EP0766905B1 - Dispositif pour la commande et la surveillance a distance d'une lampe a decharge - Google Patents

Dispositif pour la commande et la surveillance a distance d'une lampe a decharge Download PDF

Info

Publication number
EP0766905B1
EP0766905B1 EP96919886A EP96919886A EP0766905B1 EP 0766905 B1 EP0766905 B1 EP 0766905B1 EP 96919886 A EP96919886 A EP 96919886A EP 96919886 A EP96919886 A EP 96919886A EP 0766905 B1 EP0766905 B1 EP 0766905B1
Authority
EP
European Patent Office
Prior art keywords
lamp
signal
central station
phase
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96919886A
Other languages
German (de)
English (en)
Other versions
EP0766905A1 (fr
Inventor
René Duranton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0766905A1 publication Critical patent/EP0766905A1/fr
Application granted granted Critical
Publication of EP0766905B1 publication Critical patent/EP0766905B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/21Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel
    • H05B47/22Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel with communication between the lamps and a central unit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission

Definitions

  • the present invention relates to a device for control and monitoring remotely from a plurality of discharge lamps.
  • discharge lamps have a certain lifespan. So you have to replace regularly, which poses some problems in the case of public lighting.
  • a lighting maintenance team that regularly runs a campaign test consisting of lighting the candelabras during the day so that you can be sure visually of the correct functioning of the lamps, and possibly to replace faulty lamps.
  • these campaigns must be carried out frequently.
  • this device is characterized in that the central station comprises an interface circuit connected to the electrical distribution network and which ensures exchange of information between the central station and the distribution network electric, and in that the transmission and reception means of each module are designed to receive all messages conveyed by the power line, and re-issue at least some of the messages which are not intended for them.
  • each candelabrum is controlled and monitored independently of the others, in real time and directly from the central station, without the need to provide a telephone link between each electrical distribution cabinet and central station.
  • each module of control and monitoring can therefore play the role of repeater.
  • each candelabrum is generally nearby (a few tens of meters) another candelabrum, this ensures the transmission of messages from the transmitter to the recipient thereof, regardless of the distance between them, and despite the short range of carrier current transmission.
  • each control and monitoring module includes means for controlling the light intensity of the lamp as a function of instructions issued by the central station.
  • each control and monitoring includes means for detecting the deterioration of the state of lamp operation.
  • each control and monitoring includes means for counting the operating time of the lamp.
  • Figure 1 shows a substation 1 for transform the electricity into high voltage that it receives, three-phase low voltage (220 V), to supply a set 2.6 electrical distribution cabinets, including distribution cabinets 6 assigned to public lighting.
  • Each distribution cabinet 6 for lighting receives in input the three-phase low voltage electric current, and supplies a set of low power lines 7 single-phase voltage.
  • Each of these lines 7 comprises two 15.16 wires for powering a plurality of lamps discharge 11 each associated with a control device and monitoring 10 according to the invention.
  • the device 10 is designed to transmit and receive information by carrier current, in phase modulation, for example at a frequency of 132 kHz, via the network of electrical distribution, to communicate with a substation central 3 connected to another distribution cabinet 2.
  • the central station is equipped with a computer 5, connected to the electrical network via an interface module 4 which ensures the exchange information between the computer 5 and the network electric.
  • the control and monitoring device 10 is connected to the two wires, phase 15 and neutral 16 of an electric line, the neutral being also connected to one of the terminals of the discharge lamp 11.
  • a starting circuit 13 connected in parallel with the lamp 11 is used in a known manner, and a ballast 14 with high self-impedance applying a supply voltage supplied by the device 10 to the lamp 11 and to the ignition circuit 13, the ballast 14 having the purpose of limiting the current passing through the lamp 11 when the latter is on.
  • ballast 14 When the lamp 11 is off, no current flows there crosses.
  • the voltage applied to the input of ballast 14 is then transferred to the priming circuit 13 which allows to apply to the terminals of the lamp 11 a pulse of voltage (of the order of 2000 V) above the ignition threshold of the lamp, causing the lamp 11 to light up, and therefore the passage of current in the latter. Once that the lamp 11 is on, the lamp then being supplied than via ballast 14.
  • ballast 14 As the impedance of ballast 14 is strongly self-inductive, it it is imperative to have a capacitor 12 in parallel correcting the phi cosine.
