solution comprising at least one compound sugar (oside), and in particular a holoside (polysaccharide or oligosaccharide) such as sucrose, inulin, starch ...

La réaction d'hydrolyse des sucres composés en milieu liquide, généralement aqueux, en présence d'un catalyseur acide, est connue. Cette réaction, parfois appelée "réaction d'inversion des sucres", permet d'obtenir normalement un "sucre inverti", c'est-à-dire un mélange de sucres simples, et notamment des hexoses. En particulier, si l'on part d'une solution de saccharose, on obtient un sucre inverti formé d'un mélange de fructose et de glucose.The hydrolysis reaction of compound sugars in a liquid medium, generally aqueous, in the presence of a acid catalyst, is known. This reaction, sometimes called "sugar inversion reaction", allows to obtain normally an "invert sugar", that is to say a mixture of simple sugars, especially hexoses. In particular, if we start with a sucrose solution, we get a invert sugar formed from a mixture of fructose and glucose.

La publication "Les sucres invertis", BUSSIERE et al., IAA Juillet/Août 1990 pages 645 à 649 décrit déjà la réaction d'hydrolyse en présence de résines échangeuses d'ions à titre de catalyseur acide hétérogène. Pour éviter la formation de colorants, on considère jusqu'à maintenant qu'il est préférable d'opérer à basse température (de l'ordre de 30 à 35° C). En particulier, il convient, dans le cas des hexoses, d'éviter la formation de l'hydroxyméthylfurfural (HMF) et de ses dérivés ou produits intermédiaires (polymères, humines, acide lévulinique ou formique...). Or, les réactions engendrant la formation du HMF et de ses dérivés sont aussi catalysées en milieu acide et favorisées par une température élevée, notamment supérieure à 50° C. En outre, l'utilisation d'une résine échangeuse d'ions à titre de catalyseur acide interdit les hautes températures.The publication "Invert sugars", BUSSIERE et al., IAA July / August 1990 pages 645 to 649 already describes the hydrolysis reaction in the presence of resins ion exchangers as heterogeneous acid catalyst. To avoid the formation of dyes, consider up to now it's best to operate at low temperature (around 30 to 35 ° C). In particular, it in the case of hexoses, the formation of hydroxymethylfurfural (HMF) and its derivatives or products intermediates (polymers, humines, levulinic acid or formic...). However, the reactions causing the formation of HMF and its derivatives are also catalyzed in an acid medium and favored by a high temperature, in particular higher than 50 ° C. In addition, the use of a resin ion exchange as an acid catalyst prohibits high temperatures.

Il est à noter à cet égard que si l'on souhaite obtenir effectivement un mélange de sucres simples, il convient de s'assurer que la réaction s'arrête au stade de l'hydrolyse, sans aller jusqu'à la dégradation des sucres et à la formation de produits dérivés tels que les polyols, polymères, acides, HMF...It should be noted in this regard that if we actually want to get a mixture of sugars simple, make sure the reaction stops at the hydrolysis stage, without going as far as degradation sugars and the formation of derivatives such as polyols, polymers, acids, HMF ...

On préfère donc jusqu'à maintenant limiter le taux de conversion du sucre composé pour éviter la formation des sous-produits indésirables. Ainsi, les réactions d'hydrolyse connues ne permettent pas d'obtenir, à des conditions économiquement rentables, des solutions pures de sucres simples intégralement convertis, c'est-à-dire sans sucre composé ni produits dérivés.So far we prefer to limit the conversion rate of compound sugar to avoid formation of unwanted by-products. So the known hydrolysis reactions do not make it possible to obtain, on economically profitable terms, solutions pure, fully converted simple sugars, i.e. without compound sugar or derived products.

De plus, aux basses températures utilisées jusqu'à maintenant avec les résines échangeuses d'ions, la conversion du sucre composé est faible et la réaction nécessite un temps considérable, classiquement de l'ordre de 12 heures à 48 heures.In addition, at the low temperatures used so far with ion exchange resins, the compound sugar conversion is weak and the reaction requires considerable time, typically around 12 to 48 hours.

En outre, les sucres composés ont, à ces températures, une forte viscosité. Il n'est pas possible en pratique d'utiliser une solution de départ fortement concentrée en sucre composé, et une étape de concentration doit être prévue après l'hydrolyse.In addition, the compound sugars have, at these temperatures, high viscosity. It is not possible in convenient to use a starting solution strongly concentrated in compound sugar, and a concentration step should be scheduled after hydrolysis.

Egalement, l'utilisation des résines échangeuses d'ions engendre, du point de vue industriel, de nombreux inconvénients (formation d'effluents, difficultés de régénération, coût de production élevé).Also, the use of resins ion exchangers generate, from the industrial point of view, many disadvantages (formation of effluents, difficulties regeneration, high production cost).

Ainsi, FR-A-1526 029 décrit un procédé de décoloration de jus, sirops, mélasses et même égouts de sucreries permettant de transformer en totalité ou en partie le saccharose comprenant une étape de décoloration par résines échangeuses d'ions, avec hydrolyse partielle ou totale, une étape de purification et décoloration par résines échangeuses d'ions et une étape de concentration. Les produits de départ étant très chargés en cations et anions, les résines sont rapidement saturées, de sorte que ce procédé ne peut pas trouver d'applications pratiques dans l'industrie. En outre, ce procédé est en plusieurs étapes, et nécessite une concentration d'entrée faible (20 à 30 brix).Thus, FR-A-1526 029 describes a method of discoloration of juices, syrups, molasses and even sewers sweets allowing to transform in whole or in part sucrose including a bleaching step by ion exchange resins, with partial hydrolysis or total, a purification and discoloration step by ion exchange resins and a concentration step. The starting materials being very loaded with cations and anions, the resins are quickly saturated, so this process cannot find practical applications in industry. In addition, this process is in several steps, and requires a low input concentration (20 at 30 brix).

Pour toutes ces raisons, les procédés connus tels que celui décrit dans la publication sus-citée, ont connu un développement industriel limité et ne permettent pas de produire des sucres invertis à faible coût.For all these reasons, the processes known such as that described in the abovementioned publication, have experienced limited industrial development and not allow to produce invert sugars at low cost.

L'invention vise à pallier ces inconvénients en proposant un procédé et une installation de fabrication d'une solution de sucres simples dans des conditions rentables à l'échelle industrielle.The invention aims to overcome these disadvantages in proposing a method and an installation of manufacturing a solution of simple sugars in profitable conditions on an industrial scale.

L'invention a ainsi pour objet un procédé et une installation qui permettent d'obtenir, par hydrolyse, des sucres simples en solution avec un rendement, une vitesse de réaction et une pureté suffisamment élevés pour envisager leur production industrielle à un prix de revient raisonnable et moyennant des investissements industriels limités. En particulier, l'invention vise à proposer un procédé pouvant être mis en oeuvre dans des installations de taille et capacité faibles ou moyennes.The subject of the invention is therefore a method and an installation which make it possible, by hydrolysis, simple sugars in solution with a yield, reaction rate and purity high enough to consider producing them industrial at a reasonable cost price and for limited industrial investments. In particular, the invention aims to propose a process which can be implemented works in installations of small size and capacity or medium.

L'invention vise en outre à proposer un tel procédé et une telle installation compatibles avec les contraintes écologiques de respect de l'environnement, notamment sans production d'effluents.The invention further aims to provide such a process and such an installation compatible with ecological constraints of respect for the environment, especially without producing effluents.

L'invention vise ainsi à proposer un procédé et une installation de fabrication de sucres simples en une seule étape, en continu et sans solvant d'extraction par hydrolyse d'une solution de sucre(s) composé(s).The invention thus aims to provide a sugar manufacturing process and installation simple in one step, continuous and solvent-free extraction by hydrolysis of a solution of sugar (s) compound (s).

L'invention vise aussi à proposer un procédé et une installation de fabrication d'une solution pure, notamment incolore, de sucres simples par hydrolyse. En particulier, l'invention vise à proposer un procédé de fabrication, en une seule étape et en continu d'une solution aqueuse de sucres simples de qualité agro-alimentaire, notamment incolore et plus particulièrement comprenant moins de 1 % de résidus d'hydrolyse autres que des sucres simples.The invention also aims to provide a process and installation for manufacturing a solution pure, especially colorless, of simple sugars by hydrolysis. In particular, the invention aims to propose a method of manufacturing, in a single step and continuously of a aqueous solution of simple sugars of agri-food quality, especially colorless and more particularly comprising less than 1% of hydrolysis residues other than simple sugars.

