EP0775322B1 - Systeme et methode de detection d'un rayonnement ionisant - Google Patents
Systeme et methode de detection d'un rayonnement ionisant Download PDFInfo
- Publication number
- EP0775322B1 EP0775322B1 EP95930796A EP95930796A EP0775322B1 EP 0775322 B1 EP0775322 B1 EP 0775322B1 EP 95930796 A EP95930796 A EP 95930796A EP 95930796 A EP95930796 A EP 95930796A EP 0775322 B1 EP0775322 B1 EP 0775322B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crystal
- electrons
- contact
- type
- photons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
Definitions
- Knoll defines an Ohmic contact as "a nonrectifying electrode through which charges of either sign can flow freely. If two Ohmic contacts are fitted on opposite faces of a slab of semiconductor and connected to a detection circuit, the equilibrium charge carrier concentrations in the semiconductor will be maintained. If an electron or hole is collected at one electrode, the same carrier species is injected at the opposite electrode to maintain the equilibrium concentrations in the semiconductor.”
- Fig. 2 of Arkad'eva et al graphs x-ray absorption at various energies for cadmium telluride crystals of thickness 1 mm (curve 1) and 2 mm (curve 2).
- Fig. 3 of Arkad'eva et al graphs dark current (curves 1 and 2) and photocurrent (curves 1' and 2') as a function of the voltage across the device in continuous wave operation.
- CdTe detectors having surface barrier electrodes, or aluminum electrodes evaporated to form Schottky barriers. Such electrodes cannot allow a free flow of electrons, and cannot allow an electron to enter the crystal from the negatively biased electrical contact each time an electron is collected by the positively biased electrical contact.
- the present invention seeks to provide an improved radiation detector.
- a method for determining gamma ray photon energy including irradiating a high resistance n-type cadmium telluride alloy crystal with photons of ionizing radiation, providing first and second electric contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased and which are in Ohmic contact with the crystal so as to provide free flow of electrons from the negatively biased contact to the crystal and wherein holes, generated by absorption of the photons in the crystal, recombine with the electrons, and determining the photon energy by measuring the amount of charge generated per photon absorbed by the crystal.
- a gamma ray photocurrent measuring method including irradiating a high resistance n-type cadmium telluride alloy crystal with photons of ionizing radiation, providing first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased, which are in Ohmic contact with the crystal so as to provide free flow of electrons from the negatively biased contact into the crystal, and which collect holes and electrons, respectively, from the crystal, wherein an electron enters the crystal from the negatively biased electrical contact each time an electron is collected by the positively biased electrical contact.
- the bias of electrical contact is high enough to ensure that the number of electrons collected at the contacts is higher than the number of electrons generated by the photons, and measuring photocurrent induced by absorption of the photons in the crystal.
- a gamma ray photocurrent measuring method including irradiating a high resistance p-type cadmium telluride alloy crystal with gamma ray photons, providing first and second electrical contacts which are in electrical communication with the crystal, which are respectively positively and negatively biased and which collect electrons and holes, respectively, from the crystal, wherein a hole enters the crystal from the positively biased electrical contact each time a hole is collected by the negatively biased electrical contact, and wherein the bias of electrical contact is high enough to ensure that the number of holes collected at the contacts is higher than the number of holes generated by the photons, and measuring photocurrent induced by absorption of the photons in the crystal.
- a method for determining x-ray photon energy including irradiating a high resistance n-type cadmium telluride alloy crystal with x-ray photons, providing first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased and which provide free flow of electrons from the negatively biased contact to the crystal and wherein holes, generated by absorption of the photons in the crystal, recombine with the electrons, and determining the photon energy by measuring the amount of charge generated per photon absorbed by the crystal.
- an x-ray photocurrent measuring method including irradiating a high resistance n-type cadmium telluride alloy crystal with x-ray photons, providing first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased, and which collect holes and electrons, respectively, from the crystal, wherein an electron enters the crystal from the negatively biased electrical contact each time an electron is collected by the positively biased electrical contact, and wherein the bias of electrical contact is high enough to ensure that the number of electrons collected at the contacts is higher than the number of electrons generated by the photons, and measuring photocurrent induced by absorption of the photons in the crystal.
- an x-ray photocurrent measuring method including irradiating a high resistance p-type cadmium telluride alloy crystal with x-ray photons, providing first and second electrical contacts which are in electrical communication with the crystal, which are respectively positively and negatively biased and which collect electrons and holes, respectively, from the crystal, wherein a hole enters the crystal from the positively biased electrical contact each time a hole is collected by the negatively biased electrical contact, and wherein the bias of electrical contact is high enough to ensure that the number of holes collected at the contacts is higher than the number of holes generated by the photons, and measuring photocurrent induced by absorption of the photons in the crystal.
- the positively biased contact is selected to provide free flow of electrons from the crystal to the positively biased contact.
- the positively biased contact is selected so as to provide recombination of electrons in the crystal with holes, injected into the crystal by the positively biased electrical contact.
- the negatively biased contact is selected to provide free flow of holes from the crystal to the negatively biased contact.
- the negatively biased contact is selected so as to provide recombination of holes in the crystal with electrons, injected into the crystal by the negatively biased electrical contact.
- negatively biased contact is formed of one of the following group of materials: indium; cadmium; aluminum; gallium; alloys including one or more of indium, cadmium, aluminum and gallium.
- the negatively biased contact is formed of an n-type layer of conductive semiconductor.
- the positively biased contact is formed of one of the following group of materials: gold; platinum; copper; osmium; nickel; tellurium; carbon; and alloys including one or more of gold, platinum, copper, osmium, nickel and tellurium.
- the positively biased contact is formed of a p-type layer of conductive semiconductor.
- the negatively biased contact is formed of one of the following group of materials: gold; platinum; copper; osmium; nickel; tellurium; carbon; and alloys including one or more of gold; platinum; copper; osmium; nickel and tellurium.
- the negatively biased contact is formed of a p-type conductive semiconductor.
- the positively biased contact is formed of one of the following group of materials: indium; cadmium; aluminum; gallium; alloys including one or more of indium, cadmium, aluminum and gallium.
- the positively biased contact is formed of an n-type conductive semiconductor.
- the n-type crystal is doped with one of the following elements: indium, gallium, aluminum, chlorine, bromine or iodine.
- the p-type crystal is doped with one of the following elements: chlorine, bromine, iodine, copper, chromium or vanadium.
- the cadmium telluride alloy crystal includes a cadmium telluride crystal.
- the cadmium telluride alloy crystal includes a cadmium telluride alloy in which zinc partially replaces cadmium.
- the cadmium telluride alloy crystal includes a cadmium telluride alloy in which selenium partially replaces tellurium.
- the system also includes a crystal equipped with a guard ring surrounding one of the contacts.
- a system for determining photon energy of an ionizing radiation source including a high resistance n-type cadmium telluride alloy crystal irradiated by the source, first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased and which are in Ohmic contact with the crystal so as to provide free flow of electrons from the negatively biased contact to the crystal and wherein holes, generated by absorption of the photons in the crystal, recombine with the electrons, and photon energy measuring apparatus operative to measure the amount of charge generated per photon absorbed by the crystal.
- a system for measuring photocurrent induced by an ionizing radiation source including a high resistance n-type cadmium telluride alloy crystal irradiated by the gamma ray source, first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased, which collect holes and electrons, respectively, from the crystal, which are in Ohmic contact with the crystal so as to provide free flow of electrons from the negatively biased contact into the crystal, such that an electron enters the crystal from the negatively biased electrical contact each time an electron is collected by the positively biased electrical contact, the bias of electrical contact is high enough to ensure that the number of electrons collected at the contacts is higher than the number of electrons generated by the photons and photocurrent measuring apparatus operative to measure photocurrent induced by absorption of the photons in the crystal.
- a system for measuring photocurrent induced by a gamma ray source including a high resistance p-type cadmium telluride alloy crystal irradiated by the gamma ray source, first and second electrical contacts which are in electrical communication with the crystal, which are respectively positively and negatively biased, which collect electrons and holes, respectively, from the crystal, and which cause a hole to enter the crystal from the positively biased electrical contact each time a hole is collected by the negatively biased electrical contact, and wherein the bias of electrical contact is high enough to ensure that the number of holes collected at the contacts is higher than the number of holes generated by the photons, and photocurrent measuring apparatus operative to measure photocurrent induced by absorption of the photons in the crystal.
- a system for determining the photon energy of an x-ray source including a high resistance n-type cadmium telluride alloy crystal irradiated by the x-ray source, first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased and which provide free flow of electrons from the negatively biased contact to the crystal and wherein holes, generated by absorption of the photons in the crystal, recombine with the electrons, and photon energy measuring apparatus operative to measure the amount of charge generated per photon absorbed by the crystal.
- a system for measuring photocurrent induced by an x-ray source including a high resistance n-type cadmium telluride alloy crystal irradiated by the x-ray photons, first and second electrical contacts which are in electrical communication with the crystal, which are respectively negatively and positively biased, which collect holes and electrons, respectively, from the crystal, and which cause an electron to enter the crystal from the negatively biased electrical contact each time an electron is collected by the positively biased electrical contact, and wherein the bias of electrical contact is high enough to ensure that the number of electrons collected at the contacts is higher than the number of electrons generated by the photons, and photocurrent measuring apparatus operative to measure photocurrent induced by absorption of the photons in the crystal.
- a system for measuring photocurrent induced by an x-ray source including a high resistance p-type cadmium telluride alloy crystal irradiated by the x-ray source, first and second electrical contacts which are in electrical communication with the crystal, which are respectively positively and negatively biased, which collect electrons and holes, respectively, from the crystal, and which cause a hole to enter the crystal from the positively biased electrical contact each time a hole is collected by the negatively biased electrical contact, and wherein the bias of electrical contact is high enough to ensure that the number of holes collected at the contacts is higher than the number of holes generated by the photons, and photocurrent measuring apparatus operative to measure photocurrent induced by absorption of the photons in the crystal.
- FIGs. 1 and 2 are simplified illustrations of an x-ray or gamma ray detector constructed and operative in accordance with two respective alternative embodiments of the present invention.
- the x-ray or gamma ray detectors of Figs. 1 and 2 may be constructed by the following method:
- the CdTe crystal 10 may comprise a high-resistance chlorine-doped p-type CdTe crystal which is manufactured in accordance with conventional methods such as that described in B. Biglari et al, Phys. Stat. Sol. (a)100, pp. 589-596, 1987.
- the positively biased contact 30 provides free entrance of holes into the crystal and the negatively biased contact 20 provides free exit of holes from the crystal.
- the contacts 20 and 30 may, in this embodiment, be formed by deposition of a thin layer of conductive p-type CdTe on the crystal 10.
- Fig. 2 An alternative to the detector of Fig. 1 is illustrated in Fig. 2, in which the negatively biased contact 20 provides free entrance of electrons into a high resistance n-type CdTe crystal 10 and a positively biased contact 40 provides free entrance of holes into the crystal.
- the negatively biased contact 20 may, for example, be formed by deposition of indium on the crystal 10.
- the positively biased contact 40 may, for example, be formed of a thin layer of conductive p-type CdTe deposited on the crystal 10.
- the positively biased contact 40 provides free entrance of holes into the high resistance p type crystal and the negatively biased contact 20 provides free entrance of electrons into a p-type crystal.
- the positively biased contact 40 may, for example, be formed by deposition of a thin layer of conductive p-type CdTe on the crystal 10.
- the negatively biased contact 20 may, for example, be formed of indium deposited on the crystal.
- Fig. 3 is a simplified diagram of a preferred system for measuring a photocurrent induced by x-rays or gamma rays.
- the system of Fig. 3 preferably includes a detector 44 which may be based on the detectors of Figs. 1 and 2, connected to a voltage bias source 50 such as a battery or power supply, an electrical current measurement device 60 such as an ammeter and a radiation source 70 which may comprise an x-ray tube which irradiates an object to be inspected, or alternatively a gamma source such as a gamma radioactive material.
- a voltage bias source 50 such as a battery or power supply
- an electrical current measurement device 60 such as an ammeter
- a radiation source 70 which may comprise an x-ray tube which irradiates an object to be inspected, or alternatively a gamma source such as a gamma radioactive material.
- the mode of operation of the system of Fig. 3 is as follows:
- the electron or hole transition time through the crystal is inversely proportional to the bias voltage. Therefore, application of a sufficiently high bias voltage causes the transition time to become shorter than the electron or hole recombination time.
- the photocurrent includes both electrons and holes originally generated by the photons, and electrons or holes entering the crystal through the contacts. Whenever the transition time is shorter than the recombination time, the photocurrent is significantly amplified (current gain) compared to the current due only to the electrons and holes originally generated by the photons.
- amplification by a factor of 250 may be obtained, relative to the signal obtained with a conventional detector which is similar in every respect except that the contacts are blocking.
- the contacts allow free charge flow into and out of the crystal so that the dark current in the detector shown and described herein is high compared to conventional CdTe detectors equipped with blocking contacts.
- the current gain is also high in the detector shown and described herein, relative to a conventional detector, the signal-to-dark current ratio is comparable to or better than that of a conventional detector.
- a further advantage of the system of Fig. 3 is that the current is not affected by hole trapping within the crystal, in contrast to conventional detectors.
- FIG. 4 is a simplified block diagram of preferred spectroscopy system constructed and operative in accordance with a preferred embodiment of the present invention in which the charge generated by individual x-ray photons or gamma ray photons is measured.
- the system of Fig. 4 preferably includes the following components:
- Units 80, 90, 100 and 110 are commercially available as a single module, namely the Gamma Spectroscopy System, marketed by EG&G ORTEC.
- the mode of operation of the system of Fig. 4 is as follows:
- the crystal is an n-type crystal
- an electron reaching the positive contact leaves the crystal by entering the contact.
- an electron reaching the positive contact disappears by recombination with a hole injected into the crystal by the positive contact.
- the spectroscopy system of Fig. 4 measures the charge collected from each single photon absorbed by the detector, and provides the statistical distribution of charges of all the photons absorbed by the detector.
- holes recombine with electrons arriving from the negative contact.
- holes must flow all the way toward the negative contact. Since electron flow is faster than hole flow, the time required for complete charge collection in the detector of Figs. 1 or 2 is shorter than in conventional CdTe detectors.
- spectroscopic measurements may be carried out by the system of Fig. 4 with a higher signal-to-noise ratio and/or at higher photon flux rates, compared to conventional CdTe detectors.
- a further advantage of the system of Fig. 4 is that the detector is not adversely affected by hole trapping within the crystal.
- Suitable materials for use in the spectroscopy system of Fig. 4 include the following high resistance n-type crystals:
- the n-type crystal may be doped with materials such as: indium, gallium, aluminum, chlorine, bromine or iodine.
- Contacts providing free flow of electrons to and from the crystals, for use in the spectroscopy system of Fig. 4 may be formed of indium, cadmium, aluminum, gallium, and alloys including these materials.
- Suitable crystals for use in the photocurrent measurement system of Fig. 3 include the crystals described above as suitable for the embodiment of Fig. 4 and, additionally, similar crystals which are high-resistant p-type instead of n-type.
- the p-type crystal may be doped with materials such as: chlorine, bromine, iodine, copper, chromium or vanadium.
- Contacts providing free flow of electrons to p-type crystals, for use in the photocurrent measurement system of Fig. 3 may be the same as the contacts, described above with reference to Fig. 4, which provide free flow of electrons to and from n-type crystals.
- Contacts providing free flow of holes to and from p-type crystals, for use in the photocurrent measurement system of Fig. 3 may, for example, be the same as the contacts, described above with reference to Fig. 4, which provide free flow of holes into n-type crystals.
- detectors made of p-type crystals is generally the same as the operation of detectors having n-type crystals, as described above with reference to Fig. 3, except that the major electric current carriers are holes rather than electrons.
- a guard ring 120 is provided which surrounds at least one of the contacts, such as the positive contact 30 (Fig. 1) or 40 (Fig. 2).
- the guard ring reduces deterioration of the detector's performance due to the influence of the detector's side walls 130.
- the guard ring may be identical in configuration and as to material to the positive contact 30.
- the embodiment of Figs. 5 and 6 is suitable for the spectroscopy application of Fig. 4.
- One preferred method for fabricating the positive contact and the guard ring is as follows:
- CdTe cadmium telluride
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Light Receiving Elements (AREA)
- Measurement Of Radiation (AREA)
Claims (19)
- Procédé pour déterminer l'énergie d'un photon de rayonnement ionisant comprenant:l'irradiation d'un cristal d'alliage de tellure de cadmium de type n haute résistance (10) avec des photons de rayonnement ionisant;la constitution sur ledit cristal de premier (20) et second (30) contacts électriques qui sont respectivement polarisés négativement et positivement; etla détermination de l'énergie photonique en mesurant la quantité de charge générée par photon absorbé par le cristal,ledit procédé étant caractérisé en ce que lesdits contacts électriques (20, 30) sont en contact ohmique avec le cristal (10) de manière à assurer une circulation libre d'électrons depuis le contact polarisé négativement (20) dans le cristal, et dans lequel des trous générés par absorption de photons dans ledit cristal subissent une recombinaison avec lesdits électrons.
- Procédé pour mesurer un photocourant induit par un rayonnement ionisant comprenant:l'irradiation d'un cristal d'alliage de tellure de cadmium de type n haute résistance (10) avec un flux photonique de rayonnement ionisant;la constitution sur ledit cristal de premier (20) et second (30) contacts électriques qui sont respectivement polarisés négativement et positivement et qui collectent respectivement des trous et des électrons à partir du cristal; etla mesure du photocourant induit par absorption des photons dans le cristal,ledit procédé étant caractérisé en ce que lesdits contacts électriques (20, 30) sont en contact ohmique avec le cristal (10) de manière à assurer une circulation libre d'électrons depuis le contact polarisé négativement (20) dans le cristal, de telle sorte qu'un électron entre dans le cristal depuis le contact électrique polarisé négativement (20) chaque fois qu'un électron est collecté par le contact électrique polarisé positivement (30).
- Procédé pour mesurer un photocourant induit par un rayonnement ionisant selon la revendication 2, et comprenant également l'étape consistant à faire en sorte que ladite polarisation soit suffisamment élevée afin d'assurer que le nombre d'électrons dudit photocourant collectés au niveau dudit contact polarisé positivement soit significativement supérieur au nombre d'électrons générés par lesdits photons.
- Procédé selon la revendication 1, et dans lequel ladite recombinaison de trous avec des électrons est opérante de telle sorte que ladite étape de détermination de l'énergie photonique en mesurant la quantité de charge générée par photon absorbé par le cristal n'est pas affectée défavorablement par un piégeage de trous à l'intérieur du cristal.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le contact polarisé négativement est formé en un matériau du groupe de matériaux qui suit:indium; cadmium; aluminium; gallium; des alliages incluant un ou plusieurs éléments que sont indium, cadmium, aluminium et gallium; et une couche de type n en un semiconducteur conducteur.
- Procédé selon la revendication 5, dans lequel la couche de type n en un semiconducteur conducteur comprend un matériau du groupe de matériaux qui suit:CdTe conducteur de type n; HgxCd1-xTe (0 ≤ x ≤ 1) conducteur de type n; HgTe conducteur de type n; alliages de CdTe conducteur de type n dans lequel du zinc remplace partiellement du Cd; et alliages de CdTe conducteur de type n dans lequel du sélénium remplace partiellement du Te.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le contact polarisé positivement est formé en un matériau du groupe de matériaux qui suit:or; platine; cuivre; osmium; nickel; tellure; carbone; antimoine; des alliages incluant un ou plusieurs éléments que sont or, platine, cuivre, osmium, nickel, antimoine, carbone et tellure; et une couche de type p en un semiconducteur conducteur.
- Procédé selon la revendication 7, dans lequel la couche de type p en un semiconducteur conducteur comprend un matériau du groupe de matériaux qui suit:CdTe conducteur de type p; HgxCd1-xTe (0 ≤ x ≤ 1) conducteur de type p; HgTe conducteur de type p; alliages de CdTe conducteur de type p dans lequel du zinc remplace partiellement du Cd; et alliages de CdTe conducteur de type p dans lequel du sélénium remplace partiellement du Te.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ledit cristal de type n est dopé avec l'un des éléments qui suivent: indium, gallium, aluminium, chlore, brome et iode.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le cristal d'alliage de tellure de cadmium comprend un matériau du groupe de matériaux qui suit:un cristal de tellure de cadmium; un alliage de tellure de cadmium dans lequel du zinc remplace partiellement du cadmium; et un alliage de tellure de cadmium dans lequel du sélénium remplace partiellement du tellure.
- Procédé selon l'une quelconque des revendications précédentes, et comprenant également l'étape consistant à entourer au moins l'un des contacts avec un anneau de garde.
- Procédé selon l'une quelconque des revendications précédentes, et dans lequel ledit rayonnement ionisant est un rayonnement de rayons gamma.
- Procédé selon l'une quelconque des revendications précédentes, et dans lequel ledit rayonnement ionisant est un rayonnement de rayons X.
- Système pour déterminer une énergie photonique d'une source de rayonnement ionisant comprenant:un cristal d'alliage de tellure de cadmium de type n haute résistance (10) irradié par la source;des premier (20) et second (30) contacts électriques qui sont respectivement polarisés négativement et positivement; etun appareil de mesure d'énergie photonique qui fonctionne pour mesurer la quantité de charge générée par photon absorbé par le cristal,ledit système étant caractérisé en ce que lesdits contacts électriques (20, 30) sont en contact ohmique avec le cristal (10), de manière à assurer une circulation libre d'électrons depuis le contact polarisé négativement jusqu'au cristal, et dans lequel des trous, générés par absorption des photons dans le cristal, se recombinent avec lesdits électrons.
- Système pour mesurer un photocourant induit par une source de rayonnement ionisant comprenant:un cristal d'alliage de tellure de cadmium de type n haute résistance (10) irradié par la source;des premier (20) et second (30) contacts électriques qui sont respectivement polarisés négativement et positivement, et qui collectent respectivement des trous et des électrons à partir du cristal; etun appareil de mesure de photocourant qui fonctionne pour mesurer un photocourant induit par absorption des photons dans le cristal,ledit système étant caractérisé en ce que lesdits contacts électriques (20, 30) sont en contact ohmique avec le cristal (10) de manière à assurer une circulation libre d'électrons depuis le contact polarisé négativement dans le cristal, de telle sorte qu'un électron entre dans le cristal depuis ledit contact électrique polarisé négativement chaque fois qu'un électron est collecté par ledit contact électrique polarisé positivement.
- Système pour mesurer un photocourant selon la revendication 15, et dans lequel la polarisation entre les contacts électriques est suffisamment élevée pour assurer que le nombre d'électrons dudit photocourant collectés au niveau dudit contact polarisé positivement est significativement supérieur au nombre d'électrons générés par les photons.
- Système selon l'une quelconque des revendications 14 à 16, et dans lequel ladite source de rayonnement ionisant est une source de rayons gamma.
- Système selon l'une quelconque des revendications 14 à 16, et dans lequel ladite source de rayonnement ionisant est une source de rayons X.
- Système selon l'une quelconque des revendications 14 à 16, et dans lequel au moins l'un des contacts est entouré par un anneau de garde.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL11063794 | 1994-08-11 | ||
IL11063794A IL110637A (en) | 1994-08-11 | 1994-08-11 | Apparatus, system and method for gamma-ray and x-ray detection |
PCT/US1995/009965 WO1996005521A1 (fr) | 1994-08-11 | 1995-08-07 | Appareil, systeme et methode de detection des rayons gamma et x |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0775322A1 EP0775322A1 (fr) | 1997-05-28 |
EP0775322B1 true EP0775322B1 (fr) | 2002-01-30 |
Family
ID=11066451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95930796A Expired - Lifetime EP0775322B1 (fr) | 1994-08-11 | 1995-08-07 | Systeme et methode de detection d'un rayonnement ionisant |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0775322B1 (fr) |
AU (1) | AU3404395A (fr) |
CA (1) | CA2197196A1 (fr) |
DE (1) | DE69525257T2 (fr) |
IL (1) | IL110637A (fr) |
WO (1) | WO1996005521A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2738080B1 (fr) * | 1995-08-24 | 1997-10-31 | Commissariat Energie Atomique | Dispositif de detection de rayons x a base de semi-conducteurs |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999071A (en) * | 1975-08-26 | 1976-12-21 | Etat Francais | Nuclear detectors sensitive to alpha, beta, and gamma rays and to thermal neutrons and to methods of treatment of crystals of such detectors |
JPS59227168A (ja) * | 1983-06-08 | 1984-12-20 | Fuji Electric Corp Res & Dev Ltd | 半導体放射線検出器 |
JPS6385487A (ja) * | 1986-09-30 | 1988-04-15 | Toshiba Corp | 放射線検出器 |
JPH06120549A (ja) * | 1992-10-09 | 1994-04-28 | Shimadzu Corp | 放射線検出器 |
-
1994
- 1994-08-11 IL IL11063794A patent/IL110637A/en not_active IP Right Cessation
-
1995
- 1995-08-07 AU AU34043/95A patent/AU3404395A/en not_active Abandoned
- 1995-08-07 EP EP95930796A patent/EP0775322B1/fr not_active Expired - Lifetime
- 1995-08-07 DE DE69525257T patent/DE69525257T2/de not_active Expired - Fee Related
- 1995-08-07 WO PCT/US1995/009965 patent/WO1996005521A1/fr active IP Right Grant
- 1995-08-07 CA CA002197196A patent/CA2197196A1/fr not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE69525257T2 (de) | 2002-09-19 |
EP0775322A1 (fr) | 1997-05-28 |
WO1996005521A1 (fr) | 1996-02-22 |
IL110637A0 (en) | 1994-11-11 |
CA2197196A1 (fr) | 1996-02-22 |
DE69525257D1 (de) | 2002-03-14 |
IL110637A (en) | 2001-10-31 |
AU3404395A (en) | 1996-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Galbiati et al. | Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact | |
US5512756A (en) | X-ray detector with direct conversion | |
US6011264A (en) | Apparatus, system and method for gamma ray and x-ray detection | |
Cuzin | Some new developments in the field of high atomic number materials | |
US8049178B2 (en) | Semiconductive materials and associated uses thereof | |
US20130126746A1 (en) | Array of virtual frisch-grid detectors with common cathode and reduced length of shielding electrodes | |
Shah et al. | Lead iodide optical detectors for gamma ray spectroscopy | |
US9134439B2 (en) | Array of virtual Frisch-grid detectors with common cathode and reduced length of shielding electrodes | |
Schieber et al. | Novel mercuric iodide polycrystalline nuclear particle counters | |
Eisen | Current state-of-the-art applications utilizing CdTe detectors | |
Lorenz et al. | Fast readout of plastic and crystal scintillators by avalanche photodiodes | |
Squillante et al. | Development of two new M-π-n CdTe sensors | |
Perez-Mendez et al. | Amorphous silicon based radiation detectors | |
EP0775322B1 (fr) | Systeme et methode de detection d'un rayonnement ionisant | |
EP1391940B1 (fr) | Element de detection de radiations a semiconducteurs | |
Hazlett et al. | Large, high resolution CdTe gamma ray sensors | |
Zaletin | Development of semiconductor detectors based on wide-gap materials | |
JPS61196570A (ja) | アモルフアスシリコンx線センサ | |
Markakis et al. | Mercuric iodide photodetectors for scintillation spectroscopy | |
Shah et al. | TlBr/sub x/I/sub 1-x/photodetectors for scintillation spectroscopy | |
Niraula et al. | A New Fabrication Technique of CdTe Strip Detectors for Gamma‐Ray Imaging and Spectroscopy | |
Kotorová et al. | Analysis of CdTe detectors using IV characteristics | |
Niraula et al. | Fabrication and performance of p–i–n CdTe radiation detectors | |
RU220064U1 (ru) | Полупроводниковый детектор рентгеновского излучения с высоким энергетическим разрешением | |
JPH07325157A (ja) | 半導体放射線検出器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE DK FR GB IT LI MC NL SE |
|
17Q | First examination report despatched |
Effective date: 19990804 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RTI1 | Title (correction) |
Free format text: SYSTEM AND METHOD FOR DETECTION OF IONIZING RADIATION |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE DK FR GB IT LI MC NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020130 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020130 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20020130 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020130 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69525257 Country of ref document: DE Date of ref document: 20020314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020430 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030806 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040807 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040807 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070802 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090303 |