  • a starting pulse generator is associated with the lamp 11 and ballast 14 assembly.
  • the coupling circuit 22 can be produced using a transformer or resonant LC type circuit on the frequency of the transmission carrier of carrier current messages.
  • the second stage, or output stage comprises, in series between phase 15 and ballast 14, an inductor Z1, followed by two switches K1, K2 in series.
  • the first switch K1, of the relay or triac type is controlled by the microprocessor 23, from the synchronization signal SS supplied by the synchronization circuit 27, and is intended to apply the voltage Us supplied by the network to the discharge lamp 11, and in particular to the correction capacitor 12 connected to the junction point between the two switches K1, K2.
  • the load then being capacitive, the command of K1 is applied to the zero crossing of the voltage Us of the network.
  • the second switch K2 of the thyristor or triac type, is intended to power the lamp there via the ballast 14. It is controlled by a logic signal CK2 from a comparator 30. It is also connected to neutral 16 via a capacitive impedance Z3 intended to establish a current Iz when the lamp 11 is absent or broken down.
  • lamp synchronization In parallel with the second switch K2, there is a second synchronization circuit Z2, called lamp synchronization, which provides a logic signal from lamp synchronization SL to 0 when switch K2 is open, and to 1 when the latter is closed.
  • Mains synchronization circuits 27 and lamp Z2 can be made using photo-couplers so to ensure good electrical insulation between the second and third floors.
  • the microprocessor 23 is connected to two LEDs, a red LED 31 for signaling faults, and a green light 32 for signaling the states of operation. It is also connected to a button 33 of on / off, and a button 34 which allows, when changing of lamp 11, triggering transmission an initialization signal to the central station 3, indicating the effective replacement of the lamp 11, and allowing the reset of a usage time counter of the lamp 11.
  • the microprocessor 23 communicates with central station 3 by messages transmitted by carrier current, in phase modulation, for example at a 132 kHz frequency, via the distribution network electric.
  • each lamp 11 controlled by the central station 3 is identified by an identification code which is inserted in each message exchanged with the post central.
  • Curve C1 shows that the voltage Us between phase 15 and neutral 16, or the voltage Uc at the junction point between the two switches K1, K2, has a shape sinusoidal.
  • Curve C2 shows the shape of the logic signal sector synchronization SS from circuit 27, which changes logic state whenever the line voltage They cancel each other out.
  • the microprocessor 23 controls switch K1 when switching to zero of the mains voltage Us, thanks to the synchronization signal SS sector shown by curve C2. Detection of a voltage UK2 at the terminals of switch K2 by the lamp synchronization circuit Z2 results in release of the integrator 28.
  • the comparator 30 delivers a control voltage CK2 which allows the ignition of switch K2.
  • Switch K2 is controlled at its turn with a set point at zero, implying an opening angle 41 void. As the charge of K2 is selfic, the current IB crossing it is therefore late by a certain phase shift 42 with respect to the voltage Uc (curve C4).
  • the lamp synchronization circuit Z2 delivers a signal logic SL to 1 whenever absolute value of the UK2 voltage across switch K2 exceeds threshold 45, i.e., during periods when switch K2 is blocked (curve C6).
  • This logic signal SL is sent to microprocessor 23, and is applied as input to the integrator 28 which delivers a sawtooth signal which remains zero when the lamp synchronization signal SL is at logic level 0 (curve C7).
  • the microprocessor 23 can impose a setpoint in the form of binary data applied to the input of the analog / digital converter 29. If this setpoint data is not zero, we get at the output of comparator 30, a logic signal at 1 when the signal in integrator output exceeds threshold 46 defined by this setpoint, and zero otherwise, the signal CK2 from comparator 30 used to control the switch K2 (curve C8).
  • Curves C9 to C13 illustrate the detection of lamp stalls.
  • the stall or a breakdown of the lamp results in the absence of current IB at the input of the ballast 14.
  • the load is then solely determined by the impedance Z3 placed between the switch K2 and the neutral 16, this load being insufficient to maintain switch K2 in the on state.
  • the capacitive impedance Z3 is then crossed by a current Iz in phase advance 43, and practically in phase quadrature with the voltage Uc at the input of the switch K2 (curve C9).