L'invention vise aussi à proposer un procédé de fabrication d'une solution de sucres simples par hydrolyse d'une solution de sucre(s) composé(s) ayant un taux de conversion supérieur à 95 % obtenu avec une durée de réaction (ou un temps de séjour) inférieure à 4 heures.The invention also aims to provide a process for manufacturing a solution of simple sugars by hydrolysis of a solution of sugar (s) compound (s) having a conversion rate greater than 95% obtained with duration reaction time (or residence time) of less than 4 hours.

L'invention vise aussi à proposer un procédé et une installation de fabrication d'une solution aqueuse de sucres simples par hydrolyse à une température supérieure à 50° C -notamment de l'ordre de 85° C- d'une solution de sucre(s) composé(s) fortement concentrée - notamment dont la proportion pondérale de matière sèche est supérieure à 60 %-.The invention also aims to provide a process and installation for manufacturing a solution aqueous of simple sugars by hydrolysis at a temperature higher than 50 ° C - in particular of the order of 85 ° C - of a highly concentrated sugar solution (s) - especially whose weight proportion of dry matter is greater than 60% -.

L'invention vise plus particulièrement à proposer un procédé et une installation de fabrication industrielle d'une solution pure et incolore d'oses,-notamment de glucose et de fructose- par hydrolyse d'une solution de polysaccharide(s) et/ou d'oligosaccharide(s) - notamment d'amidon ou de saccharose-.The invention relates more particularly to propose a manufacturing process and installation production of a pure and colorless solution of oses, in particular glucose and fructose- by hydrolysis of a polysaccharide (s) and / or oligosaccharide (s) solution - especially starch or sucrose.

Pour ce faire, l'invention concerne un procédé de fabrication d'une solution de sucres simples à partir d'une solution liquide comprenant au moins un sucre composé, par hydrolyse en présence d'un système de catalyse hétérogène (c'est-à-dire d'un ou plusieurs catalyseurs solides), caractérisé en ce qu'on met le milieu réactionnel d'hydrolyse au contact d'au moins un composé adsorbant solide microporeux choisi pour être compatible avec les conditions d'hydrolyse et de catalyse et pour adsorber sélectivement les résidus ou sous-produits autres que les sucres simples dans les conditions réactionnelles de l'hydrolyse. Selon l'invention, le (les) composant(s) adsorbant(s) est (sont) choisi(s) pour ne pas adsorber le (les) sucre(s) composé(s) de départ.To do this, the invention relates to a process for manufacturing a solution of simple sugars from a liquid solution comprising at least one sugar compound, by hydrolysis in the presence of a catalysis system heterogeneous (i.e. one or more catalysts solids), characterized in that the reaction medium is put hydrolysis on contact with at least one adsorbent compound microporous solid chosen to be compatible with hydrolysis and catalysis conditions and to adsorb selectively residues or by-products other than simple sugars under the reaction conditions of hydrolysis. According to the invention, the component (s) adsorbent (s) is (are) chosen (s) not to adsorb the (the) starting sugar (s).

Un composé adsorbant solide microporeux utilisable dans un procédé selon l'invention est un composé minéral d'origine naturelle ou synthétique formé par des enchaínements tridimensionnels de tétraèdres T04 avec T représentant au moins deux éléments différents de la classification périodique tels que Si, Al, B, Fe, Ga, Ge etc.. Dans cet enchaínement, les atomes d'oxygène des tétraèdres T04 sont en commun avec les tétraèdres voisins.A microporous solid adsorbent compound which can be used in a process according to the invention is a mineral compound of natural or synthetic origin formed by three-dimensional sequences of tetrahedra T04 with T representing at least two different elements of the periodic classification such as Si, Al, B , Fe, Ga, Ge etc. In this sequence, the oxygen atoms of the T0 4 tetrahedra are in common with the neighboring tetrahedra.

Un composé adsorbant solide microporeux est un solide présentant des pores de dimensions généralement inférieures à environ 10-9 m. A ce titre, il est à noter qu'un composé absorbant solide microporeux se distingue des solides macroporeux (dont les pores ont des dimensions généralement supérieures à 10-8 m) tels que les résines, et des solides mésoporeux (dont les pores ont des dimensions généralement comprises entre 2.10-9 m et 10-8 m).A solid microporous adsorbent compound is a solid having pores of dimensions generally less than about 10 -9 m. As such, it should be noted that an absorbent microporous solid compound is distinguished from macroporous solids (whose pores have dimensions generally greater than 10 -8 m) such as resins, and mesoporous solids (whose pores have dimensions generally between 2.10 -9 m and 10 -8 m).

Selon l'invention, on choisit le système de catalyse et le(les) composé(s) adsorbant(s) solide(s) microporeux de telle sorte que :

  • la réaction d'hydrolyse s'effectue avec une conversion supérieure à 99 % du(des) sucre(s) composé(s) et avec une sélectivité en sucres simples supérieure à 80 %,
  • le(les) composé(s) adsorbant(s) solide(s) microporeux est(sont) apte(s) à adsorber toute la quantité de résidus ou sous-produits pendant la durée de la réaction.
According to the invention, the catalysis system and the microporous solid adsorbent compound (s) are chosen so that:
  • the hydrolysis reaction is carried out with a conversion greater than 99% of the sugar (s) compound (s) and with a selectivity for simple sugars greater than 80%,
  • the microporous solid adsorbent compound (s) is (are) capable of adsorbing the entire quantity of residues or by-products during the duration of the reaction.

Grâce au(x) composé(s) adsorbant(s) solide(s) microporeux qui capte(nt) les sous-produits, il est possible d'effectuer la réaction à haute température avec un taux de conversion important et une forte concentration initiale en sucre, notamment supérieurs à 65 brix, par exemple de l'ordre de 68 brix. Il en résulte aussi que la solution obtenue est un sirop d'une grande pureté en sucres simples, et notamment est incolore.Thanks to the adsorbent compound (s) microporous solid (s) which captures (s) the by-products, it is possible to carry out the reaction at high temperature with a high conversion rate and a high initial sugar concentration, especially above 65 brix, for example of the order of 68 brix. The result also that the solution obtained is a syrup of great purity in simple sugars, and in particular is colorless.

Il en résulte aussi que le temps de séjour est bref et que l'installation de mise en oeuvre est peu volumineuse et simple.It also follows that the residence time is brief and the installation of installation is little bulky and simple.

Selon une autre caractéristique de l'invention, on utilise un tectosilicate ou une argile sous forme protonique à titre de catalyseur hétérogène acide de la réaction d'hydrolyse. On constate en effet, qu'un tel catalyseur permet d'obtenir une conversion du sucre composé supérieure à 99 % en un temps inférieur à 2 h, avec une sélectivité optimale en sucres simples supérieure à 80 %.According to another characteristic of the invention, a tectosilicate or a clay is used under proton form as a heterogeneous acid catalyst of the hydrolysis reaction. Indeed, we see that such a catalyst provides conversion of the compound sugar greater than 99% in less than 2 h, with a optimal selectivity for simple sugars greater than 80%.

Les tectosilicates sont des composés microporeux caractérisés par une structure comportant :

  • une charpente tridimensionnelle formée par l'enchaínement de tétraèdres TO4, SiO4, T représentant un élément de classification tel que Al, B, Ga, Ge, ... et,
  • un réseau monodimensionnel, bidimensionnel, ou tridimensionnel de canaux et cavités de dimensions moléculaires contenant des cations de compensation éventuels, de l'eau ou d'autres molécules ou sels.
Tectosilicates are microporous compounds characterized by a structure comprising:
  • a three-dimensional frame formed by the sequence of tetrahedra TO 4 , SiO 4 , T representing an element of classification such as Al, B, Ga, Ge, ... and,
  • a one-dimensional, two-dimensional, or three-dimensional network of molecular-size channels and cavities containing possible compensating cations, water or other molecules or salts.

