EP0785729A4 - - Google Patents

Info

Publication number
EP0785729A4
EP0785729A4 EP95908674A EP95908674A EP0785729A4 EP 0785729 A4 EP0785729 A4 EP 0785729A4 EP 95908674 A EP95908674 A EP 95908674A EP 95908674 A EP95908674 A EP 95908674A EP 0785729 A4 EP0785729 A4 EP 0785729A4
Authority
EP
European Patent Office
Prior art keywords
composite
cellulose
surfactant
hlb
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95908674A
Other languages
French (fr)
Other versions
EP0785729A1 (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of EP0785729A1 publication Critical patent/EP0785729A1/en
Publication of EP0785729A4 publication Critical patent/EP0785729A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/36Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
    • A23G3/42Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/16Fatty acid esters
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/188Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/08Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing caseinates but no other milk proteins nor milk fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/015Reducing calorie content; Reducing fat content, e.g. "halvarines"
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/343Products for covering, coating, finishing, decorating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/322Products for covering, coating, finishing, decorating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/34Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/60Comminuted or emulsified meat products, e.g. sausages; Reformed meat from comminuted meat product
    • A23L13/65Sausages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • A23L19/12Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops of potatoes
    • A23L19/18Roasted or fried products, e.g. snacks or chips
    • A23L19/19Roasted or fried products, e.g. snacks or chips from powdered or mashed potato products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L25/00Food consisting mainly of nutmeat or seeds; Preparation or treatment thereof
    • A23L25/10Peanut butter
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/60Salad dressings; Mayonnaise; Ketchup
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L9/00Puddings; Cream substitutes; Preparation or treatment thereof
    • A23L9/10Puddings; Dry powder puddings
    • A23L9/12Ready-to-eat liquid or semi-liquid desserts, e.g. puddings, not to be mixed with liquids, e.g. water, milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L9/00Puddings; Cream substitutes; Preparation or treatment thereof
    • A23L9/20Cream substitutes
    • A23L9/22Cream substitutes containing non-milk fats but no proteins other than milk proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/40Foaming or whipping
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G2200/00COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF containing organic compounds, e.g. synthetic flavouring agents
    • A23G2200/06COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF containing organic compounds, e.g. synthetic flavouring agents containing beet sugar or cane sugar if specifically mentioned or containing other carbohydrates, e.g. starches, gums, alcohol sugar, polysaccharides, dextrin or containing high or low amount of carbohydrate

