EP0790006B1 - Method and apparatus for determining the density of a rod in the tobacco industry - Google Patents

Method and apparatus for determining the density of a rod in the tobacco industry Download PDF

Info

Publication number
EP0790006B1
EP0790006B1 EP97101524A EP97101524A EP0790006B1 EP 0790006 B1 EP0790006 B1 EP 0790006B1 EP 97101524 A EP97101524 A EP 97101524A EP 97101524 A EP97101524 A EP 97101524A EP 0790006 B1 EP0790006 B1 EP 0790006B1
Authority
EP
European Patent Office
Prior art keywords
strand
density
radiation
signal
measuring signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97101524A
Other languages
German (de)
French (fr)
Other versions
EP0790006A3 (en
EP0790006A2 (en
Inventor
Reinhard Hoppe
Henning Dr. Möller
Andreas Noack
Matthias Overath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koerber Technologies GmbH
Original Assignee
Hauni Maschinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauni Maschinenbau GmbH filed Critical Hauni Maschinenbau GmbH
Publication of EP0790006A2 publication Critical patent/EP0790006A2/en
Publication of EP0790006A3 publication Critical patent/EP0790006A3/en
Application granted granted Critical
Publication of EP0790006B1 publication Critical patent/EP0790006B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields

Definitions

  • the invention relates to a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 6.
  • Density measuring devices are used in extruders of the tobacco processing industry used to determine the amount of material and the uniformity of the material distribution in the strand to be monitored and ensured as far as possible in accordance with certain specifications. This applies to the tobacco content in a tobacco rod for the production of smokable Tobacco items such as cigarettes, pillars, cigarillos etc. as well as for the salary of filter material in a filter train. It is known that the strand is evenly filled an important quality criterion for the articles made from the strand. As a measure of that Filling the strand, i.e. for the amount of tobacco or filter material in the strand, will be Density recorded.
  • Density measuring devices with radioactive are currently known and generally used Radiation - usually with beta radiation from a Strontium 90 preparation (U.S. Patent 4,424,443) - penetrate the strand, the intensity decrease as it penetrates of the strand is measured as a measure of the density of the strand.
  • the one with this measuring device Measurement results obtained are characterized by high reliability, but are because of the required permanent beta emitter with complex security measures bought on the machine.
  • US Pat. No. 3,056,026 shows such a measuring device, the basically works like a density measuring head with a nuclear radiation source.
  • the strand penetrating x-rays are detected with an ionization chamber, what the measurement slow and low resolution in the longitudinal direction of the strand.
  • Patent 4,865,052 shows also a device for measuring the density of an uncovered tobacco rod, which is conveyed in the tobacco channel of a strand machine, by means of penetrating the strand X-rays. The radiation is detected with a sensor array. From the bottom the measured values of the sensors are summed up to the sum of the tobacco channel reaches a predetermined target value, and the downstream one is correspondingly arranged Excess decrease device set, so that here a default setting of Weight or the density of the strand takes place. For measurements on the cigarette rod is this does not make sense.
  • the object of the invention is a further method and a further device of the type described above.
  • the invention offers the advantage of a very fast and accurate high density measurement Resolution. This ensures that the drift phenomena of the detectors or Changes in the intensity of the radiation source do not affect the measurement results can.
  • the invention therefore offers a very reliable strand density measurement.
  • the security-related Difficulties arise from a nuclear beta source not up here. The security effort is low.
  • the dimensions of the X-ray measuring heads according to the invention can be adapted to those of a nuclear measuring head are so that this is exchanged in existing machines for the X-ray measuring head can be.
  • Figure 1 shows a schematic diagram of a device for determining the density of a Fiber strands of the tobacco processing industry according to the invention.
  • a continuous Moving cigarette rod designates a wrapper 2 made of cigarette paper and has a filling 3 of tobacco fibers.
  • the strand can also be one Filter strand of the tobacco processing industry or around a strand for the production of Trade cigarillos, cigars, cheroots, etc.
  • the strand runs in the longitudinal direction, that is to say approximately perpendicular to the plane of the drawing in FIG. 1 a conveyor section of a cigarette rod machine, which is not shown in the drawing, for example of the type Protos 100 from the applicant, promoted and passes through a tube 6 that is transparent to X-rays in a measuring station 4.
  • This tube can consist, for example, of a thin aluminum or titanium sheet.
  • a polycarbonate (PC) for example, is preferred as the material for the tube MACROLON from BAYER AG or a polyethylene ether ketone (PEEK) with one Wall thickness of about 0.2 mm used.
  • the representation in the drawing is not to scale, so that here the wall thickness of the tube 6 appears too large.
  • An x-ray radiation source 7 emits x-ray radiation 8, which in FIG is idealized. In fact, the radiation does not go in parallel from the X-ray source out.
  • the limitation of the x-ray radiation 8 is caused by apertures 9 and 9a but that through the gaps 11 and 11a formed by the diaphragms a radiation component penetrates the strand, the radiation course of a parallel radiation course is approximated at least to an extent sufficient for the measurement purpose.
  • X-ray source comes, for example, an industrial X-ray device of the type MF1-30-2 with a normal focus X-ray tube FK 60-10 W from Rich. Seifert & Co., D-22926 Ahrensburg, in question.
  • the measurement of the intensity of the X-radiation is carried out by means of an X-ray receiver 12, which is attached behind the gap 11a.
  • This X-ray radiation receiver 12 is designed as a line array 13 with a plurality of X-ray detectors 14.1 to 14.n, which are arranged in a row one behind the other in the array 13.
  • n is the total number of X-ray detectors 14 provided in the array 13.
  • n 11.
  • the x-ray-sensitive area of the x-ray detectors is, for example, 1 mm in height, that is to say transversely to the strand direction, and 4 mm in width, that is to say in the strand direction.
  • the gaps 11 and 11a are approximately as wide as the detectors 14.
  • the X-ray detectors 14.1 to 14.n are all connected separately to an evaluation arrangement 16, which the measurement signals emitted by the X-ray detectors into one Processed density signal 17, which is sent to a control arrangement 18 of an influencing device the strand density is released.
  • a device is in a cigarette rod machine for example a device for removing excess from the tobacco rod, with which the amount of tobacco entering the cigarette rod is adjusted becomes.
  • Such devices are known and need no further description here.
  • the detector array 13 comprises at least one additional X-ray detector 14.2 which detects a part of the X-rays which does not penetrate the strand. Its measurement signal S 2 is processed as a reference signal in the evaluation arrangement 16.
  • the detector array 13 also has at least one further X-ray detector 14.1, which is permanently shielded from the radiation from the X-ray source 7. This further detector 14.1 permanently emits a signal S 1 corresponding to its dark current, which is used in the evaluation arrangement 16 to compensate for drift phenomena in the detectors. Only one additional x-ray detector and another x-ray detector are shown in the drawing. The measurement can be further improved and made more reliable if more detectors each receive the undamped X-rays or generate a signal corresponding to their dark current.
  • the measuring device is first calibrated.
  • the X-ray radiation source 7 is switched off or dimmed toward the radiation receiver 12 by means of a shutter (not shown).
  • the measurement signals S 1 to S n of the X-ray detectors 14.1 to 14.n now represent their dark currents.
  • the measurement signals S 1 to S n obtained when the X-ray radiation source is switched off or the X-ray radiation receivers are dimmed are also referred to as dark signals.
  • the dark signals of the X-ray detectors 14.2 to 14.n are processed with the dark signal of the X-ray detector 14.1, which is also referred to as S D for better identification, to compensation values j D, 2 to j D, n which are suitable for later use in density measurement in Storage sections 19.2 to 19.n of the evaluation arrangement 16 are stored as constants. Then, with the X-ray source 7 switched on, the current of the X-ray detectors is measured at full intensity of the radiation without a strand.
  • the resulting measurement signals S 2 to S n of the X-ray radiation detectors 14.2 to 14.n represent reference measurement values.
  • the reference measurement values S 3 to S n are identified with the reference measurement value S 2 of the additional X-ray radiation detector 14.2, which is also referred to as S 0 for better identification as a reference measurement value is processed into reference values j 0.3 to j 0, n , which are stored as constants in memory sections 21.3 to 21.n of the evaluation arrangement 16.
  • a strand 1 is moved through the tube 6 in the measuring station 12, which attenuates the radiation striking the X-ray radiation detectors in accordance with its density.
  • the intensity of the radiation weakened in accordance with the density is detected with the X-ray detectors 14.3 to 14.n, which emit the corresponding measurement signals S 3 to S n to the evaluation arrangement 16.
  • the evaluation arrangement compares these measurement signals in the function blocks 22.3 to 22.n with the stored compensation values j D, 3 to j D, n corresponding to the dark currents of the X-ray detectors 14.3 to 14.n.
  • the compensation values for their part are corrected in calculation stages 24.3 to 24.n as a function of the respectively current dark signal S D of the X-ray detector 14.1 which is permanently shielded from the X-rays, thereby compensating for drift phenomena occurring in the detectors.
  • the effect of the aging processes of the detectors or of heat changes in their characteristics is thus reliably eliminated.
  • the comparators 22.3 to 22.n give corrected measurement signals S 3, k to S n, k to the downstream calculation stages 23.3 to 23, n, which represent the X-rays which hit the detectors 14.3 to 14.n after passing through the strand, ie correspond to the strand density in the strand height position detected by the respective detector.
  • reference signals I 3, k to I n, k are transferred to the calculation stages 23.3 to 23.n. These reference signals result from the reference values j 0.3 to j 0, n stored in the memory sections 21.3 to 21.n, which are stored in correction stages 25.3 to 25.n as a function of the current reference measurement signal S 2 or S 0 full X-ray illuminated X-ray detector 14.2 can be corrected.
  • a correction signal S 2, k is formed by comparison with the reference value j D, 2 of the detector 14.2 in the comparator stage 22.2, which is corrected in the compensation section 24.2 as a function of the dark signal S D of the permanently shielded radiation receiver 14.1 and is stored in the memory section 19.2 as a constant, which is used in correction stages 25.3 to 25.n to correct the reference values j 0.3 to j 0, n .
  • the additional detector 14.2 which continuously receives the undamped intensity of the X-ray radiation source 7 and whose measurement signal S 2 represents a permanent current reference signal S 0
  • the further detector 14.1 which is permanently shielded from the X-ray radiation source 7 and always on Outputs dark current signal S D as a compensation signal, achieved that the density measurement is independent of fluctuations in intensity of the X-ray source 7, temperature drifts and signs of aging of the detectors.
  • the corrected measurement signals S 3, k to S n, k are processed in the calculation stages 23.3 to 23.n or with the corrected reference signals I 3, k to I n, k to separate density signals D 3 to D n , each of which is the density in represent an associated string height position. This is done by logarithmizing the ratio (quotient) of the reference signal and the corrected measurement signal.
  • the resulting separate density signals D 3 to D n are added in an addition stage 26 and output as a density signal 17 to the connected control arrangement 18. If necessary, the mean value of the separate density signals D 3 to D n can also be formed as a density signal representing the strand density.
  • the logarithmization of the individual measured values in the calculation stages 23 has the advantage over the logarithmization of the integrated density value that is common today that a mathematically correct and thus a more reliable and more accurate statement about the strand density in the currently illuminated strand section results.
  • Another possibility provided according to the invention is the quotients multiply the reference signals and the associated corrected measurement signals first and log the product so formed to the desired density signal to win.
  • the extent of the radiation sensitive surface of the X-ray detectors is preferably very small. So currently detectors are preferred whose radiation sensitive Area in the longitudinal direction of the strand about 4 mm and across the strand about 1 mm is.
  • the individual detectors thus detect strand sections of very little extent, in which the density is assumed to be at least approximately homogeneous can. This also contributes significantly to the accuracy of the measurement results, because the logarithm of the individual intensity values is a mathematically correct evaluation step, so that falsifications of results are prevented. This training also leads the High resolution detectors.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Description

Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 und eine Vorrichtung nach dem Oberbegriff des Anspruchs 6.The invention relates to a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 6.

In Strangmaschinen der tabakverarbeitenden Industrie werden Dichtemeßeinrichtungen eingesetzt, um die Materialmenge und die Gleichmäßigkeit der Materialverteilung im Strang zu überwachen und möglichst weitgehend entsprechend bestimmten Vorgaben sicherzustellen. Das gilt für den Tabakgehalt in einem Tabakstrang für die Herstellung von rauchbaren Tabakartikeln wie Zigaretten, Stumpen, Zigarrillos usw. wie auch für den Gehalt an Filtermaterial in einem Filterstrang. Die gleichmäßige Füllung des Strangs ist bekanntlich ein wichtiges Qualitätskriterium für die aus dem Strang hergestellten Artikel. Als Maß für die Füllung des Strangs, also für die Tabak- oder Filtermaterialmenge im Strang, wird seine Dichte erfaßt.Density measuring devices are used in extruders of the tobacco processing industry used to determine the amount of material and the uniformity of the material distribution in the strand to be monitored and ensured as far as possible in accordance with certain specifications. This applies to the tobacco content in a tobacco rod for the production of smokable Tobacco items such as cigarettes, pillars, cigarillos etc. as well as for the salary of filter material in a filter train. It is known that the strand is evenly filled an important quality criterion for the articles made from the strand. As a measure of that Filling the strand, i.e. for the amount of tobacco or filter material in the strand, will be Density recorded.

Bekannt und allgemein gebräuchlich sind derzeit Dichtemeßeinrichtungen, die mit radioaktiver Strahlung - in der Regel mit der Betastrahlung eines Strontium 90-Präparates (US-PS 4 424 443) - den Strang durchdringen, deren Intensitätsabfall beim Durchdringen des Strangs als Maß für die Dichte des Strangs erfaßt wird. Die mit dieser Meßeinrichtung gewonnenen Meßergebnisse zeichnen sich durch hohe Zuverlässigkeit aus, werden aber wegen des erforderlichen permanenten Beta-Strahlers mit aufwendigen Sicherheitsmaßnahmen an der Maschine erkauft.Density measuring devices with radioactive are currently known and generally used Radiation - usually with beta radiation from a Strontium 90 preparation (U.S. Patent 4,424,443) - penetrate the strand, the intensity decrease as it penetrates of the strand is measured as a measure of the density of the strand. The one with this measuring device Measurement results obtained are characterized by high reliability, but are because of the required permanent beta emitter with complex security measures bought on the machine.