En particulier, et selon l'invention, on utilise, à titre de catalyseur acide, une zéolithe (aluminosilicate) sous forme protonique, telle qu'une faujasite Y sous forme H de rapport Si/Al compris entre 2 et 100, notamment entre 10 et 20, avantageusement de l'ordre de 15.In particular, and according to the invention, we uses, as an acid catalyst, a zeolite (aluminosilicate) in protonic form, such as faujasite Y in H form of Si / Al ratio between 2 and 100, especially between 10 and 20, advantageously from around 15.

On choisit le système de catalyse hétérogène et les conditions opératoires (concentrations, température...) de façon à éviter, d'une part, la formation d'autres produits que les sucres simples et, d'autre part, la dégradation de ces sucres simples, et notamment pour minimiser, voire éviter la formation du HMF (dans le cas notamment des hexoses, du fructose, ou des polyfructanes et de colorants). Le catalyseur hétérogène peut lui-même avoir un rôle d'adsorbant sélectif. Néanmoins, on choisit le catalyseur de telle sorte qu'il n'adsorbe pas les sucres, et notamment, les sucres simples.We choose the catalysis system heterogeneous and the operating conditions (concentrations, temperature ...) so as to avoid, on the one hand, the formation products other than simple sugars and, on the other hand, the degradation of these simple sugars, and in particular for minimize or even avoid the formation of HMF (in the case in particular hexoses, fructose, or polyfructans and dyes). The heterogeneous catalyst can itself have a role of selective adsorbent. However, we choose the catalyst so that it does not absorb sugars, and in particular, simple sugars.

L'invention concerne en particulier un procédé de fabrication d'une solution comprenant au moins un hexose à partir d'une solution comprenant au moins un holoside (tel que le saccharose) hydrolysable en au moins un hexose (tel que le fructose et le glucose). Selon l'invention, on utilise à titre de composé adsorbant solide microporeux un tamis moléculaire dont la porosité (dimension des pores et des canaux) est définie pour adsorber sélectivement les sous-produits autres que les sucres simples et le (les) sucre(s) composé(s) de départ, et notamment pour adsorber les molécules de sous-produits colorés et/ou les molécules de HMF.The invention relates in particular to a process for manufacturing a solution comprising at least a hexose from a solution comprising at least one holoside (such as sucrose) hydrolyzable to at least hexose (such as fructose and glucose). According to the invention is used as solid adsorbent compound microporous a molecular sieve whose porosity (pore and channel size) is defined for selectively adsorb by-products other than simple sugars and the starting sugar (s), and in particular to adsorb the molecules of by-products stained and / or HMF molecules.

Selon l'invention, on utilise, à titre de composé adsorbant solide microporeux, un tectosilicate ou une argile, notamment une zéolithe adsorbante, ou de l'alumine.According to the invention, use is made, as solid microporous adsorbent compound, a tectosilicate or a clay, in particular an adsorbent zeolite, or alumina.

Dans une première variante, avantageusement, et selon l'invention, on utilise un composé adsorbant solide microporeux faisant simultanément office de catalyseur ou de support de catalyseur pour l'hydrolyse. En particulier, dans cette variante, et selon l'invention, on met le milieu réactionnel au contact d'une zéolithe adsorbante notamment sous forme protonique, ou sous forme ammonium partiellement calcinée, qui fait office à la fois de catalyseur acide hétérogène, et de tamis moléculaire adsorbant les produits indésirables tels que les colorants et le HMF. Cette première variante présente l'avantage de procurer un procédé dans lequel on obtient une solution de sucres simples en peu de temps avec un seul composé solide à gérer.In a first variant, advantageously, and according to the invention, a solid microporous adsorbent compound making simultaneously as a catalyst or catalyst support for hydrolysis. In particular, in this variant, and according to the invention, the reaction medium is brought into contact with a adsorbent zeolite, in particular in proton form, or in partially calcined ammonium form, which acts both heterogeneous acid catalyst and sieve molecular adsorbing unwanted products such as dyes and HMF. This first variant presents the advantage of providing a process in which one obtains a solution of simple sugars in a short time with just one solid compound to manage.

Dans une deuxième variante, avantageusement et selon l'invention, on utilise au moins un composé adsorbant solide microporeux distinct du catalyseur hétérogène. Par exemple, on utilise une zéolithe sous forme protonique à titre de catalyseur hétérogène acide, et on utilise, à titre de composé adsorbant solide microporeux, une zéolithe adsorbante formant tamis moléculaire dont l'acidité est faible mais néanmoins compatible avec la catalyse acide. Cette deuxième variante offre l'avantage de permettre un contrôle distinct de la catalyse de l'hydrolyse, et de l'adsorption des colorants ou du HMF ou autres sous-produits indésirables.In a second variant, advantageously and according to the invention, at least one compound is used solid microporous adsorbent separate from the catalyst heterogeneous. For example, we use a zeolite in the form proton as a heterogeneous acid catalyst, and uses, as a microporous solid adsorbent compound, an adsorbent zeolite forming a molecular sieve of which the acidity is low but nevertheless compatible with the acid catalysis. This second variant offers the advantage of allow separate control of the catalysis of hydrolysis, and adsorption of dyes or HMF or other unwanted by-products.

Selon une autre caractéristique de l'invention, on effectue la réaction d'hydrolyse dans un réacteur multicontact -notamment une colonne pulsée de réaction/extraction- en continu.According to another characteristic of the invention, the hydrolysis reaction is carried out in a multicontact reactor -in particular a pulsed column of reaction / extraction- continuously.

Selon l'invention, on fait circuler au moins un composé adsorbant solide microporeux, de préférence préformé, notamment sous forme extrudée, circulant à contre-courant du milieu réactionnel. Le composé adsorbant solide microporeux peut être régénéré en continu notamment par calcination après son passage dans le réacteur, puis recyclé à l'entrée du réacteur. En outre, avantageusement et selon l'invention, on utilise un catalyseur hétérogène en poudre et on fait circuler ce catalyseur en dispersion à co-courant du milieu réactionnel dans le réacteur.According to the invention, the minus a solid microporous adsorbent compound, preferably preformed, in particular in extruded form, flowing against the current of the reaction medium. The solid microporous adsorbent compound can be regenerated into continuous especially by calcination after its passage in the reactor, then recycled to the reactor inlet. In addition, advantageously and according to the invention, a heterogeneous catalyst in powder and we circulate this catalyst in cocurrent dispersion of the reaction medium in the reactor.

En variante, avantageusement et selon l'invention, on mélange le catalyseur hétérogène et le (les) composé(s) adsorbant(s) solide(s) microporeux et on fait circuler ce mélange de solides à contre-courant du milieu réactionnel.As a variant, advantageously and according to the invention, the heterogeneous catalyst and the (the) microporous solid adsorbent compound (s) and circulates this mixture of solids against the current of the reaction medium.

Selon l'invention, on utilise une solution de départ fortement concentrée en sucre(s) composé(s). Selon l'invention, la proportion pondérale de la matière sèche en sucre(s) composé(s) peut être supérieure à 60 % (sirop de plus de 60 brix) -notamment de l'ordre de 65 % à 70 % (sirop de 65 brix à 70 brix)-.According to the invention, a solution is used starting highly concentrated in compound sugar (s). According to the invention, the weight proportion of the material dry sugar (s) compound (s) can be greater than 60% (syrup of more than 60 brix) -in particular around 65% at 70% (syrup from 65 brix to 70 brix) -.

Selon l'invention, on utilise le catalyseur hétérogène à raison de 1 % à 20 % -notamment de l'ordre de 7,5 %- en poids de la matière sèche de la solution de départ. Avantageusement, on utilise le composé adsorbant solide microporeux à raison de 2 % à 40 % -notamment de l'ordre de 15 %- en poids de la matière sèche de la solution de départ. Ainsi, selon l'invention, on utilise un poids de composé adsorbant (lorsque ce composé adsorbant solide microporeux est distinct du catalyseur hétérogène) supérieur au poids du catalyseur hétérogène, -notamment de l'ordre du double du poids du catalyseur hétérogène-.According to the invention, the catalyst is used heterogeneous at a rate of 1% to 20% -in particular of the order of 7.5% - by weight of the dry matter of the solution departure. Advantageously, the adsorbent compound is used microporous solid at a rate of 2% to 40% -in particular of around 15% - by weight of the dry matter of the starting solution. Thus, according to the invention, a weight of adsorbent compound (when this adsorbent compound microporous solid is distinct from the heterogeneous catalyst) greater than the weight of the heterogeneous catalyst, in particular the order of twice the weight of the heterogeneous catalyst.