  • the resistive impedance of Z2 and the capacitive impedance of Z3 then form a voltage divider bridge so that the resulting voltage UK2 across the terminals of switch K2 is less than the trigger voltage threshold 45 of the latter (curve C10 ).
  • the detection threshold 44 of the synchronization circuit lamp Z2 being far below the trigger threshold 45 of switch K2, the lamp synchronization signal SL is therefore at logical level 1 in the vicinity of each passage at zero of the mains voltage Us (curve C11).
  • Curve C12 shows the signal SI at the output of the integrator 28, obtained from the lamp synchronization signal SL showing the shape of curve C11.
  • Curve C13 shows the form of the switch command signal CK2 K2, which is at logic level 1 when curve C12 exceeds setpoint 46.
  • the UK2 voltage across the K2 switch is below the trigger threshold 45 of it it therefore remains blocked regardless of the command given to it applied.
  • the microprocessor 23 can determine whether the lamp 11 is off or on by comparing synchronization signals SS sector and SL lamp. If at the moments of the fronts amounts and / or descendants of the SS signal correspond to moments when the SL signal is zero (curves 2 and 6), the lamp is detected on. Otherwise (curves 2 and 11) the lamp is detected off.
  • each control and monitoring device 10 has instructions variables that can change depending on the state of the lamp he controls. This state is determined during reduction regime: if microprocessor 23 realizes that during the reduction in lighting intensity, the lamp goes off, then it decreases the reduction rate planned.
  • the microprocessor 23 advantageously has 7 reduction rate, and when it reaches an alert rate predetermined, it warns central station 3 of the degradation of the lamp 11.
  • the microprocessor 23 is further designed to declare in a lamp 11 which no longer tolerates reduction or which can no longer prime at maximum voltage. In practice a delay of a few minutes is left to the ignition circuit 13 before declaring the lamp 11 in failure and notify the central station 3.
  • the operator activates the button 34, allowing on the one hand to warn the post central 3 of the lamp change, and on the other hand reset variable parameters such as the rate of reduction of lamp lighting.
  • the computer 5 of the central station 3 can count the operating time of each lamp, and compare this duration to an alert threshold, the crossing of this threshold indicating that the lamp is to be replaced.
  • the central station 3 can thus draw up a list of lamps with replace by grouping the overrun information this alert threshold, for lamp degradation detection, and lamp failed, in order to prepare and trigger the replacement interventions, when the lamps to be replaced are in sufficient number. We can thus group interventions to reduce the unit cost, the maintenance team being warned of changes in lamps to provide before they are really out of order.
  • the transmit / receive circuit 25 shown in FIG. 3 is a phase modulation modulator / demodulator, of the synchronized asynchronous type, comprising for example, a first EXCLUSIVE OR gate 53 which combines a carrier F t with the signal of the data to be sent from the connection terminal T x of the microprocessor 23, and delivers a signal modulated in phase or in phase opposition with the carrier as a function of the logic level 0 or 1 of the data to be sent.
  • a phase modulation modulator / demodulator of the synchronized asynchronous type, comprising for example, a first EXCLUSIVE OR gate 53 which combines a carrier F t with the signal of the data to be sent from the connection terminal T x of the microprocessor 23, and delivers a signal modulated in phase or in phase opposition with the carrier as a function of the logic level 0 or 1 of the data to be sent.
  • the output of gate 53 is connected to coupling circuit 22 which is either positioned in transmission or in reception thanks to a signal T x R x transmitted by the microprocessor 23 and applied to the E / R input of coupling circuit 22.
  • the coupling circuit 22 When the coupling circuit 22 is positioned in transmission, it has a low output impedance, of the order of a few Ohms. It also makes it possible to filter the signal emitted to transform it into a sinusoidal signal.
  • the pulse generator 56 delivers a signal d (F t ) consisting of one pulse at each edge of the input signal F t , that is to say, two pulses per period of the signal F t .
  • the switch 60 is open between two pulses of the signal d (F t )
  • the voltage across the capacitor C d remains blocked at logic level 0 or 1 of the last value of the voltage sampled by the switch 60 when the latter it was closed during a pulse supplied by the generator 56.
  • the signal T x R x also serves to control a switch 57 which makes it possible to select either the data signal F x received by the coupling circuit 22, or a signal F 0 generated by an oscillator 58, preferably controlled by a quartz.