Es ist in jüngerer Zeit auch eine Dichtemeßeinrichtung bekanntgeworden, die mit infrarotem Licht als Meßstrahlung arbeitet (US-PS 4 805 641). Diese Einrichtung hat den Vorteil, daß sie ohne eine radioaktive Strahlungsquelle auskommt, erreicht aber noch nicht ganz die Zuverlässigkeit der nuklearen Dichtemessung.Recently, a density measuring device has also become known which uses infrared Light works as measuring radiation (US Pat. No. 4,805,641). This device has the advantage that it manages without a radioactive radiation source, but does not quite reach it Reliability of nuclear density measurement.

Auch die Verwendung von Röntgenstrahlung als Meßstrahlung für die Dichtemessung ist bereits vorgeschlagen worden. Die US-PS 3 056 026 zeigt eine solche Meßeinrichtung, die im Prinzip wie ein Dichtemeßkopf mit nuklearer Strahlungsquelle arbeitet. Die den Strang durchdringende Röntgenstrahlung wird mit einer Ionisationskammer erfaßt, was die Messung langsam und ihre Auflösung in Längsrichtung des Strangs gering macht.The use of X-rays as measuring radiation for density measurement is also have already been proposed. US Pat. No. 3,056,026 shows such a measuring device, the basically works like a density measuring head with a nuclear radiation source. The strand penetrating x-rays are detected with an ionization chamber, what the measurement slow and low resolution in the longitudinal direction of the strand.

In der US-PS 4 785 830 ist eine Meßeinrichtung an einer Zigarettenstrangmaschine beschrieben, in der ein nicht umhüllter Tabakstrang im Tabakkanal mit Röntgenstrahlung durchleuchtet wird. Die den Strang durchdringende Strahlung wird mit einem Sensorarray erfaßt, um vor der Fertigstellung des Zigarettenstrangs die Dichte des Fasermaterials in verschiedenen Stranghöhenabschnitten separat zu ermitteln und so die Dichteverteilung im Strang und die Strangstrukturen zu erkennen. Das soll einen gezielten Eingriff in die Strangherstellung zum Zweck der Optimierung des Strangaufbaus erlauben. Diese Messung soll auch am umhüllten Tabakstrang (Zigarettenstrang) vorgenommen werden können, wozu die Schrift aber keine näheren Angaben erhält. Die US-PS 4 865 052 zeigt ebenfalls eine Einrichtung zum Messen der Dichte eines nicht umhüllten Tabakstrangs, der im Tabakkanal einer Strangmaschine gefördert wird, mittels den Strang durchdringender Röntgenstrahlung. Die Strahlung wird mit einem Sensorarray erfaßt. Vom Grund des Tabakkanals her werden die Meßwerte der Sensoren aufsummiert bis die Summe einen vorgegebenen Sollwert erreicht, und entsprechend wird die stromab angeordnete Überschußabnahmeeinrichtung eingestellt, so daß hier eine Vorauseinstellung des Gewichts bzw. der Dichte des Strangs erfolgt. Für Messungen am Zigarettenstrang ist dieses Vorgehen nicht sinnvoll.In US Pat. No. 4,785,830 there is a measuring device on a cigarette rod machine described in which an uncovered tobacco rod in the tobacco channel with X-rays is screened. The radiation penetrating the strand is measured with a sensor array detected to the density of the fiber material in before the cigarette rod to determine different strand height sections separately and thus the density distribution in the strand and to recognize the strand structures. That is a targeted intervention in the Allow strand production for the purpose of optimizing the strand structure. This measurement should also be possible on the wrapped tobacco rod (cigarette rod), which is why the writing does not receive any further details. U.S. Patent 4,865,052 shows also a device for measuring the density of an uncovered tobacco rod, which is conveyed in the tobacco channel of a strand machine, by means of penetrating the strand X-rays. The radiation is detected with a sensor array. From the bottom the measured values of the sensors are summed up to the sum of the tobacco channel reaches a predetermined target value, and the downstream one is correspondingly arranged Excess decrease device set, so that here a default setting of Weight or the density of the strand takes place. For measurements on the cigarette rod is this does not make sense.

Die im Stand der Technik bekannten Dichtemessungen mit Röntgenstrahlung haben sich in der Praxis nicht bewährt und konnten sich in der industriellen Zigarettenfertigung nicht durchsetzen. Es besteht daher weiterhin der Wunsch und das Bedürfnis, eine Meßtechnik in die Hand zu bekommen, die zuverlässig die Strangdichte erfaßt, genau und hoch auflösend arbeitet und mit geringem Aufwand insbesondere auch in sicherheitstechnischer Hinsicht gehandhabt und eingesetzt werden kann.The density measurements with X-rays known in the prior art have become not proven in practice and could not be used in industrial cigarette production push through. There is therefore still the desire and the need for a measuring technique to get into your hand that reliably detects the strand density, accurate and high-resolution works and with little effort, especially in terms of safety can be handled and used.

Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren und eine weitere Vorrichtung der eingangs beschriebenen Art anzugeben. The object of the invention is a further method and a further device of the type described above.

Gelöst wird diese Aufgabe bei einem Verfahren der eingangs angegebenen Art erfindungsgemäß durch die Maßnahmen, die im Kennzeichen des Anspruchs 1, und bei einer Vorrichtung der eingangs angegebenen Art mit den Merkmalen, die im Kennzeichen des Anspruchs 6 angegeben sind. Fortsetzungen, Weiterbildungen und vorteilhafte Ausgestaltungen des Verfahrens und der Vorrichtung nach der Erfindung sind in den Unteransprüchen angegeben.This object is achieved according to the invention in a method of the type specified at the outset by the measures in the characterizing part of claim 1, and in a device of the type specified at the outset with the features which are in the characterizing part of the claim 6 are specified. Continuation, further training and advantageous refinements of the method and the device according to the invention are in the subclaims specified.

Die Erfindung bietet den Vorteil einer sehr schnellen und genauen Dichtemessung hoher Auflösung. Dabei ist gewährleistet, daß sich die Drifterscheinungen der Detektoren oder Intensitätsveränderungen der Strahlungsquelle nicht auf die Meßergebnisse auswirken können. Die Erfindung bietet also eine sehr zuverlässige Strangdichtemessung. Die sicherheitstechnischen Schwierigkeiten, die eine nukleare Betastrahlungsquelle verursacht, treten hier nicht auf. Der sicherheitstechnische Aufwand ist gering. Die Abmessungen des Röntgenmeßkopfes gemäß der Erfindung können an die eines nuklearen Meßkopfes angepaßt werden, so daß dieser in vorhandenen Maschinen gegen den Röntgenmeßkopf ausgetauscht werden kann. The invention offers the advantage of a very fast and accurate high density measurement Resolution. This ensures that the drift phenomena of the detectors or Changes in the intensity of the radiation source do not affect the measurement results can. The invention therefore offers a very reliable strand density measurement. The security-related Difficulties arise from a nuclear beta source not up here. The security effort is low. The dimensions of the X-ray measuring heads according to the invention can be adapted to those of a nuclear measuring head are so that this is exchanged in existing machines for the X-ray measuring head can be.

Die Erfindung wird nun anhand der Zeichnung näher erläutert.The invention will now be explained in more detail with reference to the drawing.

Es zeigen

Figur 1
eine Prinzipdarstellung einer Meßvorrichtung nach der Erfindung und
Figur 2
eine Blockdarstellung der Meßwertauswertung.
Show it
Figure 1
a schematic diagram of a measuring device according to the invention and
Figure 2
a block diagram of the measured value evaluation.

