EP0790660A2 - Directional coupler for high frequency range - Google Patents
Directional coupler for high frequency range Download PDFInfo
- Publication number
- EP0790660A2 EP0790660A2 EP97101774A EP97101774A EP0790660A2 EP 0790660 A2 EP0790660 A2 EP 0790660A2 EP 97101774 A EP97101774 A EP 97101774A EP 97101774 A EP97101774 A EP 97101774A EP 0790660 A2 EP0790660 A2 EP 0790660A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- coupling
- path
- directional coupler
- coupler according
- connection points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
- H01P5/184—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
Definitions
- the invention is based on a directional coupler for the high-frequency range according to the preamble of patent claim 1.
- Couplers of this type are generally constructed as discrete components and are therefore spatially large and inexpensive, in particular in the case of industrial series production of HF arrangements, which must all have the same electrical properties and which must be spatially small and mechanically robust.
- Such RF arrangements are, for example, transmit / receive modules (T / R modules) for phase-controlled antennas.
- T / R modules transmit / receive modules
- Such an antenna requires a large number, for example a few thousand, of T / R modules which have to be arranged in close physical proximity, for example at a grid spacing of approximately ⁇ / 4, where ⁇ is the transmission / reception frequency, for example a few GHz. It can be seen that such an arrangement must be produced and adjusted electrically with high precision if the antenna is required to operate with high precision.
- each T / R module for example, this requires at least one coupler, which is inserted into the circuit arrangement at a predeterminable measuring point, in order, for example, to couple out an RF signal for test, calibration and / or measuring purposes.
- suitable couplers for this must also be highly precise and, moreover, must have predeterminable tolerances of the electrical properties that are as small as possible. In the case of the couplers mentioned at the outset, however, this can at most be achieved with a high integration and adjustment effort, which is inexpensive, particularly in the case of industrial series production.
- couplers that can be produced entirely in integrated technology.
- Such a coupler contains a (main) waveguide to which a further waveguide, for example a ⁇ / 4 waveguide, is coupled, so that a line coupling is created.
- Such couplers generally require additional passive components (reactances) in order to ensure that RF signals are coupled in or out correctly.
- the invention is therefore based on the object of specifying a generic coupler which can be produced inexpensively and reliably in a reproducible manner in integrated line technology with predeterminable tolerances of the electrical properties, in particular in an industrial series production.
- a first advantage of the invention is that the coupler can be produced entirely in a line technology, for example microstrip technology, which is suitable for the wavelength (frequency) of the signals carried suitable is. No discrete components are required that would otherwise have to be inserted into the circuit arrangement, for example by means of soldered, adhesive or bonded connections. Advantageously, there are no electrical impact points otherwise caused, at which disturbing reflections of the guided wave could occur.
- a second advantage is that almost loss-free couplers can be produced, that is to say that almost no signal occurs at the isolation path (isolation gate), which signal is otherwise converted into (loss) heat with a corresponding terminating resistor (RF sump).
- a negligible reflection advantageously occurs at the entrance gate.
- a third advantage is that broadband couplers can also be produced with high directional sharpness (directional attenuation) and high coupling attenuation.
- a fourth advantage is that there is no line coupling, so that no disruptive dispersion effects can occur.
- the exemplary embodiment relates to a coupler in the highest frequency range (X-band, that is to say 8 GHz to 12 GHz) for decoupling an HF signal component, in particular for test, calibration and measurement purposes.
- X-band that is to say 8 GHz to 12 GHz
- the coupler is completely constructed in a microstrip line technology suitable for this frequency range.
- the coupler advantageously has a structure which is completely symmetrical with respect to the gates P1 to P4, so that the terms which characterize a coupler, such as, for example, through path, coupling path, entrance gate, insulated gate, can be selected.
- This allows, for example, flexible adaptation to other circuit and / or layout requirements with the same so-called circuit layout of the coupler.
- each of the four gates can be used as an isolated gate.
- the gate P1 is the input gate into which an RF input signal can be fed.
- the path between gate P1 and gate P2 (exit gate) is called the through path.
- the path between the gates P3 and P4 is called the coupling path. Since a so-called forward coupling is used in the coupler, the signal (measurement signal) to be coupled out arises at the (coupling) gate P3, which will be explained in more detail below.
- the gate P4 is the insulated gate, at which at most a negligible signal component emerges, which, if necessary, can also be supplied to an RF terminating resistor (RF sump).
- Through and coupling paths are microstrip waveguides.
- the coupling between these takes place by means of a predeterminable number of coupling capacitors C1 to C3, which can advantageously also be produced in microstrip line technology, for example by a precisely definable line break (line gap) of a corresponding waveguide.
- both the through and the coupling path consist of a series connection of in each case an input conductor LE, which in each case adjoins a gate P1 to P4, and a predeterminable number of ⁇ / 4 waveguides L4, which have the electrical length ⁇ / 4 have, where ⁇ means the wavelength of the guided wave.