Il est à noter que l'on peut utiliser un ou plusieurs composés adsorbants solides microporeux simultanément, chacun d'entre eux ayant des propriétés d'adsorption sélective définies pour adsorber un sous-produit ou une famille de sous-produits. On peut par exemple utiliser un composé adsorbant solide microporeux apte à adsorber le HMF, et un autre composé adsorbant solide microporeux apte à adsorber des colorants et/ou des polymères. L'aptitude d'un tamis moléculaire à adsorber sélectivement tel ou tel produit dépend de sa structure dans l'espace, de la dimension des pores, cages et canaux qu'il renferme et des affinités physico-chimiques. On sait en pratique définir, fabriquer ou choisir un composé absorbant solide microporeux (tamis moléculaire) en fonction des produits à adsorber sélectivement.Note that you can use one or more several microporous solid adsorbent compounds simultaneously, each of them having properties selective adsorption defined to adsorb a by-product or a family of by-products. We can by example use a solid microporous adsorbent compound able to adsorb HMF, and another adsorbent compound microporous solid capable of adsorbing dyes and / or polymers. The ability of a molecular sieve to adsorb selectively this or that product depends on its structure in space, the size of pores, cages and channels that it contains and physico-chemical affinities. We know in practice define, manufacture or choose a compound absorbent microporous solid (molecular sieve) in function of the products to be adsorbed selectively.

Egalement, on peut utiliser un ou plusieurs catalyseurs hétérogènes simultanément produisant des effets distincts. En particulier, on peut utiliser des catalyseurs qui présentent des vitesses d'épuisement distinctes, et/ou des catalyseurs favorisant des réactions subséquentes de l'hydrolyse, par exemple l'isomérisation du glucose en fructose...Also, one or more can be used heterogeneous catalysts simultaneously producing effects separate. In particular, catalysts can be used which have distinct exhaustion rates, and / or catalysts promoting subsequent reactions of hydrolysis, for example isomerization of glucose to fructose...

Selon l'invention, on effectue la réaction à une température comprise entre 60° C et 150° C -notamment de l'ordre de 80° C à 85° C-, et on utilise des catalyseur(s) et composé(s) adsorbant(s) solides microporeux compatibles avec cette température. Il est à noter en particulier que les tectosilicates résistent parfaitement à cette gamme de température.According to the invention, the reaction is carried out at a temperature between 60 ° C and 150 ° C -in particular of the order of 80 ° C to 85 ° C-, and we use solid catalyst (s) and adsorbent compound (s) microporous compatible with this temperature. He is at note in particular that the tectosilicates are resistant perfectly at this temperature range.

En pratique, on constate que l'on peut obtenir, dans un procédé selon l'invention une conversion totale du (des) sucre(s) composé(s) en sucres simples en moins de deux heures. Ainsi, selon l'invention, le temps de séjour du milieu réactionnel dans le réacteur est inférieur à 2 heures et est notamment compris entre 0,5 heure et 1 heure.In practice, we find that we can obtain, in a process according to the invention a conversion total of sugar (s) composed of simple sugars in less than two hours. Thus, according to the invention, the time of stay of the reaction medium in the reactor is lower at 2 o'clock and is in particular between 0.5 hour and 1 hour.

Selon l'invention, la solution de départ comporte au moins un oside choisi dans le groupe formé de l'inuline (polysaccharide), de l'amidon (polysaccharide), du saccharose (oligosaccharide), du maltose (oligosaccharide), du cellobiose (oligosaccharide) ou du lactose (oligosaccharide).According to the invention, the starting solution has at least one oside selected from the group consisting of inulin (polysaccharide), starch (polysaccharide), sucrose (oligosaccharide), maltose (oligosaccharide), cellobiose (oligosaccharide) or lactose (oligosaccharide).

L'invention concerne en particulier un procédé de fabrication d'une solution incolore d'oses à partir d'amidon ou/de saccharose en milieu liquide par hydrolyse en présence d'un catalyseur hétérogène acide.The invention relates in particular to a process for manufacturing a colorless solution of oses to from starch or sucrose in a liquid medium by hydrolysis in the presence of a heterogeneous acid catalyst.

Selon l'invention et avantageusement, la solution de départ (et donc le milieu réactionnel et la solution finale) est une solution aqueuse.According to the invention and advantageously, the starting solution (and therefore the reaction medium and the final solution) is an aqueous solution.

L'invention concerne aussi une installation de mise en oeuvre d'un procédé selon l'invention. Une installation selon l'invention est caractérisée en ce qu'elle comporte au moins un réacteur et des moyens pour mettre un milieu réactionnel d'hydrolyse d'une solution liquide comprenant au moins un sucre composé, au contact d'un système de catalyse hétérogène d'hydrolyse et d'au moins un composé absorbant solide microporeux.The invention also relates to an installation for implementing a method according to the invention. A installation according to the invention is characterized in that that it includes at least one reactor and means for put a reaction medium for hydrolysis of a solution liquid comprising at least one compound sugar, on contact a heterogeneous hydrolysis catalysis system and at minus a solid microporous absorbent compound.

Selon l'invention, l'installation est caractérisée en ce qu'elle comporte au moins une colonne pulsée, et des moyens pour faire circuler simultanément en continu dans la colonne pulsée le milieu réactionnel liquide d'hydrolyse, le système de catalyse hétérogène d'hydrolyse et le (les) composé(s) absorbant(s) solide (s) microporeux.According to the invention, the installation is characterized in that it comprises at least one column pulsed, and means for circulating simultaneously in continuous in the pulsed column the reaction medium hydrolysis liquid, the heterogeneous catalysis system hydrolysis and the solid absorbent compound (s) microporous.

Avantageusement et selon l'invention, l'installation est caractérisée en ce qu'elle comporte des moyens pour faire circuler le (les) composés absorbant(s) solide(s) microporeux à contre-courant du milieu réactionnel liquide d'hydrolyse.Advantageously and according to the invention, the installation is characterized in that it includes means for circulating the absorbent compound (s) microporous solid (s) against the current of the medium hydrolysis liquid reaction.

Il est à noter que dans un procédé et une installation selon l'invention, la colonne pulsée fait office non pas uniquement de séparateur, mais également et surtout de réacteur multicontact continu. On réalise ainsi simultanément dans la colonne pulsée, en une seule étape, la réaction d'hydrolyse et l'extraction sélective en continu des sous-produits et impuretés indésirables (colorants,...). En outre, grâce à l'invention , la solution sucrée de départ peut être fortement concentrée, la durée de réaction est réduite et on évite l'emploi de solvants toxiques ou polluants et le rejet d'effluents polluants.It should be noted that in a method and a installation according to the invention, the pulsed column makes not only as a separator, but also and especially a continuous multicontact reactor. We thus realize simultaneously in the pulsed column, in a single step, the hydrolysis reaction and the selective extraction in continuous by-products and unwanted impurities (dyes, ...). Furthermore, thanks to the invention, the starting sugar solution can be highly concentrated, the reaction time is reduced and the use of toxic or polluting solvents and effluent discharge pollutants.

Il est à noter à cet égard que les caractéristiques combinées de l'invention permettent l'obtention de ce résultat par le fait qu'il est possible d'opérer avec des sirops concentrés (Brix supérieur à 65) à haute température, avec une faible durée de réaction, les conditions réactionnelles déplaçant l'équilibre fortement.It should be noted in this regard that the combined features of the invention allow obtaining this result by the fact that it is possible to operate with concentrated syrups (Brix greater than 65) at high temperature, with a short reaction time, the reaction conditions shifting the balance strongly.

L'invention concerne aussi un procédé et une installation de fabrication d'une solution de sucres simples comprenant en combinaison tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.The invention also relates to a method and a sugar solution manufacturing facility simple comprising in combination all or part of the features mentioned above or below.

