EP0767267B1 - Method and device for dry cleaning textiles - Google Patents

Method and device for dry cleaning textiles Download PDF

Info

Publication number
EP0767267B1
EP0767267B1 EP95117536A EP95117536A EP0767267B1 EP 0767267 B1 EP0767267 B1 EP 0767267B1 EP 95117536 A EP95117536 A EP 95117536A EP 95117536 A EP95117536 A EP 95117536A EP 0767267 B1 EP0767267 B1 EP 0767267B1
Authority
EP
European Patent Office
Prior art keywords
concentration
drying
drum
temperature
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95117536A
Other languages
German (de)
French (fr)
Other versions
EP0767267A1 (en
Inventor
Hans-Udo Saal
Ralf Mathias Saal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satec GmbH
Original Assignee
Satec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26138847&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0767267(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Satec GmbH filed Critical Satec GmbH
Priority to EP95117536A priority Critical patent/EP0767267B1/en
Priority to DE29521540U priority patent/DE29521540U1/en
Priority to JP8253493A priority patent/JPH09173690A/en
Priority to US08/726,383 priority patent/US5689848A/en
Publication of EP0767267A1 publication Critical patent/EP0767267A1/en
Application granted granted Critical
Publication of EP0767267B1 publication Critical patent/EP0767267B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F43/00Dry-cleaning apparatus or methods using volatile solvents
    • D06F43/08Associated apparatus for handling and recovering the solvents
    • D06F43/086Recovering the solvent from the drying air current

Definitions

  • the invention relates to a method for dry cleaning Textiles washed with solvents and with warm air be dried, the solvent after condensation is recovered.
  • the invention relates to such a device with washing and Dryer drum, condenser for the solvent, one Heating and a warm air supply for drying, washing and Drying in one and the same machine, but alternatively also in two separate machines.
  • Textile cleaning systems dry cleaning systems for Hydrocarbon solvent (KWL), i.e. as far as possible win aromatic-free solvents from the group of alkanes with the ban on CFCs and the drastically decreasing public acceptance of per (tetrachlorethylene) increasing Meaning.
  • the flash point of these is above 55 ° C.
  • Textile cleaning systems work in a closed system and ensure in addition to the actual cleaning at the same time Drying of the goods with simultaneous recovery by Condensation and regeneration (distillation, adsorption) of the used solvent.
  • Drying in textile cleaning systems is done by a large Number of changing conditions influenced: these are the type of goods and quantity, as well as after spinning in the goods remaining amount of residual solvent, the physical Properties of the solvent used, the supplied Thermal energy, the volume flow of the circulating air. These conditions change from one batch to another.
  • the drying process is delayed, ie the drying times are extended and the machine capacity is reduced.
  • the safety-relevant parameters can be measured easily (O 2 content or temperature).
  • a third security variant is that the solvent concentration in all phases of the drying process is kept in an uncritical concentration range, ie below the LEL. This could circumvent the technical outlay for reducing the O 2 content or the disadvantages of reducing the temperature. However, it is a prerequisite that the solvent concentration can be measured continuously and that it can be controlled under all process conditions.
  • the invention has for its object to avoid the effort previously considered necessary, such as reducing the O 2 content in the dryer air or delayed drying or on the other hand condensation in the measuring systems and to propose a particularly inexpensive method.
  • Heat is expediently intermittent in order to rise to to avoid high solvent concentrations.
  • a fuzzy logic controller has proven to be particularly useful for this. This results in a conductivity-controlled drying, intended for KWL cleaning systems. A transfer to Per systems is of course possible, whereby the safety aspect (risk of explosion) and the related measures can be disregarded.
  • Reliable measurement technology has therefore been developed and developed solving case and has been adapted continuous concentration measurement throughout Drying process.
  • the influencing factors on the Drying process are examined.
  • the influence of Disruptive factors on drying are examined. Control variables for the drying process are determined.
  • the measure after the invention it was possible to use suitable software for procedural implementation of the measurement signals in control signals to develop.
  • the measure according to the invention could Solvent concentrations below all scheduled and unscheduled procedural conditions in the range of maximum 75% LEL can be guaranteed.
  • the transition from the cool-down phase to the blow-out phase takes place when the difference in the decrease in concentration over time after the plateau first flat and then very flat, one certain very low value reached.
  • phase I After completing the cleaning process, pumping out the free Liquor from the drum and the subsequent centrifugation the actual drying process begins (phase I). Depending on The type and sensitivity of goods becomes the permissible in the program Maximum temperature of the circulating air during drying, the drying time, the temperature of the cool-down phase (phase II) and the time for blowing out (phase III) deposited.
  • the preheated in the preheater 6 and in the heating register 7 on the Set temperature of heated air flows through the outside and Inner drum 1, 2 and takes solvent from it cleaned goods.
  • the flows solvent-containing air first through a fluff filter 3, in which the fiber debris is filtered off, from there into the Solvent capacitor 5, in which the on cooled surfaces Solvents and water components are condensed out.
  • the Solvent / water mixture runs through a water separator a solvent tank and stands again for cleaning to disposal.
  • the cooled and discharged air takes in Condenser of the refrigerator, that is the preheater 6, one Part of the heat previously removed is again flowed through then the steam or electrically heated heating register 7 and gets into the drum again.
  • Phase I is after The preselected time automatically ends and the phase II (cool down) initiated. It cannot be determined whether Phase I was too long or too short - the result only becomes apparent after the goods have been unloaded.
  • the goods are in the drum gradually cooled and residual amounts of solvent still present will be eliminated. This is done by supplying heat from the chiller (Preheater) and the steam supply to the heating register is closed. This phase ends when the preselected one Temperature ( ⁇ 50 ° C) is reached. After the cool down phase (Phase III) the blowing out is time-controlled (approx. 1 minute) the dryer. The closed air cycle open, i.e. room air is sucked in and after it has flowed through of the dryer led outside.
  • Fig. 2 are the essential changes according to the invention lead to the surprising result. Same Parts are identified by the same reference numerals. In both Is essentially the air circulation in the Drying phase specified. Are in the measure after the Invention emerging from the central processor unit Signal processing in the PLC (programmable logic controller Control) signals obtained significantly, so the Control of machine components and process design, especially when measuring, completely different.
  • PLC programmable logic controller Control
  • a temperature measurement is made before entering the drum.
  • a temperature measurement is made at 19 immediately after exiting the drum; a concentration measurement 20 is carried out immediately after exiting the drum.
  • a self-check function of the concentration measuring device is switched on and there is an air flow monitoring after the blower.
  • the concentration measuring device in particular its measuring cuvette, is heated.
  • the concentration measuring device arranged directly at the outlet of the drum 1/2 is to be installed in the area of the highest concentration and is designed as a modified infrared (IR) measuring device.
  • the concentration measuring device 20 enables continuous concentration measurement from the beginning to the end of drying. Its measured value signals are fed to the machine's internal computer control (PLC of the CPU).
  • Self-check functions automatically check the function of the IR measuring device, thus ensuring safe control and possible shutdown under all conceivable process conditions.
  • the signal processing of the recorded measured value signals takes place in the PLC (five input signals are shown).
  • the control signals are sent to the machine system with the help of the determined process engineering influencing factors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Trockenreinigen von Textilien, die mit Lösemittel gewaschen und mit Warmluft getrocknet werden, wobei das Lösemittel nach Kondensation rückgewonnen wird.The invention relates to a method for dry cleaning Textiles washed with solvents and with warm air be dried, the solvent after condensation is recovered.

Gegenstand der Erfindung ist eine solche Vorrichtung mit Wasch- und Trocknertrommel, Kondensator für das Lösungsmittel, einer Heizung und einer Warmluftzufuhr zum Trocknen, wobei Waschen und Trocknen in ein und der gleichen Maschine, alternativ aber auch in zwei getrennten Maschinen, möglich sind.The invention relates to such a device with washing and Dryer drum, condenser for the solvent, one Heating and a warm air supply for drying, washing and Drying in one and the same machine, but alternatively also in two separate machines.

Textilreinigungsanlagen (Chemischreinigungsanlagen) für Kohlenwasserstoff-Lösemittel (KWL), d.h. weitestgehend aromatenfreie Lösungsmittel aus der Gruppe der Alkane gewinnen mit dem Verbot von FCKW und der drastisch abnehmenden öffentlichen Akzeptanz von Per(Tetrachlorethylen) zunehmende Bedeutung. Bei diesen liegt der Flammpunkt über 55°C.Textile cleaning systems (dry cleaning systems) for Hydrocarbon solvent (KWL), i.e. as far as possible win aromatic-free solvents from the group of alkanes with the ban on CFCs and the drastically decreasing public acceptance of per (tetrachlorethylene) increasing Meaning. The flash point of these is above 55 ° C.

Textilreinigungsanlagen arbeiten im geschlossenen System und gewährleisten neben der eigentlichen Reinigung zugleich die Trocknung der Ware bei gleichzeitiger Rückgewinnung durch Kondensation und Regenerierung (Destillation, Adsorption) des eingesetzen Lösemittels.Textile cleaning systems work in a closed system and ensure in addition to the actual cleaning at the same time Drying of the goods with simultaneous recovery by Condensation and regeneration (distillation, adsorption) of the used solvent.

Mit dem Einsatz der brennbaren KWL mit ihren niedrigen Dampfdrücken und hohen Siedebereichen ergaben sich neue Anforderungen hinsichtlich optimaler Bedingungen aus Sicht des Brandschutzes, der Trockenzeiten, des Energieeinsatzes und der Ökologie an den Trocknungsprozeß. With the use of the combustible KWL with its low Steam pressures and high boiling ranges resulted in new ones Requirements regarding optimal conditions from the point of view of the Fire protection, drying times, energy use and Ecology to the drying process.

Die Trocknung in Textilreinigungsanlagen wird von einer großen Anzahl wechselnder Bedingungen beeinflußt: das sind die Warenart und -menge, sowie die nach dem Schleudern in der Ware verbliebene Restlösemittelmenge, die physikalischen Eigenschaften des verwendeten Lösemittels, die zugeführte Wärmeenergie, der Volumenstrom der Umluft. Diese Bedingungen ändern sich von einer Charge zur anderen.Drying in textile cleaning systems is done by a large Number of changing conditions influenced: these are the type of goods and quantity, as well as after spinning in the goods remaining amount of residual solvent, the physical Properties of the solvent used, the supplied Thermal energy, the volume flow of the circulating air. These conditions change from one batch to another.

Die Steuerung des Trocknungsprozesses erfolgt bisher in Chemischreinigungsanlagen nach Zeit und Umlufttemperatur unter Verwendung empirischer Vorgaben, die der Maschinenbediener nach Ermessen vorwählt. Die Folgen dieser Verfahrensführung sind entweder

  • Übertrocknungen der Ware durch zu lange Trocknungszeiten mit der Folge möglicher Warenschädigungen, überhöhter Einergieverbräuche und verminderter Maschinenkapazität,
  • unzureichernder Trockungseffekt durch zu kurze Trocknungszeiten mit der Folge, daß die Ware ungenügend getrocknet ist, die Restlösemittel zu zusätzlichen Emissionen und unter Umständen bei längeren Kontaktzeiten zu Hautreizungen führen. Diesem Problem kommt aus ökologischer und gesundheitlicher Sicht eine besondere Bedeutung zu, da in der Praxis durch fehlende Meßtechnik und aus wirtschaftlichen Gründen eher eine Unter- als eine Übertrocknung festgestellt werden kann.
Up to now, the drying process has been controlled in dry cleaning plants according to time and ambient air temperature using empirical specifications that the machine operator selects at his discretion. The consequences of this procedure are either
  • Overdrying of the goods due to drying times that are too long, resulting in possible damage to the goods, excessive energy consumption and reduced machine capacity,
  • Inadequate drying effect due to drying times that are too short, with the result that the goods are not sufficiently dried, the residual solvents lead to additional emissions and, under certain circumstances, lead to skin irritation with longer contact times. From an ecological and health point of view, this problem is of particular importance, since in practice a lack of over-drying rather than over-drying can be determined due to the lack of measuring technology and for economic reasons.

Desweiteren sind bei brennbaren Lösemitteln nach den zufälligen Bedingungen Konzentrationen in der Umluft des Trocknungssystems möglich, die über der UEG (Untere Explosionsgrenze) liegen können. Zur Vermeidung von Bränden oder Explosionen werden daher Primärschutzmaßnahmen folgender Art angewandt:

  • Verringerung des O2-Gehaltes in der Trocknerumluft auf deutlich unter 11 %, entweder durch Eindüsen eines Inertgases (z.B. N2) oder durch Vakuumierung, oder
  • Begrenzung der Trocknungstemperatur auf Werte deutlich unterhalb des Flammpunktes.
Furthermore, in the case of flammable solvents, depending on the random conditions, concentrations in the circulating air of the drying system are possible, which can be above the LEL (lower explosion limit). To prevent fires or explosions, primary protection measures of the following types are used:
  • Reduction of the O 2 content in the dryer air to well below 11%, either by injecting an inert gas (eg N 2 ) or by vacuuming, or
  • Limitation of the drying temperature to values well below the flash point.

Bei der ersten Variante sind erhebliche maschinentechnische und energetische Mehraufwendungen notwendig. Bei der zweiten Variante läuft die Trocknung verzögert ab, d.h., die Trocknungszeiten verlängern sich und die Maschinenkapazität sinkt. Bei beiden Möglichkeiten können jedoch die sicherheitsrelevanten Kenngrößen meßtechnisch ohne weiteres erfaßt werden (O2-Gehalt bzw. Temperatur).In the first variant, considerable additional mechanical and energy expenditure is necessary. In the second variant, the drying process is delayed, ie the drying times are extended and the machine capacity is reduced. In both cases, however, the safety-relevant parameters can be measured easily (O 2 content or temperature).

Eine dritte Sicherheitsvariante besteht darin, daß die Lösemittelkonzentration in allen Phasen des Trocknungsprozesses in einem unkritischen Konzentrationsbereich, d.h. unterhalb der UEG gehalten wird. Damit könnten die technischen Aufwendungen für eine Verringerung des O2-Gehaltes bzw. die Nachteile einer Temperaturverringerung umgangen werden. Voraussetzung ist jedoch, daß die Lösemittelkonzentration kontinuierlich gemessen werden kann und unter allen Bedingungen verfahrenstechnisch beherrschbar ist.A third security variant is that the solvent concentration in all phases of the drying process is kept in an uncritical concentration range, ie below the LEL. This could circumvent the technical outlay for reducing the O 2 content or the disadvantages of reducing the temperature. However, it is a prerequisite that the solvent concentration can be measured continuously and that it can be controlled under all process conditions.

Eine zuverlässige meßtechnische Überwachung der Lösemittelkonzentration bei den während der Trocknung gegebenen Bedingungen scheiterte aber bislang bei allen infrage kommenden Meßprinzipien (FID, PID, IR, GC) an den partiell auftretenden Kondensationen in den Meßsystemen, hervorgerufen durch auftretende Taupunktunterschreitungen. Damit konnten die ablaufenden Prozesse weder beobachtet noch beeinflußt werden - der Trocknungsprozeß wurde notwendigerweise empirisch gesteuert.Reliable metrological monitoring of the Solvent concentration at the given during drying However, conditions have so far failed for all those in question Measuring principles (FID, PID, IR, GC) on the partially occurring Condensation in the measuring systems caused by occurring dew point falls. With that, the ongoing processes are neither observed nor influenced - the drying process was necessarily controlled empirically.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, den bisher für erforderlich gehaltenen Aufwand, wie Verringerung des O2-Gehaltes in der Trocknerumluft oder verzögerte Trocknung oder andererseits Kondensationen in den Meßsystemen zu vermeiden und ein besonders unaufwendiges Verfahren vorzuschlagen. In contrast, the invention has for its object to avoid the effort previously considered necessary, such as reducing the O 2 content in the dryer air or delayed drying or on the other hand condensation in the measuring systems and to propose a particularly inexpensive method.

Erreicht wird dies erfindungsgemäß bei einem Verfahren der eingangs genannten Art dadurch, daß die Temperatur der Umluft vor Eintritt in die Trommel und die Lösemittelkonzentration am Ort höchster Konzentration unmittelbar nach Austritt aus der Trommel und die Temperatur der Umluft unmittelbar nach Austritt aus der Trommel am Ort höchster Temperatur gemessen und die Werte in einem Computer verarbeitet werden und daß die Konzentration der Warmluftzufuhr, abhänging von der Zuordnung von Konzentration als Leitwert und Temperatur längs einer Kennlinie, gesteuert wird.This is achieved according to the invention in a method of type mentioned in that the temperature of the circulating air before entering the drum and the solvent concentration on Place of highest concentration immediately after leaving the Drum and the temperature of the circulating air immediately after exiting measured from the drum at the highest temperature and the Values are processed in a computer and that the Concentration of the warm air supply, depending on the assignment of concentration as a conductance and temperature along one Characteristic, is controlled.

Nach einem steilen Anstieg wird erfindungsgemäß auf ein Plateau der Konzentration hin gefahren.After a steep climb, according to the invention, a plateau is reached of concentration.

Zweckmäßig wird Wärme intermittierend, um den Anstieg auf zu hohe Lösungsmittelkonzentrationen zu vermeiden, zugeführt.Heat is expediently intermittent in order to rise to to avoid high solvent concentrations.

Als besonders günstig hat es sich herausgestellt, und hierdurch werden auch die Störungen durch Kondensation vermieden, wenn der Meßwertaufnehmer beheizt wird.It turned out to be particularly cheap, and therefore interference from condensation is also avoided if the Sensor is heated.

Mit dem Umschalten auf die nächste Phase (Cool-Down-Phase) wird solange gewartet, bis die jeweilige Maximal konzentration um mindestens 90 % unterschritten wird.By switching to the next phase (cool-down phase) waited until the respective maximum concentration around falls below at least 90%.

Zweckmäßig arbeitet man mit einem Infrarot-(IR)-Meßgerät für die Konzentration unmittelbar am Trocknertrommelausgang und benutzt dies zu einer bisher nicht erbrachten kontinuierlichen Konzentrationsmessung und zwar bis zum Ende der Trocknung.It is useful to work with an infrared (IR) measuring device for the Concentration directly at the dryer drum exit and used this leads to a continuous, not yet achieved Concentration measurement and that until the end of drying.

Besonders zweckmäßig hat sich hierzu eine Fuzzy-Logic-Steuerung erwiesen.
Es ergibt sich also eine leitwertgesteuerte Trocknung, vorgesehen für KWL Reinigungsanlagen. Eine Übertragung auf Per-Anlagen ist natürlich möglich, wobei hierbei der Sicherheitsaspekt (Explosionsgefahr) und die hierdurch bedingten Maßnahmen außer acht gelassen werden können.
A fuzzy logic controller has proven to be particularly useful for this.
This results in a conductivity-controlled drying, intended for KWL cleaning systems. A transfer to Per systems is of course possible, whereby the safety aspect (risk of explosion) and the related measures can be disregarded.

Eine zuverlässige Meßtechnik ist also entwickelt und an den zu lösenden Fall adaptiert worden und ermöglicht eine kontinuierliche Konzentrationsmessung während des gesamten Trocknungsprozesses. Die Einflußfaktoren auf den Trocknungsverlauf werden untersucht. Der Einfluß von Störfaktoren auf die Trocknung wird untersucht. Regelgrößen für den Trocknungsprozeß werden bestimmt. Durch die Maßnahme nach der Erfindung war es möglich, eine geeignete Software zur verfahrenstechnischen Umsetzung der Meßsignale in Steuersignale zu entwickeln. Durch die Maßnahme nach der Erfindung konnten Lösemittelkonzentrationen unter allen planmäßigen und unplanmäßigen Verfahrensbedingungen im Bereich von maximal 75 % UEG gewährleistet werden.Reliable measurement technology has therefore been developed and developed solving case and has been adapted continuous concentration measurement throughout Drying process. The influencing factors on the Drying process are examined. The influence of Disruptive factors on drying are examined. Control variables for the drying process are determined. By the measure after the invention it was possible to use suitable software for procedural implementation of the measurement signals in control signals to develop. The measure according to the invention could Solvent concentrations below all scheduled and unscheduled procedural conditions in the range of maximum 75% LEL can be guaranteed.

Am Trommelausgang, im Bereich der höchsten Konzentration, ist also ein Meßgerät in modifizierter Ausführung (modifiziert z.B. durch eine beheizte Meßküvette) installiert, durch die bisher auftretende Kondensationserscheinungen sicher vermieden werden. Somit wird eine kontinuierliche Konzentrationsmessung vom Beginn bis zum Ende der Trocknung möglich. Die Meßwertsignale werden der maschineninternen Computersteuerung (SPS) zugeführt. Durch Self-Check-Funktionen erfolgt eine automatische Funktionskontrolle des IR-Meßgerätes. In der speicherprogrammierbaren Steuerung (SPS) werden die Signale unter Zuhilfenahme der ermittelten verfahrenstechnischen Einflußfaktoren verarbeitet, und Steuersignale an das Maschinensystem gegeben (beispielsweise hinsichtlich Dampfzufuhr, Steuerung des Gebläsemotors, des Trommelantriebs und der Türverriegelung, der Lüftungsklappen, der Ventilsteuerung der Kälteanlagen etc.).At the drum exit, in the area of the highest concentration i.e. a measuring device in a modified version (modified e.g. through a heated measuring cell) installed, through the previous occurring condensation phenomena can be safely avoided. Thus, a continuous concentration measurement from the beginning possible until the end of drying. The measured value signals are fed to the machine's internal computer control (PLC). By Self-check functions are automatic Functional check of the IR measuring device. In the programmable logic controller (PLC) are the signals with the help of the determined process engineering Influencing factors processed, and control signals to the Given machine system (for example with regard to Steam supply, control of the blower motor, the drum drive and the door lock, the ventilation flaps, the Valve control of the refrigeration systems etc.).

Im Gegensatz zur herkömmlichen Verfahrensweise übernimmt also die Computersteuerung die optimale Festegung der Trocken- und Cool-Down-Zeiten in Abhängigkeit vom Konzentrationsverlauf in der Trommel. In contrast to the conventional procedure, it takes over the computer control the optimal setting of the dry and Cool-down times depending on the concentration curve in the drum.

Es ist bekannt (JP5285297), daß bei Überschreitung einer Temperatur, bei der die zugehörige Sättigungskonzentration einen kritischen Wert erreichen kann (Überschreitung der unteren Explosionsgrenze), durch öffnen eines Ventils der geschlossene Luftkreislauf geöffnet wird. Es wird Luft aus dem Aufstellungsraum der Maschine angesaugt und nach Durchströmen der Trommel über den Luftkanalausgang in den Aufstellungsraum oder ins Freie abgeleitet. Damit wird eine Temperatur- und Konzentrationsabsenkung erzielt. Da aber nur in Ausnahmefällen die Sättigungskonzentration erreicht wird, wird in der Regel der Luftkreislauf auch bei unkritischen Konzentrationen geöffnet. Damit wird die Umwelt mit Lösemitteldämpfen belastet, die Trockenzeit unnötig verlängert und zusätzliche Wärme- und Elektroenergie verbraucht. It is known (JP5285297) that when a temperature is exceeded, where the associated saturation concentration is one can reach critical value (exceeding the lower explosion limit), by opening a valve the closed one Air circuit is opened. There is air from the installation room sucked into the machine and after flowing through the drum via the air duct exit into the installation room or outside derived. This will lower the temperature and concentration achieved. However, since only in exceptional cases the saturation concentration is reached, the air cycle is usually also open at uncritical concentrations. With that the Environment polluted with solvent vapors, the drying time unnecessary extended and consumed additional heat and electrical energy.

Folgende Effekte werden erreicht:

  • Die Konzentrationskurve verläuft deutlich flacher, dafür aber über ein Plateau.
  • Bei Erreichen des vorgegebenen Grenzwertes von 70 % UEG wird sofort die Wärmezufuhr gestoppt. Als Folge sinkt die Konzentration wieder.
  • Die Wärmezufuhr wird so lange aufrechterhalten, wie ein deutliches Absinken der Konzentration bis zu einem vorgegebenen Schwellenwert feststellbar ist.
  • Unter Nutzung der im Trockner noch vorhandenen latenten Wärme erfolgt in der Cool-Down-Phase ein weiteres Absenken der Konzentration. Nach Unterschreiten der 10 % Grenze der UEG wird der Cool-Down beendet und der Ausblasprozeß eingeleitet.
  • Trotz deutlicher Verringerung der Konzentrationsspitze verringert sich die Gesamtdauer des Trocknungsprozesses bis zu 25 %.
The following effects are achieved:
  • The concentration curve is significantly flatter, but on a plateau.
  • When the specified limit of 70% LEL is reached, the heat supply is stopped immediately. As a result, the concentration drops again.
  • The heat supply is maintained as long as a significant drop in the concentration up to a predetermined threshold value can be determined.
  • Using the latent heat still present in the dryer, the concentration is reduced further in the cool-down phase. After falling below the 10% limit of the LEL, the cool-down is ended and the blow-out process is initiated.
  • Despite a significant reduction in the peak concentration, the overall duration of the drying process is reduced by up to 25%.

Es ergibt sich also:

  • Ein Wegfall der für die Sicherheit notwendigen Inertisierung bzw. Vakuumierung, damit Kosteneinsparung und Erhöhung der Zuverlässigkeit in der Anwendung.
  • Eine optimale Trockenzeit unter den unterschiedlichsten Bedingungen. Damit kann im Durchschnitt die Trockenzeit um 20 % verringert werden. Die Kapazität der Textilreinigungsanlage erhöht sich dementsprechend um 20 %.
  • Eine Vermeidung von Wärmeverlusten durch Übertrocknung. Aus der Summe der Trockenzeitverringerung, der Wärmeeinsparung und des Wegfalls der überwiegend angewandten Inertisierung resultiert eine Energieeinsparung von ca. 160 Wh/kg getrockneter Ware (ca. 40 %).
  • Untertrocknungen der Ware und damit verbundene Lösemittelemissionen an die Umwelt sowie gesundheitliche Risiken werden sicher vermieden. Dieser Vorteil ist nicht qualifizierbar, hat aber aus ökologischen und gesundheitlichen Gründen eine besondere Bedeutung.
The result is:
  • Eliminating the inerting or vacuuming required for safety, thus saving costs and increasing reliability in use.
  • An optimal drying time under the most varied conditions. The average drying time can be reduced by 20%. The capacity of the textile cleaning system increases accordingly by 20%.
  • Avoiding heat loss through overdrying. The sum of the drying time reduction, the heat saving and the elimination of the predominantly used inerting results in an energy saving of approx. 160 Wh / kg of dried goods (approx. 40%).
  • Underdrying of the goods and the associated solvent emissions to the environment as well as health risks are safely avoided. This advantage cannot be qualified, but is of particular importance for ecological and health reasons.

In den europäischen Richtlinien sind 350 ppm als Restwert zulässig. Erfindungsgemäß wird diese Grenze um 99 % unterschritten.In the European guidelines there are 350 ppm as a residual value allowed. According to the invention, this limit is increased by 99% undershot.

Von der Cool-Down-Phase zur Ausblasphase wird übergegangen, wenn die Differenz in der Konzentrationsabnahme über die Zeit, die nach dem Plateau erst flach und dann sehr flach wird, einen bestimmten ganz geringen Wert erreicht.The transition from the cool-down phase to the blow-out phase takes place when the difference in the decrease in concentration over time after the plateau first flat and then very flat, one certain very low value reached.

Mit der Fuzzy-Logic wird eine ideale Trocknungskurve bestimmt, der Computer mit Fuzzy-Logic stellt dann einen Temperatur- und Konzentrationsvergleich an und steuert einen Konzentrationsverlauf über die Zeit, der Einflußgrößen wie überladene, unterladene Trommeln, schwerere Textilien, bei denen die Lösungsmittel schwieriger austreten, leichtere Textilien, bei denen dies leichter erfolgt, an. Nachdem die Steuerung einen bestimmten Konzentrationsverlauf festgestellt hat, wird bei diesem Konzentrationsverlauf ein bestimmter Leitwert als Funktion des Konzentrationsverlaufs und der Temperatur errechnet. Wichtig ist hier, daß, da es sich um unpolare Medien handelt, elektrische Messungen nicht möglich sind.With the fuzzy logic an ideal drying curve is determined, the computer with fuzzy logic then sets a temperature and Concentration comparison and controls you Concentration course over time, the influencing factors such as overloaded, underloaded drums, heavier textiles where the solvents are more difficult to escape, lighter textiles, where this is easier to do. After the control one has determined certain course of concentration is at this concentration curve has a certain conductance as Function of the concentration curve and the temperature calculated. The important thing here is that since it is non-polar media electrical measurements are not possible.

Beispielsweise Ausführungsformen der Erfindung sollen nun mit Bezug auf die beiliegenden Zeichnungen näher erläutert werden, in denen

  • Fig. 1 ein Funktionsschema der Trocknung ohne die erfindungsgemäße Leitwertsteuerung zeigt;
  • Fig. 2 zeigt ein ähnliches Funktionsschema der Trocknung jedoch mit der erfindungsgemäßen Leitwertsteuerung.
  • For example, embodiments of the invention will now be explained in more detail with reference to the accompanying drawings, in which
  • 1 shows a functional diagram of drying without the conductance control according to the invention;
  • 2 shows a similar functional diagram of drying, however, with the conductance control according to the invention.
  • Nach Abschluß des Reinigungsprozesses, dem Abpumpen der freien Flotte aus der Trommel und dem anschließenden Zentrifugieren beginnt der eigentliche Trocknungsprozeß (Phase I). Je nach Warenart und -empfindlichkeit wird im Programm die zulässige Höchsttemperatur der Umluft beim Trocknen, die Trocknungszeit, die Temperatur der Cool-Down-Phase (Phase II) und die Zeit für das Ausblasen (Phase III) hinterlegt.After completing the cleaning process, pumping out the free Liquor from the drum and the subsequent centrifugation the actual drying process begins (phase I). Depending on The type and sensitivity of goods becomes the permissible in the program Maximum temperature of the circulating air during drying, the drying time, the temperature of the cool-down phase (phase II) and the time for blowing out (phase III) deposited.

    Die im Vorwärmer 6 vorgewärmte und im Heizregister 7 auf die eingestellte Solltemperatur erhitzte Luft durchströmt die Außen- und Innentrommel 1, 2 und nimmt dabei Lösemittel aus der gereinigten Ware auf. Aus der Außentrommel 1 kommend, strömt die lösemittelhaltige Luft zunächst durch ein Flusensieb 3, in dem der Faserabrieb abgefiltert wird, von dort in den Lösemittelkondensator 5, in dem an gekühlten Flächen das Lösemittel und Wasserbestandteile auskondensiert werden. Das Lösemittel-/Wassergemisch läuft über einen Wasserabscheider in einen Lösemitteltank und steht damit wieder für die Reinigung zur Verfügung. Die gekühlte und entladene Luft nimmt im Kondensator der Kältemaschine, das ist der Vorwärmer 6, einen Teil der vorher entzogenen Wärme wieder auf, durchströmt anschließend das dampf- oder elektrisch beheizte Heizregister 7 und gelangt wiederum in die Trommel. Die Phase I wird nach Ablauf der vorgewählten Zeit automatisch beendet und die Phase II (Cool-Down) eingeleitet. Dabei kann nicht festgestellt werden, ob die Phase I möglicherweise zu lang oder zu kurz war - das Ergebnis zeigt sich erst nach dem Entladen der Ware.The preheated in the preheater 6 and in the heating register 7 on the Set temperature of heated air flows through the outside and Inner drum 1, 2 and takes solvent from it cleaned goods. Coming from the outer drum 1, the flows solvent-containing air first through a fluff filter 3, in which the fiber debris is filtered off, from there into the Solvent capacitor 5, in which the on cooled surfaces Solvents and water components are condensed out. The Solvent / water mixture runs through a water separator a solvent tank and stands again for cleaning to disposal. The cooled and discharged air takes in Condenser of the refrigerator, that is the preheater 6, one Part of the heat previously removed is again flowed through then the steam or electrically heated heating register 7 and gets into the drum again. Phase I is after The preselected time automatically ends and the phase II (cool down) initiated. It cannot be determined whether Phase I was too long or too short - the result only becomes apparent after the goods have been unloaded.

    Im Cool-Down-Prozeß wiederum wird die Ware in der Trommel allmählich abgekühlt und noch vorhandene Restlösemittelmengen werden beseitigt. Dazu wird die Wärmezufuhr aus der Kältemaschine (Vorwärmer) und die Dampfzufuhr zum Heizregister geschlossen. Diese Phase wird beendet, wenn die vorgewählte Temperatur (< 50°C) erreicht ist. Nach der Cool-Down-Phase (Phase III) erfolgt zeitgesteuert (ca. 1 Minute) das Ausblasen des Trockners. Dabei wird der geschlossene Luftkreislauf geöffnet, d.h. es wird Raumluft angesaugt und nach Durchströmen des Trockners ins Freie geleitet.In the cool-down process, the goods are in the drum gradually cooled and residual amounts of solvent still present will be eliminated. This is done by supplying heat from the chiller (Preheater) and the steam supply to the heating register is closed. This phase ends when the preselected one Temperature (<50 ° C) is reached. After the cool down phase (Phase III) the blowing out is time-controlled (approx. 1 minute) the dryer. The closed air cycle open, i.e. room air is sucked in and after it has flowed through of the dryer led outside.

    Im Stand der Technik erfolgt also

  • eine Temperaturmessung vor Eintritt in die Trommel;
  • weiterhin erfolgt eine Temperaturmessung nach Austritt aus der Trommel;
  • schließich gibt es noch eine Luftstromüberwachung nach dem Gebläse;
  • abhängig von den gemessenen Daten erfolgt eine Ansteuerung der Ausblas- und Frischluftklappe;
  • es erfolgt eine Ansteuerung des Heizregisters;
  • eine Ansteuerung der Kälteanlage wird vorgenommen und schließlich geht es noch um die Ansteuerung des Trommelantriebs.
  • So in the prior art
  • a temperature measurement before entering the drum;
  • furthermore a temperature measurement takes place after exiting the drum;
  • finally there is an air flow monitor after the fan;
  • depending on the measured data, the discharge and fresh air flap are activated;
  • the heating register is activated;
  • The refrigeration system is activated and finally the drum drive is activated.
  • In Fig. 2 sind die wesentlichen Änderungen, die erfindungsgemäß zu dem überraschenden Ergebnis führen, eingezeichnet. Gleiche Teile werden mit gleichen Bezugszeichen bezeichnet. In beiden Fällen ist im wesentlichen die Umluftführung in der Trocknungsphase angegeben. Sind bei der Maßnahme nach der Erfindung die aus der Zentralprozessoreinheit austretenden nach Signalverarbeitung in der SPS (speicherprogrammierbare Steuerung) gewonnenen Signale signifikant, so erfolgt die Ansteuerung der Maschinenkomponenten und die Prozeßgestaltung, insbesondere bei der Messung, völlig unterschiedlich.In Fig. 2 are the essential changes according to the invention lead to the surprising result. Same Parts are identified by the same reference numerals. In both Is essentially the air circulation in the Drying phase specified. Are in the measure after the Invention emerging from the central processor unit Signal processing in the PLC (programmable logic controller Control) signals obtained significantly, so the Control of machine components and process design, especially when measuring, completely different.

    Es wird eine Temperaturmessung vor Eintritt in die Trommel vorgenommen. Es wird eine Temperaturmessung bei 19 unmittelbar nach Austritt aus der Trommel vorgenommen;
    es wird eine Konzentrationsmessung 20 unmittelbar nach Austritt aus der Trommel vorgenommen.
    Eine Self-Check-Funktion des Konzentrationsmeßgerätes ist eingeschaltet und es erfolgt eine Luftstromüberwachung nach dem Gebläse. Um bisher in Kauf zu nehmende Kondensationserscheinungen zu vermeiden, wird das Konzentrationsmeßgerät, insbesondere seine Meßküvette, beheizt. Das unmittelbar am Austritt der Trommel 1/2 angeordnete Konzentrationsmeßgerät ist im Bereich der höchsten Konzentration zu installieren und ist als Infrarot-(IR)-Meßgerät modifiziert ausgebildet. Zum erstenmal ist mit dem Konzentrationsmeßgerät 20 eine kontinuierliche Konzentrationsmessung vom Beginn bis zum Ende der Trocknung möglich. Seine Meßwertsignale werden der maschineninternen Computersteuerung (SPS der CPU) zugeführt. Durch Self-Check-Funktionen erfolgt eine automatische Funktionskontrolle des IR-Meßgerätes, und damit eine sichere Steuerung und evtl. Abschaltung unter sämtlichen denkbaren Verfahrenszuständen. In der SPS erfolgt die Signalverarbeitung der aufgenommenen Meßwertsignale (fünf Eingangssignale sind gezeichnet). Unter Zuhilfenahme der ermittelten verfahrenstechnischen Einflußfaktoren werden die Steuersignale an das Maschinensystem gegeben.
    A temperature measurement is made before entering the drum. A temperature measurement is made at 19 immediately after exiting the drum;
    a concentration measurement 20 is carried out immediately after exiting the drum.
    A self-check function of the concentration measuring device is switched on and there is an air flow monitoring after the blower. In order to avoid condensation phenomena that have so far been accepted, the concentration measuring device, in particular its measuring cuvette, is heated. The concentration measuring device arranged directly at the outlet of the drum 1/2 is to be installed in the area of the highest concentration and is designed as a modified infrared (IR) measuring device. For the first time, the concentration measuring device 20 enables continuous concentration measurement from the beginning to the end of drying. Its measured value signals are fed to the machine's internal computer control (PLC of the CPU). Self-check functions automatically check the function of the IR measuring device, thus ensuring safe control and possible shutdown under all conceivable process conditions. The signal processing of the recorded measured value signals takes place in the PLC (five input signals are shown). The control signals are sent to the machine system with the help of the determined process engineering influencing factors.

    Im Gegensatz zum Stand der Technik gemäß Fig. 1 nimmt die Computersteuerung (CPU/SPS) die optimale Festlegung der Trocken- und Cool-Down-Zeiten in Abhängigkeit vom Konzentrationsverlauf in der Trommel 1/2, der über 20 in Zuordnung zu 19 (Temperaturmessung) ermittelt wird, vor.In contrast to the prior art according to FIG. 1, the Computer control (CPU / PLC) the optimal determination of the drying and cool-down times depending on the course of concentration in drum 1/2, over 20 in association with 19 (Temperature measurement) is determined before.

    Beim Stand der Technik war es so, daß aufgrund von empirisch gefundenen Werten und abhängig vom Können des jeweiligen Meisters die Trocknung eingestellt und gefahren wurde. Wegen der Gefahr der überhitzung der Textilien wurde dabei oft in Kauf genommen, daß sich auch Restlösemittelmengen in den Geweben befanden.In the state of the art, it was so that empirically found values and depending on the ability of each Master drying was stopped and driven. Because of the The risk of overheating of the textiles was often accepted taken that there are also residual amounts of solvent in the tissues found.

    Claims (21)

    1. Method of dry cleaning textiles which are washed with a solvent and dried by hot air, the solvent being recovered after condensation, characterized in that the temperature of the environment air before entry into the drum and the solvent concentration continuously at the place of highest concentration immediately after leaving of the drum and the temperature of the environment immediately after leaving of the drum at the place of highest temperature is measured and the values are processed in a computer and that the concentration of the hot air feed, dependent on the allocation of concentration as a characteristic guide line value (Leitwert) and the temperature are controlled along a characteristic curve.
    2. Method according to claim 1, characterized in that from the allocation of temperature and the increase in concentration per unit of time the control value is derived.
    3. Method according to either of the preceding claims, characterized in that concentration is controlled in such a way that it remains restricted under all conditions to a maximum value of the LOWER EXPLOSIVE LIMIT, and in particular to a value equal to 75 % of the LOWER EXPLOSIVE LIMIT.
    4. Method according to one of the preceding claims, characterized in that drying is conducted to a residual concentration level of 1-2 g/m3.
    5. Method according to one of the preceding claims, characterized in that when a maximum is reached during an increase in concentration, the supply of heat is only permitted intermittently.
    6. Method according to one of the preceding claims, characterized in that in measuring concentration for avoiding condensation, the measuring sensor is heated.
    7. Method according to one of the preceding claims, characterized in that measurements are made directly in the flow of recirculated air.
    8. Method according to one of the preceding claims, characterized in that the interaction of temperature and concentration is used to arrive at a point where it is no longer worthwile to introduce heat.
    9. Method according to one of the preceding claims, characterized in that the factors which influence the drying process are determined for a given machine and a given solvent and are fed into the computer as known curves to form a reference.
    10. Method according to one of the preceding claims, characterized in that a temperature, of 50°C for example, is preset for the cool-down following the drying and when the temperature drops below this level there is an automatic changeover to the venting phase, unless a given concentration level has still not been reached.
    11. Method according to one of the preceding claims, characterized in that changeover from the heating phase to the cool-down phase is delayed until the concentration has dropped by at least 90 % below whatever is the figure of maximum concentration.
    12. Method according to one of the preceding claims, characterized in that any disturbance in the operation of the concentration measuring technique is being used to interrupt the supply of heat.
    13. Method according to one of the preceding claims, characterized in that stored-program signals are used to control the machine system (the supply of steam, the fan motor, the drum drive, the door lock, or ventilation flaps, the valve controls, the cooling systems, and so on) considering the influence values of the processing conditions.
    14. Method according to one of the preceding claims, characterized in that the computerised control internal to the machine sets the optimum drying and cool-down times in dependency of the concentration curve in the drum.
    15. Method according to one of the preceding claims, characterized in that by making use of the latent heat still present in the dryer, a further drop in concentration is brought about in the cool-down phase, cool-down being brought to an end and the venting process is initiated once concentration has dropped to below a preset limit, and in particular a limit represented by 10 %.
    16. Apparatus for cleaning textiles with a chemical solvent, having a washing and drying drum (1; 2), a condenser (5) for the solvent, a heating system (7) and a supply of hot air to the dryer, washing and drying being possible in one and the same machine, characterized by a temperature measuring device in front of the entrance to the drum, an infrared (IR) device (20) immediately after exit from the drum (1/2) for continuously measuring concentration till the end of drying as well as a temperature measuring device (19) in the same region as well as a computer control (SPS) internal to the machine for feeding stored program signals to act as control signals for the supply of heat.
    17. Apparatus according to claim 16, characterized in that the measuring container of the concentration measuring device (20) is being heated.
    18. Apparatus according to claim 16 or 17, characterized in that the measuring container of the concentration measuring device (20) is directly arranged in the hot air stream at the exit of the drum (1/2).
    19. Apparatus according to any of claims 16 to 18, characterized in that the control of drying is performed by a control of the fuzzy logic kind.
    20. Apparatus according to any of claims 16 to 19, characterized by designing the IR measuring device (19) to have self-check functions to check its functions automatically.
    21. Apparatus according to any of claims 16 to 20, characterized by a stored programmed control (SPS) for signal processing.
    EP95117536A 1995-10-05 1995-11-07 Method and device for dry cleaning textiles Expired - Lifetime EP0767267B1 (en)

    Priority Applications (4)

    Application Number Priority Date Filing Date Title
    EP95117536A EP0767267B1 (en) 1995-10-05 1995-11-07 Method and device for dry cleaning textiles
    DE29521540U DE29521540U1 (en) 1995-10-05 1995-11-07 Device for dry cleaning textiles
    JP8253493A JPH09173690A (en) 1995-10-05 1996-09-25 Method and device for dry-cleaning textile product
    US08/726,383 US5689848A (en) 1995-10-05 1996-10-04 Method and apparatus for dry cleaning textiles

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    EP95115725 1995-10-05
    EP95115725 1995-11-05
    EP95117536A EP0767267B1 (en) 1995-10-05 1995-11-07 Method and device for dry cleaning textiles

    Publications (2)

    Publication Number Publication Date
    EP0767267A1 EP0767267A1 (en) 1997-04-09
    EP0767267B1 true EP0767267B1 (en) 1999-09-22

    Family

    ID=26138847

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95117536A Expired - Lifetime EP0767267B1 (en) 1995-10-05 1995-11-07 Method and device for dry cleaning textiles

    Country Status (4)

    Country Link
    US (1) US5689848A (en)
    EP (1) EP0767267B1 (en)
    JP (1) JPH09173690A (en)
    DE (1) DE29521540U1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6670317B2 (en) 2000-06-05 2003-12-30 Procter & Gamble Company Fabric care compositions and systems for delivering clean, fresh scent in a lipophilic fluid treatment process
    DE102007038369A1 (en) * 2007-08-14 2009-02-19 BSH Bosch und Siemens Hausgeräte GmbH Volatile, inflammable substances e.g. alcohol, detecting method for use in condensation laundry dryer of washing machine, involves receiving infrared-radiation by receiving element in wave number scale between specific range

    Families Citing this family (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6045588A (en) 1997-04-29 2000-04-04 Whirlpool Corporation Non-aqueous washing apparatus and method
    AT410291B (en) 1997-08-18 2003-03-25 Walter Sticht MOVING UNIT
    IT1300040B1 (en) * 1998-05-15 2000-04-04 Ama Universal Spa CLOSED CIRCUIT PROCEDURE AND SYSTEM FOR WASHING AND/OR DRYING PRODUCTS.
    US6828292B2 (en) 2000-06-05 2004-12-07 Procter & Gamble Company Domestic fabric article refreshment in integrated cleaning and treatment processes
    US6939837B2 (en) 2000-06-05 2005-09-06 Procter & Gamble Company Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid
    US6840963B2 (en) 2000-06-05 2005-01-11 Procter & Gamble Home laundry method
    US7018423B2 (en) 2000-06-05 2006-03-28 Procter & Gamble Company Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning
    US6673764B2 (en) 2000-06-05 2004-01-06 The Procter & Gamble Company Visual properties for a wash process using a lipophilic fluid based composition containing a colorant
    JP2003535628A (en) 2000-06-05 2003-12-02 ザ、プロクター、エンド、ギャンブル、カンパニー System for controlling the drying cycle in a drying device
    IT1321228B1 (en) * 2000-06-06 2003-12-31 Donini Internat S P A PROCEDURE FOR THE SAFETY CHECK OF THE DRYING CYCLE IN HYDROCARBON DRY CLEANING MACHINES AND RELATED EQUIPMENT
    WO2003008698A1 (en) * 2001-07-19 2003-01-30 Satec Gmbh Method and device for chemically cleaning textiles in an antibacterial manner
    ITAN20020005A1 (en) * 2002-01-25 2003-07-25 Gian Vieri Nardini CONTROL OF DRYING IN DRY CLEANING MACHINES BY MEASURING THE CONDENSATE
    US20040117920A1 (en) * 2002-04-22 2004-06-24 General Electric Company Detector for monitoring contaminants in solvent used for dry cleaning articles
    US7365043B2 (en) * 2003-06-27 2008-04-29 The Procter & Gamble Co. Lipophilic fluid cleaning compositions capable of delivering scent
    US7739891B2 (en) 2003-10-31 2010-06-22 Whirlpool Corporation Fabric laundering apparatus adapted for using a select rinse fluid
    EP1740757A1 (en) 2004-04-29 2007-01-10 Unilever N.V. Dry cleaning method
    US8122547B2 (en) * 2004-07-20 2012-02-28 Lg Electronics Inc. Washing machine and method for controlling the same
    US7966684B2 (en) * 2005-05-23 2011-06-28 Whirlpool Corporation Methods and apparatus to accelerate the drying of aqueous working fluids
    DE102005013053A1 (en) * 2005-05-23 2006-11-30 BSH Bosch und Siemens Hausgeräte GmbH Condensation Dryer
    DE502008002596D1 (en) * 2007-08-14 2011-03-31 Bsh Bosch Siemens Hausgeraete Method for the detection of volatile, flammable substances in a dryer and dryer suitable for this purpose
    KR101414625B1 (en) * 2007-11-21 2014-07-03 엘지전자 주식회사 Dryer
    US7954255B2 (en) * 2008-12-19 2011-06-07 Kohei Sawa Drying apparatus with a solvent-recovery function, and a method for drying solvent recovery
    CN104294560B (en) * 2013-07-02 2018-02-16 青岛海尔滚筒洗衣机有限公司 The drying autocontrol method and dry cleaner of dry cleaner
    CN104342890B (en) * 2013-07-25 2018-09-04 青岛海尔滚筒洗衣机有限公司 Domestic dry washing machine and its control method
    US20220356635A1 (en) * 2021-05-06 2022-11-10 Haier Us Appliance Solutions, Inc. Ambient air dehumidification system for a condenser or heat pump laundry appliance

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3529358A (en) * 1969-06-19 1970-09-22 Terrot Soehne & Co C Procedure for heat treatment of materials
    US4811495A (en) * 1988-01-15 1989-03-14 Huang Mijuel E J Laundry drier
    US5347726A (en) * 1989-04-19 1994-09-20 Quad/Tech Inc. Method for reducing chill roll condensation
    JPH05277287A (en) * 1992-03-31 1993-10-26 Sanyo Electric Co Ltd Operation method for solvent collection type drier
    JPH05285297A (en) * 1992-04-10 1993-11-02 Sanyo Electric Co Ltd Solvent recovery type dryer
    US5367787A (en) * 1992-08-05 1994-11-29 Sanyo Electric Co., Ltd. Drying machine
    IL107409A (en) * 1992-10-30 1999-03-12 Gen Electric Appliance electronic control system with programmable parameters including programmable and reconfigurable fuzzy logic controller
    KR950009117B1 (en) * 1993-01-11 1995-08-14 주식회사금성사 Dry time control device & method of clothing dryer

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6670317B2 (en) 2000-06-05 2003-12-30 Procter & Gamble Company Fabric care compositions and systems for delivering clean, fresh scent in a lipophilic fluid treatment process
    DE102007038369A1 (en) * 2007-08-14 2009-02-19 BSH Bosch und Siemens Hausgeräte GmbH Volatile, inflammable substances e.g. alcohol, detecting method for use in condensation laundry dryer of washing machine, involves receiving infrared-radiation by receiving element in wave number scale between specific range

    Also Published As

    Publication number Publication date
    DE29521540U1 (en) 1997-06-12
    JPH09173690A (en) 1997-07-08
    EP0767267A1 (en) 1997-04-09
    US5689848A (en) 1997-11-25

    Similar Documents

    Publication Publication Date Title
    EP0767267B1 (en) Method and device for dry cleaning textiles
    EP0889155B1 (en) Method for detecting a dysfunction in a laundry dryer and laundry dryer using such a method
    DE60210577T2 (en) DRYING SENSOR FOR EXHAUST DRY AUTOMATIC AND CORRESPONDING RULES
    EP0679754B1 (en) Method and device for treating textile products during drying
    DE102007048249B4 (en) Heating system and method for controlling the heating system
    DE102007046066B4 (en) Dryer and method for controlling the same
    DE102006037239A1 (en) Method and tumble dryer for controlling the drying of wet laundry
    EP2315867A1 (en) Condensation dryer with a heat pump and recognition of an impermissible operating state and method for the operation thereof
    DE112007000091T5 (en) dryer
    DE3609587C1 (en) Device for the recovery of solvent gases
    DE112008002090B4 (en) Clothing treatment apparatus and method for controlling the same
    DE2610983A1 (en) AIR CONDITIONING SYSTEM FOR THE TREATMENT OF FOOD
    WO2015058882A1 (en) Method for washing items to be washed, and programmed machine
    DE2642830C3 (en) Method and device for chemical cleaning of textiles
    DE4232647C2 (en) Process and device for dry cleaning textiles
    DE19613310C2 (en) Process for drying laundry
    EP3000924A1 (en) Method for operating a washing and drying machine with protection against thermal shock and clothes dryer suitable for said method
    DE102012107218A1 (en) METHOD OF CONTROLLING DRYING IN A WASHING MACHINE
    DE2220425B2 (en) Drying laundry in drier with condenser - by first heating air and removing moisture in closed path, then replenishing part of air with fresh air and finishing with fresh heated air
    EP3438547B1 (en) Cooking device and method
    EP1321562A2 (en) Method and device for drying laundry
    DE3637457A1 (en) DEVICE FOR DEODORING TISSUE IN TEXTILE TREATMENT MACHINES
    DE4337735C2 (en) Clothes dryer with a device for detecting inadmissible operating states and method for detecting such operating states
    DE2363174B2 (en) Device for drying and possibly smoking food
    EP2419557B1 (en) Washer-dryer having a filter system and method for operating the clothes dryer

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI

    17P Request for examination filed

    Effective date: 19970425

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH DE FR GB IT LI

    17Q First examination report despatched

    Effective date: 19980817

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI

    REF Corresponds to:

    Ref document number: 184928

    Country of ref document: AT

    Date of ref document: 19991015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59506903

    Country of ref document: DE

    Date of ref document: 19991028

    ITF It: translation for a ep patent filed

    Owner name: NOTARBARTOLO & GERVASI S.P.A.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BUECHEL, VON REVY & PARTNER

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000105

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    26 Opposition filed

    Opponent name: FRESENIUS UMWELTTECHNIK GMBH

    Effective date: 20000224

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020121

    Year of fee payment: 7

    PLBL Opposition procedure terminated

    Free format text: ORIGINAL CODE: EPIDOS OPPC

    PLBM Termination of opposition procedure: date of legal effect published

    Free format text: ORIGINAL CODE: 0009276

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

    27C Opposition proceedings terminated

    Effective date: 20020204

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030603

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20031119

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20031125

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20031128

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20040127

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20040128

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041107

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    BERE Be: lapsed

    Owner name: *SATEC G.M.B.H.

    Effective date: 20041130

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20041107

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050729

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051107

    BERE Be: lapsed

    Owner name: *SATEC G.M.B.H.

    Effective date: 20041130