Figur 1 zeigt eine Prinzipdarstellung einer Vorrichtung zur Bestimmung der Dichte eines Faserstrangs der tabakverarbeitenden Industrie gemäß der Erfindung. Mit 1 ist ein kontinuierlich bewegter Zigarettenstrang bezeichnet, der eine Umhüllung 2 aus Zigarettenpapier und eine Füllung 3 aus Tabakfasern aufweist. Bei dem Strang kann es sich auch um einen Filterstrang der tabakverarbeitenden Industrie oder um einen Strang für die Herstellung von Zigarrillos, Zigarren, Stumpen usw. handeln.Figure 1 shows a schematic diagram of a device for determining the density of a Fiber strands of the tobacco processing industry according to the invention. With 1 is a continuous Moving cigarette rod designates a wrapper 2 made of cigarette paper and has a filling 3 of tobacco fibers. The strand can also be one Filter strand of the tobacco processing industry or around a strand for the production of Trade cigarillos, cigars, cheroots, etc.

Der Strang wird in Längsrichtung, also etwa senkrecht zur Zeichenebene der Figur 1, entlang einer Förderstrecke einer in der Zeichnung nicht weiter dargestellten Zigarettenstrangmaschine, beispielsweise vom Typ Protos 100 der Anmelderin, gefördert und durchläuft dabei in einer Meßstation 4 einen für Röntgenstrahlung durchlässigen Tubus 6. Dieser Tubus kann beispielsweise aus einem dünnen Aluminium- oder Titanblech bestehen. Vorzugsweise wird als Material für den Tubus aber ein Polycarbonat (PC), beispielsweise MACROLON der BAYER AG oder ein Polyethylenetherketon (PEEK) mit einer Wanddicke von etwa 0,2 mm eingesetzt. Die Darstellung in der Zeichnung ist nicht maßstabsgerecht, so daß hier die Wanddicke des Tubus 6 zu groß erscheint.The strand runs in the longitudinal direction, that is to say approximately perpendicular to the plane of the drawing in FIG. 1 a conveyor section of a cigarette rod machine, which is not shown in the drawing, for example of the type Protos 100 from the applicant, promoted and passes through a tube 6 that is transparent to X-rays in a measuring station 4. This tube can consist, for example, of a thin aluminum or titanium sheet. A polycarbonate (PC), for example, is preferred as the material for the tube MACROLON from BAYER AG or a polyethylene ether ketone (PEEK) with one Wall thickness of about 0.2 mm used. The representation in the drawing is not to scale, so that here the wall thickness of the tube 6 appears too large.

Eine Röntgenstrahlungsquelle 7 sendet eine Röntgenstrahlung 8 aus, die in der Figur 1 idealisiert dargestellt ist. Tatsächlich geht die Strahlung nicht parallel von der Röntgenstrahlungsquelle aus. Die Begrenzung der Röntgenstrahlung 8 durch Blenden 9 und 9a bewirkt aber, daß durch die von den Blenden gebildeten Spalte 11 und 11a ein Strahlungsanteil den Strang durchdringt, dessen Strahlungsverlauf einem parallelen Strahlungsverlauf wenigstens in einem für den Meßzweck ausreichenden Maße angenähert ist. Als Röntgenstrahlungsquelle kommt beispielsweise ein Industrie-Röntgengerät des Typs MF1-30-2 mit einer Normal-Fokus-Röntgenröhre FK 60-10 W der Fa. Rich. Seifert & Co., D-22926 Ahrensburg, in Frage.An x-ray radiation source 7 emits x-ray radiation 8, which in FIG is idealized. In fact, the radiation does not go in parallel from the X-ray source out. The limitation of the x-ray radiation 8 is caused by apertures 9 and 9a but that through the gaps 11 and 11a formed by the diaphragms a radiation component penetrates the strand, the radiation course of a parallel radiation course is approximated at least to an extent sufficient for the measurement purpose. As X-ray source comes, for example, an industrial X-ray device of the type MF1-30-2 with a normal focus X-ray tube FK 60-10 W from Rich. Seifert & Co., D-22926 Ahrensburg, in question.

Die Messung der Intensität der Röntgenstrahlung erfolgt mittels eines Röntgenstrahlungsempfängers 12, der hinter dem Spalt 11a angebracht ist. Dieser Röntgenstrahlungsempfänger 12 ist als Linienarray 13 mit einer Vielzahl von Röntgendetektoren 14.1 bis 14.n ausgebildet, die in einer Reihe hintereinander in dem Array 13 angeordnet sind. n ist die Gesamtzahl der in dem Array 13 vorgesehenen Röntgendetektoren 14. In dem in der Figur 1 dargestellten Ausführungsbeispiel beträgt n = 11. Bevorzugt wird eine Ausführung mit 16 derartigen Röntgendetektoren im Array 13, z.B. vom Typ CXM-HS 03-16K der Firma CRYSTAL.
i ist eine laufende Nummer zwischen 1 und n. Die röntgenempfindliche Fläche der Röntgendetektoren beträgt beispielsweise 1 mm in der Höhe, also quer zur Strangrichtung und 4 mm in der Breite, also in Strangrichtung. Die Spalte 11 und 11a sind etwa so breit wie die Detektoren 14.
The measurement of the intensity of the X-radiation is carried out by means of an X-ray receiver 12, which is attached behind the gap 11a. This X-ray radiation receiver 12 is designed as a line array 13 with a plurality of X-ray detectors 14.1 to 14.n, which are arranged in a row one behind the other in the array 13. n is the total number of X-ray detectors 14 provided in the array 13. In the exemplary embodiment shown in FIG. 1, n = 11. An embodiment with 16 such X-ray detectors in the array 13, for example of the type CXM-HS 03-16K from CRYSTAL, is preferred ,
i is a serial number between 1 and n. The x-ray-sensitive area of the x-ray detectors is, for example, 1 mm in height, that is to say transversely to the strand direction, and 4 mm in width, that is to say in the strand direction. The gaps 11 and 11a are approximately as wide as the detectors 14.

Die Röntgendetektoren 14.1 bis 14.n sind alle separat an eine Auswertanordnung 16 angeschlossen, welche die von den Röntgendetektoren abgegebenen Meßsignale zu einem Dichtesignal 17 verarbeitet, das an eine Steueranordnung 18 eines Gerätes zur Beeinflussung der Strangdichte abgegeben wird. Ein derartiges Gerät ist in einer Zigarettenstrangmaschine beispielsweise eine Einrichtung zum Abnehmen von Überschuß vom Tabakstrang, mit dem die Menge des in den Zigarettenstrang gelangenden Tabaks eingestellt wird. Derartige Geräte sind bekannt und bedürfen hier keiner näheren Beschreibung.The X-ray detectors 14.1 to 14.n are all connected separately to an evaluation arrangement 16, which the measurement signals emitted by the X-ray detectors into one Processed density signal 17, which is sent to a control arrangement 18 of an influencing device the strand density is released. Such a device is in a cigarette rod machine for example a device for removing excess from the tobacco rod, with which the amount of tobacco entering the cigarette rod is adjusted becomes. Such devices are known and need no further description here.

Das Detektorarray 13 umfaßt außer den die Intensität der den Strang selbst durchdringenden Röntgenstrahlung erfassenden Detektoren wenigstens einen zusätzlichen Röntgenstrahlendetektor 14.2, der einen den Strang nicht durchdringenden Teil der Röntgenstrahlung erfaßt. Sein Meßsignal S2 wird als Referenzsignal in der Auswertanordnung 16 verarbeitet. Das Detektorarray 13 weist darüber hinaus wenigstens noch einen weiteren Röntgenstrahlendetektor 14.1 auf, der permanent gegen die Strahlung der Röntgenstrahlenquelle 7 abgeschirmt ist. Dieser weitere Detektor 14.1 gibt permanent ein seinem Dunkelstrom entsprechendes Signal S1 ab, das in der Auswertanordnung 16 zur Kompensation von Drifterscheinungen in den Detektoren genutzt wird. In der Zeichnung sind lediglich ein zusätzlicher Röntgenstrahlungsdetektor und ein weiterer Röntgenstrahlungsdetektordargestellt. Die Messung kann weiter verbessert und zuverlässiger gemacht werden, wenn jeweils merere Detektoren die ungedämpfte Röntgenstrahlung empfangen bzw. ein ihrem Dunkelstrom entsprechendes Signal erzeugen. In addition to the detectors which detect the intensity of the X-rays penetrating the strand itself, the detector array 13 comprises at least one additional X-ray detector 14.2 which detects a part of the X-rays which does not penetrate the strand. Its measurement signal S 2 is processed as a reference signal in the evaluation arrangement 16. The detector array 13 also has at least one further X-ray detector 14.1, which is permanently shielded from the radiation from the X-ray source 7. This further detector 14.1 permanently emits a signal S 1 corresponding to its dark current, which is used in the evaluation arrangement 16 to compensate for drift phenomena in the detectors. Only one additional x-ray detector and another x-ray detector are shown in the drawing. The measurement can be further improved and made more reliable if more detectors each receive the undamped X-rays or generate a signal corresponding to their dark current.

Die Arbeitsweise der Auswertanordnung 16 bei der Verarbeitung der von den Detektoren 14.1 bis 14.n abgegebenen Meßsignale S1 bis Sn wird anhand des in Figur 2 dargestellten Funktionsdiagramms erläutert.The mode of operation of the evaluation arrangement 16 in the processing of the measurement signals S 1 to S n emitted by the detectors 14.1 to 14.n is explained with the aid of the functional diagram shown in FIG.

Zur Vorbereitung der Strangdichtemessung wird die Meßvorrichtung zunächst kalibriert. Dazu wird die Röntgenstrahlungsquelle 7 abgeschaltet oder mittels eines nicht dargestellten Shutters zum Strahlungsempfänger 12 hin abgeblendet. Die Meßsignale S1 bis Sn der Röntgenstrahlungsdetektoren 14.1 bis 14.n repräsentieren jetzt deren Dunkelströme. Die bei abgeschalteter Röntgenstrahlungsquelle oder abgeblendeten Röntgenstrahlungsempfängern gewonnenen Meßsignale S1 bis Sn werden auch als Dunkelsignale bezeichnet. Die Dunkelsignale der Röntgenstrahlendetektoren 14.2 bis 14.n werden mit dem Dunkelsignal des Röntgenstrahlendetektors 14.1, das zur besseren Kenntlichmachung auch mit SD bezeichnet wird, zu Kompensationswerten jD,2 bis jD,n verarbeitet, die für die spätere Verwendung bei der Dichtemessung in Speichersektionen 19.2 bis 19.n der Auswertanordnung 16 als Konstanten abgelegt werden. Anschließend wird mit eingeschalteter Röntgenstrahlungsquelle 7 der Strom der Röntgenstrahlungsdetektoren bei voller Intensität der Strahlung ohne Strang gemessen. Die sich dabei ergebenden Meßsignale S2 bis Sn der Röntgenstrahlungsdetektoren 14.2 bis 14.n stellen Referenzmeßwerte dar. Die Referenzmeßwerte S3 bis Sn werden mit dem Referenzmeßwert S2 des zusätzlichen Röntgenstrahlungsdetektors 14.2, das zur besseren Kenntlichmachung als Referenzmeßwert auch mit S0 bezeichnet wird, zu Referenzwerten j0,3 bis j0,n verarbeitet, die in Speichersektionen 21.3 bis 21.n der Auswertanordnung 16 als Konstanten hinterlegt werden.To prepare the strand density measurement, the measuring device is first calibrated. For this purpose, the X-ray radiation source 7 is switched off or dimmed toward the radiation receiver 12 by means of a shutter (not shown). The measurement signals S 1 to S n of the X-ray detectors 14.1 to 14.n now represent their dark currents. The measurement signals S 1 to S n obtained when the X-ray radiation source is switched off or the X-ray radiation receivers are dimmed are also referred to as dark signals. The dark signals of the X-ray detectors 14.2 to 14.n are processed with the dark signal of the X-ray detector 14.1, which is also referred to as S D for better identification, to compensation values j D, 2 to j D, n which are suitable for later use in density measurement in Storage sections 19.2 to 19.n of the evaluation arrangement 16 are stored as constants. Then, with the X-ray source 7 switched on, the current of the X-ray detectors is measured at full intensity of the radiation without a strand. The resulting measurement signals S 2 to S n of the X-ray radiation detectors 14.2 to 14.n represent reference measurement values. The reference measurement values S 3 to S n are identified with the reference measurement value S 2 of the additional X-ray radiation detector 14.2, which is also referred to as S 0 for better identification as a reference measurement value is processed into reference values j 0.3 to j 0, n , which are stored as constants in memory sections 21.3 to 21.n of the evaluation arrangement 16.

Zur Dichtemessung wird ein Strang 1 durch den Tubus 6 in der Meßstation 12 bewegt, der die die Röntgenstrahlungsdetektoren treffende Strahlung entsprechend seiner Dichte abschwächt. Die Intensität der entsprechend der Dichte geschwächten Strahlung wird mit den Röntgenstrahlungsdetektoren 14.3 bis 14.n erfaßt, die die entsprechenden Meßsignale S3 bis Sn an die Auswertanordnung 16 abgeben. Die Auswertanordnung vergleicht diese Meßsignale in den Funktionsblöcken 22.3 bis 22.n mit den den Dunkelströmen der Röntgenstrahlungsdetektoren 14.3 bis 14.n entsprechenden, gespeicherten Kompensationswerten jD,3 bis jD,n. Die Kompensationswerte ihrerseits werden in Berechnungsstufen 24.3 bis 24.n in Abhängigkeit von dem jeweils aktuellen Dunkelsignal SD des gegen die Röntgenstrahlung dauernd abgeschirmten Röntgenstrahlungsdetektors 14.1 korrigiert, wodurch eine Kompensation von in den Detektoren auftretenden Drifterscheinungen bewirkt wird. Die Wirkung von Alterungsprozessen der Detektoren oder von Wärmewanderungen ihrer Charakteristik wird damit zuverlässig ausgeschaltet. Die Komparatoren 22.3 bis 22.n geben an nachgeschaltete Berechnungsstufen 23.3 bis 23,n korrigierte Meßsignale S3,k bis Sn,k ab, die die die Detektoren 14.3 bis 14.n nach dem Durchgang durch den Strang treffende Röntgenstrahlung repräsentieren, die also der Strangdichte in der jeweils vom betreffenden Detektor erfaßten Stranghöhenposition entsprechen.For density measurement, a strand 1 is moved through the tube 6 in the measuring station 12, which attenuates the radiation striking the X-ray radiation detectors in accordance with its density. The intensity of the radiation weakened in accordance with the density is detected with the X-ray detectors 14.3 to 14.n, which emit the corresponding measurement signals S 3 to S n to the evaluation arrangement 16. The evaluation arrangement compares these measurement signals in the function blocks 22.3 to 22.n with the stored compensation values j D, 3 to j D, n corresponding to the dark currents of the X-ray detectors 14.3 to 14.n. The compensation values for their part are corrected in calculation stages 24.3 to 24.n as a function of the respectively current dark signal S D of the X-ray detector 14.1 which is permanently shielded from the X-rays, thereby compensating for drift phenomena occurring in the detectors. The effect of the aging processes of the detectors or of heat changes in their characteristics is thus reliably eliminated. The comparators 22.3 to 22.n give corrected measurement signals S 3, k to S n, k to the downstream calculation stages 23.3 to 23, n, which represent the X-rays which hit the detectors 14.3 to 14.n after passing through the strand, ie correspond to the strand density in the strand height position detected by the respective detector.

Gleichzeitig werden den Berechnungsstufen 23.3 bis 23.n Referenzsignale I3,k bis In,k übergeben. Diese Referenzsignale ergeben sich aus den in den Speichersektionen 21.3 bis 21.n hinterlegten Referenzwerten j0,3 bis j0,n, die in Korrekturstufen 25.3 bis 25.n in Abhängigkeit von dem aktuellen Referenzmeßsignal S2 bzw. S0 des dauernd mit der vollen Röntgenstrahlung beleuchteten Röntgenstrahlungsdetektors 14.2 korrigiert werden. Durch Vergleich mit dem in der Kompensationsstufe 24.2 in Abhängigkeit von dem Dunkelsignal SD des dauernd abgeschirmten Strahlungsempfängers 14.1 korrigierten, in der Speichersektion 19.2 als Konstante gespeicherten Referenzwert jD,2 des Detektors 14.2 in der Komparatorstufe 22.2 wird ein Korrektursignal S2,k gebildet, welches in den Korrekturstufen 25.3 bis 25.n zur Korrektur der Referenzwerte j0,3 bis j0,n genutzt wird. So wird durch den Einsatz des zusätzlichen Detektors 14.2, der dauernd die ungedämpfte Intensität der Röntgenstrahlungsquelle 7 empfängt und dessen Meßsignal S2 ein permanentes aktuelles Referenzsignal S0 darstellt, und durch den weiteren Detektor 14.1, der dauernd gegen die Röntgenstrahlungsquelle 7 abgeschirmt ist und stets ein Dunkelstromsignal SD als Kompensationssignal abgibt, erreicht, daß die Dichtemessung von Intensitätsschwankungen der Röntgenstrahlungsquelle 7, von Temperaturdriften und Alterungserscheinungen der Detektoren unabhängig ist.At the same time, reference signals I 3, k to I n, k are transferred to the calculation stages 23.3 to 23.n. These reference signals result from the reference values j 0.3 to j 0, n stored in the memory sections 21.3 to 21.n, which are stored in correction stages 25.3 to 25.n as a function of the current reference measurement signal S 2 or S 0 full X-ray illuminated X-ray detector 14.2 can be corrected. A correction signal S 2, k is formed by comparison with the reference value j D, 2 of the detector 14.2 in the comparator stage 22.2, which is corrected in the compensation section 24.2 as a function of the dark signal S D of the permanently shielded radiation receiver 14.1 and is stored in the memory section 19.2 as a constant, which is used in correction stages 25.3 to 25.n to correct the reference values j 0.3 to j 0, n . Thus, by using the additional detector 14.2, which continuously receives the undamped intensity of the X-ray radiation source 7 and whose measurement signal S 2 represents a permanent current reference signal S 0 , and by the further detector 14.1, which is permanently shielded from the X-ray radiation source 7 and always on Outputs dark current signal S D as a compensation signal, achieved that the density measurement is independent of fluctuations in intensity of the X-ray source 7, temperature drifts and signs of aging of the detectors.

Die korrigierten Meßsignale S3,k bis Sn,k werden in den Berechnungsstufen 23.3 bis 23.n respektive mit den korrigierten Referenzsignalen I3,k bis In,k zu separaten Dichtesignalen D3 bis Dn verarbeitet, die jedes die Dichte in einer zugehörigen Stranghöhenposition repräsentieren. Das geschieht durch Logarithmierung des Verhältnisses (Quotienten) von Referenzsignal und korrigiertem Meßsignal. Die sich daraus ergebenden separaten Dichtesignale D3 bis Dn werden in einer Additionsstufe 26 addiert und als Dichtesignal 17 an die angeschlossene Steueranordnung 18 abgegeben. Gegebenenfalls kann auch der Mittelwert der separaten Dichtesignale D3 bis Dn als die Strangdichte repräsentierendes Dichtesignal gebildet werden. Das Logarithmieren der Einzelmeßwerte in den Berechnungsstufen 23 hat gegenüber der heute üblichen Logarithmierung des integrierten Dichtewertes den Vorteil, daß sich eine mathematisch korrekte und damit eine zuverlässigere und genauere Aussage über die Strangdichte im aktuell durchleuchteten Strangabschnitt ergibt.The corrected measurement signals S 3, k to S n, k are processed in the calculation stages 23.3 to 23.n or with the corrected reference signals I 3, k to I n, k to separate density signals D 3 to D n , each of which is the density in represent an associated string height position. This is done by logarithmizing the ratio (quotient) of the reference signal and the corrected measurement signal. The resulting separate density signals D 3 to D n are added in an addition stage 26 and output as a density signal 17 to the connected control arrangement 18. If necessary, the mean value of the separate density signals D 3 to D n can also be formed as a density signal representing the strand density. The logarithmization of the individual measured values in the calculation stages 23 has the advantage over the logarithmization of the integrated density value that is common today that a mathematically correct and thus a more reliable and more accurate statement about the strand density in the currently illuminated strand section results.

Eine andere gemäß der Erfindung vorgesehene Möglichkeit besteht darin, die Quotienten der Referenzsignale und der zugehörigen korrigierten Meßsignale zunächst zu multiplizieren und das so gebildete Produkt zu logarithmieren, um das gewünschte Dichtesignal zu gewinnen.Another possibility provided according to the invention is the quotients multiply the reference signals and the associated corrected measurement signals first and log the product so formed to the desired density signal to win.

Die Ausdehnung der strahlungsempfindlichen Fläche der Röntgenstrahlungsdetektoren ist vorzugsweise sehr klein. So werden derzeit Detektoren bevorzugt, deren Strahlungsempfindliche Fläche in Längsrichtung des Strangs ca. 4 mm und quer zum Strang etwa 1 mm beträgt. Damit erfassen die einzelnen Detektoren Strangabschnitte sehr geringer Ausdehnung, in denen die Dichte wenigstens angenähert als homogen angenommen werden kann. Auch dies trägt wesentlich zur Genauigkeit der Meßergebnisse bei, weil die Logarithmierung der einzelnen Intensitätswerte ein mathematisch korrekter Auswertschritt ist, so daß Ergebnisverfälschungen verhindert werden. Außerdem führt diese Ausbildung der Detektoren zu einer hohen Auflösung.The extent of the radiation sensitive surface of the X-ray detectors is preferably very small. So currently detectors are preferred whose radiation sensitive Area in the longitudinal direction of the strand about 4 mm and across the strand about 1 mm is. The individual detectors thus detect strand sections of very little extent, in which the density is assumed to be at least approximately homogeneous can. This also contributes significantly to the accuracy of the measurement results, because the logarithm of the individual intensity values is a mathematically correct evaluation step, so that falsifications of results are prevented. This training also leads the High resolution detectors.

Es ist bekannt, daß die weicheren Strahlungsanteile einer Röntgenstrahlung beim Durchgang durch eine Masse stärker absorbiert werden als die härteren, so daß ein größerer Anteil der härteren Röntgenstrahlung die Masse durchdringt. Diese Erscheinung wird auch als "Aushärtung der Röntgenstrahlung" bezeichnet. Für ein bestimmtes durchleuchtetes Material können den gemessenen Intensitäten (Dichtesignalen) empirisch Korrekturwerte zugeordnet werden, welche den Einfluß der "Aushärtung" auf die Dichtesignale kompensieren. Das ergibt eine weitere Verbesserung der Strangdichtemessung gemäß der Erfindung.It is known that the softer radiation components of an X-ray radiation during passage be absorbed more by a mass than the harder ones, making a larger one Proportion of the harder X-rays penetrate the mass. This appearance will also referred to as "curing the X-rays". For a certain fluoroscopic one Material can empirically correct the measured intensities (density signals) assigned, which compensate for the influence of "curing" on the density signals. This results in a further improvement of the strand density measurement according to the Invention.

Claims (14)

  1. A method of determining the density of a fibrous strand used in the tobacco-processing industry, in particular a cigarette strand, wherein the intensity of X-radiation penetrating the strand is determined, a measuring signal corresponding to the intensity is formed and the measuring signal is processed to give a density signal representing the density of the strand, characterised in that the intensity of the X-radiation penetrating the strand is determined separately in a plurality of strand height positions, in that measuring signals corresponding to the determined intensities are formed and in that all the measuring signals are processed to give a single density signal.
  2. A method according to claim 1, characterised in that, in each strand height position, the intensity of a portion of the X-radiation penetrating a part of the strand with negligible density inhomogeneity is determined.
  3. A method according to claim 1 or 2, characterised in that the intensity of a portion of the X-radiation not penetrating the strand is additionally determined separately as reference radiation and a corresponding measuring signal is formed as a reference signal and in that this reference signal is processed with the measuring signals to give a density signal.
  4. A method according to any one of claims 1 to 3, characterised in that the measuring signals are processed by summation to give a density signal.
  5. A method according to any one of claims 1 to 4, characterised in that the logarithm of the measuring signals is calculated before summation.
  6. A method according to any one of claims 1 to 4, characterised in that the measuring signals are multiplied and the logarithm of the product is calculated.
  7. A method according to any one of claims 1 to 6, characterised in that at least one X-ray detector is shielded from the X-radiation, in that a dark current of the shielded detector is detected and a corresponding dark signal is generated and in that this dark signal is used to compensate for drift influences during the formation of density signals from the other measuring signals.
  8. A device for determining the density of a fibrous strand used in the tobacco-processing industry, in particular a cigarette strand, comprising a measuring station associated with a strand guide and provided with a source of X-radiation and a radiation receiver facing the source of X-radiation for detecting X-radiation penetrating a strand moving in the strand guide and for generating corresponding measuring signals, and an evaluation arrangement connected to the radiation receiver for processing the measuring signals to give density signals representing the strand density, characterised in that the radiation receiver (12) is formed as a linear array (13) with a plurality of X-ray detectors (14.1 to 14.n) arranged in a row for determining the strand density in a plurality of strand height positions and for generating corresponding measuring signals (S1 to Sn), and in that the evaluation arrangement (16) is formed so as to process the measuring signals to give a density signal (17).
  9. A device according to claim 8, characterised in that the linear array (13) has at least one additional X-ray detector (14.2) which detects a portion of the X-radiation not penetrating the strand (1) and generates a corresponding measuring signal (S2) as a reference signal (S0), and in that the evaluation arrangement (16) is formed so as to correct the measuring signals (S3 to Sn) as a function of this reference signal (S0).
  10. A device according to claim 8 or 9, characterised in that the linear array (13) has at least one further X-ray detector (14.1) which is shielded from the X-radiation (8) and generates a dark signal (So) corresponding to its dark current, and in that the evaluation arrangement (16) is formed so as to correct the measuring signals (S3 to Sn) and/or the reference signal (S0) to compensate for drift influences as a function of this dark signal (So).
  11. A device according to any one of claims 8 to 10, characterised in that the evaluation arrangement (16) is formed so as to form the sum of the measuring signals (S3 to Sn) from the detectors (14.3 to 14.n) detecting the X-radiation penetrating the strand (1) and so as to process the sum to give a density signal (17) representing the density of the fibrous strand.
  12. A device according to any one of claims 8 to 11, characterised in that the evaluation arrangement (16) is formed so as to calculate, before summation, the logarithm of the measuring signals from at least the detectors (14.3 to 14.n) detecting the X-radiation penetrating the fibrous strand (1).
  13. A device according to any one of claims 8 to 11, characterised in that the evaluation arrangement (16) is formed so as to multiply the measuring signals from at least the detectors (14.3 to 14.n) detecting the X-radiation penetrating the fibrous strand (1) and so as to calculate the logarithm of the product.
  14. A device according to any one of claims 8 to 13, characterised in that the X-ray detectors (14.1 to 14.n) of the linear array (13) are so small that the density of the strand region detected by each detector appears substantially homogeneous.
EP97101524A 1996-02-15 1997-01-31 Method and apparatus for determining the density of a rod in the tobacco industry Expired - Lifetime EP0790006B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19605618 1996-02-15
DE19605618A DE19605618A1 (en) 1996-02-15 1996-02-15 Method and device for determining the density of a fiber strand of the tobacco processing industry

Publications (3)

Publication Number Publication Date
EP0790006A2 EP0790006A2 (en) 1997-08-20
EP0790006A3 EP0790006A3 (en) 1999-06-09
EP0790006B1 true EP0790006B1 (en) 2002-04-17

Family

ID=7785497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97101524A Expired - Lifetime EP0790006B1 (en) 1996-02-15 1997-01-31 Method and apparatus for determining the density of a rod in the tobacco industry

Country Status (5)

Country Link
US (1) US5762075A (en)
EP (1) EP0790006B1 (en)
JP (1) JPH09224632A (en)
DE (2) DE19605618A1 (en)
ES (1) ES2173348T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10721959B2 (en) 2016-06-10 2020-07-28 International Tobacco Machinery Poland Sp. Z O.O. Apparatus for determination of the position of an insert in rod-like articles of the tobacco industry

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839476B2 (en) * 1996-06-13 1998-12-16 日本たばこ産業株式会社 Cigarette hoisting equipment
US6198537B1 (en) 1997-07-11 2001-03-06 Philip Morris Incorporated Optical inspection system for the manufacture of banded cigarette paper
US5966218A (en) * 1997-07-11 1999-10-12 Philip Morris Incorporated Bobbin optical inspection system
US6020969A (en) * 1997-07-11 2000-02-01 Philip Morris Incorporated Cigarette making machine including band inspection
GB9814701D0 (en) * 1998-07-08 1998-09-02 Avs Metrology Limited Radiation monitoring of a physical propert of a material
CN1249428C (en) * 1999-11-30 2006-04-05 日本烟草产业株式会社 X-ray tester
DE19959034B4 (en) * 1999-12-08 2008-01-17 Hauni Maschinenbau Ag Method and device for feeding a preferably liquid additive to a moving web
US6909094B2 (en) * 2003-02-12 2005-06-21 Philip Norris Usa Inc. System and method for terahertz imaging using a single terahertz detector
AU2004203168A1 (en) * 2003-07-17 2005-02-03 Hauni Maschinenbau Ag Method for detecting foreign bodies within a continuously guided product stream and apparatus for carrying out the method
JP4264382B2 (en) * 2004-04-30 2009-05-13 株式会社モリタ製作所 Automatic exposure control method for photographed image and automatic exposure control apparatus using the method
JP4264381B2 (en) * 2004-04-30 2009-05-13 株式会社モリタ製作所 Two-dimensional image processing method of solid-state image sensor and medical digital X-ray imaging apparatus
DE102004057092A1 (en) * 2004-11-25 2006-06-01 Hauni Maschinenbau Ag Measuring the diameter of rod-shaped articles of the tobacco processing industry
DE102014209721A1 (en) * 2014-05-22 2015-11-26 Hauni Maschinenbau Ag Method for determining a property of a rod-shaped article of the tobacco-processing industry by means of X-radiation, and sample holder
CN104865154A (en) * 2015-06-01 2015-08-26 苏州菲尼克斯质检仪器有限公司 Smoke density test device
WO2017208104A1 (en) * 2016-06-03 2017-12-07 International Tobacco Machinery Poland Sp. Z O.O. Apparatus for identification of physical parameters of rod-like articles of the tobacco industry
WO2017208103A1 (en) * 2016-06-03 2017-12-07 International Tobacco Machinery Poland Sp. Z O.O. Apparatus for identification of physical parameters of rod-like articles of the tobacco industry
PL234550B1 (en) 2016-06-03 2020-03-31 Int Tobacco Machinery Poland Spolka Z Ograniczona Odpowiedzialnoscia Device for identification of physical parameters of rod-like articles of tobacco industry
WO2018102051A1 (en) * 2016-11-29 2018-06-07 Laitram, L.L.C. Multi-energy x-ray absorption imaging for detecting foreign objects on a conveyor
GB201716550D0 (en) * 2017-10-10 2017-11-22 British American Tobacco Investments Ltd Rod inspection method and apparatus
CN108896440B (en) * 2018-04-11 2020-10-27 山东中烟工业有限责任公司 Correction method for detecting density distortion of cigarette end by microwave densitometer
EP3811792B1 (en) 2019-10-21 2022-07-06 International Tobacco Machinery Poland Sp. z o.o. A feeding apparatus for feeding a tobacco industry segment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056026A (en) 1959-05-11 1962-09-25 Gen Electric Cigarette density gage
DE2941580A1 (en) 1979-10-13 1981-04-23 Hauni-Werke Körber & Co KG, 2050 Hamburg DEVICE FOR TESTING THE DENSITY OF A STRING OF TOBACCO
US4785830A (en) 1983-01-22 1988-11-22 Korber Ag Method and apparatus for monitoring and evaluating the density of a tobacco stream
US4805641A (en) 1985-07-31 1989-02-21 Korber Ag Method and apparatus for ascertaining the density of wrapped tobacco fillers and the like
IT1214545B (en) 1985-11-13 1990-01-18 Hauni Werke Koerber & Co Kg PROCEDURE AND DEVICE FOR PRODUCING A LODGING OF FIBERS FROM THE TOBACCO PROCESSING INDUSTRY.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10721959B2 (en) 2016-06-10 2020-07-28 International Tobacco Machinery Poland Sp. Z O.O. Apparatus for determination of the position of an insert in rod-like articles of the tobacco industry

Also Published As

Publication number Publication date
JPH09224632A (en) 1997-09-02
DE59707008D1 (en) 2002-05-23
DE19605618A1 (en) 1997-08-21
EP0790006A3 (en) 1999-06-09
EP0790006A2 (en) 1997-08-20
US5762075A (en) 1998-06-09
ES2173348T3 (en) 2002-10-16

Similar Documents

Publication Publication Date Title
EP0790006B1 (en) Method and apparatus for determining the density of a rod in the tobacco industry
DE3801115C2 (en) Method and device for determining the density of a fiber strand of the tobacco processing industry
DE3624236A1 (en) METHOD AND DEVICE FOR CHECKING THE DENSITY OF A COATED TOBACCO STRAND
DE3905658A1 (en) METHOD AND DEVICE FOR MEASURING THE HUMIDITY OF A GOOD
EP1480532B1 (en) Device for the simultaneous, continuous measurement and regulation of the acetate and triacetine level in filter rods of the tobacco-processing industry
EP2207027A2 (en) Method and device for measuring mass and density and/or measuring the humidity of portioned units, which are conveyed by means of a carrier material through a microwave resonator
EP1557100B1 (en) Filter rod inspection
EP2238845B1 (en) Method for optical control of a wrapping paper strip for the tobacco industry
DE2432891A1 (en) DEVICE FOR MEASURING THE WEIGHT PER AREA UNIT OF VARIOUS COMPONENTS OF A RAIL-SHAPED MATERIAL
EP1669755B1 (en) Method and device for measuring mass and/or moisture of the content of capsules
DE19612077A1 (en) Weighing of rod-shaped articles in transit on belt conveyor
DE3725365A1 (en) METHOD AND DEVICE FOR PRODUCING A STRING OF CIGARETTES
EP3497438A1 (en) Measuring apparatus and method for detecting electrically conductive elements in products and a machine for producing products of the tobacco-processing industry
DE4427605A1 (en) Method and device for determining the weight of rod-shaped articles in the tobacco processing industry
DE3638519C2 (en)
DE69420680T2 (en) Method and device for determining the density of a stream of fiber material in a cigarette manufacturing machine
DE2833124A1 (en) METHOD AND ARRANGEMENT FOR FORMING A STRAND OF SMOKABLE FIBERS PREFERRED TOBACCO
DE68921425T2 (en) Optical device for checking the end of cigarettes.
DE102011006439B4 (en) Spatially resolved measurement of at least one physical property of a rod-shaped article of the tobacco processing industry
DE19518640A1 (en) Density measuring device for extrusion machines in the tobacco processing industry
DE69705009T2 (en) Procedure for checking the filled ends of tobacco articles
DE4119821A1 (en) METHOD AND DEVICE FOR MEASURING THE HARDNESS OF QUERAXIAL PRODUCED ROD-SHAPED ITEMS OF THE TOBACCO-PROCESSING INDUSTRY
DE3738983A1 (en) Method and apparatus for producing a fibre strand in the tobacco processing industry
EP0842442B1 (en) Process and device for measuring the radiation depth of radiation
DE4014659A1 (en) Measuring density of tobacco strand - from measuring intensity of transmitted beam passed through stand and conveyor and giving improved reliability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19991125

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010326

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAUNI MASCHINENBAU AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020417

REF Corresponds to:

Ref document number: 59707008

Country of ref document: DE

Date of ref document: 20020523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020717

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2173348

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021224

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030103

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030205

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040202