  • This signal F 0 has a periodic rectangular voltage having a constant frequency, equal to that of the carrier.
  • the signal F 0 or F x selected by the switch 57 is sent to the input of the EXCLUSIVE OR gate 52.
  • the control loop thus makes it possible to calibrate the frequency and the phase of the signal F t delivered by the oscillator 54, on transmission, on those of the signal F 0 , and on reception, on those of the received signal F x .
  • the switch 57 is positioned by the signal T x R x so as to apply the output signal F 0 of the oscillator 58 to an input of the gate 52.
  • the signal F 0 being constant
  • the signal F t generated by the oscillator 54 is also constant, as is the signal d (F t ) generated by the pulse generator 6 and which controls the switch 10.
  • the signal passing through the switch 60 charges the capacitor C d at logic level 0 or 1, which blocks the voltage across the capacitor at logic level 0 or 1 from the last sample taken to the next sample.
  • the filter 62 makes it possible to obtain a voltage U 0 for controlling the oscillator 54 so that the signal F t corresponds in frequency to the signal F 0 .
  • the signal T x emitted by the microprocessor 23 begins with a start bit to allow the recipient of this signal to remove the uncertainty on the initial phase of the signal. On reception, the value of this start bit can be used to determine whether or not to reverse the value of the following bits contained in the received signal.
  • the coupling circuit 22 On reception, the coupling circuit 22 is positioned on reception by the signal T x R x , it then has a high input impedance, of the order of a few hundred Ohms, so as to transmit the data signal F x from the electrical network to an amplifier 59 which also performs a filtering of the parasitic frequencies circulating on the electrical distribution network.
  • the switch 7 is positioned by the signal T x R x so as to apply the signal Fx to the input of the gate 52.
  • the EXCLUSIVE OR gate 52 then combines the carrier with the received signal F x , to obtain a signal F t + F x at logic level 0 or 1 depending on whether the received signal F x is in phase or in phase opposition with the carrier F t , the signal F t + F x being introduced into the control loop described above.
  • the sampler-blocker constituted by the generator 56 which controls the switch 60, as well as the capacitor C d makes it possible to reset the received signal F x at constant phase with respect to the frequency F t , and supplies the microprocessor 23 with the demodulated signal U d available across the capacitor C d .
  • This demodulated signal is applied via an inverter 63, on the one hand to the input R x of the data received from the microprocessor 23, and on the other hand to the input P for detecting the carrier of the microprocessor 23 , through a pulse generator 64 and a time constant circuit 65. In this way, the microprocessor 23 can determine whether it should wait for reception of a message in the event of detection of the carrier on its R x input, and if it can send a message in the absence of a carrier.
  • this circuit can send and receive a signal digital at the speed of 90 Kilo-bits per second.
  • the microprocessor 23 receives all messages detected by the coupling circuits 22 and reception 25, and control re-transmission of messages which are not intended for it. This solution allows to control and monitor a large number of candelabras, thanks to the demodulation principle which achieves transmission speeds high.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

La présente invention concerne un dispositif pour la commande et la surveillance à distance d'une pluralité de lampes à décharge.
Elle s'applique notamment, mais non exclusivement, à l'éclairage public, lequel est constitué d'un grand nombre de candélabres équipés chacun d'une lampe à décharge. De tels candélabres sont généralement alimentés par l'intermédiaire d'armoires de distribution électrique situées à de relativement courtes distances.
Or, les lampes à décharge ont une certaine durée de vie. Il faut donc les remplacer régulièrement, ce qui pose quelques problèmes dans le cas de l'éclairage public. En effet, lorsqu'il s'agit de surveiller le fonctionnement d'un grand nombre de candélabres répartis par exemple, dans une ville, il faut disposer d'une équipe d'entretien de l'éclairage qui effectue régulièrement une campagne de test consistant à allumer de jour les candélabres afin de pouvoir s'assurer visuellement du bon fonctionnement des lampes, et éventuellement à remplacer les lampes défaillantes. Pour assurer une bonne qualité d'éclairage avec un faible taux de lampes en panne, ces campagnes doivent être effectuées fréquemment.
Pratiquement, l'équipe d'entretien se déplace pour le changement d'un nombre réduit de lampes, induisant un coût d'entretien élevé.