D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description suivante se référant aux figures annexées dans lesquelles :

  • la figure 1 est un schéma illustrant une installation de mise en oeuvre d'un procédé selon une première variante de l'invention,
  • la figure 2 est un schéma illustrant une installation de mise en oeuvre d'un procédé selon une deuxième variante de l'invention,
  • la figure 3 est un schéma illustrant une installation de mise en oeuvre d'un procédé selon une troisième variante de l'invention.
Other characteristics and advantages of the invention will appear on reading the following description referring to the appended figures in which:
  • FIG. 1 is a diagram illustrating an installation for implementing a method according to a first variant of the invention,
  • FIG. 2 is a diagram illustrating an installation for implementing a method according to a second variant of the invention,
  • FIG. 3 is a diagram illustrating an installation for implementing a method according to a third variant of the invention.

Sur la figure 1, l'installation de mise en oeuvre du procédé de fabrication selon l'invention se compose essentiellement d'une colonne pulsée 1 à la partie inférieure 2 de laquelle on introduit une solution concentrée de sucre composé, notamment d'amidon ou de saccharose. On extrait à la partie supérieure 3 de la colonne pulsée 1 des produits de réaction, à savoir la solution de sucre(s) simple(s), notamment de glucose et de fructose.In Figure 1, the installation work of the manufacturing process according to the invention is essentially consists of a pulsed column 1 to the part lower 2 of which a solution is introduced concentrated sugar compound, especially starch or sucrose. We extract at the top 3 of the pulsed column 1 of the reaction products, namely the simple sugar solution (s), especially glucose and fructose.

Pour réaliser l'hydrolyse dans cette colonne pulsée, on mélange dans un mélangeur 4, un catalyseur hétérogène sous forme de poudre dans la solution de sucre composé avant de l'introduire dans la colonne 1. Ce catalyseur hétérogène est un catalyseur acide, par exemple une zéolithe Y(H) sous forme pulvérulente. Ce catalyseur dispersé dans la solution de sucre composé qui circule de bas en haut dans la colonne 1 est extrait avec la phase liquide dans laquelle il est dispersé à la partie supérieure 3. Un filtre 5 permet de séparer le catalyseur de la solution aqueuse de sucres simples à la sortie de la colonne 1. Le catalyseur récupéré sur le filtre 5 est recyclé dans le mélangeur 4 soit directement s'il est encore actif, soit après une étape de régénération par exemple par passage dans un four de calcination 6 ou tout autre dispositif de régénération approprié selon la nature du catalyseur.To carry out the hydrolysis in this pulsed column, mixed in a mixer 4, a heterogeneous catalyst in powder form in the solution of compound sugar before introducing it into column 1. This heterogeneous catalyst is an acid catalyst, for example a zeolite Y (H) in powder form. This catalyst dispersed in the compound sugar solution which flows from bottom to top in column 1 is extracted with the liquid phase in which it is dispersed to the part upper 3. A filter 5 makes it possible to separate the catalyst of the aqueous solution of simple sugars at the outlet of the column 1. The catalyst recovered on filter 5 is recycled in mixer 4 either directly if it is still active, either after a regeneration step by example by passing through a calcination oven 6 or all other regeneration device appropriate according to the nature of the catalyst.

En outre, on introduit en continu, à la partie supérieure 3 de la colonne 1, un ou plusieurs composé(s) adsorbant(s) solide(s) microporeux qui circule(nt) par gravité de haut en bas dans la colonne 1 et que l'on récupère à la partie inférieure 2. Le composé adsorbant est par exemple une zéolithe Y(H) extrudée mise en forme (en granulés, bâtonnets, cylindres, billes, ...) formant tamis moléculaire adsorbant. Le composé adsorbant solide microporeux doit être compatible avec le catalyseur acide utilisé pour l'hydrolyse. En particulier, il ne doit pas neutraliser l'acidité du catalyseur. Les morceaux de composé adsorbant solide microporeux récupérés en partie inférieure 2, sont transportés par un dispositif formant ascenseur hydraulique jusqu'à un tamis 7 permettant d'isoler les granulés et/ou cylindres qui sont ensuite introduits dans un four de calcination 8 dans lequel le composé adsorbant solide microporeux est régénéré, les produits piégés dans les pores de ce composé étant brûlés. A la sortie du four 8, le composé adsorbant solide microporeux peut être recyclé et réintroduit à la partie supérieure 2 de la colonne 1 en continu.In addition, continuously introduced, at the upper part 3 of column 1, one or more microporous solid adsorbent compound (s) which flows (s) by gravity from top to bottom in column 1 and which we recover at the lower part 2. The compound adsorbent is for example an extruded Y (H) zeolite shaped (granules, sticks, cylinders, balls, ...) forming adsorbent molecular sieve. The adsorbent compound microporous solid must be compatible with the catalyst acid used for hydrolysis. In particular, it should not not neutralize the acidity of the catalyst. The pieces of solid microporous adsorbent compound partially recovered lower 2, are transported by a device forming hydraulic lift to a sieve 7 allowing to isolate the granules and / or cylinders which are then introduced into a calcination oven 8 in which the solid microporous adsorbent compound is regenerated, products trapped in the pores of this compound being burned. At the outlet of the oven 8, the solid adsorbent compound microporous can be recycled and reintroduced to the part upper 2 of column 1 continuously.

Les colonnes pulsées sont des dispositifs connus multicontacts verticaux dans lesquels on peut entretenir des pulsations (cf par exemple le document "Pulsed Perforated-Plate Columns", D.H. Logsdail, M.J. Slaten, Handbook of Solvent Extraction, Teh C.Lo Malcolm H.I. Baird, Carl Hanson, Krieger Publishing Company, Malabar, Florida, 1991, 11-2, p 335-372, incorporé par référence à la présente description).Pulsed columns are devices known vertical multicontacts in which we can maintain pulsations (see for example the document "Pulsed Perforated-Plate Columns", D.H. Logsdail, M.J. Slaten, Handbook of Solvent Extraction, Teh C. Lo Malcolm H.I. Baird, Carl Hanson, Krieger Publishing Company, Malabar, Florida, 1991, 11-2, p 335-372, incorporated by reference to this description).

Le garnissage (paniers et couronnes, ou disques et couronnes) ainsi que l'amplitude et la fréquence des pulsations sont déterminés pour obtenir la circulation continue de bas en haut du milieu réactionnel et la circulation continue du (des) catalyseur(s) solides (s) et du (des) composé(s) absorbant(s) solide(s) microporeux.The packing (baskets and crowns, or discs and crowns) as well as the amplitude and frequency pulses are determined to get circulation continues from bottom to top of the reaction medium and the continuous circulation of solid catalyst (s) and microporous solid absorbent compound (s).

Il est à noter qu'une telle installation est excessivement simple dans son principe et sa miseen oeuvre. La température à l'intérieur de la colonne pulsée peut être maintenue à la température de réaction, notamment entre 80° et 85° C. On ajuste les proportions pondérales de la solution de départ de sucre(s) composé(s), de catalyseur acide et de composé(s) adsorbant(s) solide(s) microporeux comme indiqué ci-dessus en réglant les débits des différents composants et la vitesse de circulation dans la colonne 1 pulsée de telle sorte que la conversion souhaitée du (des) sucre(s) composé(s) soit obtenue à la sortie 3 supérieure de la colonne pulsée 1. Grâce à l'invention, une conversion totale du sucre composé peut être obtenue malgré un temps de séjour du milieu réactionnel dans la colonne pulsée 1 qui est faible, notamment inférieur à deux heures.It should be noted that such an installation is excessively simple in principle and in artwork. The temperature inside the pulsed column can be maintained at the reaction temperature, in particular between 80 ° and 85 ° C. The weight proportions of the starting solution of compound sugar (s), of catalyst acid and microporous solid adsorbent compound (s) as indicated above by adjusting the flow rates of different components and the speed of circulation in the column 1 pulsed so that the desired conversion of the sugar (s) compound (s) is obtained at exit 3 upper part of the pulsed column 1. Thanks to the invention, a total conversion of compound sugar can be achieved despite a residence time of the reaction medium in the column pulsed 1 which is weak, in particular less than two hours.