- the coupling capacitors C1 to C3 are arranged between the paths at the connection points VP which arise between the mentioned line sections LE, L4, L4, LE and which are formed in line technology, for example, as so-called T-pieces.
- this line wave can propagate in the coupling path in two opposite directions, namely in the desired forward direction represented by reference number 2, that is to say from the isolated gate P4 in the direction of the (coupling) gate P3 (i.e. parallel to the direction of propagation of the am Gate P1 incident line shaft) or in the opposite, undesirable backward direction, which is represented by reference numeral 1, that is, in front of the (coupling) gate P3 in the direction of the isolated gate P4.
- the line wave guided in the coupling path in the forward direction 2 in turn excites the line waves in the through path. Due to the symmetrical structure, these can also advantageously be superimposed only constructively in the direction of propagation of the incident line shaft, that is to say only emerge at the (output) gate P2. At most, a negligible signal component can also emerge at the (input) gate P1. This is generally referred to as the reflected portion.
- the relative (frequency) bandwidth of the coupler can be set by the number of stages. There is one Stage, which is outlined in dashed lines in the figure, consists of a ⁇ / 4 line section (in each path) and an associated coupling capacitor. The relative bandwidth increases as the number of stages increases.
- the directional sharpness denotes the ratio of the power coupled out at the (coupling) gate P3 to the power that can be coupled out at the isolated gate P4.
- a coupler can be produced, for example, in microstrip technology which has a relative bandwidth in the X-band (8 GHz to 12 GHz) of approximately 20% and a directional sharpness of greater than 30 dB with a coupling attenuation of approximately 30 dB.
- Couplers of this type are therefore advantageously integrated in current high frequency technology Circuit arrangements, for example so-called MICs (Microwave Integrated Circuits) and MMICs (Monolithic Microwave Integrated Circuits) can be implemented.
- additional discrete components eg coaxial couplers
- coaxial couplers e.g coaxial couplers
- such couplers are mechanically robust (insensitive to shock loads), can be produced reliably and reproducibly, that is to say within a predeterminable tolerance range of the electrical properties, in particular in an industrial series production.
- the invention is not limited to the example described, but can be applied analogously to others.
- a person skilled in the art is familiar with transposing the arrangement shown in the figure using network theory, for example, in almost every frequency range.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Microwave Amplifiers (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
Die Erfindung geht aus von einem Richtkoppler für den Hochfrequenzbereich nach dem Oberbegriff des Patentanspruchs 1.The invention is based on a directional coupler for the high-frequency range according to the preamble of patent claim 1.
In der Hochfrequenztechnologie, insbesondere der Radartechnologie, werden Richtkoppler in verschiedenen Anwendungen verwendet, beispielsweise zum Auskoppeln eines Hochfrequenzsignals (HF-Signal) oder zum Einkoppeln eines HF-Kalibriersignals in eine HF-Schaltungsanordnung. Für derartige Anwendungen sind Richtkoppler bekannt, die in unterschiedlicher Technologie ausgeführt sind, beispielsweise in
- sogenannter drop-in-Technik oder
- als Triplate-Anordnungen oder
- als Hohlleiterkoppler oder
- als koaxiale Koppler.
- so-called drop-in technology or
- as triplate arrangements or
- as a waveguide coupler or
- as a coaxial coupler.
Derartige Koppler sind im allgemeinen als diskrete Bauelemente aufgebaut und daher räumlich groß und kostenungünstig, insbesondere bei einer industriellen Serienfertigung von HF-Anordnungen, die alle gleiche elektrische Eigenschaften besitzen müssen und die räumlich klein und mechanisch robust sein müssen. Solche HF-Anordnungen sind beispielsweise Sende-/Empfangsmodule (T/R-Module) für phasengesteuerte Antennen. Eine solche Antenne benötigt eine Vielzahl, beispielsweise einige Tausend, von T/R-Modulen, die räumlich eng benachbart angeordnet werden müssen, beispielsweise in einem Rasterabstand von ungefähr λ/4, wobei λ die Sende-/Empfangsfrequenz, beispielsweise einige GHz, bedeutet. Es ist ersichtlich, daß eine solche Anordnung elektrisch hochgenau hergestellt und abgeglichen werden muß, wenn ein hochgenaues Arbeiten der Antenne verlangt wird. Dafür ist beispielsweise bei jedem T/R-Modul mindestens ein Koppler, der an einem vorgebbaren Meßpunkt in die Schaltungsanordnung eingefügt ist, notwendig, um beispielsweise ein HF-Signal für Test-, Kalibrations- und/oder Meßzwecke auszukoppeln. Es ist ersichtlich, daß dafür geeignete Koppler ebenfalls hochgenau sein müssen und außerdem untereinander möglichst geringe vorgebbare Toleranzen der elektrischen Eigenschaften besitzen müssen. Dieses ist bei den eingangs erwähnten Kopplern jedoch allenfalls mit einem hohen Integrations- sowie Abgleichaufwand erreichbar, welcher kostenungünstig ist, insbson-dere bei einer industriellen Serienfertigung.Couplers of this type are generally constructed as discrete components and are therefore spatially large and inexpensive, in particular in the case of industrial series production of HF arrangements, which must all have the same electrical properties and which must be spatially small and mechanically robust. Such RF arrangements are, for example, transmit / receive modules (T / R modules) for phase-controlled antennas. Such an antenna requires a large number, for example a few thousand, of T / R modules which have to be arranged in close physical proximity, for example at a grid spacing of approximately λ / 4, where λ is the transmission / reception frequency, for example a few GHz. It can be seen that such an arrangement must be produced and adjusted electrically with high precision if the antenna is required to operate with high precision. For each T / R module, for example, this requires at least one coupler, which is inserted into the circuit arrangement at a predeterminable measuring point, in order, for example, to couple out an RF signal for test, calibration and / or measuring purposes. It can be seen that suitable couplers for this must also be highly precise and, moreover, must have predeterminable tolerances of the electrical properties that are as small as possible. In the case of the couplers mentioned at the outset, however, this can at most be achieved with a high integration and adjustment effort, which is inexpensive, particularly in the case of industrial series production.