Par ailleurs, on a constaté que les besoins d'éclairage en fonction des saisons et du moment de la nuit n'étaient pas constants. Ainsi, par exemple, pendant certaines heures de la nuit, il n'est pas nécessaire d'avoir une intensité lumineuse aussi élevée qu'aux autres moments. Des économies substantielles pourraient donc être réalisées si l'on pouvait commander l'intensité de l'éclairage public. Il va de soi qu'une telle opération n'est envisageable que si elle peut être effectuée à distance.
Pour supprimer ces inconvénients, on a utilisé des appareils équipés d'un transmetteur téléphonique que l'on a placé dans les armoires de distribution électrique. Ces appareils sont conçus pour détecter des variations de consommation au niveau des lignes électriques d'alimentation des candélabres, une telle variation révélant un défaut d'éclairage, et pour émettre automatiquement un signal de défaut sur une ligne téléphonique.
Il s'avère que cet appareil présente de nombreux inconvénients. Tout d'abord, il nécessite une liaison téléphonique avec un poste de surveillance, ce qui présente un coût d'installation, d'abonnement et de télécommunications non négligeable. En outre, il ne permet pas de déterminer avec précision le candélabre défaillant, étant donné qu'une ligne électrique alimente plusieurs candélabres à la fois.
Par ailleurs, pour réaliser des économies d'énergie, on a disposé des variateurs dans les armoires électriques sur chaque ligne pour faire varier simultanément l'intensité de l'éclairage de tous les candélabres raccordés à la ligne. Cependant, cette solution ne permet pas d'adapter l'intensité lumineuse de chaque lampe séparément.
Pour tenter de supprimer l'installation et l'usage de voies de communication spécifiques, on a pensé à utiliser les courants porteurs comme moyen de transmission. Cependant, il s'avère que la portée de ce moyen de transmission est limitée à quelques centaines de mètres. Il n'est donc pas applicable à la télécommande et la télésurveillance de candélabres qui peuvent se trouver éloignés à plusieurs kilomètres d'un poste central.
Dans les documents NL-A-8902811 et EP-A-0 062 870, on a proposé de combiner l'usage de lignes téléphoniques et la transmission par courant porteur, les lignes téléphoniques étant utilisées pour établir un lien de communication entre le poste central et des stations locales auxquelles sont raccordés par courant porteur les modules qui communiquent avec le poste central. Cette solution ne supprime pas l'usage des lignes téléphoniques, qui présente les inconvénients énoncés ci-avant. Par ailleurs, le document EP-A-0 062 870 propose d'intercaler des répéteurs sur les lignes électriques utilisées pour la transmission d'informations pour assurer des transmissions sur de plus longues distances. Toutefois, l'usage de répéteurs conduisent à augmenter considérablement le coût d'une telle installation.
La présente invention a pour but de supprimer ces inconvénients. A cet effet, elle propose un dispositif pour la commande et la surveillance à distance d'une pluralité de lampes à décharge alimentées par un réseau de distribution électrique, ledit dispositif comprenant un poste central et une pluralité de modules de commande et de surveillance d'une lampe, à raison d'un module par lampe, installé à proximité celle-ci, chaque module comprenant :
  • des moyens d'émission et de réception pour émettre et recevoir des messages véhiculés par l'intermédiaire de la ligne électrique d'alimentation de la lampe, par courant porteur bidirectionnel modulé, lui permettant de communiquer avec le poste central,
  • des moyens pour commander l'allumage et l'extinction de la lampe, en fonction de consignes émises par le poste central, et reçues par les moyens d'émission et de réception, et
  • des moyens pour détecter les défaillances de la lampe et en avertir le poste central par les moyens d'émission et de réception.
Selon l'invention, ce dispositif est caractérisé en ce que le poste central comprend un circuit d'interface connecté au réseau de distribution électrique et qui assure l'échange d'informations entre le poste central et le réseau de distribution électrique, et en ce que les moyens d'émission et de réception de chaque module sont conçus pour recevoir tous les messages véhiculés par la ligne électrique, et réémettre au moins une partie des messages qui ne leur sont pas destinés.
Grâce à ces dispositions, chaque candélabre est commandé et surveillé indépendamment des autres, en temps réel et directement depuis le poste central, sans qu'il soit nécessaire de prévoir une liaison téléphonique entre chaque armoire de distribution électrique et le poste central. En outre, chaque module de commande et de surveillance peut donc jouer le rôle de répéteur. Comme chaque candélabre se trouve généralement à proximité (quelques dizaines de mètres) d'un autre candélabre, on assure ainsi la transmission des messages de l'émetteur jusqu'au destinataire de ceux-ci, indépendamment de la distance qui les sépare, et malgré la courte portée de la transmission par courant porteur.
Avantageusement, chaque module de commande et de surveillance comprend des moyens pour commander l'intensité lumineuse de la lampe en fonction de consignes émises par le poste central.
Selon une particularité de l'invention, chaque module de commande et de surveillance comprend des moyens pour détecter la dégradation de l'état de fonctionnement de la lampe.
Selon une autre particularité de l'invention, chaque module de commande et de surveillance comprend des moyens pour compter la durée de fonctionnement de la lampe.
Grâce à ces particularités, il est possible de déterminer précisément quand la lampe doit être remplacée avant qu'elle tombe réellement en panne.
Un mode de réalisation du dispositif selon l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :
  • La figure 1 représente schématiquement l'architecture d'un réseau de distribution d'électricité utilisant le dispositif de commande et de surveillance selon l'invention ;
  • La figure 2 montre le schéma de connexion du dispositif de commande et de surveillance avec une lampe à décharge ;
  • La figure 3 montre en détail le schéma électrique du dispositif de commande et de surveillance ;
  • La figure 4 montre un ensemble de chronogrammes illustrant le fonctionnement du dispositif de commande et de surveillance ;
  • La figure 5 montre un circuit d'émission et de réception de messages numériques sur le réseau de distribution électrique.
  • La figure 1 montre un poste électrique 1 permettant de transformer l'électricité en haute tension qu'il reçoit, en basse tension (220 V) triphasée, pour alimenter un ensemble d'armoires de distribution électrique 2,6, et notamment les armoires de distribution 6 affectées à l'éclairage public.
    Chaque armoire de distribution 6 pour l'éclairage reçoit en entrée le courant électrique en basse tension triphasée, et alimente un ensemble de lignes électriques 7 en basse tension monophasée. Chacune de ces lignes 7 comprend deux fils 15,16 permettant d'alimenter une pluralité de lampes à décharge 11 associées chacune à un dispositif de commande et de surveillance 10 selon l'invention.
    Le dispositif 10 est conçu pour émettre et recevoir des informations par courant porteur, en modulation de phase, par exemple à une fréquence de 132 kHz, via le réseau de distribution électrique, pour communiquer avec un poste central 3 raccordé à une autre armoire de distribution électrique 2. A cet effet, le poste central est équipé d'un calculateur 5, connecté au réseau électrique par l'intermédiaire d'un module d'interface 4 qui assure l'échange d'informations entre le calculateur 5 et le réseau électrique.
    Sur la figure 2, le dispositif de commande et de surveillance 10 est connecté aux deux fils, phase 15 et neutre 16 d'une ligne électrique, le neutre étant également raccordé à l'une des bornes de la lampe à décharge 11.
    Pour faire fonctionner une telle lampe, on utilise d'une manière connue un circuit d'amorçage 13 connecté en parallèle avec la lampe 11, et un ballast 14 à forte impédance selfique appliquant une tension d'alimentation fournie par le dispositif 10 à la lampe 11 et au circuit d'amorçage 13, le ballast 14 ayant pour but de limiter le courant traversant la lampe 11 lorsque celle-ci est allumée.
    Lorsque la lampe 11 est éteinte, aucun courant ne la traverse. La tension appliquée en entrée du ballast 14 est alors transférée au circuit d'amorçage 13 qui permet d'appliquer aux bornes de la lampe 11 une impulsion de tension (de l'ordre de 2000 V) supérieure au seuil d'amorçage de la lampe, provoquant l'allumage de la lampe 11, et donc le passage du courant dans cette dernière. Une fois que la lampe 11 est allumée, la lampe n'étant alors alimentée que par l'intermédiaire du ballast 14.
    Comme l'impédance du ballast 14 est fortement selfique, il est impératif de disposer en parallèle un condensateur 12 de correction du cosinus phi.
    En pratique, un générateur d'impulsion de démarrage est associé à l'ensemble lampe 11 et ballast 14.
    Sur la figure 3, le dispositif de commande et de surveillance 10 comprend trois étages, à savoir :
    • un premier étage assurant l'alimentation du dispositif, son couplage au réseau de distribution d'électricité, et la génération d'un signal de synchronisation à partir de la tension Us fournie par le réseau électrique,
    • un second étage assurant la commande et la surveillance de la lampe à décharge 11, et
    • un troisième étage organisé autour d'un microprocesseur 23 assurant le pilotage de l'ensemble du dispositif.
    Le premier étage comprend :
    • un circuit d'alimentation 21 qui, à partir de la tension Us entre la phase 15 et le neutre 16, fournit les tensions d'alimentation nécessaires aux différents organes du dispositif 10,
    • un circuit de couplage 22 connecté entre la phase 15 et le neutre 16, conçu pour assurer l'échange d'informations entre le microprocesseur 23 et le réseau électrique, et
    • un circuit de synchronisation 22 également connecté entre la phase 15 et ne neutre 16, conçu pour engendrer un signal logique SS synchrone de la tension électrique Us fournie par le réseau électrique, ce signal logique SS étant appliqué sur une entrée du microprocesseur 23.
    Le circuit de couplage 22 peut être réalisé à l'aide d'un transformateur ou d'un circuit résonnant de type LC calé sur la fréquence de la porteuse de transmission des messages par courant porteur.
    Le second étage, ou étage de sortie comprend, en série entre la phase 15 et le ballast 14, une inductance Z1, suivie de deux commutateurs K1,K2 en série.
    Le premier commutateur K1, de type relais ou triac, est commandé par le microprocesseur 23, à partir du signal de synchronisation SS fourni par le circuit de synchronisation 27, et est destiné à appliquer la tension Us fournie par le réseau à la lampe à décharge 11, et notamment au condensateur de correction 12 connecté au point de jonction entre les deux commutateurs K1,K2. La charge étant alors capacitive, la commande de K1 est appliquée au passage à zéro de la tension Us du réseau.
    Le second commutateur K2, de type thyristor ou triac, est destiné à alimenter la lampe il par l'intermédiaire du ballast 14. Il est commandé par un signal logique CK2 issu d'un comparateur 30. Il est par ailleurs connecté au neutre 16 par l'intermédiaire d'une impédance capacitive Z3 destinée à établir un courant Iz lorsque la lampe 11 est absente ou en panne.
    En parallèle avec le second commutateur K2, se trouve un second circuit de synchronisation Z2, appelé circuit de synchronisation lampe, qui délivre un signal logique de synchronisation lampe SL à 0 lorsque le commutateur K2 est ouvert, et à 1 lorsque ce dernier est fermé.
    Les circuits de synchronisation secteur 27 et lampe Z2 peuvent être réalisés à base de photo-coupleurs de manière à assurer une bonne isolation électrique entre les second et troisième étages.
    Le troisième étage, ou étage de commande, comprend, autour du microprocesseur 23 :
    • une mémoire EEPROM 24 permettant de sauvegarder des informations, notamment les informations liées à la configuration du dispositif 10,
    • un circuit d'émission / réception 25 conçu pour moduler les informations à émettre, fournies par le microprocesseur 23, et envoyer le signal ainsi obtenu au circuit de couplage 22, et pour démoduler et amplifier les signaux d'information transmis par le circuit de couplage 22, et délivrer les informations ainsi obtenues au microprocesseur 23,
    • un convertisseur numérique/analogique 29 permettant de convertir en un signal analogique une consigne d'angle d'ouverture fournie par le microprocesseur 23,
    • le comparateur 30 à deux états qui compare la consigne fournie par le convertisseur 29 au signal en dent de scie SI engendré par un intégrateur 28 piloté par le signal de synchronisation SL issu du circuit Z2.
    Par ailleurs, le microprocesseur 23 est connecté à deux voyants, un voyant rouge 31 de signalisation des défauts, et un voyant vert 32 pour la signalisation des états de fonctionnement. Il est également connecté à un bouton 33 de marche/arrêt, et un bouton 34 qui permet, lors du changement de la lampe 11, le déclenchement de la transmission d'un signal d'initialisation vers le poste central 3, indiquant le remplacement effectif de la lampe 11, et permettant la remise à zéro d'un compteur de temps d'utilisation de la lampe 11.