La variante de la figure 2 diffère de celle de la figure 1 uniquement dans le fait que le catalyseur acide hétérogène n'est plus introduit à co-courant avec la solution de départ de sucre(s) composé(s), mais circule à contre-courant avec le(les) composé(s) adsorbant(s) solide(s) microporeux. Le catalyseur acide se présente alors non pas sous forme pulvérulente, mais sous forme de granulés et/ou de billes et/ou de cylindres pour pouvoir circuler par gravité à travers la colonne pulsée 1 de la partie supérieure 3 à la partie inférieure 2. Le catalyseur acide hétérogène est récupéré avec le composé adsorbant solide microporeux à la partie inférieure 2 de la colonne 1 et transporté par ascenseur hydraulique vers le tamis 7 qui est dans ce cas un tamis double permettant de séparer les billes et/ou granulés et/ou cylindres de catalyseur acide des granulés et/ou cylindres de composé adsorbant solide microporeux. Pour ce faire, la granulométrie du catalyseur acide sera différente de celle du composé adsorbant solide microporeux. A la sortie du tamis 7, le catalyseur acide est soit directement réintroduit à la partie supérieure 3 de la colonne 1 s'il est encore actif, soit régénéré, par exemple à travers un four de calcination 6 ou autre dispositif de régénération, avant son recyclage à la partie supérieure 3. Le composé adsorbant solide microporeux suit le même circuit que celui décrit en référence à la figure 1. Il est à noter que le catalyseur acide hétérogène peut aussi faire office d'adsorbant sélectif d'un ou plusieurs résidu(s) ou sous-produit(s) de réaction. La solution concentrée de sucre(s) composé(s) est directement introduite à la partie inférieure 2 et circule de bas en haut dans la colonne pulsée 1. A la partie supérieure 3, on récupère la solution de sucres simples directement. Dans cette variante, il est à noter que les opérations de la figure 1 de mélange dans le mélangeur 4 et de filtration dans le filtre 5 sont supprimées.The variant in Figure 2 differs from that of Figure 1 only in the fact that the catalyst heterogeneous acid is no longer introduced co-current with the starting solution of sugar (s) compound (s), but circulates counter-current with the adsorbent compound (s) microporous solid (s). The acid catalyst is present so not in powder form, but in the form of granules and / or balls and / or cylinders to be able to flow by gravity through the pulsed column 1 of the upper part 3 to lower part 2. The catalyst heterogeneous acid is recovered with the adsorbent compound microporous solid at the bottom 2 of column 1 and transported by hydraulic lift to the sieve 7 which is in this case a double sieve allowing to separate the beads and / or granules and / or cylinders of acid catalyst granules and / or cylinders of solid adsorbent compound microporous. To do this, the particle size of the catalyst acid will be different from that of the solid adsorbent compound microporous. At the outlet of the screen 7, the acid catalyst is either directly reintroduced at the top 3 of column 1 if it is still active, or regenerated, by example through a calcination furnace 6 or other regeneration device, before recycling to the part superior 3. The solid microporous adsorbent compound follows the same circuit as that described with reference to the figure 1. It should be noted that the heterogeneous acid catalyst can also act as a selective adsorbent of one or more reaction residue (s) or by-product (s). The solution concentrated sugar (s) compound (s) is directly introduced at the bottom 2 and flows from bottom to high in the pulsed column 1. At the top 3, we collects the simple sugar solution directly. In this variant, it should be noted that the operations of the Figure 1 of mixing in mixer 4 and filtration in filter 5 are deleted.

La figure 3 illustre une variante similaire à la figure 1 dans laquelle le composé adsorbant solide microporeux et le catalyseur acide sont formés d'un seul et même solide microporeux adsorbant sous forme protonique. On peut par exemple utiliser une zéolithe adsorbante Y sous forme protonique extrudée. La variante de la figure 3 se distingue de celle de la figure 1 uniquement par le fait que le mélangeur 4, le filtre 5 et l'étape de régénération 6 sont supprimés. Dans cette variante, un seul composé solide circule dans la colonne pulsée 1.Figure 3 illustrates a similar variant in Figure 1 in which the solid adsorbent compound microporous and the acid catalyst are formed of a single and same microporous solid adsorbing in protonic form. We can for example use an adsorbent zeolite Y under extruded proton form. The variant of Figure 3 is distinguished from that of FIG. 1 only by the fact that the mixer 4, the filter 5 and the regeneration step 6 are deleted. In this variant, only one compound solid circulates in the pulsed column 1.

EXEMPLE 1 : EXAMPLE 1 :

On prépare un sirop de saccharose comprenant 300 g de saccharose, 167,5 g d'eau et 22,5 g de zéolithe Y sous forme protonique dont le rapport Si/Al est de 15, sous forme pulvérulente. Pour préparer ce sirop, on mouille un cinquième de l'eau avec la poudre de zéolithe, puis on mélange le saccharose avec les quatre cinquièmes restants de l'eau et avec la zéolithe mouillée.We prepare a sucrose syrup comprising 300 g of sucrose, 167.5 g of water and 22.5 g of zeolite Y in protonic form whose Si / Al ratio is of 15, in powder form. To prepare this syrup, we wet one fifth of the water with the zeolite powder, then we mix the sucrose with four fifths remaining water and with the wet zeolite.

On introduit ce sirop dans un mélangeur agité, chauffé à 82° C. On maintient le sirop 25 minutes dans ce mélangeur, puis on refroidit brutalement la solution à 25° C.We introduce this syrup in a mixer stirred, heated to 82 ° C. The syrup is kept for 25 minutes in this mixer, then we cool the solution at 25 ° C.

On constate que la solution obtenue est un sirop de glucose et de fructose avec un taux de conversion du saccharose de 95 %. La solution est limpide, transparente, mais colorée jaune.We see that the solution obtained is a glucose and fructose syrup with a conversion rate 95% sucrose. The solution is clear, transparent, but colored yellow.

Une analyse chromatographique liquide sous pression de type HPLC permet de constater la présence 600 ppm de HMF. Cette présence s'explique par l'utilisation d'une quantité trop faible de zéolithe dont le pouvoir d'adsorption est trop faible.Liquid chromatographic analysis under pressure of HPLC type makes it possible to note the presence 600 ppm HMF. This presence is explained by the use too small a quantity of zeolite whose power adsorption is too low.

EXEMPLE 2 : EXAMPLE 2 :

On prépare le sirop de façon identique à l'exemple 1 et l'on maintient ce sirop dans le mélangeur à 82° C pendant une durée de 40 minutes.The syrup is prepared in the same way as Example 1 and this syrup is kept in the mixer at 82 ° C for a period of 40 minutes.

On constate que la solution finale est une solution de glucose et de fructose, le taux de conversion du saccharose étant de 100 %. L'analyse chromatographique HPLC révèle la présence de 1 200 ppm de HMF dans la solution. La solution de glucose et de fructose est limpide, transparente, mais colorée jaune.We see that the final solution is a glucose and fructose solution, the conversion rate sucrose being 100%. Chromatographic analysis HPLC reveals the presence of 1200 ppm of HMF in the solution. The glucose and fructose solution is limpid, transparent, but colored yellow.

EXEMPLE 3 : EXAMPLE 3 :

On prépare un sirop de saccharose de façon identique aux exemples 1 et 2 avec les 22,5 g de la zéolithe Y sous forme protonique en poudre de l'exemple 1. On ajoute ensuite dans le mélangeur chauffé à 82° C, 45 g de zéolithe adsorbante Y sous forme ammonium (NH4) partiellement calcinée, extrudée, mise en forme de cylindres et dont le rapport Si/Al est 15. Cette zéolithe comporte un liant et est donc moins acide et moins active que la précédente.A sucrose syrup is prepared in an identical manner to examples 1 and 2 with the 22.5 g of zeolite Y in the protonic powder form of example 1. Then 45 g of adsorbent zeolite Y in ammonium (NH 4 ) form partially calcined, extruded, shaped into cylinders and whose Si / Al ratio is 15. This zeolite has a binder and is therefore less acidic and less active than the previous one.

Après 25 minutes de séjour dans le mélangeur, on refroidit brutalement à 25° C et on analyse la solution finale. On constate que le taux de conversion est de 95 %. La solution finale est un sirop de glucose et de fructose parfaitement limpide, transparent, incolore et qui reste stable pendant plusieurs mois. La chromatographie liquide HPLC révèle la présence de 60 ppm de HMF, correspondant à une pureté alimentaire. On constate par contre que la zéolithe adsorbante extrudée est colorée beige-brun.After 25 minutes of stay in the mixer, suddenly cooled to 25 ° C and analyzed the final solution. We see that the conversion rate is 95%. The final solution is a glucose syrup and perfectly clear, transparent, colorless fructose and which remains stable for several months. Chromatography HPLC liquid reveals the presence of 60 ppm of HMF, corresponding to food purity. We note by against that the extruded adsorbent zeolite is colored beige-brown.