Zur Vermeidung solcher Nachteile ist es naheliegend, Koppler zu verwenden, die vollständig in integrierter Technologie herstellbar sind. Ein solcher Koppler enthält einen (Haupt-)Wellenleiter, an den ein weiterer Wellenleiter, beispielsweise ein λ/4-Wellenleiter, gekoppelt ist, so daß eine Leitungskopplung entsteht. Bei solchen Kopplern sind im allgemeinen weitere passive Bauelemente (Reaktanzen) nötig, um eine einwandfreie Ein- oder Auskopplung von HF-Signalen zu bewirken.To avoid such disadvantages, it is obvious to use couplers that can be produced entirely in integrated technology. Such a coupler contains a (main) waveguide to which a further waveguide, for example a λ / 4 waveguide, is coupled, so that a line coupling is created. Such couplers generally require additional passive components (reactances) in order to ensure that RF signals are coupled in or out correctly.
Derartige Koppler sind daher in nachteiliger Weise ebenfalls technisch aufwendig und daher kostenungünstig, insbesondere für eine industrielle Serienfertigung.Such couplers are therefore also disadvantageously technically complex and therefore inexpensive, especially for industrial series production.
Der Erfindung liegt daher die Aufgabe zugrunde, einen gattungsgemäßen Koppler anzugeben, der bei vorgebbaren Toleranzen der elektrischen Eigenschaften in reproduzierbarer Weise in integrierter Leitungstechnologie kostengünstig und zuverlässig herstellbar ist, insbesondere in einer industriellen Serienfertigung.The invention is therefore based on the object of specifying a generic coupler which can be produced inexpensively and reliably in a reproducible manner in integrated line technology with predeterminable tolerances of the electrical properties, in particular in an industrial series production.
Diese Aufgabe wird gelöst durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale.This object is achieved by the features specified in the characterizing part of patent claim 1.
Voreilhafte Ausgestaltungen und/oder Weiterbildungen der Erfindung sind den weiteren Ansprüchen entnehmbar.Advantageous refinements and / or developments of the invention can be found in the further claims.
Ein erster Vorteil der Erfindung besteht darin, daß der Koppler vollständig in einer Leitungstechnologie, beispielsweise Microstrip-Technologie, herstellbar ist, welche für die Wellenlänge (Frequenz) der geführten Signale geeignet ist. Es werden keine diskreten Bauelemente benötigt, die ansonsten in die Schaltungsanordnung eingefügt werden müßten, beispielsweise durch Löt-, Klebe- oder Bondverbindungen. Es entstehen vorteilhafterweise keine ansonsten dadurch verursachte elektrische Stoßstellen, an denen störende Reflexionen der geführten Welle auftreten könnten.A first advantage of the invention is that the coupler can be produced entirely in a line technology, for example microstrip technology, which is suitable for the wavelength (frequency) of the signals carried suitable is. No discrete components are required that would otherwise have to be inserted into the circuit arrangement, for example by means of soldered, adhesive or bonded connections. Advantageously, there are no electrical impact points otherwise caused, at which disturbing reflections of the guided wave could occur.
Ein zweiter Vorteil besteht darin, daß nahezu verlustfreie Koppler herstellbar sind, das heißt, an dem Isolationspfad (Isolationstor) tritt nahezu kein Signal auf, welches ansonsten mit einem entsprechenden Abschlußwiderstand (HF-Sumpf) in (Verlust-)Wärme umgewandelt wird. An dem Eingangstor tritt vorteilhafterweise eine vernachlässigbare Reflexion auf.A second advantage is that almost loss-free couplers can be produced, that is to say that almost no signal occurs at the isolation path (isolation gate), which signal is otherwise converted into (loss) heat with a corresponding terminating resistor (RF sump). A negligible reflection advantageously occurs at the entrance gate.