Definitions

  • This invention relates to new functional bulking and texturizing materials, their composition, production and use, particularly their use as food ingredients. More particularly, the invention relates to an improved particulate coprocessed cellulose and its manufacture and use.
  • an improved particulate coprocessed cellulose and its manufacture and use In this era of calorie consciousness in which many consumers are interested in reducing their calorie intake, particularly their fat intake, without reducing their food consumption, there is a need for reduced calorie food ingredients that provide bulk, but few, if any, calories.
  • These bulking aids can be incorporated into specific foods to replace or otherwise reduce the amount of fat and/or other calorie source that would normally have been present in the food.
  • these bulking aids preserve the texture of the food and the mouthfeel of the food and preferably enhance either the functionality of other food ingredients or the efficiency of the process of forming the foods.
  • Cellulose is one such material that has historically served as a functional formulary aid in a wide range of food applications.
  • the use of cellulose as a non-nutritive bulking agent in food systems is limited by several characteristics of cellulose. These include an inherent chalky or other disagreeable taste, especially at high use levels; difficulty in forming a dispersion which adversely affects its mouth feel; and an adverse effect on texture or consistency.
  • This invention is directed to a novel particulate cellulose composite that is dispersible in a mid-range or in a high moisture system.
  • the composite can be designed, if desired, to provide good texture and/or to avoid the chalky taste of cellulose.
  • the present invention is directed to a composite of a particulate cellulose and one or more surfactant(s) in which the surfactant is adsorbed onto the surface of the cellulose.
  • This composite can be made by coprocessing a particulate cellulose with a surfactant.
  • the composite can be used as an ingredient in a food, particularly an mid-range or a high moisture food.
  • cellulose denotes a particulate cellulose that has not been coprocessed with a hydrocolloid or with a surfactant.
  • a particulate cellulose includes microcrystalline cellulose (MCC), such as Avicel® microcrystalline cellulose, a product of the FMC Corporation; a cellulose powder, such as Solkafloc® cellulose powder, a product of the Fiber Sales and Development Corporation, a subsidiary of Protein Technologies; a fibrillated cellulose, a fibrillated microcrystalline cellulose, an attrited microcrystalline cellulose, an attrited fibrillated cellulose, and any other particulate cellulose or microcrystalline cellulose. Any cellulose source can be used.
  • the starting particle size may range from 1.0 to 500 micrometers (microns; ⁇ ), with a preferred range of 1 to 50 ⁇ for most cellulose, and a most preferred range of from 1 to 20 ⁇ .
  • the shape of the particles may be round or spherical, rod-like, platelet shaped, or irregular. The preferred particle size and shape are determined by the particular end use, and the general considerations operative in such a selection are known in the art.
  • surfactant denotes a chemical compound with a calculable
  • HLB hydrophilic/lipophilic balance
  • a surfactant has at least two types of moieties, a hydrophilic moiety and a hydrophobic moiety.
  • HLB was developed as a means for categorizing emulsifiers according to their tendency to form emulsions containing oil and water, the HLB system has been and here is applied to surfactants. Generally, the lower the HLB the greater the tendency is for the surfactant to dissolve in oil, and the higher the HLB the greater the tendency is for the surfactant to dissolve in water.
  • a low HLB surfactant has an HLB of about 2 to 8 and is usually oil soluble or at least oil dispersible.
  • a high HLB surfactant has an HLB of about 13 or greater and is usually water soluble or at least water dispersible.
  • Intermediate HLB surfactants have intermediate tendencies. This system, which was developed by Griffin at ICI America, is now a widely accepted empirically derived standard that is used to help select alternative surfactants based on the HLB of the surfactant being used. It is also used to select groups of surfactants which individually may not have the desired HLB, but collectively have a net HLB within the needed range.
  • hydrocolloids are naturally occurring colloidal products, typically gums such as carboxymethyl cellulose(cmc), carrageenan, pectin, agar, konjac, and gelatin, which have hydrophilic moieties, but not hydrophobic moieties. Hydrocolloids are sometimes used as protective colloids or as stabilizers for emulsions and suspensions. Some have also been processed with cellulose. Hydrocolloids are not, however, considered to be surfactants within the context of this invention.
  • mid-range moisture denotes a moisture content within the range of greater than 30 weight percent up to but no more than 40 weight percent.
  • high moisture denotes a moisture content greater than 40 weight percent.
  • This invention is directed to a novel cellulose composite and to methods for its preparation and use.
  • the novel composite is the product of a cellulose that has been coprocessed with surfactant.
  • This composite is characterized in that its surface properties have been modified to customize its hydrophobic or hydrophilic characteristics, as required by its desired end use properties.
  • Other end use properties that can be controlled include the degree of dispersibility and the potential use levels, especially in the mid- range and high moisture systems of this invention, and the masking of the "chalky" taste sometimes found in cellulosics at high use levels.
  • the composite has a size within the range of from about 1 to about 505 ⁇ ; preferably it has a size within the range of from about 1 to about 55 ⁇ ; and most preferably, it has a size within the range of from about 1 to about 25 ⁇ .
  • a surfactant having an HLB within the range of from 1 to 40 can be used, an HLB of >10 is preferred, an HLB of 7-25 is more preferred, and an HLB of 13 to 18 is most preferred.
  • the term HLB in this context includes not only the HLB of a single surfactant, but the effective, net HLB of a combination of surfactants.
  • the HLB of the composite is essentially the same as the HLB of the surfactant or surfactants used to make it. Examples of materials suitable in the broad aspect of this invention may be found in McCutcheon's Emulsifiers and Detergents (MC Publishing, Glen Rock, N.J.).
  • suitable surfactants are listed in the Food Grade section of McCutcheon's. These include but are not limited to food-grade lecithin, fractionated lecithin, monoglycerides and diglycerides; esters of monoglycerides and diglycerides with acetyl, lactyl, ethoxyl, succinyl, ricinoleic, or diacetyltartaric groups; polyglycerol esters, propylene glycol esters, sorbitan esters, derived sorbitan esters such as polyoxyethylene sorbitan, and sucrose esters. Fats, oils, proteins, other lipid materials, and blends of the above are also included.
  • HLB denotes the HLB of the blend, not the HLB of any particular surfactant in the blend.
  • surfactants used should be those that are generally recognized as safe for such use by the appropriate regulatory authority. Such recognition may vary with venue.
  • An effective percentage of surfactant for the composite is about 1% to 50% by weight of the composite.
  • the amount of surfactant required has been found to vary somewhat with surfactant, with 5-10 wt % being required in some situations, with a lower surfactant percentage being effective in others, and with higher surfactant percentages being better in still other situations.
  • Below 1 % of surfactant there is insufficient surfactant to satisfactorily modify the surface properties of the cellulose.
  • the optimum surfactant percentage can be determined without undue experimentation; it changes with the particle size, the surfactant used, and the nature of the system the composite is to be used in are considered.
  • the properties of the surfactant can begin to dominate or become more dominant, especially if the particle size is large.
  • the amount of surfactant required to provide satisfactory masking of the undesirable inherent properties of the cellulose increases.
  • a 500 micron particle can be satisfactorily coated with 1 % surfactant, whereas a 1 micron particle requires a higher percentage of surfactant to adequately cover the surface.
  • adding the same percentage of surfactant as required for the small particle size results in the needless addition of unwanted calories found in the surfactant.
  • the preferred percentage of surfactant is within the range of 1 wt % to 50 wt %, and a more preferred percentage of surfactant is within the range of 3% to 30% of the total, an even more preferred percentage of surfactant is within the range of 3 wt % to 20 wt %; and a most preferred percentage of surfactant is within the range of 5 to 15 wt %.
  • Coprocessing is accomplished by any of several physical processes. These include co-processing a mixture of a cellulose with an emulsion, a suspension, or a solution of surfactant.
  • Suitable processes include intensive co-milling of cellulose and surfactant, either wet or dry using a bead mill, such as a Dynomill, or a mechanofusion processor; high-intensity mixing using a Henschel, a Littleford-Day or other suitable mixer; spray-drying; bulk co-drying using a fluid bed dryer or some other suitable dryer; fluid bed drying or agglomerating using a Glatt dryer or other suitable dryer; air drying; freeze drying using a Stork dryer or other suitable dryer; or spray chilling of emulsified, or suspended cellulose and surfactant using a Niro or other suitable spray chiller; or by coextrusion of the cellulose and the surfactant, using any one of a number of commercially available extruders.
  • intensive co-milling of cellulose and surfactant either wet or dry using a bead mill, such as a Dynomill, or a mechanofusion processor
  • the liquid When wet-processed, the liquid may be water, a non- aqueous solvent such as alcohol, or a mixture thereof. Agents that improve the compatibility of the components may also be used in any of the above processes.
  • a preferred process includes high-intensity mixing in an aqueous solution followed by either co-spray drying, or high-intensity, dry co-milling.
  • Coprocessing is required.
  • the simple blending of cellulose and surfactant is not sufficient to produce the novel composites of this invention.
  • the surfactant must be free to flow onto the surface of the cellulose. Such flow can occur near, at, or above the melting temperature of the surfactant or it can occur if the surfactant is in solution or if the surfactant is dispersed or emulsified.
  • a typical process used for making the composites of this invention involves a high shear with a temperature that is sufficient to melt, to soften, or to otherwise improve the flow characteristics of the surfactant.
  • the intensity must be sufficient to force association between the hydrophilic surface of the starting cellulose, and at least the less hydrophobic part of the surfactant molecule, requiring a significant energy input, either mechanically or through a solvent system.
  • the more uniform the distribution of surfactant is throughout the surfactant/cellulose system being coprocessed the better the composite. Absent such a distribution, the surfactant will tend to aggregate particles of surfactant rather than coat individual particles.
  • a high degree of surfactant distribution leads to a more effective use of the surfactant on the cellulose and it leads to a more uniform composite particle size distribution.
  • a more uniform composite particle size distribution provides greater quality control in the food or other end product for the composite.
  • Coprocessing creates a physical interaction between the cellulose particle and the surfactant; however, it is hypothesized that it generally does not tend to create covalent chemical bonding.
  • the resulting composite be substantially dried before use.
  • the composite has a maximum moisture content of less than about 10 wt %, preferably less than about wt 6 %, and most preferably in the range of 2-5 wt %.
  • the drying process fixes the surfactant onto the surface of the cellulose in a manner that tends to prevent, or at least retard, its being stripped from the surface of the cellulose by solvent.
  • the resulting dry composite is a free-flowing powder that may be added directly to a final-use system, such as, but not limited to, a food product. Since the composite can be added as a dry powder, the mere use of such a composite will not appreciably increase the moisture content of the food to which it is being added. Thus, the composite can be used in foods having extremely low moisture requirements, such as fat phase confections and cookie fillings.
  • the composite can, however, be used in a mid-range or in a high moisture food, such as a pudding, a bread, a cake, a syrup phase confection, a margarine, a salad dressing, a non-dairy creamer, a mello ne, or a whipped dessert.
  • a high moisture food such as a pudding, a bread, a cake, a syrup phase confection, a margarine, a salad dressing, a non-dairy creamer, a mello ne, or a whipped dessert.
  • a few products in this category may have less than 30 weight percent water, in most cases, these foods have greater than 30 weight percent water.
  • the water is bound and is not available to disperse the composite.
  • Available water is a term which describes not the absolute amount of water contained in a product, but rather the amount of water in the product that is not chemically bound.
  • the composite of this invention is a cellulose, the surface of which has been physically modified by a surfactant, with the composite assuming some of the surface properties characteristic of the surfactant.
  • a cellulose coprocessed with a hydrophilic surfactant has a lipophobic character, easily dispersing in water without settling, but floating in oil without dispersing; on the other hand, a neat cellulose clumps, rather than disperses in an oil, while a neat cellulose disperses in water with instantaneous settling.
  • This novel surface characteristic of the coprocessed material is maintained even after it has been washed in water. This would not be expected if the composite were merely a simple mixture.
  • the composite is not a simple mixture, but a cellulose having the surfactant affixed thereto.
  • the composite can be used in systems that have a mid-range moisture level, or a high moisture level.
  • a composite can be prepared which effectively masks the objectionable chalky taste and mouthfeel of cellulose, such as microcrystalline cellulose.
  • a coprocessed cellulose dispersed in a food will not exhibit a chalky mouthfeel even when used in high concentrations. This is true despite the opportunity, during the sometimes extended processing of the food, for the surfactant and the cellulose to become separated by dissolution of the surfactant in the food, or otherwise.
  • an unmodified cellulose added to a similar food composition still has the chalky taste and the other properties of neat cellulose.
  • the composite is used primarily as either a low calorie bulking agent or as a texturizer.
  • any food system may potentially be improved by using the composite to lower its fat and/or its caloric content, or to alter its rheology or its texture.
  • the composite may be useful in a baked good as a processing agent, because the high HLB of the surfactant permits or improves the kneading of moist dough, while at the same time the composite is compatible with and able to be incorporated into the structure of the finished baked good, where it serves as a bulking agent.
  • the composite may be useful in a margarine having a mid-range or a high moisture content as a processing agent, as a texturizer, or simply as a bulking agent. Alternatively, in a liquid spread, or in a margarine, the composite may serve to stabilize the system, whether the system is an emulsion or a dispersion.
  • the composite is generally designed to be incorporated into those systems that have an intermediate or a high moisture level. Depending on the particular end use, 1 to 35 weight percent composite can be used in such a food system. One to 20 wt % is preferred, while 1 to 10 wt % is most preferred. The percentage used will be a function of the desired caloric and surface characteristics of the finished food. The usage level will be lower in those instances where the composite is used in conjunction with other bulking agents or the composite is used as a bulking agent in a food that has a low fat content to begin with. The usage level will be higher where the composite is the sole bulking agent.
  • Non-food uses are also contemplated.
  • Potential uses include systems having an mid-range or high moisture content, such as the following: water based lotions, ointments, cosmetic facial creams.
  • water based lotions such as the following: water based lotions, ointments, cosmetic facial creams.
  • the ability to act as a finely-dispersible source of surfactant can be important in such systems.
  • the ratio of surfactant to cellulose in the composite is variable within broad limits, by tailoring the HLB and composition of the surfactant portion of the mixture, and by choosing the particle size of the cellulose component, compatibility with particular systems can be optimized for any contemplated end use. This tailoring can be accomplished without undue experimentation simply by choosing surfactants and particle sizes otherwise known to be effective in the particular system. Such procedures are known in the art. For example, methods of selecting surfactants, and some suggestions for certain food systems, can be found at p. 404 in the "CRC Handbook of Food Additives" (T E Furia, ed.; second edition, volume I; CRC Press, Cleveland; 1972).
  • HLB HLB is described by Rosen ("Surfactants and Interfacial Phenomena,” Wiley, NY, 1978; p. 241-49). Flack and Krog (Lipid Tech. 2 p 11-13, 1990) describe selection of emulsifiers. A list of suitable emulsifiers, and suggestions for their use in particular foods, can be found in industry listings, such as McCutcheon's Emulsifiers and Detergents (MC Publishing, Glen Rock, NJ).
  • a surfactant layer over at least part of the cellulose particle's surface.
  • This layer which may be either a continuous or a discontinuous layer, is sufficient to modify the general surface characteristics of the cellulose particle, and is generally hydrophilic, but may in some instances be lipophilic.
  • the composite bulking agent consisting of the coprocessed cellulose and surfactant, is generally compatible with mid-range and high moisture content systems.
  • the coprocessed material is very flexible, in that the HLB of the coprocessed material can be adjusted during its manufacture to have a HLB suitable for a particular use, simply by selecting the HLB or other properties of the surfactant used.
  • the coprocessing step may also be used to modify or to tailor the composite functionality in food by controlling the particle size, the particle size distribution, the particle shape, and the ingredients used.
  • the coprocessed material improves the taste of the finished food by a reduction or an absence of the well-known dryness or astringency which is inherent in cellulosic materials under low-moisture conditions. This allows the use of cellulose as a bulking agent in materials where it is desirable but was previously not acceptable, and especially allows the use of higher levels of cellulose. Thus, while prior-art cellulose can be objectionable above a few percent, the coprocessed composition of the invention can be used at levels of 10 to 20% when the appropriate surfactant is selected.
  • the composite can make a significant improvement in the texture of the food, especially in the mouthfeel and in the melting properties of the food.
  • the composite can also improve the rheology of the food being processed by positively affecting mixing, forming, filling, packaging, or other processing parameters.
  • the composite may also improve the rheology of the finished food.
  • the use of the composite in a margarine can significantly reduce the viscosity of the margarine despite the addition of higher levels of solids, thereby improving the coating properties of the margarine, without affecting its taste or mouthfeel.
  • the inventive coprocessed material if made from an appropriate HLB level surfactant, readily disperses in an mid-range or a high moisture food. In contrast, the unprocessed cellulose alone, and often the surfactant itself, may be poorly dispersible in such systems.
  • the coprocessed material further provides an improvement some food systems, by serving as a processing agent, a texturizer, a stabilizer, a low calorie bulking agent, or by serving as some combination of these functions.
  • the following examples are intended as a further illustration of the invention, but not as a limitation on the scope of the invention. All parts and percentages in the examples, and throughout this specification and claims, are by weight, and all temperatures are in degrees centigrade, unless otherwise indicated.
  • Avicel® FD 006 microcrystalline cellulose a product of FMC Corporation, has an average particle size within the range of about 5 to 10 microns.
  • 1846.15 g. was dispersed in 11 ,287.15 g. of deionized water that had been heated to 82.2 e -93.3 9 C (180-200°F).
  • the dispersion was processed using a Gifford-Woods Colloid Mill set at 70% speed (approximately 4900 rpm) and at 40 mil clearance. Then 200 g.
  • a surface active agent a Polycon S60K sorbitan monostearate, a product of Witco Corporation having an HLB about 4.7 was first heated to 76.7 Q C (170°F), then added to the Avicel dispersion in the colloid mill.
  • the mixture of dispersed Avicel and emulsifier was maintained at a temperature of 71.1 " C (160°F) to keep the emulsifier above its melting point and in a liquid state.
  • the mixture was then homogenized at 60.0 g -65.6 9 C (140-150°F) using a Manton-Gaulin homogenizer set at 17236 kPa (2500 pounds per square inch) (13790 kPa (2000 psi), first stage, 3447 kPa (500 psi) second stage).
  • the homogenized mixture at 60.0 9 C (140°F) was then pumped by a Moyno pump from a holding tank to the spray head of a two-fluid nozzle atomizer that was located in a Stork Bowen 91 cm (3 foot) diameter spray dryer.
  • the material was atomized at 680 kPa (90 psi) air pressure using a .254 cm (0.1 inch) nozzle, and then dried at 175°C inlet temperature and 90°C outlet temperature. The final material was dried to 2-4% moisture and was screened through a U.S. 60 mesh screen to produce a fine free flowing powder.
  • This material can be used for a confectionery filling, such as for a caramel, a peanut butter filling or a spread.
  • Example 2 Coprocessed Ingredient from a Cellulose Floe
  • the spray drying was performed as follows: The homogenized slurry was atomized by feeding it at 680 kPa (90 psi) atomizing air pressure to a 91 cm (3 foot) Bowen spray dryer having a nozzle with a .254 cm (0.1 inch) atomization opening .
  • the slurry was fed to the dryer by means of a variable feed Moyno pump at a rate to provide the desired outlet temperature.
  • the operating inlet and outlet air temperatures of the spray dryer were about 150 9 C and 80 S C, respectively.
  • a free-flowing powder was obtained. Essentially normal cellulose particles were observed when the free flowing spray dried powder was placed on a microslide and examined microscopically.
  • Heat applied directly to the microslide with a hair dryer liquefied the particle surface layer and produced a puddling of material at the bottom of the cellulose particles when the melt point of the lipid layer was exceeded.
  • the spray dried powder containing 85% cellulose and 15% sorbitan monostearate was reconstituted in water at 10% solids by vigorous hand-stirring.
  • the coprocessed powder tended to float and to collect on the surface of the water.
  • uncoated (not coprocessed) cellulose powder was added to water; it readily dispersed, swelled and remained suspended for several minutes.
  • Mechano Fusion is a technology for coprocessing two or more materials to obtain a modified material in which one of the materials is deposited onto the surface of another.
  • the technology is based on using high intensity mixing and a compaction device.
  • the powder was mixed, compacted, and scraped off of the walls of the chamber and the process was repeated. During the process, the temperature increased because of the intense shear. For this particular sample the process was stopped after the temperature reached 71.1 9 C (160°F) for 5 minutes, which allowed the surfactant to melt.