Simultanément à cette manipulation, on étudie l'activité de la zéolithe adsorbante à titre de catalyseur de l'hydrolyse par une manipulation séparée. Pour ce faire, on place cette zéolithe adsorbante dans un sirop de saccharose formé de 300 g de saccharose et de 167,5 g d'eau. On constate qu'avec les 45 g de la zéolithe adsorbante et en l'absence de zéolithe pulvérulente acide, le taux de conversion du saccharose en sucres simples n'est que de 60 % après un temps de séjour d'une heure. En conséquence, la zéolithe adsorbante joue un faible rôle de catalyseur dans la réaction.Simultaneously with this manipulation, we studies the activity of the adsorbent zeolite as hydrolysis catalyst by separate handling. To do this, we place this adsorbent zeolite in a sucrose syrup consisting of 300 g of sucrose and 167.5 g of water. We see that with the 45 g of the zeolite adsorbent and in the absence of acidic pulverulent zeolite, the rate of conversion of sucrose to simple sugars is only 60% after a one hour residence time. In Consequently, the adsorbent zeolite plays a weak role in catalyst in the reaction.

EXEMPLE 4 : EXAMPLE 4 :

On prépare le même sirop de saccharose que dans l'exemple 3 avec 22,5 g de zéolithe pulvérulente et 45 g de zéolithe adsorbante. On attend 40 minutes au lieu des 25 minutes de l'exemple 3, puis on refroidit brutalement à 25° C. On constate que le sirop obtenu de fructose et glucose est parfaitement limpide, transparent, incolore, stable sur plusieurs mois. Le taux de conversion du saccharose est de 100 %. La chromatographie HPLC révèle la présence de 100 à 120 ppm de HMF. La zéolithe adsorbante est colorée beige-brun.We prepare the same sucrose syrup as in Example 3 with 22.5 g of powdery zeolite and 45 g of adsorbent zeolite. We wait 40 minutes instead 25 minutes of Example 3, then cool suddenly at 25 ° C. It is found that the syrup obtained from fructose and glucose is perfectly clear, transparent, colorless, stable over several months. The conversion rate sucrose is 100%. HPLC chromatography reveals the presence of 100 to 120 ppm of HMF. The adsorbent zeolite is colored beige-brown.

Les exemples 3 et 4 démontrent qu'avec un temps de séjour compris entre 25 minutes et 40 minutes, on obtient, dans un réacteur discontinu, un conversion du saccharose de 95 à 100 % en glucose et fructose avec une pureté alimentaire. Les réactions des exemples ci-dessus peuvent être effectuées en continu dans les installations représentées aux figures avec des temps de séjour encore plus faibles.Examples 3 and 4 demonstrate that with a residence time between 25 minutes and 40 minutes, we obtains, in a batch reactor, a conversion of sucrose 95 to 100% glucose and fructose with a food purity. The reactions of the above examples can be performed continuously in facilities represented in the figures with still residence times weaker.

EXEMPLE 5 : EXAMPLE 5 :

On prépare un sirop acqueux d'amidon comprenant 500 g/l d'amidon, et plus de 20 g/l de zéolithe Y sous forme protonique dont le rapport Si/Al est de 15 (Faujasite) comme indiqué dans l'exemple 1.We prepare an aqueous starch syrup comprising 500 g / l of starch, and more than 20 g / l of zeolite Y in protonic form with an Si / Al ratio of 15 (Faujasite) as shown in Example 1.

La température de réaction est de 150 °c et le temps de réaction est de 60 minutes.The reaction temperature is 150 ° C. and the reaction time is 60 minutes.

On constate que la solution finale est une solution de sucres simples, (le taux de conversion en sucres simples est de 100 %) dont plus de 85 % de glucose et moins de 15% de maltose. Le maltose est un diholoside composé de deux unités de D glucose. C'est donc un précurseur du glucose qui peut être recyclé dans la solution de départ d'hydrolyse.We see that the final solution is a solution of simple sugars, (the conversion rate into simple sugars is 100%) of which more than 85% glucose and less than 15% maltose. Maltose is a diholoside composed of two units of D glucose. So it's a glucose precursor which can be recycled into the hydrolysis starting solution.

L'invention est aussi applicable à l'hydrolyse d'autre sucres composés en sucres simples.The invention is also applicable to hydrolysis of other sugars composed into simple sugars.

Claims (28)

  1. A process for the production of a solution of simple sugars from a liquid solution comprising at least one compound sugar, by hydrolysis in the presence of a heterogenous catalysis system, characterized by the fact that the hydrolysis/reaction medium is placed in contact with at least one microporous solid adsorbent compound selected so as to be compatible with the conditions of hydrolysis and catalysis and so as to selectively adsorb the residues or by-products other than the simple sugars under the reaction conditions of the hydrolysis.
  2. A process according to Claim 1 for the production of a solution comprising at least one hexose from a solution comprising at least hydrolyzable holoside in at least one hexose, characterized by the fact that as solid microporous adsorbent compound there is used a molecular sieve capable of adsorbing the molecules of hydroxymethylfurfural and/or colored by-products.
  3. A process according to one of Claims 1 and 2, characterized by the fact that the catalysis system and the sclid microporous adsorbent compound or compounds are selected in such a manner that:
    the hydrolysis reaction takes place with a conversion greater than 99% of the compound sugar or sugars and with a selectivity for simple sugars of more than 80%;
    the solid microporous adsorbent compound or compounds are capable of adsorbing the entire quantity of residues or by-products during the time of the reaction.
  4. A process according to one of Claims 1 to 3, characterized by the fact that the solid microporous adsorbent compound used is a tectosilicate or a clay.
  5. A process according to Claim 4, characterized by the fact that the solid microporous adsorbent compound is an adsorbent zeolite.
  6. A process according to Claim 5, characterized by the fact that the adsorbent zeolite is in ammonium form.
  7. A process according to one of Claims 1 to 6, characterized by the fact that a catalyst which also acts as solid microporous adsorbent compound is used.
  8. A process according to one of Claims 1 to 6, characterized by the fact that a microporous solid adsorbent compound different from the heterogenous catalyst is used.
  9. A process according to Claim 8,
       characterized in that there is used a weight of solid microporous absorbent compound greater than the weight of heterogeneous catalyst, particularly of the order of twice the weight of the heterogeneous catalyst.
  10. A process according to one of Claims 1 to 9, characterized by the fact that the heterogenous catalyst and the operating conditions are so selected as to minimize the formation of hydroxymethylfurfural and/or of coloring by-products.
  11. A process according to one of Claims 1 to 10, characterized by the fact that a tectosilicate or a clay in proton form is used as heterogenous catalyst.
  12. A process according to Claim 11, characterized by the fact that a zeolite in proton form with an Si/Al ratio of between 2 and 100 is used as acidic heterogenous catalyst.
  13. A process according to Claim 11, characterized by the fact that a faujasite Y in H form is used.
  14. A process according to one of Claims 12 or 13, characterized by the fact that a zeolite in proton form having an Si/Al ratio of between 10 and 20, and in particular of about i5, is used.
  15. A process according to one of Claims 1 to 14, characterized by the fact that the hydrolysis is carried out continuously in a multi-contact reactor, in particular a pulsed reaction/extraction column (1), and that the solid micro-porous adsorbent compound or compounds are circulated in countercurrent to the reaction medium.
  16. A process according to Claim 15, characterized by the fact that a preformed solid compound, in particular in extruded form, circulating in countercurrent, is used as solid microporous adsorbent compound.
  17. A process according to one of Claims 15 or 16, characterized by the fact that the solid microporous adsorbent compound is regenerated after its passage through the reactor (1) and by the fact that it is recycled to the inlet of the reactor.
  18. A process according to one of Claims 15 to 17, characterized by the fact that a powdered heterogenous catalyst is used and that this catalyst is circulated as a dispersion in co-current with the reaction medium.
  19. A process according to Claim 8 and one of Claims 15 to 18, characterized by the fact that a heterogenous catalyst and the solid adsorbent compound or compounds are mixed, and that the mixture is circulated in countercurrent to the reaction medium.
  20. A process according to one of Claims 1 to 19, characterized by the fact that a starting solution is used in which the weicht propcrtion of the solids in the compound sugar or sugars is greater than 60%, and in particular about 65% to 70%.
  21. A process according to one of Claims 1 to 20, characterized by the fact that the heterogenous catalyst is used in an amount of 1% to 20%, and in particular about 7.5%, by weight of the solids content of the starting solution.
  22. A process according to one of Claims 1 to 21, characterized by the fact that the solid microporous adsorbent compound is used in an amount of 2% to 40%, and in particular about 15%, by weight of the solids content of the starting solution.
  23. A process according to one of Claims 1 to 22, characterized by the fact that the reaction is carried out at a temperature of between 60°C and 150°C, and in particular about 80°C to 85°C, and that solid microporous adsorbent compounds and catalysts compatible with this temperature are used.
  24. A process according to Claim 14 and one of claims 1 to 23, characterized by the fact that the sojourn time of the reaction mixture in the reactor (1) is less than 2 hours, and in particular between 0.5 and 1 hour.
  25. A process according to one of Claims 1 to 24, characterized by the fact that the starting solution comprises at least one cside selected from the group consisting of inulin, starch, saccharose, maltose, cellobiose and lactose.
  26. An installation for practicing a process according to one of Claims 1 to 25, characterized in that it comprises at least one reactor (1), and means to place a hydrolysis reaction medium of a liquid solution comprising at least one compound sugar in contact with a heterogeneous hydrolysis catalyst system and at least one solid microporous absorbent compound.
  27. An installation according to Claim 26, characterized in that it comprises at least one pulsed column (1) and means to cause to circulate simultaneously continuously in the pulsed column (1) the liquid hydrolysis reaction medium, the heterogeneous hydrolysis catalyst system and the solid microporous absorbent compound or compounds.
  28. An installation according to Claim 27, characterized in that it comprises means to cause to circulate the solid microporous absorbent compound or compounds countercurrent to the liquid hydrolysis reaction medium.
EP95941780A 1994-12-07 1995-12-06 Method and apparatus for making a pure simple sugar solution by hydrolysing at least one compound sugar in the presence of a selective adsorbent Expired - Lifetime EP0797686B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9414961A FR2727980A1 (en) 1994-12-07 1994-12-07 PROCESS FOR MANUFACTURING A PURE SOLUTION OF SINGLE SUGARS BY HYDROLYSIS OF AT LEAST ONE COMPOUND SUGAR IN THE PRESENCE OF A SELECTIVE ADSORBANT
FR9414961 1994-12-07
PCT/FR1995/001615 WO1996017962A1 (en) 1994-12-07 1995-12-06 Method and apparatus for making a pure simple sugar solution by hydrolysing at least one compound sugar in the presence of a selective adsorbent