Ein dritter Vorteil besteht darin, daß bei hoher Richtschärfe (Richtdämpfung) und hoher Koppeldämpfung auch breitbandige Koppler herstellbar sind.A third advantage is that broadband couplers can also be produced with high directional sharpness (directional attenuation) and high coupling attenuation.
Ein vierter Vorteil besteht darin, daß keine Leitungskopplung vorhanden ist, so daß keine störenden Dispersionseffekte auftreten können.A fourth advantage is that there is no line coupling, so that no disruptive dispersion effects can occur.
Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung.Further advantages result from the description below.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert unter Bezugnahme auf eine schematisch dargestellte Figur.The invention is explained in more detail below using an exemplary embodiment with reference to a schematically illustrated figure.
Das Ausführungsbeispiel bezieht sich auf einen Koppler im Höchstfrequenzbereich (X-Band, das heißt 8 GHz bis 12 GHz) zum Auskoppeln eines HF-Signalanteiles insbesondere für Test-, Kalibrations- sowie Meßzecke.The exemplary embodiment relates to a coupler in the highest frequency range (X-band, that is to say 8 GHz to 12 GHz) for decoupling an HF signal component, in particular for test, calibration and measurement purposes.
Der Koppler ist vollständig in einer für diesen Frequenzbereich geeigneten Microstrip-Leitungstechnologie aufgebaut. Der Koppler besitzt vorteilhafterweise einen, bezüglich der Tore P1 bis P4, vollständig symmetrischen, Aufbau, so daß die einen Koppler kennzeichnenden Begriffe, wie beispielsweise Durchgangspfad, Koppelpfad, Eingangstor, isoliertes Tor, wählbar sind. Dadurch ist beispielsweise mit demselben sogenannten Schaltungs-Layout des Kopplers eine flexible Anpassung an sonstige Schaltungs- und /oder Layoutanforderungen möglich. Beispielsweise kann jedes der vier Tore als isoliertes Tor verwendet werden.The coupler is completely constructed in a microstrip line technology suitable for this frequency range. The coupler advantageously has a structure which is completely symmetrical with respect to the gates P1 to P4, so that the terms which characterize a coupler, such as, for example, through path, coupling path, entrance gate, insulated gate, can be selected. This allows, for example, flexible adaptation to other circuit and / or layout requirements with the same so-called circuit layout of the coupler. For example, each of the four gates can be used as an isolated gate.
Bei dem dargestellten Beispiel wird angenommen, daß das Tor P1 das Eingangstor ist, in das ein HF-Eingangssignal eingespeist werden kann. Der zwischen dem Tor P1 und dem Tor P2 (Ausgangstor) vorhandene Pfad wird als Durchgangspfad bezeichnet. Der zwischen den Toren P3 und P4 vorhandene Pfad wird als Koppelpfad bezeichnet. Da bei dem Koppler eine sogenannte Vorwärtskopplung verwendet wird, entsteht das auszukoppelnde Signal (Meßsignal) an dem (Koppel-)Tor P3, was nachfolgend noch näher erläutert wird. Das Tor P4 ist das isolierte Tor, an dem allenfalls ein vernachlässigbarer Signalanteil austritt, der bedarfsweise zusätzlich einem HF-Abschlußwiderstand (HF-Sumpf) zugeführt werden kann. Durchgangs- und Koppelpfad sind Microstrip-Wellenleiter. Die Kopplung zwischen diesen erfolgt mittels einer vorgebbaren Anzahl von Koppelkondensatoren C1 bis C3, die vorteilhafterweise ebenfalls in Microstrip-Leitungstechnologle herstellbar sind, beispielsweise durch eine genau vorgebbare Leitungsunterbrechung (Leitungslücke) eines entsprechenden Wellenleiters.In the example shown it is assumed that the gate P1 is the input gate into which an RF input signal can be fed. The path between gate P1 and gate P2 (exit gate) is called the through path. The path between the gates P3 and P4 is called the coupling path. Since a so-called forward coupling is used in the coupler, the signal (measurement signal) to be coupled out arises at the (coupling) gate P3, which will be explained in more detail below. The gate P4 is the insulated gate, at which at most a negligible signal component emerges, which, if necessary, can also be supplied to an RF terminating resistor (RF sump). Through and coupling paths are microstrip waveguides. The coupling between these takes place by means of a predeterminable number of coupling capacitors C1 to C3, which can advantageously also be produced in microstrip line technology, for example by a precisely definable line break (line gap) of a corresponding waveguide.