  • the resulting dry, coprocessed powder dispersed easily in oil, significantly faster than microcrystalline cellulose alone. When added to water the coprocessed powder floated on the surface; it would wet and settle to the bottom of the flask only after prolonged stirring; however, a non-coprocessed cellulose, such as the Avicel® FD006 microcrystalline cellulose, settled to the bottom immediately.
  • An alternative method for coating MCC with a surfactant is by dissolving the surfactant in a solvent, adding the dissolved surfactant to MCC, mixing the MCC with the surfactant and evaporating the solvent.
  • 10 g of Polycon 60® sorbitan monostearate, a product of Witco Corp having an HLB of about 4.7 was dissolved in 100 g of 2-propanol at 60°C.
  • 90 g of fine grind MCC was added to the solution and stirred with a laboratory mixer for 5 min.
  • the resulting paste was spread in a 15 cm (6 inch) cake baking dish and dried at 50°C.
  • the resulting powder was evaluated in a manner described in Example 3. The powder performed very similarly to the powder in Example 3.
  • a sample of coprocessed microcrystalline cellulose composite prepared as in Example 1 was incorporated and tested in a formulation for reduced fat peanut butter as a bulking agent according to the following procedure: To 100 g of a commercial creamy peanut butter was added 10 g of the composite; and, as a control, 10 g of the parent, non coprocessed cellulose was added to a corresponding 100 g sample of the same commercial 'creamy' peanut butter. The samples were mixed in a Hobart mixer for 10 minutes at speed #1 ; then mixed for 30 minutes at speed #2. Between mixing sequences, any wall build-up was returned to the general mixture using a spatula.
  • the product with the composite had a creamy texture and was smoother than a comparable material made using the parent cellulose.
  • the sample made with cellulose alone was dry and chalky, was slower to melt, and was more viscous after melting, compared to the parent peanut butter or to the peanut butter made with the composite.
  • Coprocessed compositions and control compositions using cellulose were used in the following procedure for making chocolate.
  • the amounts and proportions of the various non-cellulose ingredients are variable in the art.
  • cellulose or a coprocessed cellulose/surfactant ingredient is assumed to be added at 10% of the weight of the entire composition. Addition of cellulose-based ingredients at other levels (5%, 13%) was also done; the approximate use levels can be found simply by altering the weight of cellulose added. 1.
  • Conching 1 and 2 Conch in either of two continuous processors set in series for a continuous process; or conch for 8-12 hour in a Sigma mixer for a batch process. First, set to dry conch; second set to wet conch: add cocoa butter (the rest of the 7% saved from the first step) and lecithin (0.5%) if required to reduce process viscosity in the finish conch. Product temperature during the process should not exceed 87.8°C (190°F) for dark chocolate, or 65.6°C (150°F) for milk chocolate.
  • Temper the finished chocolate as follows: Pour out about 2/3 of the warm finished chocolate onto a marble table. Spread the chocolate into a thin layer about 64 cm (1/4 inch) deep onto the table. Work the chocolate by scraping and respreading until the mass is cooled to 30.0°C (86°F) for dark chocolate and 27.8°C (82°F) for milk chocolate. This will form stable seed crystals of cocoa butter. Reintroduce this cooled mass back into the container and mix vigorously with the rest of the chocolate. The final temperature should reach 33.3°C (92°F) for dark chocolate and 30.0° (86°F) for milk chocolate in order for the entire mass to now crystallize into the most stable crystal form for cocoa butter.
  • the finished chocolate product produced with a coprocessed cellulose/surfactant material showed several improvements over a chocolate product with cellulose alone. In some variables, it was also an improvement over conventional chocolate. Among these improvements is a lower process viscosity and yield value, which can be dramatic at 10% and above of the coprocessed material, which is superior to control material containing cellulose alone. These improvements make it much easier to coat confectionery to a defined thickness and uniformity with chocolate containing the inventive composition.
  • a higher level of non-nutritive material can be incorporated without adverse taste effects, which leads to a greater reduction of fat and total calories for the finished food.
  • the coprocessed material demonstrated a great stability in use.
  • the surfactant In the extended processing required to make chocolate, there was ample opportunity for the surfactant to become detached from the surface of the cellulose. It is evident from the results of the testing shown below that at least an effective layer of surfactant remained on the cellulose, so that it did not become aggregated and did not revert to the taste of unmodified cellulose.
  • a standard simple test system was used and prepared by the following recipe.
  • 250 grams, of a hard fat, cocoa butter was melted by heating on a heating mantle.
  • a Caframo mixer set at 500-1000 rpm speed
  • a quantity of 12.5 grams., 25.0 grams., or 50 grams., of the coprocessed ingredient was added and dispersed in the melted fat by stirring.
  • the fat was at a temperature of 48.8 9 C-60.0 9 C (120 9 F - 140 9 F), which is above the melting point of cocoa butter.
  • the melted fat containing the dispersed material was poured into forms of about 2.54 cm (1 inch) square (small polyethylene weighting boats). The samples were then set in a freezer for 30 minutes to 1 hour to 'set' the dispersed material in the fat. These samples with varying levels of ingredients were tasted by a specific sensory protocol to characterize and quantify differences.
  • a formal sensory protocol was used to quantitify taste and texture differences, using standard sensory panel testing methods. This sensory protocol identified three groups of attributes affecting the mouthfeel, which were important in understanding the effect of incorporating cellulosic materials in a non-aqueous/low moisture system. These attribute groups were astringency-related, described as drying, roughing, puckering; particle-related, described by overall amount of particles, size, chalkiness; and melt- related, described by melt rate, melt consistency (homogeneity), and by residual mouth-coating.
  • FD006 microcrystalline cellulose (“cellulose”), a product of FMC Corporation coprocessed with 10% of sorbitan monostearate (sample “S”). Results are shown in Table 2. The numbers obtained are the perceived "chalkiness”; higher numbers indicate a more chalky mouthfeel. Note that the perceived values of the control (no additive) material vary between tests over a range of 0.7 units.
  • additive use level no-additive control 2.4 1.7
  • the unprocessed cellulose was not significantly chalkier than the base cocoa butter; however, at 10% and 20% addition, the cellulose-only samples were very significantly chalky.
  • the coprocessed material was similar to the no-cellulose control at a low level of addition; at higher levels, however, the coprocessed material increased in chalkiness only slowly with use level, whereas the cellulose-only control increased rapidly in chalkiness with increasing use level; and even at a use level of 20% the coprocessed sample was not significantly higher than the control level, while the cellulose-only sample was significantly chalkier.
  • a coprocessed material was prepared as in Example 1 with the exception that a small amount of the oil-soluble dye Oil Red O was used with the surfactant.
  • the surfactant sorbitan monostearate
  • the coprocessed cellulose-surfactant ingredient easily dispersed, producing a smooth viscous suspension, and the dye was extracted from the particles into the oil.
  • pieces of dyed sorbitan monostearate were dispersed into room temperature oil, the pieces immediately settled to the bottom of the container without dissolution of the surfactant, and the dye was not significantly extracted from the particles.
  • the solution was heated, the particles dissolved and the dye was extracted.
  • the following is one method for preparing a fat phase truffle.
  • Dark chocolate is heated in a microwave set at full power for 5 minutes to heat it to a temperature of 54°C, then placed in a bowl and cooled to 32 C.
  • Nut paste, melted vegetable fat, and flavoring are then added, and the mixture is mixed using a Hobart paddle mixer, first at about speed 1. The mixer speed is then increased to speed 2, with either the composite or the microcrystalline cellulose being added with mixing.
  • the admixture is poured into and spread in a shallow pan; then it is cooled to 30 9 C or lower, until it is sufficiently firm to scoop with a cookie dropper or a melon scooper; after which it is rolled and dusted with a cocoa powder, using dutched cocoa powder, which contains 10-12% fat.
  • the truffle containing the composite tastes the same as the truffle that contains no cellulose ingredient, and has a better taste and texture than cellulose alone; in this example the use of either the neat cellulose or the composite results in a product having an approximately 10% reduction in fat in the formula, as compared to the control.
  • Caramel is a syrup phase confection having a sugar syrup base of water soluble components. Into this base other materials are dispersed to form taste and texture. These components include sweetened condensed milk and butter oil.
  • the milk solids specifically the proteins in the milk solids, react with the reducing sugars to produce the Maillard reaction known as 'carmelization.' That reaction provides the characteristic color and flavor of carmel.
  • the butter oil provides vabricity to the confections.
  • the composite functions as a texturizer, which permits the production of a higher moisture formula, thus giving the manufacturer an opportunity to reduce the cost of the caramel. The higher moisture also permits a process time reduction because not as much water has to be boiled off to get the proper structure for the soft caramel.
  • each caramel has the same ingredients but different degrees of softness, sometimes called chewiness, which is controlled by the modification of the moisture content.
  • softness varies with moisture content over a range of from 6 to 12 % moisture based on the weight of the caramel, with very noticeable changes in the texture and flow characteristics of the caramel as it increases in overall moisture content at 2% increments.
  • the use of the composite provides a higher moisture caramel with the same texture and flow characteristics as a lower moisture caramel; thus, a caramel can be made that will have similar texture and flow properties as a caramel that has an approximately 2 % lower overall moisture content.
  • this product permits the production of a caramel with 14% moisture, that will have the same texture and flow as a traditional caramel having 12 % moisture.
  • the composite permits control of graining and cold flow.
  • the texture of the caramel made with the composite has approximately 2% more moisture and 33% less fat than does the control, and is as good as the control.
  • the composite also provides better tooth release and eating quality .
  • the caramel is prepared by first dissolving salt and then dissolving sugar in water. The solution is brought to a boil at 110 9 C. While maintaining this temperature, the following ingredients are added with stirring: corn syrup, followed by lecithin, sweet condensed skim milk, butter oil, and then a slurry of composite dispersed in 200 grams of water. The resultant mixture is cooked to 110 S C, and is then carmelized at 118 9 C with a controlled cook time of about 21 minutes. Then 200 grams of water is added and the mixture is quickly brought to a reboil at 118 9 C for 12 minutes, except that for the caramel containing 10% composite reboil occurs at 114 9 C. Vanilla is then added with stirring, followed by cooling the mixture to 90 9 C. This mixture is then transferred onto a slightly greased sheet tray, cooled to room temperature, and cut to any desired shape.
  • the caramel containing the composite is comparable in taste and texture to the caramel without the composite, and has a better texture than caramel with cellulose alone. Table 4
  • Staley Sweetose 4300 63DE corn syrup, A.E. Staley Manufacturing, Co.
  • vanilla extract Two-fold vanilla extract, Virginia Dare Metarin DA51 lecithin, a product of Lucas Meyer, Inc.
  • Avicel® FD 006 microcrystalline cellulose Avicel is a trademark of the FMC Corporation.
  • Atmos®150 K glycerol monostearate having an HLB of 3.5 is a trademark of Witco Corporation.
  • Composite is a particle with a median size of approximately 10 micron that is an 90/10 w/w Avicel® FD008 microcrystalline cellulose/Atmos®150K glycerol monostearate.
  • Fudge like caramel, is a syrup phase confection; however, unlike caramel, fudge includes sugar crystals to shorten its texture; as a consequence, fudge is sometime referred to as a grained confection.
  • the fudge is prepared by first dissolving salt and then dissolving sugar in water.
  • the solution is brought to a boil at 110 S C. While maintaining this temperature, the following ingredients are added: corn syrup, lecithin, sweet condensed skim milk, and butter oil; then followed by a slurry of the composite, which slurry had been prepared by dispersing the composite in 200 grams of water.
  • the resultant mixture is first cooked to 110 9 C, and then carmelized at 115 9 C. Then 200 grams of water is added and the mixture is quickly brought to a reboil at 118 9 C for 12 minutes, except that for the 10% composite containing fudge, reboil occurs in 7 minutes at 114 9 C.
  • vanilla is then added with stirring, followed by cooling the mixture to 90 9 C.
  • This mixture is then poured onto a slightly greased sheet tray, cooled to room termperature, and cut to any desired shape.
  • the recipe used for the control and two different products, one containing a composite, the other containing a neat cellulose, are described in Table 5.
  • the fudge containing the composite has approximately 2% higher moisture and significantly (67%) less fat than the control; yet, the fudge containing the composite is comparable in taste and texture to the control and has a better texture than does the sample with cellulose alone.
  • Staley Sweetose 4300 63DE corn syrup, A.E. Staley Manufacturing Co.
  • Metarin DA51 lecithin a product of Lucas Meyer, Inc. Premier fine flake salt
  • Avicel® FDO08 microcrystalline cellulose Avicel is a trademark of the FMC Corporation Atmos®150K glycerol monostearate having an HLB of 3.5. Atmos is a trademark of Witco Corporation.
  • Composite is a particle with a median size of approximately 10 micron that is an 90/10 w/w Avicel® FD008 microcrystalline cellulose/Atmos®150K glycerol monostearate.
  • the fat must be melted to a liquid before this addition; then transfer the final mixture onto a slightly greased waxed or poly coated paper; cover overnight; then cool, cut to shape, and enrobe in chocolate.
  • the two samples are similar in taste and in texture to the control.
  • Triodan55 polyglycerol ester a product of Grinsted Products, having an
  • Composite is a particle with a median size of approximately 8 to12 micron that is an 90/10 w/w Avicel® FD008 microcrystalline cellulose/Triodan 55 polyglycerol ester.
  • a typical chocolate chip is about 30% fat.
  • the chocolate chip is a dark chocolate that has been prepared as in Example 6, with the exception that it is deposited as a drop. The sensory result good for each of the respective chocolates.
  • a pudding is prepared, as follows. First a composite is prepared, as follows: A coprocessed fine particle size microcrystalline cellulose (mcc) having a 6 to 8 micron median particle size, is coprocessed at a 80 to 20 weight ratio with a Emulsilac®SK sodium stearoyi lactylate (ssl) (a product of Witco, having an HLB 20) and dried to a fine powder according the the procedure of Example 1.
  • the pudding is prepared using the ingredients as specified in Table 7, by first mixing the dry ingredients; then adding the ingredient mixture to cold milk; followed by blending the milk with those ingredients.
  • the mixture is stirred and cooked in a double boiler until thickened at about 82.2 9 C (180 e F), at which time the heat is reduced to a medium setting and cooked with continual stirring for about 15 minutes.
  • the resulting mixture is cooled slightly within the range of about 48.9 9 C to 60.0 9 C (120 9 F to 140 9 F); vanilla is then added; and the resulting mixture is poured into molds which are placed in a refrigerator and cooled for 1 or 2 hours.
  • the Blanc Mange made with the composite is as tasty as that made without composite.
  • Emulsilac® sodium stearoyi lactylate a product of Witco Corporation, having an HLB of 20.
  • Composite is a particle with a median size of 10 to 15 microns that is an 80/20 w/w microcrystalline cellulose/Emulsilac® sodium stearoyi lactylate.
  • Example 16 Use in a Bread
  • a bread dough is made by mixing 29 kgs (63 pounds) of a wheat flour, .68 kgs (1.5 pounds) of table salt, .68 (1.5 pounds) of yeast, 16 kgs (36 pounds) of water, and .45 kgs (1 pound) of a lard. The mixture is allowed to sit for 4 hours, and then baked in an oven at 176.7 9 C (350°F) for one hour.
  • a second bread dough is made by mixing 25.9 kgs (57.2 pounds) of wheat flour, .68 kgs (1.5 pounds) of table salt, 2.86 kgs (6.3 pounds) of composite prepared as in Example 2 (with the exception that Myverol SMG succinylated monoglycerides, a product of Eastman Chemical Products, Inc. having an HLB of 4 to 6, was used as the surfactant), .68 kgs (1.5 pounds) of yeast, 16 kgs (36 pounds) of water, .23 kgs (0.5 pounds) of lard. This mixture is allowed to sit for 4 hours, and is then baked in an oven at 350°F for one hour. One hour after the breads have been removed from the oven, they are compared. The taste and texture are comparable.
  • a low fat meat can be prepared using the following procedure, and the ingredients specified in Table 8. First, trim pork and beef then blend to make a 50:50 mixture at desired fat levels. Chop a lean meat portion, add salt, sodium nitrite and half the volume of water as 50% water/50% ice; then add the remaining dry ingredients; then add what remains of the water and the fat meat blend. Run this mixture through an emulsifier with a 0.4 mm plate; stuff the mixture into casings; cook it in a smokehouse using gradient heating with fast air circulation; then shower it; chill it; peel it; and vacuum package the final product. For evaluation, the products are simmered in water and served warm without condiments. A sensory preference panel can then evaluate the products, for preference evaluation using a 9-point hedonic scale on which a score of "9" represents an excellent product and a score of "1" represents an extremely poor product.
  • both the control and the composite containing sample obtain a score of 6 to 7.
  • Gelcarin® XP8004 carageenan is a trademark of FMC Corporation.
  • Composite is a particle with a median size of approximately 15 to20 micron that is an 80/20 w/w Avicel®FD008 microcrystalline cellulose/Atmul®84K mono and diglycerides.
  • Avicel is a trademark of FMC Corporation.
  • Atmul®84K is a surfactant manufactured by of Witco Corporation having an HLB of 2.8.
  • a reduced fat chocolate mousse can be made using the ingredients specified in Table 9, as follows.
  • dry blend sugar, non-fat milk, milk chocolate crumb, cocao, milk protein, modified starch, gelatin, emulsifier and carrageenan In a separate container disperse a cellulose/surfactant composite in water with a high speed mixer, preferably of the Silverson type, with about 10 minutes of mixing; then add the dry blend from the first container with continuous stirring. While stirring, bring the heat up to 80 9 C using a steam-jacketed kettle. Homogenize the mixture at 180 kg/cr ⁇ 2 to insure proper mixing; then cool to 15 9 C. Once cooled to 15 9 , aerate and then deposit into containers.
  • the chocolate mousse made using the composite is at least as good as the chocolate mousse made using neat cellulose.
  • Lactodan p22k lactic acid ester of monoglycerides a product of Grinsted Products, Inc. used as the emulsifier in the no composite example and used to make the composite used in the other example.
  • Avicel®CL611 microcrystalline cellulose Avicel is a trademark of FMC Corporation.
  • a microcrystalline cellulose having a particle size of 10 microns having a particle size of 10 microns.
  • Composite is a particle with a median size of approximately 15-20 micron that is a 80/20 w/w microcrystalline cellulose/Lactodan p22k
  • a reduced fat, baker's whipped topping can be prepared as follows using the ingredients provided in Table 10. 1. Using a high speed mixer, disperse Novagel®RCN 15 microcrystalline cellulose, in water. Novagel is a trademark of FMC Corporation.
  • Blend nonfat dry milk and sugar Add the blend to the above mixture and continue mixing for 5 minutes.
  • the whipped topping containing the composite is as tasty and as light and as airy as the whipped topping containing cellulose, but no composite.
  • a Paramount B partially hydrogenated vegetable oil, a product of Van Den Bergh Foods
  • CMC - 7HF cellulose gum a product of Hercules Inc.
  • Composite is a particle with a median size of approximately 15 to 20 micron that is an 80/14/6 w/w Avicel FD008 microcrystalline cellulose, a product of FMC corporation, and a surfactant that is a mixture of Tween 60, polysorbate 60, a product of ICI Americas, Inc., having an HLB of 14.9 and Myverol 18-06, distilled monoglycerides, a product of Eastman Chemical, having an HLB of 3.8.
  • a reduced calorie heat stable salad dressing can be made as follows, using the ingredients as specified in Table 11. Part i
  • a reduced fat, non-dairy creamer is prepared using the ingredients specified in Table 12, as follows: Dry blend the ingredients; then mix them with water at 60°C (140°F); then mix in premelted vegetable fat; and then mix in corn syrup. Pasturize the mixture at 71 °C (160°F) for 30 minutes; then homogenize the mixture in a two stage homogenizer having a 17236 kPa (2500 pound per square inch) first stage and a 3447 kPa (500 pound per square inch) second stage. Cool and freeze the homogenized product at -17.8 to -23°C (0 to -10°F).
  • Composite is a particle with a median size of approximately 15 to20 microns that is an 80/14/6 w/w Avicel FD008 microcrystalline cellulose, a product of FMC corporation/Emulsilac®SK sodium stearolyl lactylate, a product of Witco Corporation having an HLB of 20, and Polycon®T60K polyoxyethylene sorbitan monostearate, a product of Witco Corporation having an HLB of 14.9.
  • a fabricated frozen french fry was prepared using the ingredients specified in table 13, as follows: Part I
  • Example 1 First a composite is prepared according to the procedure of Example 1 using an initial microcrystalline cellulose having an approximately 10 micron median particle size and Myverol®18-06 a monoglycerides from hydrogenated vegetable oil produced by Eastman Kodak having an HLB of about 3.8 to provide an 80/20 w/w composite having an median particle size of approximately 25 to 30 median particle size.
  • the fabricated frozen french fries made with the composite as well as with those made with the Avicel® microcrystalline cellulose are comparable in quality to those made without either of these two ingredients.
  • the composite provides structural firmness and integrity to the dough, thus improving the extrudability of the dough reducing breakage during and after extruding.
  • This structural effect also improves the body and texture of the finished fry providing a smoother consistency, fewer void spaces, and a thinner crust. The result is a more tender but firm fry with a more pleasing mouthfeel.
  • Aqueous portion Disperse Avicel®RC591 F cellulose gel in available water
  • Avicel®RC591 cellulose gum is a trademark of FMC Corporation Composite a 80/20 w/w microcrystalline cellulose/Dimodan mono and diglycerides, a product of Grinsted Products, which has an HLB of 3.0.
  • Pasteurize the mixture 4. Homogenize the mixture, using a two stage pasteurizer, at 13790 kPa (2,000 pounds per square inch) (first stage) and 3447 kPa (500 pounds per square inch) (second stage).
  • Composite is a particle with a median size of approximately 15 to 20 micron that is an 80/20 w/w Avicel FD008 microcrystalline cellulose, a product of FMC corporation/Tandem 100 K a blend of mono and diglycerides and polysorbate 80, a product of Witco Corporation.

Abstract

A composition that is a composite of cellulose and a surfactant. The composite is made by the process of coprocessing the cellulose with a surfactant. The composite can be used as a bulking agent in intermediate and high moisture systems, and is especially useful in reduced-calorie foods.

Description

"COPROCESSED PARTICULATE BULKING AND FORMULATING AIDS."
This invention relates to new functional bulking and texturizing materials, their composition, production and use, particularly their use as food ingredients. More particularly, the invention relates to an improved particulate coprocessed cellulose and its manufacture and use. In this era of calorie consciousness in which many consumers are interested in reducing their calorie intake, particularly their fat intake, without reducing their food consumption, there is a need for reduced calorie food ingredients that provide bulk, but few, if any, calories. These bulking aids can be incorporated into specific foods to replace or otherwise reduce the amount of fat and/or other calorie source that would normally have been present in the food. Typically, although not always, these bulking aids preserve the texture of the food and the mouthfeel of the food and preferably enhance either the functionality of other food ingredients or the efficiency of the process of forming the foods. Cellulose is one such material that has historically served as a functional formulary aid in a wide range of food applications. The use of cellulose as a non-nutritive bulking agent in food systems is limited by several characteristics of cellulose. These include an inherent chalky or other disagreeable taste, especially at high use levels; difficulty in forming a dispersion which adversely affects its mouth feel; and an adverse effect on texture or consistency.
The traditional approach to overcoming these limitations has been to coat the particulate cellulose with carboxymethyl cellulose, with a gum such as guar gum, or with some other hydrocolloid. Such coatings work with various degrees of effectiveness in aqueous systems; however, they do not tend to work well in systems containing littie or no water.
This invention is directed to a novel particulate cellulose composite that is dispersible in a mid-range or in a high moisture system. The composite can be designed, if desired, to provide good texture and/or to avoid the chalky taste of cellulose.
The present invention is directed to a composite of a particulate cellulose and one or more surfactant(s) in which the surfactant is adsorbed onto the surface of the cellulose. This composite can be made by coprocessing a particulate cellulose with a surfactant. In addition, the composite can be used as an ingredient in a food, particularly an mid-range or a high moisture food.
The term "cellulose" denotes a particulate cellulose that has not been coprocessed with a hydrocolloid or with a surfactant. Such a particulate cellulose includes microcrystalline cellulose (MCC), such as Avicel® microcrystalline cellulose, a product of the FMC Corporation; a cellulose powder, such as Solkafloc® cellulose powder, a product of the Fiber Sales and Development Corporation, a subsidiary of Protein Technologies; a fibrillated cellulose, a fibrillated microcrystalline cellulose, an attrited microcrystalline cellulose, an attrited fibrillated cellulose, and any other particulate cellulose or microcrystalline cellulose. Any cellulose source can be used. These sources include wood pulp, non-woody plant sources such as wheat fiber, soy fiber, cane, bagasse, sugar beet, cocoa, oats, and the like. The starting particle size may range from 1.0 to 500 micrometers (microns; μ), with a preferred range of 1 to 50 μ for most cellulose, and a most preferred range of from 1 to 20 μ. The shape of the particles may be round or spherical, rod-like, platelet shaped, or irregular. The preferred particle size and shape are determined by the particular end use, and the general considerations operative in such a selection are known in the art. The term "surfactant" denotes a chemical compound with a calculable
HLB (hydrophilic/lipophilic balance) within the range of from 1 to about 40. A surfactant has at least two types of moieties, a hydrophilic moiety and a hydrophobic moiety. Although HLB was developed as a means for categorizing emulsifiers according to their tendency to form emulsions containing oil and water, the HLB system has been and here is applied to surfactants. Generally, the lower the HLB the greater the tendency is for the surfactant to dissolve in oil, and the higher the HLB the greater the tendency is for the surfactant to dissolve in water. A low HLB surfactant has an HLB of about 2 to 8 and is usually oil soluble or at least oil dispersible. A high HLB surfactant has an HLB of about 13 or greater and is usually water soluble or at least water dispersible. Intermediate HLB surfactants have intermediate tendencies. This system, which was developed by Griffin at ICI America, is now a widely accepted empirically derived standard that is used to help select alternative surfactants based on the HLB of the surfactant being used. It is also used to select groups of surfactants which individually may not have the desired HLB, but collectively have a net HLB within the needed range.
The term "surfactant" as used herein does not include any hydrocolloid. Hydrocolloids are naturally occurring colloidal products, typically gums such as carboxymethyl cellulose(cmc), carrageenan, pectin, agar, konjac, and gelatin, which have hydrophilic moieties, but not hydrophobic moieties. Hydrocolloids are sometimes used as protective colloids or as stabilizers for emulsions and suspensions. Some have also been processed with cellulose. Hydrocolloids are not, however, considered to be surfactants within the context of this invention.
The term "mid-range moisture" denotes a moisture content within the range of greater than 30 weight percent up to but no more than 40 weight percent.
The term "high moisture" denotes a moisture content greater than 40 weight percent.
This invention is directed to a novel cellulose composite and to methods for its preparation and use. The novel composite is the product of a cellulose that has been coprocessed with surfactant. This composite is characterized in that its surface properties have been modified to customize its hydrophobic or hydrophilic characteristics, as required by its desired end use properties. Other end use properties that can be controlled include the degree of dispersibility and the potential use levels, especially in the mid- range and high moisture systems of this invention, and the masking of the "chalky" taste sometimes found in cellulosics at high use levels. Generally, the composite has a size within the range of from about 1 to about 505μ; preferably it has a size within the range of from about 1 to about 55μ; and most preferably, it has a size within the range of from about 1 to about 25μ.
For the composite of this invention, a surfactant having an HLB within the range of from 1 to 40 can be used, an HLB of >10 is preferred, an HLB of 7-25 is more preferred, and an HLB of 13 to 18 is most preferred. The term HLB in this context includes not only the HLB of a single surfactant, but the effective, net HLB of a combination of surfactants. The HLB of the composite is essentially the same as the HLB of the surfactant or surfactants used to make it. Examples of materials suitable in the broad aspect of this invention may be found in McCutcheon's Emulsifiers and Detergents (MC Publishing, Glen Rock, N.J.). For the food uses contemplated herein, suitable surfactants are listed in the Food Grade section of McCutcheon's. These include but are not limited to food-grade lecithin, fractionated lecithin, monoglycerides and diglycerides; esters of monoglycerides and diglycerides with acetyl, lactyl, ethoxyl, succinyl, ricinoleic, or diacetyltartaric groups; polyglycerol esters, propylene glycol esters, sorbitan esters, derived sorbitan esters such as polyoxyethylene sorbitan, and sucrose esters. Fats, oils, proteins, other lipid materials, and blends of the above are also included. For such blends, the term HLB denotes the HLB of the blend, not the HLB of any particular surfactant in the blend. For food use, the surfactants used should be those that are generally recognized as safe for such use by the appropriate regulatory authority. Such recognition may vary with venue.
Some of the food grade surfactants listed in McCutcheon' s are provided by their trade name, common name, manufacturer, ionic character, HLB, and use as follows: Alcolec 628G Lecithin/ coconut oil nonionic; Aldo® DC fractionated ester, a product of Lonza Inc., nonionic (HLB 2.0) emulsifiers used in baking, ice creams, and general use in foods; Aldo®MOD FG, glycerol mono/dioleate dispersible nonionic (HLB=4.0); Aldosperse® O-20 FG, 20% Polysorbate 80/ 80% glycerol monostearate, nonionic (HLB=5.0) a frozen desert emulsifier; Capmul GMVS-K glyceryl mono shortening, a product of Capital City Products, nonionic (HLB=3.4), shortenings for cakes and icings, margarine, whipped topping; Caprol 2G4S diglycerol tetrastearate, a product of Capital City Products, nonionic (HLB=2.5); Caprol 3GS Triglycerol monooleate, a product of Capital City Products, nonionic (HLB=6.2) a whipping agent, stabilizer, frozen desserts, fat reduction; Caprol 3GVS Triglycerol mono shortening, a product of Capital City Products nonionic (HLB=6.0) icings, shortenings; Cetodan acetylated monoglycerides, a product of Grinsted Products, nonionic (HLB= 1.5) food emulsifier, aerating agent for shortenings, toppings, cakes, edible coating, plasticizer for chewing gum base, antifoam agent, lubricant; Dimodan Distilled monoglycerides, a product of Grinsted Products, nonionic (HLB= 3.8-5.3) food emulsifier for starch complexing, margarine, icings, shortenings, whipped toppings, vegetable, dairy systems, bakery hydrates, peanut butter, stabilizer, instant potatoes; Dur-Em®mono and diglycerides with citric acid, a product of Durkee Industrial Foods, nonionic (HLB=3.3) frozen desserts, caramels, dried potatoes; Famodan® Sorbitan esters of fatty acids, a product of Grinsted Products, nonionic ( HLB=2.3- 7.7) food emulsifiers for fat crystal modification and bloom retarders; lce™No.2 blend of vegetable fat derived mono- and diglycerides with polysorbate 80, a product of Durkee Industrial Foods, nonionic (HLB=5.4) ice cream, milk, mellorine, frozen desserts; Panodan Diacetyl tartaric acid esters of monoglycerides, a product of Grinsted Products, anionic (HLB=8.0) food emulsifiers for baked products and mixes to improve structure, volume, dough tolerance, shortenings, low pH emulsions, improve food suspensions, imparts freeze/thaw stability; Span 60, Sorbitan monostearate, a product of ICI Americas, nonionic (HLB=4.7) cake and cake mixes, icings, filliings, confectionary coatings and cocoa products to retain gloss, coffee whiteners, whipped toppings, flavors, antifoam, mineral oil;or wax protective coatings for fruits and vegetables, rehydration aid for dry yeast; Tween 80 POE(20) sorbitan monooleate, a product of ICI Americas, nonionic, (HLB=15) emulsifier for icings and fillings, whipped toppings, shortenings, dietary supplements, flavors, gelatin desserts, poultry defeathering scald water, antifoam, crystallizing aid for salt; Acidan citric acid ester of monoglycerides, a product of Grinsted Products, anionic, (HLB=11.0) for frying margarine and meat emulsions; Aldosperse® MS-20 FG a POE 20 gycerol monostearate, a product of Lonza Inc., nonionic (HLB=13.0) used as a bakery and general food emulsifier; Capmul EMG, an ethoxylated GMS, a product of Capital City Products Co., nonionic (HLB=13.1), used as a dough conditioner for yeast-raised baked goods; Capmul POEL polyoxyethylene (20) sorbitan monolaurate (polysorbate 20), a product of Capital City Products Co., nonionic (HLB= 16.7) used as a solubilizer for flavors; Capmul POE-S polyoxyethylene (20) sorbitan monostearate (polysorbate 60), a product of Capital City Products Co., nonionic, (HLB=14.9) used in icings, frozen desserts, whipped toppings, and coatings; Clearate WDF soya lecithin, a product of W.A.CIeary Corp, nonionic (HLB=8.0) used in icings, cakes, and instant cocoa.
An effective percentage of surfactant for the composite is about 1% to 50% by weight of the composite. The amount of surfactant required has been found to vary somewhat with surfactant, with 5-10 wt % being required in some situations, with a lower surfactant percentage being effective in others, and with higher surfactant percentages being better in still other situations. Below 1 % of surfactant there is insufficient surfactant to satisfactorily modify the surface properties of the cellulose. As the percentage of surfactant increases, the surface of the composite increasingly tends to approach the properties of the surfactant. The optimum surfactant percentage can be determined without undue experimentation; it changes with the particle size, the surfactant used, and the nature of the system the composite is to be used in are considered. At high surfactant percentages, the properties of the surfactant can begin to dominate or become more dominant, especially if the particle size is large. As the particle size decreases, the amount of surfactant required to provide satisfactory masking of the undesirable inherent properties of the cellulose increases. Thus, a 500 micron particle can be satisfactorily coated with 1 % surfactant, whereas a 1 micron particle requires a higher percentage of surfactant to adequately cover the surface. As the particle size increases, adding the same percentage of surfactant as required for the small particle size results in the needless addition of unwanted calories found in the surfactant. Thus the preferred percentage of surfactant is within the range of 1 wt % to 50 wt %, and a more preferred percentage of surfactant is within the range of 3% to 30% of the total, an even more preferred percentage of surfactant is within the range of 3 wt % to 20 wt %; and a most preferred percentage of surfactant is within the range of 5 to 15 wt %. Coprocessing is accomplished by any of several physical processes. These include co-processing a mixture of a cellulose with an emulsion, a suspension, or a solution of surfactant. Suitable processes, alone or in combination, include intensive co-milling of cellulose and surfactant, either wet or dry using a bead mill, such as a Dynomill, or a mechanofusion processor; high-intensity mixing using a Henschel, a Littleford-Day or other suitable mixer; spray-drying; bulk co-drying using a fluid bed dryer or some other suitable dryer; fluid bed drying or agglomerating using a Glatt dryer or other suitable dryer; air drying; freeze drying using a Stork dryer or other suitable dryer; or spray chilling of emulsified, or suspended cellulose and surfactant using a Niro or other suitable spray chiller; or by coextrusion of the cellulose and the surfactant, using any one of a number of commercially available extruders. When wet-processed, the liquid may be water, a non- aqueous solvent such as alcohol, or a mixture thereof. Agents that improve the compatibility of the components may also be used in any of the above processes. A preferred process includes high-intensity mixing in an aqueous solution followed by either co-spray drying, or high-intensity, dry co-milling.
Coprocessing is required. The simple blending of cellulose and surfactant is not sufficient to produce the novel composites of this invention. To form such a composite, the surfactant must be free to flow onto the surface of the cellulose. Such flow can occur near, at, or above the melting temperature of the surfactant or it can occur if the surfactant is in solution or if the surfactant is dispersed or emulsified. A typical process used for making the composites of this invention involves a high shear with a temperature that is sufficient to melt, to soften, or to otherwise improve the flow characteristics of the surfactant. The intensity must be sufficient to force association between the hydrophilic surface of the starting cellulose, and at least the less hydrophobic part of the surfactant molecule, requiring a significant energy input, either mechanically or through a solvent system. As a general rule, the more uniform the distribution of surfactant is throughout the surfactant/cellulose system being coprocessed, the better the composite. Absent such a distribution, the surfactant will tend to aggregate particles of surfactant rather than coat individual particles. A high degree of surfactant distribution leads to a more effective use of the surfactant on the cellulose and it leads to a more uniform composite particle size distribution. A more uniform composite particle size distribution provides greater quality control in the food or other end product for the composite. Thus, the finer the surfactant dispersion or the greater the degree of emulsion in the coprocessing, the better the product will be. Coprocessing creates a physical interaction between the cellulose particle and the surfactant; however, it is hypothesized that it generally does not tend to create covalent chemical bonding.
It is critical to the invention that the resulting composite be substantially dried before use. Generally the composite has a maximum moisture content of less than about 10 wt %, preferably less than about wt 6 %, and most preferably in the range of 2-5 wt %. The drying process fixes the surfactant onto the surface of the cellulose in a manner that tends to prevent, or at least retard, its being stripped from the surface of the cellulose by solvent.
The resulting dry composite is a free-flowing powder that may be added directly to a final-use system, such as, but not limited to, a food product. Since the composite can be added as a dry powder, the mere use of such a composite will not appreciably increase the moisture content of the food to which it is being added. Thus, the composite can be used in foods having extremely low moisture requirements, such as fat phase confections and cookie fillings.
The composite can, however, be used in a mid-range or in a high moisture food, such as a pudding, a bread, a cake, a syrup phase confection, a margarine, a salad dressing, a non-dairy creamer, a mello ne, or a whipped dessert. Although a few products in this category may have less than 30 weight percent water, in most cases, these foods have greater than 30 weight percent water.
In some of these products, the water is bound and is not available to disperse the composite. Available water is a term which describes not the absolute amount of water contained in a product, but rather the amount of water in the product that is not chemically bound.