Publications (2)

Publication Number Publication Date
EP0797686A1 EP0797686A1 (en) 1997-10-01
EP0797686B1 true EP0797686B1 (en) 1999-04-14

Family

ID=9469738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95941780A Expired - Lifetime EP0797686B1 (en) 1994-12-07 1995-12-06 Method and apparatus for making a pure simple sugar solution by hydrolysing at least one compound sugar in the presence of a selective adsorbent

Country Status (8)

Country Link
US (1) US5888306A (en)
EP (1) EP0797686B1 (en)
AT (1) ATE178947T1 (en)
AU (1) AU4308796A (en)
CA (1) CA2207061A1 (en)
DE (1) DE69509121D1 (en)
FR (1) FR2727980A1 (en)
WO (1) WO1996017962A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1001956C2 (en) * 1995-12-21 1997-06-24 Suiker Unie Process for the preparation of purified inulin.
ITMI20031679A1 (en) * 2003-08-29 2005-02-28 Opocrin Spa PROCESS FOR THE PRODUCTION OF LOW WEIGHT EPARINES
WO2008097878A2 (en) * 2007-02-05 2008-08-14 Tate & Lyle Ingredients Americas, Inc. Improved sucrose inversion process
CN111511753B (en) * 2017-11-28 2024-04-26 蓝树科技有限公司 Method and system for producing low sugar beverages

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US118523A (en) * 1871-08-29 Improvement in the preparation of fermentable saccharine matters
GB240253A (en) * 1924-07-09 1925-10-01 Karel Urban Improvements in the purification of sugar solutions
US2332758A (en) * 1941-05-28 1943-10-26 American Maize Prod Co Method of making starch conversion products
DE1136676B (en) * 1957-03-21 1962-09-20 Usines De Melle S A Process for the continuous implementation of catalytic reactions in the liquid phase
FR1526029A (en) * 1967-03-09 1968-05-24 Process for obtaining a concentrated syrup, for and colorless of sucrose and invert suere, more particularly from low sugar products
US3963788A (en) * 1974-08-20 1976-06-15 Kruse Walter M Polyhydric alcohol production using ruthenium zeolite catalyst
GB1516435A (en) * 1976-06-08 1978-07-05 Toray Industries Separating fructose from a mixture of sugars
US4746368A (en) * 1986-02-28 1988-05-24 Akzo America Inc. Decolorization of aqueous saccharide solutions and sorbents therefor
FI88933C (en) * 1990-10-15 1993-07-26 Xyrofin Oy Procedure for the production of glucose and fructose by sucrose
FR2697023B1 (en) * 1992-10-16 1994-12-30 Roquette Freres Low-calorie glucose soluble polymer and process for the preparation of this polymer.

Also Published As

Publication number Publication date
DE69509121D1 (en) 1999-05-20
FR2727980A1 (en) 1996-06-14
US5888306A (en) 1999-03-30
AU4308796A (en) 1996-06-26
WO1996017962A1 (en) 1996-06-13
ATE178947T1 (en) 1999-04-15
EP0797686A1 (en) 1997-10-01
MX9704209A (en) 1997-09-30
CA2207061A1 (en) 1996-06-13

Similar Documents

Publication Publication Date Title
EP1864712B1 (en) Process of preparation of agglomerated zeolite adsorbents and uses thereof
EP2237877B1 (en) Agglomerated zeolitic absorbents, method of preparing them and uses thereof
EP2043775B1 (en) Agglomerated zeolitic adsorbents, their method of preparation and their uses
EP2237878A2 (en) Agglomerated zeolitic absorbents, method of preparing them and uses thereof
EP2624709B1 (en) Method for manufacturing high-purity sorbitol syrups from sucrose and uses thereof
EP0797686B1 (en) Method and apparatus for making a pure simple sugar solution by hydrolysing at least one compound sugar in the presence of a selective adsorbent
EP3564250B1 (en) Method for purifying allulose conversion reaction product
EP0796268B1 (en) Method for continuously preparing a ketose solution by isomerising aldose, and apparatus therefor
EP0580490B1 (en) Method of preparing mannitol
EP0796255A1 (en) Method for making hydroxymethylfurfural from aldohexose
KR102302447B1 (en) Method for purifying sugar-containing solution using acrylic-based ion exchange resin and styrene-based ion exchange resin
WO1996017679A1 (en) Method and apparatus for performing a continuous reaction with at least one liquid phase and at least one solid catalyst in a pulsed column
BE1000056A7 (en) Sorbent polymer for colloidal stabilization and sensory beverage and method for manufacturing.
Borowiak et al. The Use of Natural Mineral Sorbents (Zeolite, Bentonite, Halloysite) for Decolorization of Corn-sugar Beet Molasse's Vinasse
WO2020178512A1 (en) Method for bleaching sugar with effluent recycling
MXPA97004209A (en) Method and apparatus for the development of a solution for simple azeres through the hydrolysis of at least a composite azercar, in the presence of a selected adsorbent
FR2741344A1 (en) Selective production of hydroxymethyl-furfural
FR2741343A1 (en) Selective production of bis-2,5-hydroxymethyl-furan
FR2475036A1 (en) PROCESS FOR IMPROVING THE QUALITY OF SATURATED ALIPHATIC MONOCARBOXYLIC ACIDS FROM 7 TO 9 CARBON ATOMS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971215

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990414

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990414

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990414

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990414

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990414

REF Corresponds to:

Ref document number: 178947

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69509121

Country of ref document: DE

Date of ref document: 19990520

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EPISUCRES S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990714

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990715

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EPISUCRES S.A.

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EPISUCRES S.A.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: AGRICHIMIE

Effective date: 19991231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST