EP0785162B1 - Driving system for elevator - Google Patents

Driving system for elevator Download PDF

Info

Publication number
EP0785162B1
EP0785162B1 EP97100167A EP97100167A EP0785162B1 EP 0785162 B1 EP0785162 B1 EP 0785162B1 EP 97100167 A EP97100167 A EP 97100167A EP 97100167 A EP97100167 A EP 97100167A EP 0785162 B1 EP0785162 B1 EP 0785162B1
Authority
EP
European Patent Office
Prior art keywords
motor
permanent magnet
synchronous motor
cabin
secondary element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97100167A
Other languages
German (de)
French (fr)
Other versions
EP0785162A1 (en
Inventor
Tian Ing. Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP0785162A1 publication Critical patent/EP0785162A1/en
Application granted granted Critical
Publication of EP0785162B1 publication Critical patent/EP0785162B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/0407Driving gear ; Details thereof, e.g. seals actuated by an electrical linear motor

Definitions

  • the invention relates to an elevator system.
  • EP 599 331 is a conventional linear motor drive system for elevators where the Cabin and a counterweight using ropes over Deflection rollers connected to each other and by several Guide rail pairs are guided in the elevator shaft.
  • the Drive in the form of a flat linear induction motor (FLIM) is attached to the counterweight.
  • FLIM flat linear induction motor
  • the primary elements with the coils are housed in the counterweight.
  • a secondary part is used with a conductive material coated tape at the top and bottom of the shaft is attached. The secondary part is arranged so that it runs through the center of the counterweight.
  • linear motor has a relatively high electrical output needed.
  • the linear motor arrangement described is due to the bilateral arrangement of the primary and Secondary elements in their structure and relatively complex the weight of the cabin is determined by attaching the numerous permanent or electromagnets increased unnecessarily.
  • Safety devices, for example for power failure, are due to the ACVF drive only with increased technical effort realizable.
  • the invention is based on the object Drive system for lifts of the type mentioned at the beginning propose which does not have the aforementioned disadvantages has and by a simple mechanical structure is marked.
  • the advantages achieved by the invention are in essential to see in that through the use a direct drive in the form of a compact, flat, single-sided permanent magnet linear synchronous motor (PM-FLSM) as the elevator drive the required energy and the weight of the drive can be kept small.
  • PM-FLSM permanent magnet linear synchronous motor
  • a counterweight can be dispensed with. by virtue of its and the compact design of the drive, especially as a result of using strong Permanent magnets, the dimensions of the Elevator shaft can be reduced to a minimum.
  • FIG. 1 shows an elevator installation 1 with a cabin 2 a flat permanent magnet linear synchronous motor drive 3.
  • the main features of this elevator system 1 are one compact and light drive structure as well as the lack of the engine room and the counterweight due to the Use of the permanent magnet linear synchronous motor direct drive 3.
  • the cabin 2 is in a shaft 4 Guide rails 5 guided by guide rollers 6 and serves several floors 7.
  • the cabin 2 is one-sided, flat Permanent magnet linear synchronous motor 3 (PM-FLSM) driven.
  • a secondary element 10 of the linear motor 3 is equipped with permanent magnets 11 and on one side of the shaft 4 attached.
  • One equipped with coils Primary element 12 is on the outside of cabin 2 arranged.
  • the brushless, flat permanent magnet linear synchronous motor 3 is carried out in two phases, which is a Reduction of the magnetic coupling between the Motor phases.
  • strong permanent magnets 11 such as rare earth magnets, especially neodymium
  • the primary element 12 of the linear synchronous motor 3 moves with the cabin 2 along the shaft 4 arranged secondary element 10.
  • the secondary element 10 in this sense also serves as a guiding element for the the cabin 2 arranged and equipped with coils Primary element 12.
  • Arranged on primary element 12 Bearings ensure that the constant is maintained Air gap L between the primary element 12 and the Secondary element 10.
  • this can be done with the Permanent magnet 11 equipped secondary element 10 on the Cabin 2 and the primary element 12 are arranged on the shaft 4 his.
  • the drive can also be a three-phase, flatter Permanent magnet linear synchronous motor 3 can be executed.
  • FIGS. 2 and 3 show a view and a cross section of the flat permanent magnet linear synchronous motor 3.
  • Das Secondary element 10 with the permanent magnets 11 is on several points by means of fasteners 13 with the Bay 4 connected.
  • the flat permanent magnet linear synchronous motor 3 has for the drive a pulse width modulator (PWM) with a 16-bit (or 32-bit) single-chip microprocessor and one H-bridge with eight IGBT / MOSFET.
  • PWM pulse width modulator
  • the regenerative power supply is particularly advantageous High-speed elevators in tall buildings.
  • a sinusoidal commutation in conjunction with that of the absolute phase supplied during the initialization phase Position signals allows the generation of a smooth, smooth driving force with minimal force peaks for the flat permanent magnet linear synchronous motor 3.
  • Permanent magnet linear synchronous motor 3 In the event of a sudden power failure of the Permanent magnet linear synchronous motor 3 can the coils of the primary element 12 brought into the short circuit position and work as a dynamic brake.
  • the in the Short-circuit turns of the person working in generator operation Permanent magnet linear synchronous motor 3 generated Braking force limits the rate of descent of the full loaded cabin 2. For example with a percentage impedance of the primary coils should be 5% Descent speed of cabin 2 is not 5% of the nominal cabin speed exceed. At a nominal cabin speed of 6m / s this value would be due the dimensioning of the coils of the primary element 12 0.3m / s limited.
  • This arrangement has the advantage that in the event of a power failure, the cabin 2 without using additional emergency power generators (e.g. batteries) are automatically moved to the bottom floor can.
  • one conventional brake for example a normal band or Drum brake.
  • a normal band or Drum brake the possibility of using conventional brakes with short, to replace narrow linear motors, which is another compact structure of the elevator system 1 can be achieved can.
  • the elevator system 1 described above with the single-sided, flat permanent magnet linear synchronous motor 3 also contains the usual in elevator systems 1 Safety devices (safety gear, Overspeed detector, limit switch, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Linear Motors (AREA)
  • Types And Forms Of Lifts (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Control Of Linear Motors (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The drive system has a linear motor (3) for a lift system (1), whereby the cabin (2) is guided in a shaft (4) by guide rails (5) and driven directly by the linear motor. The linear motor is a flat, one-sided motor with permanent magnets (11). A secondary element (10) is mechanically attached to the cabin and a primary element (12) is mechanically attached to the shaft, or vice-versa. The permanent magnets of the secondary element are rare earth magnets, esp. of neodymium. The permanent magnet linear synchronous motor has a pulse width modulator with a microprocessor and an H-bridge with eight IGBT/MOSFETs.

Description

Die Erfindung betrifft eine Aufzugsanlage.The invention relates to an elevator system.

Aus dem Stand der Technik Dokument DE 4119198 C2 ist ein Linearmotoraufzugsystem bekannt, welches eine in einem Schacht angeordnete Kabine aufweist, die an den an die Eingangsseite der Kabine angrenzenden Seiten mittels Führungsschienen geführt wird. Neben jeder Führungsschiene ist jeweils ein Synchronlinearmotor vorgesehen. Hinter der, der Eingangsseite der Kabine gegenüberliegenden rückwertigen Seite der Kabine ist ein Gegengewicht angeordnet, welches über Seile mit der Kabine verbunden ist. Nachteilhafterweise sind bei dieser Ausführungsform zwei Synchronlinearmotoren erforderlich.From the prior art document DE 4119198 C2 is a Linear motor elevator system known, which is one in one Has shaft arranged cabin, which at the to the Entrance side of the cabin adjacent sides by means of Guide rails is guided. Beside everyone Each guide rail is a synchronous linear motor intended. Behind that, the entrance side of the cabin opposite back side of the cabin is a Counterweight arranged, which with ropes with the Cabin is connected. The disadvantage of this Embodiment two synchronous linear motors required.

Mit der EP 599 331 ist ein konventionelles Linearmotor-Antriebssystem für Aufzüge bekanntgeworden, bei dem die Kabine und ein Gegengewicht mittels Seilen über Umlenkrollen miteinander verbunden und durch mehrere Führungsschienenpaare im Aufzugsschacht geführt sind. Der Antrieb in Form eines flachen Linearinduktionsmotors (FLIM) ist am Gegengewicht angebracht. Die Primärelemente mit den Spulen sind im Gegengewicht untergebracht. Als Sekundärteil dient ein, mit einem leitfähigen Material beschichtetes Band, das am oberen und unteren Schachtende befestigt ist. Der Sekundärteil ist so angeordnet, dass er mittig durch das Gegengewicht verläuft.EP 599 331 is a conventional linear motor drive system for elevators where the Cabin and a counterweight using ropes over Deflection rollers connected to each other and by several Guide rail pairs are guided in the elevator shaft. The Drive in the form of a flat linear induction motor (FLIM) is attached to the counterweight. The primary elements with the coils are housed in the counterweight. As A secondary part is used with a conductive material coated tape at the top and bottom of the shaft is attached. The secondary part is arranged so that it runs through the center of the counterweight.

Ein solches Antriebssystem erfordert aufgrund der Seilführung mit dem Gegengewicht einen erheblichen mechanischen Aufwand und einen relativ grossen Platzbedarf im Schacht. Der flache Linearinduktionsmotor erlaubt nur relativ niedrige Fahrgeschwindigkeiten und arbeitet mit einem niedrigen Wirkungsgrad. Zudem müssen im Maschinenraum grosse und teure Frequenzumrichter plaziert werden.Such a drive system requires due to Rope guidance with the counterweight a considerable mechanical effort and a relatively large Space requirement in the shaft. The flat linear induction motor allows only relatively low driving speeds and works with a low efficiency. Also have to Large and expensive frequency converters in the machine room be placed.

Mit der DE 41 15 728 ist ein Aufzug mit einem Linearmotor-Antrieb bekanntgeworden, bei dem die Kabine seillos mittels einem zweiseitigen linearen Permanentmagnet-Synchronmotor (PM-SLIM) angetrieben wird. Die mit Permanent- oder Elektromagneten versehenen Sekundärelemente sind an einem Paar flügelförmiger Tragteile befestigt, die an der rechten und linken Seitenwand der Aufzugskabine angeordnet sind. Die Sekundärelemente sind dabei in vier Teile unterteilt. Mehrere Primär-Seitenspulen, die ebenfalls in vier Teile unterteilt sind, sind längs des gesamten Schachtes angebracht. Die Speisung des Antriebs erfolgt über einen frequenzvariablen Umrichter (ACVF).DE 41 15 728 is an elevator with a Linear motor drive became known in which the cabin ropeless using a two-sided linear Permanent magnet synchronous motor (PM-SLIM) is driven. Those with permanent or electromagnets Secondary elements are wing-shaped on a pair Support parts attached to the right and left Side wall of the elevator car are arranged. The Secondary elements are divided into four parts. Several primary side coils, also in four parts are divided along the entire shaft appropriate. The drive is powered by a variable frequency converter (ACVF).

Bei der vorstehend beschriebenen Lösung wird zum Betrieb des Linearmotors eine relativ hohe elektrische Leistung benötigt. Diese Anordnung der Primär- und Sekundärelemente benötigt für die Beibehaltung eines konstanten Luftspaltes einen grossen technischen Aufwand. Zudem ist die beschriebene Linearmotor-Anordnung aufgrund der beidseitigen Anordnung der Primär- und Sekundärelemente in ihrem Aufbau relativ aufwendig und das Gewicht der Kabine wird durch das Anbringen der zahlreichen Permanent- oder Elektromagneten unnötigerweise erhöht. Sicherheitseinrichtungen, beispielsweise für Stromausfall, sind aufgrund des ACVF-Antriebes nur unter erhöhtem technischen Aufwand realisierbar.The solution described above becomes operational the linear motor has a relatively high electrical output needed. This arrangement of the primary and Secondary elements needed to maintain one constant air gap a great technical effort. In addition, the linear motor arrangement described is due to the bilateral arrangement of the primary and Secondary elements in their structure and relatively complex the weight of the cabin is determined by attaching the numerous permanent or electromagnets increased unnecessarily. Safety devices, for example for power failure, are due to the ACVF drive only with increased technical effort realizable.

Der Erfindung liegt die Aufgabe zugrunde, ein Antriebssystem für Aufzüge der eingangs genannten Art vorzuschlagen, welches die vorgenannten Nachteile nicht aufweist und durch einen einfachen mechanischen Aufbau gekennzeichnet ist.The invention is based on the object Drive system for lifts of the type mentioned at the beginning propose which does not have the aforementioned disadvantages has and by a simple mechanical structure is marked.

Diese Aufgabe wird durch die im Patentanspruch 1 gekennzeichnete Erfindung gelöst.This object is achieved by the in claim 1 characterized invention solved.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass durch die Verwendung eines Direktantriebs in Form eines kompakten, flachen, einseitigen Permanentmagnet-Linearsynchronmotors (PM-FLSM) als Aufzugsantrieb der benötigte Energiebedarf und das Gewicht des Antriebs klein gehalten werden können. Zudem kann im Vergleich zum flachen Linearinduktionsmotor (FLIM) auf ein Gegengewicht verzichtet werden. Aufgrund dessen und durch die kompakte Bauweise des Antriebs, insbesondere infolge der Verwendung von starken Permanentmagneten, können die Abmessungen des Aufzugsschachtes auf ein Minimum reduziert werden.The advantages achieved by the invention are in essential to see in that through the use a direct drive in the form of a compact, flat, single-sided permanent magnet linear synchronous motor (PM-FLSM) as the elevator drive the required energy and the weight of the drive can be kept small. In addition, compared to the flat linear induction motor (FLIM) a counterweight can be dispensed with. by virtue of its and the compact design of the drive, especially as a result of using strong Permanent magnets, the dimensions of the Elevator shaft can be reduced to a minimum.

Durch die in den Unteransprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Antriebssystems für Aufzüge möglich. Im Vergleich mit dem zweiseitigen linearen Permanentmagnet-Synchronmotor ergeben sich vereinfachte Montage- und Unterhaltsanforderungen. Durch die Verwendung eines einseitigen, flachen Permanentmagnet-Synchronmotors verringern sich die Probleme zur Beibehaltung eines konstanten Luftspaltes. Zur Beibehaltung eines konstanten Luftspaltes wird der bewegliche Motorteil des einseitigen, flachen Permanentmagnet-Linearsynchronmotors direkt von den Lagern der Kabine getragen.By the measures listed in the subclaims are advantageous developments and improvements of drive system for elevators specified in claim 1 possible. Compared to the two-sided linear Permanent magnet synchronous motors result in simplified Assembly and maintenance requirements. Through the Use of a single-sided, flat permanent magnet synchronous motor reduce the problems to Maintaining a constant air gap. to Maintaining a constant air gap becomes the movable motor part of the one-sided, flat Permanent magnet linear synchronous motor directly from the Bear the cabin.

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt und im folgenden näher erläutert. Es zeigen:

Fig.1
eine schematische Darstellung einer Aufzugsanlage mit einer Kabine mit einem einseitigen, flachen Permanentmagnet-Linearsynchronmotor-Antrieb,
Fig.2
eine Ansicht eines einseitigen, flachen Permanentmagnet-Linearsynchronmotors, und
Fig.3
einen Querschnitt durch einen einseitigen, flachen Permanentmagnet-Linearsynchronmotor.
In the drawing, an embodiment of the invention is shown and explained in more detail below. Show it:
Fig.1
1 shows a schematic representation of an elevator installation with a cabin with a one-sided, flat permanent magnet linear synchronous motor drive,
Fig.2
a view of a single-sided, flat permanent magnet linear synchronous motor, and
Figure 3
a cross section through a single-sided, flat permanent magnet linear synchronous motor.

Fig.1 zeigt eine Aufzugsanlage 1 mit einer Kabine 2 mit einem flachen Permanentmagnet-Linearsynchronmotor-Antrieb 3. Die Hauptmerkmale dieser Aufzugsanlage 1 sind eine kompakte und leichte Antriebsstruktur sowie das Fehlen des Maschinenraums und des Gegengewichts aufgrund der Verwendung des Permanentmagnet-Linearsynchronmotor-Direktantriebs 3. Die Kabine 2 ist in einem Schacht 4 an Führungsschienen 5 mittels Führungsrollen 6 geführt und bedient mehrere Stockwerke 7.1 shows an elevator installation 1 with a cabin 2 a flat permanent magnet linear synchronous motor drive 3. The main features of this elevator system 1 are one compact and light drive structure as well as the lack of the engine room and the counterweight due to the Use of the permanent magnet linear synchronous motor direct drive 3. The cabin 2 is in a shaft 4 Guide rails 5 guided by guide rollers 6 and serves several floors 7.

Die Kabine 2 ist von einem einseitigen, flachen Permanentmagnet-Linearsynchronmotor 3 (PM-FLSM) angetrieben. Ein Sekundärelement 10 des Linearmotors 3 ist mit Permanentmagneten 11 bestückt und an einer Seite des Schachts 4 befestigt. Ein mit Spulen ausgerüstetes Primärelement 12 ist an der Aussenseite der Kabine 2 angeordnet. Der bürstenlose, flache Permanentmagnet-Linearsynchronmotor 3 ist zweiphasig ausgeführt, was eine Reduktion der magnetischen Kopplung zwischen den Motorphasen zur Folge hat. Durch die Verwendung von starken Permanentmagneten 11 wie beispielsweise Selten-Erden-Magneten, insbesondere Neodymium, wird die Effizienz des Permanentmagnet-Linearsynchronmotors 3 erhöht und das Motorvolumen lässt sich weiter verkleinern, was zu einer kompakten Motorstruktur führt. Das Primärelement 12 des Linearsynchronmotors 3 bewegt sich mit der Kabine 2 entlang des am Schacht 4 angeordneten Sekundärelements 10. Das Sekundärelement 10 dient in diesem Sinne auch als Führungselement für das an der Kabine 2 angeordnete und mit Spulen ausgerüstete Primärelement 12. Am Primärelement 12 angeordnete Lagerungen sorgen für eine Beibehaltung des konstanten Luftspaltes L zwischen dem Primärelement 12 und dem Sekundärelement 10.The cabin 2 is one-sided, flat Permanent magnet linear synchronous motor 3 (PM-FLSM) driven. A secondary element 10 of the linear motor 3 is equipped with permanent magnets 11 and on one side of the shaft 4 attached. One equipped with coils Primary element 12 is on the outside of cabin 2 arranged. The brushless, flat permanent magnet linear synchronous motor 3 is carried out in two phases, which is a Reduction of the magnetic coupling between the Motor phases. By the use of strong permanent magnets 11 such as rare earth magnets, especially neodymium, the Efficiency of the permanent magnet linear synchronous motor 3 increased and the engine volume can be further increased downsize, which leads to a compact motor structure. The primary element 12 of the linear synchronous motor 3 moves with the cabin 2 along the shaft 4 arranged secondary element 10. The secondary element 10 in this sense also serves as a guiding element for the the cabin 2 arranged and equipped with coils Primary element 12. Arranged on primary element 12 Bearings ensure that the constant is maintained Air gap L between the primary element 12 and the Secondary element 10.

Als weitere Ausführungsvariante kann das mit den Permanentmagneten 11 bestückte Sekundärelement 10 an der Kabine 2 und das Primärelement 12 am Schacht 4 angeordnet sein. Ebenso kann der Antrieb als dreiphasiger, flacher Permanentmagnet-Linearsynchronmotor 3 ausgeführt sein.As a further variant, this can be done with the Permanent magnet 11 equipped secondary element 10 on the Cabin 2 and the primary element 12 are arranged on the shaft 4 his. The drive can also be a three-phase, flatter Permanent magnet linear synchronous motor 3 can be executed.

Im Vergleich mit einem flachen oder rohrförmigen Linearinduktionsmotor ist bei einem flachen Permanentmagnet-Linearsynchronmotor 3 die Ausgangsleistung pro Volumeneinheit aufgrund des erhöhten nutzbaren Flusses wesentlich grösser. Das Gewicht des Permanentmagnet-Linearsynchronmotors 3 kann durch die Verwendung von starken Permanentmagneten 11 zusätzlich verringert werden und der Wirkungsgrad wird durch das Verkleinern der Joule'schen Wärmeverluste erhöht. Aufgrund dieser Einsparungen ist der Energieverbrauch des Permanentmagnet-Linearsynchronmotors 3 gegenüber konventioneller Linearmotorantriebe erheblich kleiner.Compared to a flat or tubular one Linear induction motor is at a flat Permanent magnet linear synchronous motor 3 die Output power per unit volume due to the increased usable river much larger. The weight of the Permanent magnet linear synchronous motor 3 can by Use of strong permanent magnets 11 in addition be reduced and the efficiency is reduced by the Reducing the Joule heat loss increases. Because of these savings, the energy consumption of the Permanent magnet linear synchronous motor 3 opposite conventional linear motor drives considerably smaller.

Fig.2 und Fig.3 zeigen eine Ansicht und einen Querschnitt des flachen Permanentmagnet-Linearsynchronmotors 3. Das Sekundärelement 10 mit den Permanentmagneten 11 ist an mehreren Punkten mittels Befestigungselementen 13 mit dem Schacht 4 verbunden. Am Primärelement 12 angeordnete Lagerungen 14, die ebenfalls direkt mit der Kabine verbunden sind, sorgen für eine Beibehaltung des konstanten Luftspaltes L zwischen dem Primärelement 12 und dem Sekundärelement 10.2 and 3 show a view and a cross section of the flat permanent magnet linear synchronous motor 3. Das Secondary element 10 with the permanent magnets 11 is on several points by means of fasteners 13 with the Bay 4 connected. Arranged on the primary element 12 Bearings 14, also directly with the cabin connected, ensure the maintenance of the constant air gap L between the primary element 12 and the secondary element 10.

Der flache Permanentmagnet-Linearsynchronmotor 3 hat für den Antrieb einen Pulsbreitenmodulator (PWM) mit einem 16-bit (oder 32-bit) Single-Chip Mikroprozessor und einer H-Brücke mit acht IGBT/MOSFET. Es besteht auch die Möglichkeit, den Permanentmagnet-Linearsynchronantrieb 3 mit einem frequenzgesteuerten Umrichter auszurüsten, der im Generatorbetrieb des Permanentmagnet-Linearsynchronmotors 3 Energie ins Netz zurückspeisen kann. Besonders vorteilhaft ist die Netzrückspeisung bei Hochgeschwindigkeitsaufzügen in hohen Gebäuden. The flat permanent magnet linear synchronous motor 3 has for the drive a pulse width modulator (PWM) with a 16-bit (or 32-bit) single-chip microprocessor and one H-bridge with eight IGBT / MOSFET. There is also Possibility of the permanent magnet linear synchronous drive 3 to be equipped with a frequency controlled converter which in generator operation of the permanent magnet linear synchronous motor 3 Feed energy back into the grid can. The regenerative power supply is particularly advantageous High-speed elevators in tall buildings.

Auf das Sekundärelement 10 des Permanentmagnet-Linearsynchronmotors 3 werden Hall-Effekt-Sensoren plaziert, die an die Steuerung Positionssignale in Form von Sinus- und Cosinus-Schwingungen liefert. Zusammen mit dem frequenzvariablen Antrieb und der Steuerung erzielt diese Positionsbestimmung auf Basis einer linearen Inkrementalmessung eine sehr hohe Messgenauigkeit, typischerweise ±0.5mm. Nach einem Stromausfall des Antriebs liefert eine Initialisierungs-Phase die genauen, absoluten Positionssignale.On the secondary element 10 of the permanent magnet linear synchronous motor 3 become Hall effect sensors placed that to the control position signals in the form of sine and cosine vibrations. Along with the variable frequency drive and the control system this position determination based on a linear Incremental measurement a very high measuring accuracy, typically ± 0.5mm. After a power failure of the An initialization phase provides the exact, absolute position signals.

Eine sinusförmige Kommutation in Verbindung mit den von der Initialisierungs-Phase gelieferten, absoluten Positionssignalen erlaubt die Erzeugung einer glatten, stossfreien Antriebskraft mit minimen Kraftspitzen für den flachen Permanentmagnet-Linearsynchronmotor 3.A sinusoidal commutation in conjunction with that of the absolute phase supplied during the initialization phase Position signals allows the generation of a smooth, smooth driving force with minimal force peaks for the flat permanent magnet linear synchronous motor 3.

Im Falle eines plötzlichen Stromausfalls des Permanentmagnet-Linearsynchronmotors 3 können die Spulen des Primärelements 12 in Kurzschlussstellung gebracht werden und als dynamische Bremse arbeiten. Die in den Kurzschlusswindungen des im Generatorbetrieb arbeitenden Permanentmagnet-Linearsynchronmotors 3 erzeugte Bremskraft begrenzt die Absinkgeschwindigkeit der voll belasteten Kabine 2. Beispielsweise bei einer prozentualen Impedanz der Primärspulen von 5% sollte die Absinkgeschwindigkeit der Kabine 2 nicht 5% der Kabinen-Nenngeschwindigkeit überschreiten. Bei einer Kabinen-Nenngeschwindigkeit von 6m/s würde dieser Wert aufgrund der Dimensionierung der Spulen des Primärelements 12 auf 0.3m/s limitiert. Diese Anordnung hat den Vorteil, dass bei einem Stromausfall die Kabine 2 ohne Verwendung von zusätzlichen Notstromaggregaten (bspw. Batterien) automatisch in das unterste Stockwerk gefahren werden kann. In the event of a sudden power failure of the Permanent magnet linear synchronous motor 3 can the coils of the primary element 12 brought into the short circuit position and work as a dynamic brake. The in the Short-circuit turns of the person working in generator operation Permanent magnet linear synchronous motor 3 generated Braking force limits the rate of descent of the full loaded cabin 2. For example with a percentage impedance of the primary coils should be 5% Descent speed of cabin 2 is not 5% of the nominal cabin speed exceed. At a nominal cabin speed of 6m / s this value would be due the dimensioning of the coils of the primary element 12 0.3m / s limited. This arrangement has the advantage that in the event of a power failure, the cabin 2 without using additional emergency power generators (e.g. batteries) are automatically moved to the bottom floor can.

Um die Kabine 2 endgültig anzuhalten, kann eine konventionelle Bremse, beispielsweise eine normale Bandoder Trommelbremse, verwendet werden. Auch hier besteht die Möglichkeit, die konventionellen Bremsen durch kurze, schmale Linearmotoren zu ersetzen, womit eine noch kompaktere Struktur der Aufzugsanlage 1 erreicht werden kann.In order to finally stop the cabin 2, one conventional brake, for example a normal band or Drum brake. Here too the possibility of using conventional brakes with short, to replace narrow linear motors, which is another compact structure of the elevator system 1 can be achieved can.

Die oben beschriebene Aufzugsanlage 1 mit dem einseitigen, flachen Permanentmagnet-Linearsynchronmotor 3 enthält desweitern die bei Aufzugsanlagen 1 üblichen Sicherheitseinrichtungen (Fangvorrichtung, Übergeschwindigkeitsdetektor, Endschalter usw.).The elevator system 1 described above with the single-sided, flat permanent magnet linear synchronous motor 3 also contains the usual in elevator systems 1 Safety devices (safety gear, Overspeed detector, limit switch, etc.).

Claims (6)

  1. Lift installation in which a linear motor (3) with a primary element (12) and a secondary element (10) is provided, in which the linear motor (3) directly drives a cage (2) guided at guide rails (5) in a shaft (4), in which the linear motor (3) is constructed as flat linear synchronous motor, which is at one side, with permanent magnets (11), and in which bearings (14) are provided, which ensure a constant air gap (L) between the primary element (12) and the secondary element (10), characterised in that the lift installation is without cables and that a single linear motor is arranged on the cage side remote from the boarding side for the cage.
  2. Lift installation according to claim 1, characterised in that the secondary element (1) is mechanically connected with the cage (2) and the primary element (12) is mechanically connected with the shaft (4).
  3. Lift installation according to claim 1, characterised in that the secondary element (10) is mechanically connected with the shaft (4) and the primary element (12) is mechanically connected with the cage (2).
  4. Lift installation according to one of the claims 1 to 3, characterised in that the permanent magnets (11) of the secondary element (1) are rare earth magnets, in particular of neodymium.
  5. Lift installation according to one of the claims 1 to 4, characterised in that the permanent magnet linear synchronous motor (3) has a pulse width modulator with a microprocessor and an H-bridge with IGBT/MOSFET for the frequency-variable drive.
  6. Lift installation according to one of the claims 2 to 5, characterised in that Hall effect sensors are arranged on the secondary element (10) of the permanent magnet linear synchronous motor (3).
EP97100167A 1996-01-19 1997-01-08 Driving system for elevator Expired - Lifetime EP0785162B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH14396 1996-01-19
CH143/96 1996-01-19
CH14396 1996-01-19

Publications (2)

Publication Number Publication Date
EP0785162A1 EP0785162A1 (en) 1997-07-23
EP0785162B1 true EP0785162B1 (en) 2004-11-10

Family

ID=4180233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97100167A Expired - Lifetime EP0785162B1 (en) 1996-01-19 1997-01-08 Driving system for elevator

Country Status (5)

Country Link
US (1) US5751076A (en)
EP (1) EP0785162B1 (en)
JP (1) JPH09202571A (en)
AT (1) ATE282003T1 (en)
DE (1) DE59712069D1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59701509D1 (en) * 1997-02-17 2000-05-31 Thyssen Aufzugswerke Gmbh Linear motor for driving an elevator car
FI108025B (en) * 1997-06-19 2001-11-15 Kone Corp Elevator
LU90222B1 (en) * 1998-03-11 1999-09-13 Wurth Paul Lift drive for use in the iron and steel industry
DE29908095U1 (en) * 1999-05-06 2000-09-14 Cooper Power Tools Gmbh & Co Transport system
US6118235A (en) * 1999-06-22 2000-09-12 Redlich; Robert Walter Circuits for controlling reciprocation amplitude of a linear motor
DE20005723U1 (en) * 2000-03-28 2001-08-02 Heinen Horst Passenger elevator
EP1168586A1 (en) * 2000-07-01 2002-01-02 Inventio Ag Permanent magnet motor and lift installation
AU2001273758A1 (en) * 2000-07-01 2002-01-14 Inventio A.G. Elevator comprising a linear motor drive
NL1016282C2 (en) * 2000-09-27 2002-03-28 Berend Tent Plateau driven with linear actuator.
RU2206490C1 (en) * 2001-12-06 2003-06-20 Тарасов Александр Владимирович Hoist guide system
JP2005525979A (en) * 2002-01-31 2005-09-02 インベンテイオ・アクテイエンゲゼルシヤフト Elevator for passenger transport in particular
US6943508B2 (en) * 2002-09-23 2005-09-13 Otis Elevator Company Tubular linear synchronous motor control for elevator doors
JP4603316B2 (en) * 2003-08-27 2010-12-22 山洋電気株式会社 Cylinder type linear motor mover
US7019421B1 (en) 2004-02-20 2006-03-28 Curtiss-Wright Electro-Mechanical Corporation Modular linear electric motor with limited stator excitation zone and stator gap compensation
US7148652B2 (en) * 2004-04-30 2006-12-12 Ace-Tronics Company, Inc. Method and apparatus for determining and handling brake failures in open loop variable frequency drive motors
NZ552308A (en) * 2006-02-08 2008-11-28 Inventio Ag Lift installation with a linear drive system and linear drive system for such a lift installation
EP2088664B1 (en) * 2008-02-07 2014-04-02 Siemens Aktiengesellschaft Machine with direct drive
WO2009103153A1 (en) * 2008-02-21 2009-08-27 J.S. Redpath Limited Battery powered mechanized raise climbing system
US9856111B1 (en) 2009-04-24 2018-01-02 Paul Anderson Elevator structure and brake system therefor
US9457988B1 (en) 2009-04-24 2016-10-04 Federal Equipment Company Elevator structure and brake system therefor
DE102009048822A1 (en) * 2009-10-09 2011-04-14 Siemens Aktiengesellschaft Transport system with electromagnetic brake
ITAN20110133A1 (en) * 2011-10-05 2013-04-06 Sauro Bianchelli SYSTEM ABLE TO PRODUCE ELECTRICITY
KR101217879B1 (en) * 2012-07-05 2013-01-02 문현철 Electricity generation possible elevator
US9136749B1 (en) * 2012-09-28 2015-09-15 John M. Callier Elevator electrical power system
WO2014113006A1 (en) 2013-01-17 2014-07-24 Otis Elevator Company Enhanced deceleration propulsion system for elevators
EP2978703A4 (en) * 2013-03-25 2016-11-02 Otis Elevator Co Multicar self-propelled elevator system
US10280041B2 (en) * 2013-06-27 2019-05-07 Otis Elevator Company Self-propelled elevator system having windings proportional to car velocity
CN106132864B (en) * 2014-03-14 2019-09-10 奥的斯电梯公司 System and method for determining the magnetic field orientating of magnetic part in cordless elevator system
DE102014219862A1 (en) * 2014-09-30 2016-03-31 Thyssenkrupp Ag elevator system
CN107207191A (en) * 2015-02-04 2017-09-26 奥的斯电梯公司 Position for cordless elevator system is determined
WO2016126788A1 (en) * 2015-02-04 2016-08-11 Otis Elevator Company Elevator system evaluation device
WO2016126933A1 (en) * 2015-02-05 2016-08-11 Otis Elevator Company Vehicle and method for elevator system installation
CN106542392B (en) 2015-09-16 2020-09-15 奥的斯电梯公司 Elevator brake control system
US10472206B2 (en) * 2015-12-04 2019-11-12 Otis Elevator Company Sensor failure detection and fusion system for a multi-car ropeless elevator system
DE102016208857A1 (en) * 2016-05-23 2017-11-23 Thyssenkrupp Ag Shaft change arrangement for an elevator installation
US10138091B2 (en) * 2016-06-13 2018-11-27 Otis Elevator Company Variable linear motor gap
US10384913B2 (en) 2016-06-13 2019-08-20 Otis Elevatro Company Thermal management of linear motor
AU2017343736B2 (en) * 2016-10-14 2020-08-27 Inventio Ag A linear drive system for an elevator installation
DE102017118507A1 (en) * 2017-08-14 2019-02-14 Thyssenkrupp Ag Elevator installation and method for operating an elevator installation
KR102130222B1 (en) * 2018-11-16 2020-07-03 현대엘리베이터주식회사 Overspeed Detecting System for Linear Motor Type Elevator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB967985A (en) * 1962-04-05 1964-08-26 Morris Ltd Herbert Improvements in cranes and lifts
JPH07106005B2 (en) * 1988-12-02 1995-11-13 川崎重工業株式会社 Vehicle linear motor support device
US5103595A (en) 1990-05-14 1992-04-14 Fmc Corporation Apparatus and method for reducing vibration characteristics in a wheel rim and tire assembly
JP2530382B2 (en) * 1990-05-14 1996-09-04 三菱電機株式会社 Linear motor elevator
JP2529756B2 (en) * 1990-06-11 1996-09-04 三菱電機株式会社 Linear motor elevator
JPH04365771A (en) * 1991-06-13 1992-12-17 Toshiba Corp Elevator
US5203432A (en) * 1991-11-15 1993-04-20 Otis Elevator Company Flat linear motor driven elevator
US5299662A (en) * 1992-07-27 1994-04-05 Otis Elevator Company Linear motor elevator having hybrid roping and stationary primary
FI98256C (en) * 1992-11-25 1997-05-12 Kone Oy Linear induction motor and elevator with linear motor

Also Published As

Publication number Publication date
ATE282003T1 (en) 2004-11-15
DE59712069D1 (en) 2004-12-16
EP0785162A1 (en) 1997-07-23
JPH09202571A (en) 1997-08-05
US5751076A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
EP0785162B1 (en) Driving system for elevator
EP0631969A2 (en) Elevator drive machine placed in the counterweight
DE4440420C2 (en) Method and device for monitoring and / or controlling the speed of an electric drive with frequency converter for hoists
KR20180022881A (en) Elevator with linear motor
EP1460022A1 (en) Drive unit for elevator
EP3110739B1 (en) Crane
EP2485916A2 (en) Conveyor system comprising an electromagnetic brake
EP0565893A2 (en) Drive for rope elevator
DE112019006602T5 (en) Four-rail power supply control system for a magnetic levitation train with a short stator motor
DE1912106U (en) LINEAR INDUCTION MOTOR FOR CRANES, ELEVATORS AND THE LIKE
DE3422374A1 (en) Lift
EP0878430A2 (en) Lifting device, in particular elevator, with an electric motor and use of the electric motor
DE2611067C2 (en) Elevator motor control
EP3383789A1 (en) Continuous cable winch
EP1069068A1 (en) Compact drive for an elevator
DE676668C (en) Power brake control for three-phase motors with temporary DC excitation to drive lifting machines
JP2000309475A (en) Elevator device
DE3722305A1 (en) Lift with linear motor
DE969584C (en) Electromotive drive with a mechanically coupled braking machine serving as a control element
DE2715366A1 (en) Rotating electrical machine with changeover switch - is designed for operating as variable speed motor or variable frequency generator
DE3819934A1 (en) Lift with an economy drive
EP1068661A2 (en) Emergency operation device for a facility with an electric motor
DE2633529C3 (en) Drive system for an electrically powered, route-bound means of transport
CN107352367A (en) A kind of villa elevator
DE1463260A1 (en) Drive device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FI FR GB LI

17P Request for examination filed

Effective date: 19971219

17Q First examination report despatched

Effective date: 20000322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FI FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041110

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59712069

Country of ref document: DE

Date of ref document: 20041216

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100223

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100121

Year of fee payment: 14

Ref country code: DE

Payment date: 20100121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100416

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110108

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59712069

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802