The composite of this invention is a cellulose, the surface of which has been physically modified by a surfactant, with the composite assuming some of the surface properties characteristic of the surfactant. For example, on the one hand, a cellulose coprocessed with a hydrophilic surfactant has a lipophobic character, easily dispersing in water without settling, but floating in oil without dispersing; on the other hand, a neat cellulose clumps, rather than disperses in an oil, while a neat cellulose disperses in water with instantaneous settling. This novel surface characteristic of the coprocessed material is maintained even after it has been washed in water. This would not be expected if the composite were merely a simple mixture. It is obtained because the composite is not a simple mixture, but a cellulose having the surfactant affixed thereto. Thus, the composite can be used in systems that have a mid-range moisture level, or a high moisture level. Using the guidelines described herein, a composite can be prepared which effectively masks the objectionable chalky taste and mouthfeel of cellulose, such as microcrystalline cellulose. Thus, a coprocessed cellulose dispersed in a food will not exhibit a chalky mouthfeel even when used in high concentrations. This is true despite the opportunity, during the sometimes extended processing of the food, for the surfactant and the cellulose to become separated by dissolution of the surfactant in the food, or otherwise. In contrast, an unmodified cellulose added to a similar food composition still has the chalky taste and the other properties of neat cellulose.
The composite is used primarily as either a low calorie bulking agent or as a texturizer. In general, any food system may potentially be improved by using the composite to lower its fat and/or its caloric content, or to alter its rheology or its texture. Thus, the composite may be useful in a baked good as a processing agent, because the high HLB of the surfactant permits or improves the kneading of moist dough, while at the same time the composite is compatible with and able to be incorporated into the structure of the finished baked good, where it serves as a bulking agent. The composite may be useful in a margarine having a mid-range or a high moisture content as a processing agent, as a texturizer, or simply as a bulking agent. Alternatively, in a liquid spread, or in a margarine, the composite may serve to stabilize the system, whether the system is an emulsion or a dispersion.
The composite is generally designed to be incorporated into those systems that have an intermediate or a high moisture level. Depending on the particular end use, 1 to 35 weight percent composite can be used in such a food system. One to 20 wt % is preferred, while 1 to 10 wt % is most preferred. The percentage used will be a function of the desired caloric and surface characteristics of the finished food. The usage level will be lower in those instances where the composite is used in conjunction with other bulking agents or the composite is used as a bulking agent in a food that has a low fat content to begin with. The usage level will be higher where the composite is the sole bulking agent.
Industrial and other non-food uses are also contemplated. Potential uses include systems having an mid-range or high moisture content, such as the following: water based lotions, ointments, cosmetic facial creams. The ability to act as a finely-dispersible source of surfactant can be important in such systems.
Other uses are suggested by the list of surfactants reported in McCutcheon's, since the composite has many of the characteristics of the surfactant it is made of. Thus, any use accorded the emulsifier is potentially a use for the composite.
Because the ratio of surfactant to cellulose in the composite is variable within broad limits, by tailoring the HLB and composition of the surfactant portion of the mixture, and by choosing the particle size of the cellulose component, compatibility with particular systems can be optimized for any contemplated end use. This tailoring can be accomplished without undue experimentation simply by choosing surfactants and particle sizes otherwise known to be effective in the particular system. Such procedures are known in the art. For example, methods of selecting surfactants, and some suggestions for certain food systems, can be found at p. 404 in the "CRC Handbook of Food Additives" (T E Furia, ed.; second edition, volume I; CRC Press, Cleveland; 1972). HLB is described by Rosen ("Surfactants and Interfacial Phenomena," Wiley, NY, 1978; p. 241-49). Flack and Krog (Lipid Tech. 2 p 11-13, 1990) describe selection of emulsifiers. A list of suitable emulsifiers, and suggestions for their use in particular foods, can be found in industry listings, such as McCutcheon's Emulsifiers and Detergents (MC Publishing, Glen Rock, NJ).
All suitable coprocessing methods result in the formation of a surfactant layer over at least part of the cellulose particle's surface. This layer, which may be either a continuous or a discontinuous layer, is sufficient to modify the general surface characteristics of the cellulose particle, and is generally hydrophilic, but may in some instances be lipophilic. As a result, the composite bulking agent, consisting of the coprocessed cellulose and surfactant, is generally compatible with mid-range and high moisture content systems. The coprocessed material is very flexible, in that the HLB of the coprocessed material can be adjusted during its manufacture to have a HLB suitable for a particular use, simply by selecting the HLB or other properties of the surfactant used. The coprocessing step may also be used to modify or to tailor the composite functionality in food by controlling the particle size, the particle size distribution, the particle shape, and the ingredients used.
Compared to cellulose alone or to a cellulose and a surfactant added separately to a food system, the coprocessed material improves the taste of the finished food by a reduction or an absence of the well-known dryness or astringency which is inherent in cellulosic materials under low-moisture conditions. This allows the use of cellulose as a bulking agent in materials where it is desirable but was previously not acceptable, and especially allows the use of higher levels of cellulose. Thus, while prior-art cellulose can be objectionable above a few percent, the coprocessed composition of the invention can be used at levels of 10 to 20% when the appropriate surfactant is selected.
In addition, the composite can make a significant improvement in the texture of the food, especially in the mouthfeel and in the melting properties of the food. The composite can also improve the rheology of the food being processed by positively affecting mixing, forming, filling, packaging, or other processing parameters. The composite may also improve the rheology of the finished food. For example in low fat margarine, the use of the composite in a margarine can significantly reduce the viscosity of the margarine despite the addition of higher levels of solids, thereby improving the coating properties of the margarine, without affecting its taste or mouthfeel.
The inventive coprocessed material, if made from an appropriate HLB level surfactant, readily disperses in an mid-range or a high moisture food. In contrast, the unprocessed cellulose alone, and often the surfactant itself, may be poorly dispersible in such systems. The coprocessed material further provides an improvement some food systems, by serving as a processing agent, a texturizer, a stabilizer, a low calorie bulking agent, or by serving as some combination of these functions. The following examples are intended as a further illustration of the invention, but not as a limitation on the scope of the invention. All parts and percentages in the examples, and throughout this specification and claims, are by weight, and all temperatures are in degrees centigrade, unless otherwise indicated. Example 1 Preparation of a Coprocessed Cellulose Surfactant Ingredient
Avicel® FD 006 microcrystalline cellulose, a product of FMC Corporation, has an average particle size within the range of about 5 to 10 microns. Of this material, 1846.15 g. was dispersed in 11 ,287.15 g. of deionized water that had been heated to 82.2e-93.39C (180-200°F). The dispersion was processed using a Gifford-Woods Colloid Mill set at 70% speed (approximately 4900 rpm) and at 40 mil clearance. Then 200 g. of a surface active agent, a Polycon S60K sorbitan monostearate, a product of Witco Corporation having an HLB about 4.7 was first heated to 76.7QC (170°F), then added to the Avicel dispersion in the colloid mill. The mixture of dispersed Avicel and emulsifier was maintained at a temperature of 71.1"C (160°F) to keep the emulsifier above its melting point and in a liquid state. The mixture was then homogenized at 60.0g-65.69C (140-150°F) using a Manton-Gaulin homogenizer set at 17236 kPa (2500 pounds per square inch) (13790 kPa (2000 psi), first stage, 3447 kPa (500 psi) second stage). The homogenized mixture at 60.09C (140°F) was then pumped by a Moyno pump from a holding tank to the spray head of a two-fluid nozzle atomizer that was located in a Stork Bowen 91 cm (3 foot) diameter spray dryer. The material was atomized at 680 kPa (90 psi) air pressure using a .254 cm (0.1 inch) nozzle, and then dried at 175°C inlet temperature and 90°C outlet temperature. The final material was dried to 2-4% moisture and was screened through a U.S. 60 mesh screen to produce a fine free flowing powder. This material can be used for a confectionery filling, such as for a caramel, a peanut butter filling or a spread.
Example 2 Coprocessed Ingredient from a Cellulose Floe
Eight hundred fifty grams of Solka Floe® 200 FCC cellulose powder, a product of Fiber Sales and Development Corporation, a subsidiary of Protein Technologies, having a mean particle size 35 μ was slurried into 9000 grams of water heated to a temperature of 93.39C (200°F). One hundred-fifty grams of sorbitan monostearate, a lipophilic surfactant having a HLB of about 4.7 and a melting point of 54.49C (130°F), was melted and gradually added to the hot cellulosic slurry circulating through a Gifford Wood colloid mill (10 mil clearance) to produce mechanical emulsification of the surfactant in the continuous water phase. The resulting emulsion was passed through a two stage Manton Gaulin homogenizer first at 17236 kPa (2500 psi) then at 3447 kPa (500 psi), and then spray dried to form a powder.
The spray drying was performed as follows: The homogenized slurry was atomized by feeding it at 680 kPa (90 psi) atomizing air pressure to a 91 cm (3 foot) Bowen spray dryer having a nozzle with a .254 cm (0.1 inch) atomization opening . The slurry was fed to the dryer by means of a variable feed Moyno pump at a rate to provide the desired outlet temperature. The operating inlet and outlet air temperatures of the spray dryer were about 1509C and 80SC, respectively. A free-flowing powder was obtained. Essentially normal cellulose particles were observed when the free flowing spray dried powder was placed on a microslide and examined microscopically. Heat applied directly to the microslide with a hair dryer liquefied the particle surface layer and produced a puddling of material at the bottom of the cellulose particles when the melt point of the lipid layer was exceeded. The spray dried powder containing 85% cellulose and 15% sorbitan monostearate was reconstituted in water at 10% solids by vigorous hand-stirring. The coprocessed powder tended to float and to collect on the surface of the water. As a control, uncoated (not coprocessed) cellulose powder was added to water; it readily dispersed, swelled and remained suspended for several minutes.
Example 3 Dry Coprocessing
Mechano Fusion is a technology for coprocessing two or more materials to obtain a modified material in which one of the materials is deposited onto the surface of another. The technology is based on using high intensity mixing and a compaction device. Ninety grams of Avicel® FD006 microcrystalline cellulose, a product of FMC Corporation, and 10 grams of Polycon® 60 sorbitan monostearate, a product of Witco Corp. having an HLB of about 4.7, were dry blended and placed in the Mechano Fusion® AM-15 coprocessor, a product of Hosokawa Micron International Inc. Shear was generated by the high intensity mixing and compaction and was monitored by an increase in the temperature of the powder. The powder was mixed, compacted, and scraped off of the walls of the chamber and the process was repeated. During the process, the temperature increased because of the intense shear. For this particular sample the process was stopped after the temperature reached 71.19C (160°F) for 5 minutes, which allowed the surfactant to melt. The resulting dry, coprocessed powder dispersed easily in oil, significantly faster than microcrystalline cellulose alone. When added to water the coprocessed powder floated on the surface; it would wet and settle to the bottom of the flask only after prolonged stirring; however, a non-coprocessed cellulose, such as the Avicel® FD006 microcrystalline cellulose, settled to the bottom immediately. This water washed composite, after prolonged high shear stirring in water and after the water was decanted, was air dried to a constant weight. This dried powder also would not wet easily when added to water indicating that the surface of the coprocessed microcrystalline cellulose was still modified compared to untreated microcrystalline cellulose.
Example 4 Coprocessing in a Non-Aqueous Processing Fluid
An alternative method for coating MCC with a surfactant is by dissolving the surfactant in a solvent, adding the dissolved surfactant to MCC, mixing the MCC with the surfactant and evaporating the solvent. Thus, 10 g of Polycon 60® sorbitan monostearate, a product of Witco Corp having an HLB of about 4.7, was dissolved in 100 g of 2-propanol at 60°C. Then 90 g of fine grind MCC was added to the solution and stirred with a laboratory mixer for 5 min. The resulting paste was spread in a 15 cm (6 inch) cake baking dish and dried at 50°C. The resulting powder was evaluated in a manner described in Example 3. The powder performed very similarly to the powder in Example 3. Example 5 Use in Peanut Butter.
A sample of coprocessed microcrystalline cellulose composite prepared as in Example 1 was incorporated and tested in a formulation for reduced fat peanut butter as a bulking agent according to the following procedure: To 100 g of a commercial creamy peanut butter was added 10 g of the composite; and, as a control, 10 g of the parent, non coprocessed cellulose was added to a corresponding 100 g sample of the same commercial 'creamy' peanut butter. The samples were mixed in a Hobart mixer for 10 minutes at speed #1 ; then mixed for 30 minutes at speed #2. Between mixing sequences, any wall build-up was returned to the general mixture using a spatula.
The product with the composite had a creamy texture and was smoother than a comparable material made using the parent cellulose. The sample made with cellulose alone was dry and chalky, was slower to melt, and was more viscous after melting, compared to the parent peanut butter or to the peanut butter made with the composite.
Examples 6 (a-o)
Use in Chocolate
Coprocessed compositions and control compositions using cellulose were used in the following procedure for making chocolate. The amounts and proportions of the various non-cellulose ingredients are variable in the art. In the following example of a basic chocolate recipe, cellulose or a coprocessed cellulose/surfactant ingredient is assumed to be added at 10% of the weight of the entire composition. Addition of cellulose-based ingredients at other levels (5%, 13%) was also done; the approximate use levels can be found simply by altering the weight of cellulose added. 1. Mix chocolate liquor (9%), sugar (45%), milk powder (for milk chocolate) (14%), a portion of cocoa butter (about 15%, of a final total of about 22%), and coprocessed material or control cellulose (at 10% when present), in a Sigma/Z mixer for 10 to 20 minutes with a jacket temperature set at 54.4°C (130 °F). (Dry ingredients are preblended prior to mixing.) Adjust the consistency of the final dough mass with either added cocoa butter or a longer mixing time.
2. Refine the dough mass immediately on a Day 5" x 12", 3- roll refiner. Adjust the feeder rolls to deliver consistent mass to refining rolls; adjust the refining rolls to reduce the particle size to a uniform minimum of 20 microns. For milk chocolate, cooling water at 14.4°C (58°F) may be needed to maintain a finished refined mix temperature of under 60.0°C (140°F); dark chocolate can be processed at a higher temperature.
3.& 4. Conching 1 and 2: Conch in either of two continuous processors set in series for a continuous process; or conch for 8-12 hour in a Sigma mixer for a batch process. First, set to dry conch; second set to wet conch: add cocoa butter (the rest of the 7% saved from the first step) and lecithin (0.5%) if required to reduce process viscosity in the finish conch. Product temperature during the process should not exceed 87.8°C (190°F) for dark chocolate, or 65.6°C (150°F) for milk chocolate.
5. Temper the finished chocolate as follows: Pour out about 2/3 of the warm finished chocolate onto a marble table. Spread the chocolate into a thin layer about 64 cm (1/4 inch) deep onto the table. Work the chocolate by scraping and respreading until the mass is cooled to 30.0°C (86°F) for dark chocolate and 27.8°C (82°F) for milk chocolate. This will form stable seed crystals of cocoa butter. Reintroduce this cooled mass back into the container and mix vigorously with the rest of the chocolate. The final temperature should reach 33.3°C (92°F) for dark chocolate and 30.0° (86°F) for milk chocolate in order for the entire mass to now crystallize into the most stable crystal form for cocoa butter.
6. Pour the tempered chocolate into moulds and tap to even the mass and remove excess air. Cool quickly with good ventilation at 18.3°C (65°F). Cooling will take about 40 minutes. Gently twist and remove the cooled chocolate from the moulds once the chocolate has fully contracted; the store the chocolate at 21.1 °C (70°F) to develop optimum gloss and maintain proper temper.
The finished chocolate product produced with a coprocessed cellulose/surfactant material showed several improvements over a chocolate product with cellulose alone. In some variables, it was also an improvement over conventional chocolate. Among these improvements is a lower process viscosity and yield value, which can be dramatic at 10% and above of the coprocessed material, which is superior to control material containing cellulose alone. These improvements make it much easier to coat confectionery to a defined thickness and uniformity with chocolate containing the inventive composition. In addition, with the coprocessed material, in contrast to cellulose, a higher level of non-nutritive material can be incorporated without adverse taste effects, which leads to a greater reduction of fat and total calories for the finished food.
Also, the coprocessed material demonstrated a great stability in use. In the extended processing required to make chocolate, there was ample opportunity for the surfactant to become detached from the surface of the cellulose. It is evident from the results of the testing shown below that at least an effective layer of surfactant remained on the cellulose, so that it did not become aggregated and did not revert to the taste of unmodified cellulose.
Sensory Evaluation of Milk Chocolates
Samples of milk chocolate made by the above method with coprocessed compositions and with cellulose were evaluated qualitatively for taste and texture. Coprocessing was by the method of Example 1 , using the Avicel®FD006 microcrystalline cellulose of Example 1 , or a related material Avicel® FD008 microcrystalline cellulose, having a significantly larger median particle size (8 μ) than FD006 (about 6 μ). Particle sizes were measured on a Horiba 7000 particle analyser. The results are reported in Table 1.
In Table 1 , "#" denotes an example number, "ratio" denotes the weight percent surfactant in the coprocessed composition, and "% in Choc" denotes the amount of cellulose or coprocessed material added as in step 1. Evaluation was by an expert informal sensory evaluation panel. Table 1. Effect of additives in chocolate.
# Cellulose Surfactant Ratio % in Choc. Evaluation
6a (milk chocolate control, no additives) none (standard of reference)
6b FD006 (none) 10% less taste, slow melt.slightly chalky
6c FD006 (none) 5% difference less, but still detectable
6d FD006 sorbitan monostearate 20% 6% no chalkiness, like standard
6e FD006 sorbitan monostearate 20% 10% no chalkiness; a little greasy
6f. FD006 sorbitan monostearate 10% 10% standard - no detectable difference
6g FD006 sorbitan monostearate 6% 6% slow melting, palate adhesion
6h FD006 sorbitan monostearate 6% 4% almost standard
6i FD006 soy lecithin 20% 6% oxidized lecithin taste; not chalky
6j FD006 sodium stearoyl lactylate 20% 6% detergent off- taste, not chalky
6k FD006 glycerine 10% 6% off flavor, waxy texture
6I.FD006 polydextrose 20% 6% poor texture, off flavor
6m FD006 maltodextrin 10% 6% very chalky, gritty
6n FD100 (none) 4% very chalky, dry
These tests show that:
1. With a preferred surfactant for a particular food, in this case sorbitan monostearate for milk chocolate, very high levels (at least 10%) of a coprocessed cellulose/surfactant ingredient can be incorporated with no effect on texture or taste. 2. With other surfactants differing in HLB, poor taste can result, even if chalkiness is masked. The most successful surfactant employed in this Example 6, sorbitan monostearate, had a HLB of about 4.7. Emulsilac SK, sodium stearoyl lactate, a Witco product that has an HLB of 20 was used, and it appeared to work better as moisture levels increase. Lecithin with an HLB of about 5 and mono.di-glycerides with an HLB of about 2.8 gave taste notes intrinsic to their compositions. Surfactant intrinsic taste is also a variable commonly considered in food manufacture.
3. Coprocessing with materials not of the invention, as in samples 6k, 61 and 6m, failed to mask the chalky taste of the cellulose and/or imparted a bad texture, even at low use levels.
Example 7 Preparation of Samples for Quantitative Evaluation of Sensory Effects
A standard simple test system was used and prepared by the following recipe. In a 600 ml. beaker, 250 grams, of a hard fat, cocoa butter, was melted by heating on a heating mantle. With constant mixing, using a Caframo mixer set at 500-1000 rpm speed, a quantity of 12.5 grams., 25.0 grams., or 50 grams., of the coprocessed ingredient was added and dispersed in the melted fat by stirring. The fat was at a temperature of 48.89C-60.09C (1209F - 1409F), which is above the melting point of cocoa butter.
The melted fat containing the dispersed material was poured into forms of about 2.54 cm (1 inch) square (small polyethylene weighting boats). The samples were then set in a freezer for 30 minutes to 1 hour to 'set' the dispersed material in the fat. These samples with varying levels of ingredients were tasted by a specific sensory protocol to characterize and quantify differences.
Example 8 Quantitative Sensory Results.
A formal sensory protocol was used to quantitify taste and texture differences, using standard sensory panel testing methods. This sensory protocol identified three groups of attributes affecting the mouthfeel, which were important in understanding the effect of incorporating cellulosic materials in a non-aqueous/low moisture system. These attribute groups were astringency-related, described as drying, roughing, puckering; particle-related, described by overall amount of particles, size, chalkiness; and melt- related, described by melt rate, melt consistency (homogeneity), and by residual mouth-coating.
The results of the testing showed improved mouth feel characteristics in all three attribute groups. Cellulose alone had a considerable gritty or chalky feel depending on the particle size. The coprocessed cellulose/surfactant material significantly reduced those effects. There was also an improvement (decrease) of the "drying, roughing, puckering" effect especially at the higher use levels of the coprocessed material in the cocoa butter medium. Finally, there was an improvement in melt consistency by using a coprocessed material. All these improvements together gave a much more palatable texture.
The averaged results obtained by nine taste testers on the variable "chalky" were obtained, using materials prepared as in Example 7. The coprocessed ingredients were prepared as in Example 1 , using Avicel®
FD006 microcrystalline cellulose ("cellulose"), a product of FMC Corporation coprocessed with 10% of sorbitan monostearate (sample "S"). Results are shown in Table 2. The numbers obtained are the perceived "chalkiness"; higher numbers indicate a more chalky mouthfeel. Note that the perceived values of the control (no additive) material vary between tests over a range of 0.7 units.
Table 2
Relative Chalkiness
Additive type: Cellulose only Coprocessed "S"
additive use level: no-additive control 2.4 1.7
5% 2.9 2.1
10% 4.8 2.7
20% 7.2 2.7
At 5% addition, the unprocessed cellulose was not significantly chalkier than the base cocoa butter; however, at 10% and 20% addition, the cellulose-only samples were very significantly chalky. The coprocessed material was similar to the no-cellulose control at a low level of addition; at higher levels, however, the coprocessed material increased in chalkiness only slowly with use level, whereas the cellulose-only control increased rapidly in chalkiness with increasing use level; and even at a use level of 20% the coprocessed sample was not significantly higher than the control level, while the cellulose-only sample was significantly chalkier.
Example 9 Dispersion of Surfactant
A coprocessed material was prepared as in Example 1 with the exception that a small amount of the oil-soluble dye Oil Red O was used with the surfactant. As a control, the surfactant, sorbitan monostearate, was melted, mixed with an equivalent amount of dye, cooled, and cut up into pieces. When added to a room temperature liquid soybean oil, the coprocessed cellulose-surfactant ingredient easily dispersed, producing a smooth viscous suspension, and the dye was extracted from the particles into the oil. When pieces of dyed sorbitan monostearate were dispersed into room temperature oil, the pieces immediately settled to the bottom of the container without dissolution of the surfactant, and the dye was not significantly extracted from the particles. When the solution was heated, the particles dissolved and the dye was extracted. This demonstrates that the coprocessed material of the invention can also act as a method of dispersing surfactants into a food or other system.
Example 10
Fat Phase Truffle
The following is one method for preparing a fat phase truffle. Dark chocolate is heated in a microwave set at full power for 5 minutes to heat it to a temperature of 54°C, then placed in a bowl and cooled to 32 C. Nut paste, melted vegetable fat, and flavoring are then added, and the mixture is mixed using a Hobart paddle mixer, first at about speed 1. The mixer speed is then increased to speed 2, with either the composite or the microcrystalline cellulose being added with mixing. The admixture is poured into and spread in a shallow pan; then it is cooled to 309C or lower, until it is sufficiently firm to scoop with a cookie dropper or a melon scooper; after which it is rolled and dusted with a cocoa powder, using dutched cocoa powder, which contains 10-12% fat.
The truffle containing the composite tastes the same as the truffle that contains no cellulose ingredient, and has a better taste and texture than cellulose alone; in this example the use of either the neat cellulose or the composite results in a product having an approximately 10% reduction in fat in the formula, as compared to the control.
Table 3 Fat Phase Truffle
Ingredients Control Neat Cellulose Composite
%/ grams %/ grams %/ grams
Dark Chocolate 62.18% 56.99% 56.99%
1200 grams 1100 grams 1100 grams
Hazelnut Paste 31.09% 31.09% 31.09%
600 grams 600 grams 600 grams Hydrogenated 6.22 % 1.45% 1.45% Coconut Oil 120 grams 28 grams 28 grams Rum Flavor 0.52% 0.52% 0.52%
10 grams 10 grams 10 grams
Composite 0% 0% 9.95%
0.00 grams 0.00 grams 192 grams
Neat Cellulose % 9.95% 0%
0.00 grams 192 grams 0.00 grams
Total 100.00% 100.00% 100.00% 1930 grams 1930 grams 1930 grams
Preferred ingredients:
Dark chocolate couverture
Pure hazelnut paste
Partially hydrogenated palm kernel/coconut, Pureco 90/92, a product of
Karlshamns Co.
Natural and artificial Jamaican rum extract FA 34, a product of Virginia
Dare.
Avicel®microcrystalline cellulose, Avicel is a trademark of the FMC
Corporation.
Composite: 90% Avicel®microcrystalline cellulose/ 10% sorbitan monostearate.
Example 11 Caramel
Caramel is a syrup phase confection having a sugar syrup base of water soluble components. Into this base other materials are dispersed to form taste and texture. These components include sweetened condensed milk and butter oil. The milk solids, specifically the proteins in the milk solids, react with the reducing sugars to produce the Maillard reaction known as 'carmelization.' That reaction provides the characteristic color and flavor of carmel. The butter oil provides luibricity to the confections. In a caramel, the composite functions as a texturizer, which permits the production of a higher moisture formula, thus giving the manufacturer an opportunity to reduce the cost of the caramel. The higher moisture also permits a process time reduction because not as much water has to be boiled off to get the proper structure for the soft caramel. Typically each caramel has the same ingredients but different degrees of softness, sometimes called chewiness, which is controlled by the modification of the moisture content. Typically, softness varies with moisture content over a range of from 6 to 12 % moisture based on the weight of the caramel, with very noticeable changes in the texture and flow characteristics of the caramel as it increases in overall moisture content at 2% increments. The use of the composite provides a higher moisture caramel with the same texture and flow characteristics as a lower moisture caramel; thus, a caramel can be made that will have similar texture and flow properties as a caramel that has an approximately 2 % lower overall moisture content. For example, this product permits the production of a caramel with 14% moisture, that will have the same texture and flow as a traditional caramel having 12 % moisture. The composite permits control of graining and cold flow.The texture of the caramel made with the composite has approximately 2% more moisture and 33% less fat than does the control, and is as good as the control. The composite also provides better tooth release and eating quality .
The caramel is prepared by first dissolving salt and then dissolving sugar in water. The solution is brought to a boil at 1109C. While maintaining this temperature, the following ingredients are added with stirring: corn syrup, followed by lecithin, sweet condensed skim milk, butter oil, and then a slurry of composite dispersed in 200 grams of water. The resultant mixture is cooked to 110SC, and is then carmelized at 1189C with a controlled cook time of about 21 minutes. Then 200 grams of water is added and the mixture is quickly brought to a reboil at 1189C for 12 minutes, except that for the caramel containing 10% composite reboil occurs at 1149C. Vanilla is then added with stirring, followed by cooling the mixture to 909C. This mixture is then transferred onto a slightly greased sheet tray, cooled to room temperature, and cut to any desired shape. The caramel containing the composite is comparable in taste and texture to the caramel without the composite, and has a better texture than caramel with cellulose alone. Table 4
Caramel
Ingredients Control Composite Composite
%/grams %/grams %/grams
Sugar 20.21% 18.94% 18.94%
(680g) (680g) (680g)
Water 13.44% 18.89% 18.89%
(452g) (678g) (678g)
63 DE Corn Syrup 33.65% 31.53% 31.53%
(1132g) (1132g) ' (1132g)
Sweetened 20.21 % 18.94% 18.94% Condensed (680g) (680g) (680g) Skim Milk Butter Oil 11.77% 6.69% 6.69%
(396g) (240g) (240g)
Vanilla 0.30% 0.28% 0.28%
(iog) (10g) (10g)
Lecithin DA 51 0.21% 0.19% 0.19%
(7g) (7g) (7g)
Salt 0.21% 0.19% 0.17%
(7g) (7g) (7g)
Composite 0% 0% 4.35%
(Og) (og) (156.0g)
Neat Cellulose 0% 4.35% 0%
0.00 g 156.0 g 0.00 g
Total 100% 100%. 100%
(3364g) (3590g) (3590g)
Preferred ingredients:
Dixie Crystals extra fine granular sugar, Savannah Sugar Refinery, Savannah Foods and Industries, Inc.
Staley Sweetose 4300, 63DE corn syrup, A.E. Staley Manufacturing, Co.
Sweetened condensed skim milk, Galloway Co.
Anhydrous milk fat, Mid-America Farms
Two-fold vanilla extract, Virginia Dare Metarin DA51 lecithin, a product of Lucas Meyer, Inc.
Premier fine flake salt, Cargill Salt Division
Avicel® FD 006 microcrystalline cellulose. Avicel is a trademark of the FMC Corporation.
Atmos®150 K glycerol monostearate having an HLB of 3.5. Atmos is a trademark of Witco Corporation.
Composite is a particle with a median size of approximately 10 micron that is an 90/10 w/w Avicel® FD008 microcrystalline cellulose/Atmos®150K glycerol monostearate.
Example 12 Fudge
Fudge, like caramel, is a syrup phase confection; however, unlike caramel, fudge includes sugar crystals to shorten its texture; as a consequence, fudge is sometime referred to as a grained confection.
The fudge is prepared by first dissolving salt and then dissolving sugar in water. The solution is brought to a boil at 110SC. While maintaining this temperature, the following ingredients are added: corn syrup, lecithin, sweet condensed skim milk, and butter oil; then followed by a slurry of the composite, which slurry had been prepared by dispersing the composite in 200 grams of water. The resultant mixture is first cooked to 1109C, and then carmelized at 1159C. Then 200 grams of water is added and the mixture is quickly brought to a reboil at 1189C for 12 minutes, except that for the 10% composite containing fudge, reboil occurs in 7 minutes at 1149C. Vanilla is then added with stirring, followed by cooling the mixture to 909C. Add icing sugar predispersed in sorbitol to set the sugar crystals to grain. This mixture is then poured onto a slightly greased sheet tray, cooled to room termperature, and cut to any desired shape. The recipe used for the control and two different products, one containing a composite, the other containing a neat cellulose, are described in Table 5. The fudge containing the composite has approximately 2% higher moisture and significantly (67%) less fat than the control; yet, the fudge containing the composite is comparable in taste and texture to the control and has a better texture than does the sample with cellulose alone. Table 5 Fudge
Ingredients Control Neat Composite
Cellulose %/grams
%/grams
Sugar 25.04% 18.54% 18.54%
(1132g) (1132g) (1132g)
Water 17.52% 38.92% 38.92%
(792g) (2376g) (2376g)
63 DE Corn 25.04% 18.54% 18.54%
Syrup (1132g) (1132g) 1132g
Sweetened 15.04% 11.14% 11.14%
Condensed (680g) (680g) (680g)
Skim Milk
Butter Oil 11.77% 1.96% 1.96%
(532g) (119.6g) (119.6g)
Icing Sugar/ 2.50% 1.85% 1.85%
Fondant (113.2) (113.2g) (113.2g)
Sorbitol 2.50% 1.85% 1.85%
(113.2g) (113.2g) (113.2g)
Vanilla 0.22% 0.16% 0.16%
(10g) (10g) (10g)
Lecithin DA51 0.19% 0.14% 0.14%
(8.5g) (8.5g) (8.5g)
Salt 0.19% 0.14% 0.14%
(8.5g) (8.5g) (8.5g)
Composite 0% 0.00% 6.75%
(0g) (0g) (412.4g)
Neat Cellulose 0% 6.75% 0%
(0.00 g) (412.4 g) (0.00 g)
Total 100% 100% 100%
(4521.4g) (6105.4g) (6105.4g) Preferred ingredients:
Dixie Crystals extra fine granular sugar, Savannah Sugar Refiner, Savannah Foods and Industries, Inc.
Staley Sweetose 4300, 63DE corn syrup, A.E. Staley Manufacturing Co.
Sweetened condensed skim milk 12X fondant and icing sugar Neosorb liquid sorbitol, 70/02, Roquette Corp. Anhydrous milk fat Two-fold vanilla extract, Virginia Dare
Metarin DA51 lecithin, a product of Lucas Meyer, Inc. Premier fine flake salt
Avicel® FDO08 microcrystalline cellulose, Avicel is a trademark of the FMC Corporation Atmos®150K glycerol monostearate having an HLB of 3.5. Atmos is a trademark of Witco Corporation.
Composite is a particle with a median size of approximately 10 micron that is an 90/10 w/w Avicel® FD008 microcrystalline cellulose/Atmos®150K glycerol monostearate.
Example 13 Nougat
Use the following procedure and the recipe provided in Table 6 to make a nougat. First predisperse the microcrystalline cellulose control or the composite in enough water to make a slurry or a paste. Dissolve sugar in water; add com syrup and malt and cook to 1269C. Add the predispersed microcrystalline cellulose control or the composite at this time. Dissolve egg albumen in water and invert sugar and whip in a Hobart mixer with a wire whip, starting with the slowest speed but progressing to the highest speed for the final whip. Then add cooked syrup and whip to a density of 0.4-0.5, again mixing at the highest speed. Then add cocoa powder and icing sugar; follow this with fat addition with slow mixing. The fat must be melted to a liquid before this addition; then transfer the final mixture onto a slightly greased waxed or poly coated paper; cover overnight; then cool, cut to shape, and enrobe in chocolate. The two samples are similar in taste and in texture to the control.
Table 6
Nougat
Ingredients Control Neat Cellulose Composite %/ grams %/ grams %/ grams
Sugar 27.43% 25.29% 25.29% 1300 grams 1300 grams 1300 grams
Water 8.44% 15.56% 15.56% 400 grams 800 grams 800 grams
63 DE Com 33.76% 31.13% 31.13% Syrup 1600 grams 1600 grams 1600 grams Malt Extract 0.84% 0.78% 0.78% 40 grams 40 grams 40 grams
Egg Albumen 0.84% 0.78% 0.78 % 40 grams 40 grams 40 grams
Water 6.33% 5.84% 5.84% 300 grams 300 grams 300 grams
Invert Sugar 10.55% 9.73% 9.73% 500 grams 500 grams 500 grams
Cocoa Powder 2.11% 1.95% 1.95% 100 grams 100 grams 100 grams
Icing Sugar/ 2.11% 0.97% 0.97% Fondant 100 grams 50 grams 50 grams 7.59% 4.4% 4.4% 360 grams 226 grams 226 grams
Cellulose or 0% 0% 3.58% Composite 0.00 grams 0.00 grams 184.0 grams Neat Cellulose 0% 3.58% 0%
0.00 grams 184.0 grams 0.00 grams
Total 100.00% 100.00% 100.00% 4740 grams 5140 grams 5140 grams Preferred ingredients: Extra fine granular sugar Staley Sweetose 4300, 63DE corn syrup, a product of A.E. Staley
Manufacturing Company
Malt Extract # 102 medium, a product of Malt Products Corporation
Egg white solids, spray dried, P-110, a product of Henningsen Foods, Inc. Nulomoline invert syrup, Ingredient Technology Corporation
Dutched 10-12% fat cocoa powder, PD 205, a product of Cocoa Barry
12X fondant and icing sugar, a product of American crystal Sugar Company
Partially hydrogenated palm kernel/coconut oil, Pureco 90/92, a product of
Karlshamns Co. Avicel® FDO08 microcrystalline cellulose. Avicel is a trademark of the
FMC Corporation.
Triodan55 polyglycerol ester, a product of Grinsted Products, having an
HLB of 6.8.
Composite is a particle with a median size of approximately 8 to12 micron that is an 90/10 w/w Avicel® FD008 microcrystalline cellulose/Triodan 55 polyglycerol ester.
Example 14 Chocolate Chip
A typical chocolate chip is about 30% fat. The chocolate chip is a dark chocolate that has been prepared as in Example 6, with the exception that it is deposited as a drop. The sensory result good for each of the respective chocolates.
Example 15 Pudding
A pudding is prepared, as follows. First a composite is prepared, as follows: A coprocessed fine particle size microcrystalline cellulose (mcc) having a 6 to 8 micron median particle size, is coprocessed at a 80 to 20 weight ratio with a Emulsilac®SK sodium stearoyi lactylate (ssl) (a product of Witco, having an HLB 20) and dried to a fine powder according the the procedure of Example 1. The pudding is prepared using the ingredients as specified in Table 7, by first mixing the dry ingredients; then adding the ingredient mixture to cold milk; followed by blending the milk with those ingredients.
The mixture is stirred and cooked in a double boiler until thickened at about 82.29C (180eF), at which time the heat is reduced to a medium setting and cooked with continual stirring for about 15 minutes. The resulting mixture is cooled slightly within the range of about 48.99C to 60.09C (1209F to 1409F); vanilla is then added; and the resulting mixture is poured into molds which are placed in a refrigerator and cooled for 1 or 2 hours.
The Blanc Mange made with the composite is as tasty as that made without composite.
Table 7 Pudding
Ingredients Control Composite
Weight % Weight %
1 % Fat Milk 84.86 84.86
Sugar 10.37 9.37
Corn Starch 4.53 4.53
80%mcc/20%ssl 0.00 1.00
Table Salt 0.13 0.13
Two-fold Vanilla 0.11 0.11
Extract
Total 100.00 % 100.00 %
Preferred Ingredients:
Emulsilac® sodium stearoyi lactylate, a product of Witco Corporation, having an HLB of 20.
A microcrystalline cellulose having a median particle size of 6 to 8 microns.
Composite is a particle with a median size of 10 to 15 microns that is an 80/20 w/w microcrystalline cellulose/Emulsilac® sodium stearoyi lactylate. Example 16 Use in a Bread
A bread dough is made by mixing 29 kgs (63 pounds) of a wheat flour, .68 kgs (1.5 pounds) of table salt, .68 (1.5 pounds) of yeast, 16 kgs (36 pounds) of water, and .45 kgs (1 pound) of a lard. The mixture is allowed to sit for 4 hours, and then baked in an oven at 176.79C (350°F) for one hour.
A second bread dough is made by mixing 25.9 kgs (57.2 pounds) of wheat flour, .68 kgs (1.5 pounds) of table salt, 2.86 kgs (6.3 pounds) of composite prepared as in Example 2 (with the exception that Myverol SMG succinylated monoglycerides, a product of Eastman Chemical Products, Inc. having an HLB of 4 to 6, was used as the surfactant), .68 kgs (1.5 pounds) of yeast, 16 kgs (36 pounds) of water, .23 kgs (0.5 pounds) of lard. This mixture is allowed to sit for 4 hours, and is then baked in an oven at 350°F for one hour. One hour after the breads have been removed from the oven, they are compared. The taste and texture are comparable.
Example 17 Low Fat Meat
A low fat meat can be prepared using the following procedure, and the ingredients specified in Table 8. First, trim pork and beef then blend to make a 50:50 mixture at desired fat levels. Chop a lean meat portion, add salt, sodium nitrite and half the volume of water as 50% water/50% ice; then add the remaining dry ingredients; then add what remains of the water and the fat meat blend. Run this mixture through an emulsifier with a 0.4 mm plate; stuff the mixture into casings; cook it in a smokehouse using gradient heating with fast air circulation; then shower it; chill it; peel it; and vacuum package the final product. For evaluation, the products are simmered in water and served warm without condiments. A sensory preference panel can then evaluate the products, for preference evaluation using a 9-point hedonic scale on which a score of "9" represents an excellent product and a score of "1" represents an extremely poor product.
Using this evaluation process, both the control and the composite containing sample obtain a score of 6 to 7.
Table 8 Low Fat Meat
Ingredients Control Composite
% %
Lean Meat Blend 20.33 33.92
3.6% Fat
Composite 0.00 1.50
Fat Meat Blend 52.47 24.38
48.1% Fat
Water 21.73 34.43
Salt 2.20 2.20
Seasoning 3.22 3.22
Sodium 0.04 0.04
Erythorbate
Sodium Nitrite 0.01 0.01
Carageenan 0.00 0.30
Total 100.00% 100.00%
Ingredients:
Gelcarin® XP8004 carageenan. Gelcarin is a trademark of FMC Corporation.
Composite is a particle with a median size of approximately 15 to20 micron that is an 80/20 w/w Avicel®FD008 microcrystalline cellulose/Atmul®84K mono and diglycerides. Avicel is a trademark of FMC Corporation. Atmul®84K is a surfactant manufactured by of Witco Corporation having an HLB of 2.8. EXAMPLE 18 Reduced Fat Chocolate Mousse
A reduced fat chocolate mousse can be made using the ingredients specified in Table 9, as follows. In a first container, dry blend sugar, non-fat milk, milk chocolate crumb, cocao, milk protein, modified starch, gelatin, emulsifier and carrageenan. In a separate container disperse a cellulose/surfactant composite in water with a high speed mixer, preferably of the Silverson type, with about 10 minutes of mixing; then add the dry blend from the first container with continuous stirring. While stirring, bring the heat up to 809C using a steam-jacketed kettle. Homogenize the mixture at 180 kg/crτι2 to insure proper mixing; then cool to 159C. Once cooled to 159, aerate and then deposit into containers.
The chocolate mousse made using the composite is at least as good as the chocolate mousse made using neat cellulose.
Table 9
Reduced Fat Chocolate Mousse
Ingredients Cellulose-no composite Composite
Percent by Weight Percent by Weight
Water 64.89 64.45
Sugar 15.00 15.00
Non-Fat Dry Milk 6.10 6.10
Milk Chocolate Crumb 5.00 5.00
Cocoa 2.55 2.55
Milk Protein 2.00 2.00
Modified Starch 2.00 2.00
Gelatin (200 Bloom) 1.75 1.75
Avicel® CL 611 Cellulose 0.50 0.50
Composite 0.00 0.55
Emulsifer 0.11 0.00
Carrageenan 0.10 0.10
Total 100.00% 100%
Preferred ingredients: Lactodan p22k lactic acid ester of monoglycerides, a product of Grinsted Products, Inc. used as the emulsifier in the no composite example and used to make the composite used in the other example.
Avicel®CL611 microcrystalline cellulose. Avicel is a trademark of FMC Corporation.
A microcrystalline cellulose having a particle size of 10 microns.
Composite is a particle with a median size of approximately 15-20 micron that is a 80/20 w/w microcrystalline cellulose/Lactodan p22k
Example 19
Whipped Topping
A reduced fat, baker's whipped topping can be prepared as follows using the ingredients provided in Table 10. 1. Using a high speed mixer, disperse Novagel®RCN 15 microcrystalline cellulose, in water. Novagel is a trademark of FMC Corporation.
2. Gradually add a cellulose gum and continue mixing for 5 minutes.
3. Blend nonfat dry milk and sugar. Add the blend to the above mixture and continue mixing for 5 minutes.
4. Add corn syrup and start heating to 62.89C (1459F).
5. In a separate container, heat the fat and emulsifiers to 60.09C (1409F).
6. Add the oil and emulsifiers 60.09C (1409F) to the aqueous phase (batch) when the aqueous phase reaches 62.89C (1459F) with continued mixing.
7. Pasteurize the mix at 71.19C (1609F) for 30 minutes.
8. Homogenize the mix at 17236 kPa (2500 pounds per square inch)
9. Cool the mix to 4.49C (409F) and age for 24 hours. 10. Whipping instructions: Measure 700 grams of the just prepared mix into a chilled 5 quart Hobart® mixer bowl. Using a wire whip attachment at high speed(#3), whip for 2 1/2 to 3 minutes.
The whipped topping containing the composite is as tasty and as light and as airy as the whipped topping containing cellulose, but no composite. Table 10 Whipped Topping
Ingredients Cellulose(no composite) Composite Percent by Weight Percent by Weight
Water 62.90 61.10
Non-fat dry milk 12.50 12.50
Sugar 9.00 9.00
Partially hydrogenated 7.00 7.00 vegetable oil
Corn Syrup, 42 D.E. 6.00 6.00
Novagel ®RCN 15 2.00 2.00 coprocessed microcrystalline cellulose/guar
Composite 0.00 2.25
Polysorbate 60 0.30 0.00
Cellulose gum 0.15 0.15
Distilled monoglycerides 0.15 0.00
Total 100.00% 100.00%
Preferred Ingredients:
A Paramount B partially hydrogenated vegetable oil, a product of Van Den Bergh Foods
CMC - 7HF cellulose gum, a product of Hercules Inc.
Composite is a particle with a median size of approximately 15 to 20 micron that is an 80/14/6 w/w Avicel FD008 microcrystalline cellulose, a product of FMC corporation, and a surfactant that is a mixture of Tween 60, polysorbate 60, a product of ICI Americas, Inc., having an HLB of 14.9 and Myverol 18-06, distilled monoglycerides, a product of Eastman Chemical, having an HLB of 3.8. Example 20 Salad Dressing
A reduced calorie heat stable salad dressing can be made as follows, using the ingredients as specified in Table 11. Part i
Prepare a cellulose composite as in Example 1 using 80 wt % of a microcrystalline cellulose having a median particle size of 8 to 12 microns and 20 wt % of Tween®60 a polyoxyethylene sorbitan monostearate, a product of ICI Americas, Inc., which has an HLB of 14.9. Part II
Predisperse the cellulose, either the Avicel CL-611 microcrystalline cellulose or the composite, in 90 % of the available water using a planetary mixer. Then add xanthan gum and hydrate for 10 minutes. To this mixture add a previously combined Polysorbate 60 and oil in a slow continouous stream with mixing for 15 minutes. Add starch slurried in the remaining water. Add and blend the remaining dry ingredient, except salt, and mix for 2 minutes. Ad sorbitol solution and mix 2 minutes. Combine vinegar and salt and add to the above emulsion, with mixing for 5 minutes. Homogenize this mixture at 13790 kPa (2000 psi) (1st stage) and 3447 kPa (500 psi) (2nd stage) at a total of 17236 kPa (2500 pounds per square inch). Heat in a kettle to 71.19C (1609F) with the main vegetable or meat component. A 60:40 weight ratio of main component to dressing is recommended. Hot fill and retort the total product using good manufacturing process techniques. The Avicel®CL-611 microcrystalline cellulose and the composite samples each performed well, each with about the same results, when compared to other dressings. Table 11 Salad Dressing
Ingredients MCC Composite
Weight Percent Weight Percent
Water 54.08 54.08
Vinegar (50 grain) 15.00 15.00
Vegetable oil 12.00 12.00
Sorbitol (70% solution) 10.00 10.00
Avicel® CL-611 MCC 4.50 3.54
Composite 0.00 1.20
Starch-purity 420 2.00 2.00
Salt 1.50 1.50
Mustard Powder 0.30 0.30
Xanthan Gum 0.25 0.25
Polysorbate 60 0.24 0.00
Onion Powder 0.10 0.10
White Pepper 0.02 0.02
Ascorbic Acid 0.01 0.01
Total 100.00 % 100.00 %
Example 21 Non-Dairy Creamer
A reduced fat, non-dairy creamer is prepared using the ingredients specified in Table 12, as follows: Dry blend the ingredients; then mix them with water at 60°C (140°F); then mix in premelted vegetable fat; and then mix in corn syrup. Pasturize the mixture at 71 °C (160°F) for 30 minutes; then homogenize the mixture in a two stage homogenizer having a 17236 kPa (2500 pound per square inch) first stage and a 3447 kPa (500 pound per square inch) second stage. Cool and freeze the homogenized product at -17.8 to -23°C (0 to -10°F).
The non-dairy whiteners are added to coffee, then stirred, and finally tasted. Each appears the same and has the same characteristics for blending and for taste, as does the other. Table 12 Non-Dairy Creamer
Ingredients Control Composite
Weight Percent Weight Percent
Water 74.50% 74.50%
36 DE Corn Syrup 12.75% 12.15%
Solids
Hydrogenated Soybean 10.0% 10.0%
Oil
Sodium Caseinate 2.5% 2.5%
Sodium Stearoyi 0.10% 0.00%
Lactylate
Polysorbate 60 0.05% 0.00%
Dipotassium Phosphate 0.10% 0.10%
Composite 0.00% 0.75%
Total 100.00% 100.00%
Preferred Ingredients:
Composite is a particle with a median size of approximately 15 to20 microns that is an 80/14/6 w/w Avicel FD008 microcrystalline cellulose, a product of FMC corporation/Emulsilac®SK sodium stearolyl lactylate, a product of Witco Corporation having an HLB of 20, and Polycon®T60K polyoxyethylene sorbitan monostearate, a product of Witco Corporation having an HLB of 14.9.
Example 22 Fabricated Frozen French Fry
A fabricated frozen french fry was prepared using the ingredients specified in table 13, as follows: Part I
First a composite is prepared according to the procedure of Example 1 using an initial microcrystalline cellulose having an approximately 10 micron median particle size and Myverol®18-06 a monoglycerides from hydrogenated vegetable oil produced by Eastman Kodak having an HLB of about 3.8 to provide an 80/20 w/w composite having an median particle size of approximately 25 to 30 median particle size.
Part II With a high-speed propeller mixer disperse the cellulose, either the
Avicel® cellulose gel or the composite, in the water portion of the batch, mixing for approximately 10 minutes.
Part III
Completely blend the remaining dry ingredients using a Hobart® type mixer with a wire whip on speed # 1 for 3 minutes.
Place the dry blended ingredients in the Hobart mixer with a paddle type attachment. Set the mixer on # 1 speed, slowly adding the predispersed cellulose prepared in Part I; and then mixing for a maximum of
3 minutes. Allow the mixture to stand for 10 minutes to hydrate and develop the dough.
Part IV
Extrude, then cut and pan fry at 1739C (3459F) for 30 seconds, then quick freeze and store. To evalulate the product, fry the french fry at 190.69C (3759F) for 90 seconds; and evaluate under a 609C (1409F) heat lamp.
Results
The fabricated frozen french fries made with the composite as well as with those made with the Avicel® microcrystalline cellulose are comparable in quality to those made without either of these two ingredients.
The composite provides structural firmness and integrity to the dough, thus improving the extrudability of the dough reducing breakage during and after extruding. This structural effect also improves the body and texture of the finished fry providing a smoother consistency, fewer void spaces, and a thinner crust. The result is a more tender but firm fry with a more pleasing mouthfeel.
As the composite level is increased, there is a corresponding increase in the firmness. Table 13 Fabricated French Fry
Ingredients Control Composite
Weight Percent Weight Percent
Potato Granules 26.49 26.49
High Amylose Corn 7.02 5.62
Starch
Salt 0.70 0.70
Guar Gum 0.53 0.53
Emulsifier 0.35 0.00
Avicel® RC-591 F 1.0 0.40
Cellulose Gel
Composite 0.00 1.75
Water 63.91 64.51
Total 100.00% 100.00 %
Example 23 Vegetable Oil Spread
Use the following procedure to prepare a vegetable oil spread.
Aqueous portion Disperse Avicel®RC591 F cellulose gel in available water
Add xanthan gum and allow 5 minutes for complete incorporation. Incorporate the remaining aqueous portion and mix thoroughly for 10 minutes.
Heat the resulting aqueous mixture to 45-509C (1139F-1229F). Lipid portion
Heat the combined fats to 609C (140eF) and hold at this temperatrue for 15 minutes.
In a small portion of the heated fats, melt the emulsifiers, bring the temperature to 809C(1769F) and add back to the main portion of the fats. Add fat soluble flavors and or colors. Cool the fat phase to 45-
509C(1139f-1229F). Emulsification and crystalization
Add the aqueous portion to the lipid portion gradually under controlled mixing so as to obtain a uniform crude w/o emulsion, maintain a minimum temperature of 409C(1049F).
Pass through a scraped surface chilling unit with an exit temperature of -159C(599F).
Table 14
Aqueous Portion
Aqueous Portion
% FAT 40%
Ingredients %
Avicel ®RC591 F cellulose i gum 0.8
Xanthan gum 0.08
Salt 0.50
Potassium sorbate 0.2
Water to 100 % to 100%
Color and flavor to suit
Table 15
Lipid Portion
Lipid Portion
% Fat 40 40
Ingredients % %
Soya oil 20 20
Hydrogenated Soya Oil 11.64 11.64
Refined Palm Oil 7.9 6.50
Distilled monoglyceride 0.35 0.00
Composite 0.00 1.75
Flavor to suit to suit
Preferred ingredients:
Avicel®RC591 cellulose gum. Avicel is a trademark of FMC Corporation Composite a 80/20 w/w microcrystalline cellulose/Dimodan mono and diglycerides, a product of Grinsted Products, which has an HLB of 3.0.
Example 24 Lowfat Frozen Desert
Prepare a lowfat frozen desert as follows: Dairy mix procedure:
1. Assemble all liquid ingredients (cream, whole milk, condensed skim milk, liquid sweeteners) in a vat, then heat with agitation.
2. Dry blend powdered sweeteners, stabilizers, and emulsifiers. Add slowly to the liquid ingredients under good agitation. Mix 30 minutes to allow for dispersion and hydration of ingredients.
3. Pasteurize the mixture. 4. Homogenize the mixture, using a two stage pasteurizer, at 13790 kPa (2,000 pounds per square inch) (first stage) and 3447 kPa (500 pounds per square inch) (second stage).
5. Cool the mixture rapidly to 59C (409F). Age and mix overnight, if desired. 6. Freeze the mixture to an appropriate draw temperature, usually between -7.2°C and -5.6°C (199F and 229F), pack the mixture in containers, and place it in a hardening room.
Table 16
Low Fat Frozen Desert
Ingredients % Solids % Solids
Butterfat 4.00 4.00
Milk solids nonfat 12.50 12.50
Sucrose 11.00 11.00
Com Syrup Solids 5.00 4.30
Avicel® RC5811 0.40 0.40 cellulose gel
Composite 0.00 1.00
Cellulose gum 0.10 0.10
Carrageenan 0.01 0.01
Emulsifier 0.30 0.00
Total Solids 33.31 33.31
Preferred ingredients:
Composite is a particle with a median size of approximately 15 to 20 micron that is an 80/20 w/w Avicel FD008 microcrystalline cellulose, a product of FMC corporation/Tandem 100 K a blend of mono and diglycerides and polysorbate 80, a product of Witco Corporation.

Claims

Claims
1. A food ingredient, characterized by: a cellulose composite having 50 to 99% particulate cellulose based on the weight of the composite; and
1 to 50% surfactant coating, based on the weight of the composite, fixed to the cellulosic surface of the particulate cellulose, characterized in that the surfactant used in the coating has an HLB within the range of from 7 to 25, and characterized in that the cellulose composite has a mean particle size within the range of from 1 to 505 microns.
2. The cellulose composite of Claim 1 , characterized in that: the cellulose composite has a mean particle size within the range of from 1 to 100 microns, and no more than 10 weight percent moisture, based on the weight of the composite; the particulate cellulose represents 70 to 97 wt % of the composite; and the coating represents from 3 to 30 wt % of the composite; and the surfactant used in the coating has an HLB within the range of from >10-25.
3. The cellulose composite of Claim 2, characterized in that: the particulate cellulose is 80 to 97 weight per cent of the composite; and the coating is from 3 to 20 weight percent of the composite, and the composite has a mean particle size within the range of from 1 to 50 microns and contains no more than 6% moisture based on the weight of the composite. 4. The cellulose composite of Claim 3, characterized in that: the particulate cellulose is a microcrystalline cellulose, and the composite contains from 2 to 5 wt % moisture based on the weight of the composite.
5. The cellulose composite of Claim 4, characterized in that: the composite has a mean particle size within the range of from 5 to 30, and an HLB within the range of >10 to 25.
6. The cellulose composite of Claim 4, characterized in that the composite has an HLB within the range of from 13 to 18.
7. A process for making a cellulose composite, characterized by coprocessing together a particulate cellulose of particle size between 1 and 500 micrometers, with a surfactant having a HLB within the range of >10 to 25 wherein the weight ratio of cellulose to surfactant ranges from 99:1 to 50:50.
8. The process of Claim 7, characterized in that coprocessing occurs under a high energy condition sufficient to drive the adsorption of the coating onto the surface of the particulate cellulose and dry the composite, thereby forming a dry, free flowing cellulose composite powder with a water content of less than 10% water.
9. The process of Claim 7, characterized in that coprocessing occurs, and further including a subsequent step of drying the composite until a substantially dry, free-flowing powder with a water content of less than 10% by weight is formed, based on the weight of the composite.
Claim 10. The process of Claim 9, characterized in that the coprocessed food ingredient has been dried until it has a water content within the range of 2 to 5 wt %.
11. The process of Claim 9 characterized in that the surfactant in the coating has an HLB within the range of from >10 to 25.
12. The process of Claim 9 characterized in that the surfactant in the coating has an HLB within the range of from 13 to 18. 13. The cellulose composite of Claim 3 characterized in that the coating includes one or more of the following: a fractionated lecithin, a monoglyceride, a diglyceride; an acetyl, lactyl, ethoxyl, succinyl, or diacetyltartaric ester of a mono- and or a di- glyceride; a polyglycerol ester, a propylene glycol ester, a sorbitan ester, and a sucrose ester; a fat, an oil and other lipid materials.
14. The cellulose composite of Claim 13 characterized in that the coating includes a polyoxyethylene sorbitan ester.
15. A reduced calorie, food product characterized by: a food selected from one or more of the following: a pudding, a bread, a cake, a syrup phase confection, a margarine, a salad dressing, a non-dairy creamer, a frozen dessert, a processed meat, an extruded snack; or a whipped dessert having the cellulose composite of Claim 2 dispersed therein, characterized in that the food includes 1 to 35 wt % cellulose composite by weight of the food.
16. The use of the composite of Claim 3 as a bulking agent, as a texturizer, as a processing agent, or as a stabilizer.
17. The extruded snack of Claim 15, including a potato chip, com curls, cheese puffs, french fries.
EP95908674A 1994-01-28 1995-01-26 Coprocessed particulate bulking and formulating aids Withdrawn EP0785729A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18797194A 1994-01-28 1994-01-28
US187971 1994-01-28
PCT/US1995/001001 WO1995020328A1 (en) 1994-01-28 1995-01-26 Coprocessed particulate bulking and formulating aids

Publications (2)

Publication Number Publication Date
EP0785729A1 EP0785729A1 (en) 1997-07-30
EP0785729A4 true EP0785729A4 (en) 1997-07-30

Family

ID=22691257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95908674A Withdrawn EP0785729A1 (en) 1994-01-28 1995-01-26 Coprocessed particulate bulking and formulating aids

Country Status (5)

Country Link
EP (1) EP0785729A1 (en)
JP (1) JPH09502884A (en)
AU (1) AU685911B2 (en)
CA (1) CA2182268A1 (en)
WO (1) WO1995020328A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736177A (en) * 1994-03-08 1998-04-07 Fmc Corporation Cellulose composition, its preparation, and its use in a lipid
WO2001005246A2 (en) * 1999-07-19 2001-01-25 Danisco A/S A process for the preparation of a composition comprising at least one emulsifier and at least one edible fibre
US6306447B1 (en) 1999-10-12 2001-10-23 Danisco A/S Integrated emulsifier and edible fiber
US6565909B1 (en) * 2001-11-16 2003-05-20 The Pillsbury Company Stable whipped frostings
EP1413202A1 (en) * 2002-10-22 2004-04-28 CSM Nederland B.V. Lipid-encapsulated functional bakery ingredients
US20070128325A1 (en) * 2005-12-05 2007-06-07 Conopco, Inc., D/B/A Unilever Reduced oil dressing composition and a method for making the same
US8697159B2 (en) 2010-01-25 2014-04-15 General Mills, Inc. Coated food product and method of preparation
JP2014039477A (en) * 2010-11-15 2014-03-06 Musashino Chemical Laboratory Ltd Composition including stearoyl sodium lactate
CH705981A1 (en) * 2012-01-12 2013-07-15 Dr Med Thomas Lacina -Low-pasta and to processes for their preparation.
AU2015266089B2 (en) * 2014-05-26 2017-06-15 Unilever Plc Dry mixture in particulate form for preparation of aerated food products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1297851B (en) * 1962-06-04 1969-06-19 Fmc Corp Process for producing modified cellulose crystallite aggregates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0380225T3 (en) * 1989-01-25 1996-03-18 Pfizer Low calorie fat substitute products
US5356644A (en) * 1989-01-25 1994-10-18 Pfizer Inc. Low calorie fat substitute
EP0458484A3 (en) * 1989-05-26 1992-12-09 The Kendall Company Rubber-based adhesive tapes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1297851B (en) * 1962-06-04 1969-06-19 Fmc Corp Process for producing modified cellulose crystallite aggregates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9520328A1 *

Also Published As

Publication number Publication date
WO1995020328A1 (en) 1995-08-03
AU1690795A (en) 1995-08-15
CA2182268A1 (en) 1995-08-03
EP0785729A1 (en) 1997-07-30
JPH09502884A (en) 1997-03-25
AU685911B2 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
US5441753A (en) Coprocessed particulate bulking and formulating AIDS: their composition, production, and use
US5505982A (en) Chocolate confection
US6773744B1 (en) Confectionary products, low fat chocolate and chocolate-like products and methods for making them
US6048564A (en) Bakery shortening substitute, bakery products containing the same, and preparation method
EP0743824B1 (en) Improved temperature stability and whipping performance foods
US5366750A (en) Thermostable edible composition having ultra-low water activity
AU660812B2 (en) Low calorie fat substitute
US6025007A (en) Cellulose composition, its preparation and its use in foods
EP0565260B1 (en) Cake icing composition utilizing a food modifying composition and process for making same
US5614243A (en) Starch-based texturizing agents and method of manufacture
KR20060036083A (en) Bakeable, lubricious, sweet, creamy, low-moisture filler products and process for preparation
HU189794B (en) Process for production of chocolate preparatives consisting of fructs
US4834991A (en) Soybean oil filler cream compositions
EP3206505B1 (en) Confectionary production
AU685911B2 (en) Coprocessed particulate bulking and formulating aids
JP5359453B2 (en) Oil composition for coating
US5258190A (en) Calcium citrate-vegetable oil compositions
USH1394H (en) Method of preparing reduced fat spreads
JP3466714B2 (en) Foamable emulsified oil / fat composition and method for producing cakes using the composition
JP3717469B2 (en) Corn, monaca dough manufacturing method and frozen food
CA3178734A1 (en) Low sugar, high protein confection
CA2158730A1 (en) Low fat, low calorie fat substitute
JP3663453B2 (en) Flower paste
WO2023025934A1 (en) Aerated confectionery
MXPA00004664A (en) Delivery system based on a dispersion of an emulsifier in an aqueous solution of sugar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960729

A4 Supplementary search report drawn up and despatched

Effective date: 19970319

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000623

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010104