Entsprechend der Figur besteht sowohl der Durchgangs- als auch der Koppelpfad aus einer Reihenschaltung aus jeweils einem Eingangsleiter LE, der jeweils an ein Tor P1 bis P4 angrenzt, und einer vorgebbaren Anzahl von λ/4-Wellenleitern L4, welche die elektrische Länge λ/4 besitzen, wobei λ die Wellenlänge der geführten Welle bedeutet. An den zwischen den erwähnten Leitungsbschnitten LE, L4, L4, LE entstehenden Verbindungspunkten VP, die in Leitungstechnologie beispielsweise als sogenannte T-Stücke ausgebildet werden, sind die Koppelkondensatoren C1 bis C3 zwischen den Pfaden angeordnet.According to the figure, both the through and the coupling path consist of a series connection of in each case an input conductor LE, which in each case adjoins a gate P1 to P4, and a predeterminable number of λ / 4 waveguides L4, which have the electrical length λ / 4 have, where λ means the wavelength of the guided wave. The coupling capacitors C1 to C3 are arranged between the paths at the connection points VP which arise between the mentioned line sections LE, L4, L4, LE and which are formed in line technology, for example, as so-called T-pieces.
Wird nun in das Eingangstor P1 ein HF-Signal (einfallende Leitungswelle) eingekoppelt, so wird dieses durch den Durchgangspfad zum Ausgangstor P2 geleitet. Außerdem erfolgt über die Koppelkondensatoren C1 bis C3 eine Anregung einer Leitungswelle in dem Koppelpfad. Diese Leitungswelle kann sich in dem Koppelpfad prinzipiell in zwei entgegengesetzten Richtungen ausbreiten, nämlich in der mit dem Bezugszeichen 2 dargestellten, erwünschten Vorwärtsrichtung, das heißt von dem isolierten Tor P4 in Richtung des (Koppel-)Tores P3 (das heißt parallel zur Ausbreitungsrichtung der am Tor P1 einfallenden Leitungswelle) oder in der dazu entgegengesetzten, unerwünschten Rückwärtsrichtung, die mit dem Bezugszeichen 1 dargestellt ist, das heißt vor dem (Koppel-)Tor P3 in Richtung des isolierten Tores P4. Aufgrund der beschriebenen Anordnung wird nun erreicht, daß sich alle im Koppelpfad in Vorwärtsrichtung 2 ausbreitenden Leitungswellen vorteilhafterweise konstruktiv überlagern, das heißt, zwischen diesen besteht im wesentlichen eine Phasendifferenz von 0°. Dagegen besteht zwischen den über die Koppelkondensatoren C1 bis C3 eingekoppelten Leitungswellen, die sich in Rückwärtsrichtung 1 ausbreiten, immer eine Phasendifferenz von im wesentlichen 180°, das heißt, es entsteht eine destruktive Überlagerung. Die in Rückwärtsrichtung 1 laufenden Leitungswellen löschen sich (durch Interferenz) also gegenseitig aus, so daß an dein isolierten Tor P4 allenfalls ein vernachlässigbarer Signalanteil auftritt.If an RF signal (incoming line wave) is now coupled into the input gate P1, this is passed through the through path to the output gate P2. In addition, a coupling wave is excited in the coupling path via the coupling capacitors C1 to C3. In principle, this line wave can propagate in the coupling path in two opposite directions, namely in the desired forward direction represented by reference number 2, that is to say from the isolated gate P4 in the direction of the (coupling) gate P3 (i.e. parallel to the direction of propagation of the am Gate P1 incident line shaft) or in the opposite, undesirable backward direction, which is represented by reference numeral 1, that is, in front of the (coupling) gate P3 in the direction of the isolated gate P4. Because of the arrangement described will now achieved that all line waves propagating in the coupling path in the forward direction 2 advantageously overlap constructively, that is, there is essentially a phase difference of 0 ° between them. In contrast, there is always a phase difference of essentially 180 ° between the line waves coupled in via the coupling capacitors C1 to C3, which propagate in the reverse direction 1, that is to say a destructive superimposition occurs. The line waves running in the reverse direction 1 thus cancel each other out (by interference), so that at most an insignificant signal component occurs at your isolated gate P4.
Aufgrund des beschriebenen symmetrischen Aufbaus des Kopplers ist es ersichtlich, daß durch die im Koppelpfad in Vorwärtsrlchtung 2 geführte Leitungswelle von dieser wiederum Leitungswellen im Durchgangspfad angeregt werden. Diese können sich nun aufgrund des symmetrischen Aufbaus ebenfalls vorteihafterweise nur konstruktiv in der Ausbreitungsrichtung der einfallenden Leitungswelle überlagern, das heißt, nur an dem (Ausgangs-)Tor P2 austreten. An dem (Eingangs-)Tor P1 kann ebenfalls allenfalls ein vernachlässigbarer Signalanteil austreten. Dieser wird im allgemeinen als reflektierter Anteil bezeichnet.Due to the symmetrical structure of the coupler described, it can be seen that the line wave guided in the coupling path in the forward direction 2 in turn excites the line waves in the through path. Due to the symmetrical structure, these can also advantageously be superimposed only constructively in the direction of propagation of the incident line shaft, that is to say only emerge at the (output) gate P2. At most, a negligible signal component can also emerge at the (input) gate P1. This is generally referred to as the reflected portion.
Es ist ersichtlich, daß die maximal an dem (Koppel-)Tor P3 auskoppelbare Leistung, die in der Literatur auch durch die sogenannte Koppeldämpfung gekennzeichnet ist, von der Kapazität der Koppelkondensatoren C1 bis C3 abhängt.It can be seen that the maximum output that can be coupled out at the (coupling) gate P3, which is also characterized in the literature by the so-called coupling attenuation, depends on the capacitance of the coupling capacitors C1 to C3.
Durch die Anzahl der Stufen des Kopplers ist dessen relative (Frequenz-)Bandbreite einstellbar. Dabei besteht eine Stufe, die in der Figur gestrichelt umrandet ist, aus jeweils einem λ/4-Leitungsstück (in jedem Pfad) und einem zugehörigen Koppelkondensator. Dabei wird die relative Bandbreite größer, wenn die Anzahl der Stufen vergrößert wird.The relative (frequency) bandwidth of the coupler can be set by the number of stages. There is one Stage, which is outlined in dashed lines in the figure, consists of a λ / 4 line section (in each path) and an associated coupling capacitor. The relative bandwidth increases as the number of stages increases.
Es ist ersichtlich, daß die Dimensionierung der dargestellten Bauelemente (Leitungsstücke LE, L4 sowie Koppelkondensatoren) unter anderem von dem Absolutwert der am (Koppel-)Tor P3 auszukoppelnden Leistung abhängt. Eine genaue Dimensionierung der Bauelemente ist möglich mittels der einem Fachmann geläufigen Netzwerkberechnung.It can be seen that the dimensioning of the components shown (line sections LE, L4 and coupling capacitors) depends, inter alia, on the absolute value of the power to be coupled out at the (coupling) gate P3. An exact dimensioning of the components is possible by means of the network calculation familiar to a person skilled in the art.
Derartige Koppler sind charakterisierbar durch die relativen Größen (relative) Bandbreite, Koppeldämpfung (Verhältnis der am (Koppel-)Tor P3 ausgekoppelten Leistung zu der am (Eingangs-)Tor P1 eingekoppleten Leistung) sowie Richtschärfe = 1/Richtdämpfung. Die Richtschärfe bezeichnet das Verhältnis der am (Koppel-)Tor P3 ausgekoppelten Leistung zu der am isolierten Tor P4 auskoppelbaren Leistung.Couplers of this type can be characterized by the relative sizes (relative) bandwidth, coupling attenuation (ratio of the power coupled out at the (coupling) gate P3 to the power coupled in at the (input) gate P1) and directional sharpness = 1 / directional attenuation. The directional sharpness denotes the ratio of the power coupled out at the (coupling) gate P3 to the power that can be coupled out at the isolated gate P4.
Mit der beschriebenen Anordnung, das heißt drei Koppelkondensatoren C1 bis C3 und jeweils zwei λ/4-Leitungen L4 in jedem Pfad, ist beispielsweise in Microstrip-Technologie ein Koppler herstellbar, der im X-Band (8 GHz bis 12 GHz) eine relative Bandbreite von ungefähr 20% besitzt sowie eine Richtschärfe von größer 30 dB bei einer Koppeldämpfung von ungefähr 30 dB.With the arrangement described, that is to say three coupling capacitors C1 to C3 and two λ / 4 lines L4 in each path, a coupler can be produced, for example, in microstrip technology which has a relative bandwidth in the X-band (8 GHz to 12 GHz) of approximately 20% and a directional sharpness of greater than 30 dB with a coupling attenuation of approximately 30 dB.
Derartige Koppler sind daher in vorteilhafter Weise in derzeit in der Höchstfrequenz-Technologie übliche integrierte Schaltungsanordnungen, beispielsweise sogenannte MICs (Microwave Integrated Circuits) sowie MMICs (Monolithic Microwave Integrated Circuits) implementierbar. Es werden also vorteilhafterweise ansonsten nötige zusätzliche diskrete Bauelemente (z.B koaxiale Koppler) vermieden und dadurch die Herstellungskosten erheblich gesenkt. Außerdem sind derartige Koppler mechanisch robust (unempfindlich gegenüber Schockbeanspruchung), zuverlässig und reproduzierbar herstellbar, das heißt, innerhalb eines vorgebbaren Toleranzbereiches der elekrischen Eigenschaften, insbesondere bei einer industriellen Serienfertigung.Couplers of this type are therefore advantageously integrated in current high frequency technology Circuit arrangements, for example so-called MICs (Microwave Integrated Circuits) and MMICs (Monolithic Microwave Integrated Circuits) can be implemented. Advantageously, additional discrete components (eg coaxial couplers) that are otherwise necessary are thus avoided and the manufacturing costs are thereby considerably reduced. In addition, such couplers are mechanically robust (insensitive to shock loads), can be produced reliably and reproducibly, that is to say within a predeterminable tolerance range of the electrical properties, in particular in an industrial series production.
Die Erfindung ist nicht auf das beschriebene Beispiel beschränkt, sondern sinngemäß auf weitere anwendbar. So ist es einem Fachmann geläufig, die in der Figur dargestellte Anordnung mittels der Netzwerktheorie beispielsweise in nahezu jedem Freuenzbereich zu transponieren.The invention is not limited to the example described, but can be applied analogously to others. For example, a person skilled in the art is familiar with transposing the arrangement shown in the figure using network theory, for example, in almost every frequency range.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19605569A DE19605569A1 (en) | 1996-02-15 | 1996-02-15 | Directional coupler for the high frequency range |
DE19605569 | 1996-02-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0790660A2 true EP0790660A2 (en) | 1997-08-20 |
EP0790660A3 EP0790660A3 (en) | 1998-06-03 |
Family
ID=7785461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97101774A Withdrawn EP0790660A3 (en) | 1996-02-15 | 1997-02-05 | Directional coupler for high frequency range |
Country Status (3)
Country | Link |
---|---|
US (1) | US5825260A (en) |
EP (1) | EP0790660A3 (en) |
DE (1) | DE19605569A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6150897A (en) * | 1997-03-31 | 2000-11-21 | Nippon Telegraph And Telephone Corporation | Balun circuit with a cancellation element in each coupled line |
US7705681B2 (en) | 2008-04-17 | 2010-04-27 | Infineon Technologies Ag | Apparatus for coupling at least one of a plurality of amplified input signals to an output terminal using a directional coupler |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704277B1 (en) | 1999-12-29 | 2004-03-09 | Intel Corporation | Testing for digital signaling |
DE50105629D1 (en) * | 2001-10-13 | 2005-04-21 | Marconi Comm Gmbh | Broadband microstrip directional coupler |
US20030093811A1 (en) * | 2001-11-13 | 2003-05-15 | General Instrument Corporation | Bandwidth directional coupler |
US7665063B1 (en) | 2004-05-26 | 2010-02-16 | Pegasystems, Inc. | Integration of declarative rule-based processing with procedural programming |
US8335704B2 (en) * | 2005-01-28 | 2012-12-18 | Pegasystems Inc. | Methods and apparatus for work management and routing |
US8924335B1 (en) | 2006-03-30 | 2014-12-30 | Pegasystems Inc. | Rule-based user interface conformance methods |
DE102007008753A1 (en) * | 2007-02-22 | 2008-08-28 | Rohde & Schwarz Gmbh & Co. Kg | load coupler |
US8250525B2 (en) | 2007-03-02 | 2012-08-21 | Pegasystems Inc. | Proactive performance management for multi-user enterprise software systems |
US7863998B2 (en) * | 2008-02-25 | 2011-01-04 | Broadcom Corporation | Method and system for processing signals via directional couplers embedded in an integrated circuit package |
BRPI0924050A2 (en) * | 2009-01-19 | 2016-06-21 | Sumitomo Electric Industries | directional coupler and wireless communication device that features the same |
US8843435B1 (en) | 2009-03-12 | 2014-09-23 | Pegasystems Inc. | Techniques for dynamic data processing |
US8468492B1 (en) | 2009-03-30 | 2013-06-18 | Pegasystems, Inc. | System and method for creation and modification of software applications |
US8880487B1 (en) | 2011-02-18 | 2014-11-04 | Pegasystems Inc. | Systems and methods for distributed rules processing |
US9195936B1 (en) | 2011-12-30 | 2015-11-24 | Pegasystems Inc. | System and method for updating or modifying an application without manual coding |
US10469396B2 (en) | 2014-10-10 | 2019-11-05 | Pegasystems, Inc. | Event processing with enhanced throughput |
US10698599B2 (en) | 2016-06-03 | 2020-06-30 | Pegasystems, Inc. | Connecting graphical shapes using gestures |
US10698647B2 (en) | 2016-07-11 | 2020-06-30 | Pegasystems Inc. | Selective sharing for collaborative application usage |
US11048488B2 (en) | 2018-08-14 | 2021-06-29 | Pegasystems, Inc. | Software code optimizer and method |
US11567945B1 (en) | 2020-08-27 | 2023-01-31 | Pegasystems Inc. | Customized digital content generation systems and methods |
CN112563711B (en) * | 2020-11-23 | 2021-07-27 | 杭州电子科技大学 | Rectangular patch-half-mode substrate integrated waveguide hybrid 90-degree directional coupler |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3012210A (en) * | 1959-06-04 | 1961-12-05 | Donald J Nigg | Directional couplers |
US5166690A (en) * | 1991-12-23 | 1992-11-24 | Raytheon Company | Array beamformer using unequal power couplers for plural beams |
FR2722032A1 (en) * | 1994-07-01 | 1996-01-05 | Thomson Consumer Electronics | Coupling device for microstrip line ring used in satellite broadcast reception |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3593208A (en) * | 1969-03-17 | 1971-07-13 | Bell Telephone Labor Inc | Microwave quadrature coupler having lumped-element capacitors |
US4011528A (en) * | 1975-07-14 | 1977-03-08 | Stanford Research Institute | Semi-lumped element coupler |
JPS6345901A (en) * | 1986-08-12 | 1988-02-26 | Fujitsu Ltd | Directiional coupler |
US4999593A (en) * | 1989-06-02 | 1991-03-12 | Motorola, Inc. | Capacitively compensated microstrip directional coupler |
JPH04280101A (en) * | 1991-03-07 | 1992-10-06 | Fujitsu Ltd | Directional coupler |
-
1996
- 1996-02-15 DE DE19605569A patent/DE19605569A1/en not_active Withdrawn
-
1997
- 1997-02-05 EP EP97101774A patent/EP0790660A3/en not_active Withdrawn
- 1997-02-18 US US08/801,418 patent/US5825260A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3012210A (en) * | 1959-06-04 | 1961-12-05 | Donald J Nigg | Directional couplers |
US5166690A (en) * | 1991-12-23 | 1992-11-24 | Raytheon Company | Array beamformer using unequal power couplers for plural beams |
FR2722032A1 (en) * | 1994-07-01 | 1996-01-05 | Thomson Consumer Electronics | Coupling device for microstrip line ring used in satellite broadcast reception |
Non-Patent Citations (2)
Title |
---|
S. TOYODA: "VARIABLE COUPLING DIRECTIONAL COUPLERS USING VARACTOR DIODES" 1982 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM-DIGEST, 15. - 17.Juni 1982, DALLAS (US), Seiten 419-421, XP002061019 * |
S.L. MARCH: "PHASE VELOCITY COMPENSATION IN PARALLEL-COUPLED MICROSTRIP" 1982 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM-DIGEST , 15. - 17.Juni 1982, DALLAS (US), Seiten 410-412, XP002060929 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6150897A (en) * | 1997-03-31 | 2000-11-21 | Nippon Telegraph And Telephone Corporation | Balun circuit with a cancellation element in each coupled line |
US7705681B2 (en) | 2008-04-17 | 2010-04-27 | Infineon Technologies Ag | Apparatus for coupling at least one of a plurality of amplified input signals to an output terminal using a directional coupler |
Also Published As
Publication number | Publication date |
---|---|
US5825260A (en) | 1998-10-20 |
EP0790660A3 (en) | 1998-06-03 |
DE19605569A1 (en) | 1997-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0790660A2 (en) | Directional coupler for high frequency range | |
DE69224866T2 (en) | Radar transmitter with FET switches | |
DE60131193T2 (en) | COUPLING DEVICE WITH INTERNAL CAPACITORS IN A MULTILAYER SUBSTRATE | |
DE10234737B4 (en) | Surface wave duplexer and communication device | |
EP0721697A1 (en) | Dwarf waves mixer realized by windowing | |
DE102008015160B4 (en) | Detector device and corresponding method | |
DE102006024458B4 (en) | Integrated multiple mixer circuit | |
EP2101279A2 (en) | Adjustable circuit and RFID reader unit | |
DE69121632T2 (en) | Polarization switch between a circular waveguide and a coaxial cable | |
DE102006046728A1 (en) | Directional coupler e.g. rat-race coupler, for use in micro-chip, has gates electrically connected with each other by line branches, where all line branches are formed as symmetric line pairs | |
DE3786458T2 (en) | MULTIPLEXED WAVE LADDER WITH A COUPLING PIN. | |
DE68918426T2 (en) | Dual frequency radiating device. | |
DE19629277A1 (en) | Outdoor converter for the reception of satellite broadcasting | |
DE69614484T2 (en) | BRIDGABLE POWER DISTRIBUTOR | |
DE3833696C2 (en) | Signal processing device and method for expanding the flat frequency response of a component | |
DE102005005751B4 (en) | Test device with reflection-poor signal distribution | |
US6847268B2 (en) | Wide-band circuit for splitting or joining radio-frequency powers | |
EP1495513B1 (en) | Electric matching network with a transformation line | |
DE102010014864B4 (en) | Waveguide connection for an antenna system and antenna system | |
DE60034124T2 (en) | A connector assembly in an electronics system | |
DE60037125T2 (en) | Radio frequency amplifier circuit | |
DE3535198A1 (en) | COMPACT STEP-MATCHED FILTER | |
DE10120533B4 (en) | Array antenna with a number of resonant radiating elements | |
DE4118399C1 (en) | Directional coupler with high directional damping - places two wave guides in parallel but offset so that distance between them steadily increases from one end to other, length being smaller than quarter of working wavelength at band mean frequency | |
DE102011086557B4 (en) | coupler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB NL |
|
17P | Request for examination filed |
Effective date: 19981119 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLERCHRYSLER AEROSPACE AKTIENGESELLSCHAFT |
|
17Q | First examination report despatched |
Effective date: 20011126 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EADS DEUTSCHLAND GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030212 |