    Comme précédemment mentionné, le microprocesseur 23 communique avec le poste central 3 par messages transmis par courant porteur, en modulation de phase, par exemple à une fréquence de 132 kHz, via le réseau de distribution électrique. A cet effet, chaque lampe 11 contrôlée par le poste central 3 est repérée par un code d'identification qui est inséré dans chaque message échangé avec le poste central.
    Le fonctionnement du dispositif de commande et de surveillance est illustré par les chronogrammes de la figure 4.
    La courbe Cl montre que la tension Us entre la phase 15 et le neutre 16, ou bien la tension Uc au point de jonction entre les deux commutateurs K1,K2, présente une forme sinusoïdale. La courbe C2 montre la forme du signal logique de synchronisation secteur SS issu du circuit 27, qui change d'état logique à chaque fois que la tension secteur Us s'annule.
    Sur un ordre de marche en provenance du poste central 3, le microprocesseur 23 commande le commutateur K1 au passage à zéro de la tension secteur Us, grâce au signal de synchronisation secteur SS montré par la courbe C2. La détection d'une tension UK2 aux bornes du commutateur K2 par le circuit de synchronisation lampe Z2 entraine la libération de l'intégrateur 28. Lorsque la sortie de l'intégrateur 28 atteind une valeur de consigne 46, le comparateur 30 délivre une tension de commande CK2 qui permet l'amorçage du commutateur K2. Le commutateur K2 est commandé à son tour avec une consigne à zéro, impliquant un angle d'ouverture 41 nul. Comme la charge de K2 est selfique, le courant IB le traversant est donc en retard d'un certain déphasage 42 par rapport à la tension Uc (courbe C4).
    Avant le déclenchement de K2, la tension UK2 à ses bornes est très nettement supérieure à son seuil de déclenchement 45, et K2 devient passant pour l'alternance en cours (courbe C5).
    En fait, le courant IB qui traverse le commutateur K2 détermine l'alternance. K2 reste donc passant tant que le courant IB n'a pas atteind une valeur voisine de zéro. La tension UB (courbe C3) aux bornes du ballast 14 est alors pratiquement identique à la tension secteur Us.
    Le circuit de synchronisation lampe Z2 délivre un signal logique SL à 1 à chaque fois que valeur absolue de la tension UK2 aux bornes du commutateur K2 dépasse le seuil 45, c'est-à-dire, durant les périodes où le commutateur K2 se trouve bloqué (courbe C6). Ce signal logique SL est envoyé au microprocesseur 23, et est appliqué en entrée de l'intégrateur 28 qui délivre un signal en dent de scie qui reste nul lorsque le signal de synchronisation lampe SL est au niveau logique 0 (courbe C7).
    Le circuit décrit ci-avant permet de réduire la tension appliquée à la lampe 11, afin de réduire l'intensité de l'éclairage. En effet, le microprocesseur 23 peut imposer une consigne sous la forme d'une donnée binaire appliquée à l'entrée du convertisseur analogique/numérique 29. Si cette donnée de consigne est non nulle, on obtient en sortie du comparateur 30, un signal logique à 1 lorsque le signal en sortie de l'intégrateur dépasse le seuil 46 défini par cette consigne, et à zéro dans le cas contraire, le signal CK2 issu du comparateur 30 servant à commander le commutateur K2 (courbe C8).
    On peut remarquer sur la courbe C8 que, grâce à la forme en dent de scie du signal SI, le commutateur K2 reçoit des impulsions de commande CK2 en retard par rapport aux impulsions de tension UK2 à ses bornes, ce qui retarde le déclenchement du commutateur K2. Les périodes durant lesquelles le courant IB (courbe C4) et la tension UB (courbe C3) restent nulles, correspondant à l'angle d'ouverture 41, se trouvent ainsi rallongées, ce qui entraine une diminution de l'intensité efficace du courant IB et de la tension efficace appliquée aux bornes de la lampe 11, et donc une diminution de l'intensité de l'éclairage produit par la lampe 11. On peut ainsi faire varier angle d'ouverture de 0 jusqu'à une valeur voisine de 45°, ce qui permet de réduire la tension efficace d'alimentation de la lampe 11 de 0 à environ 20% de la tension Us, correspondant à une réduction de la consommation d'énergie de 0 à 60%.
    Par ailleurs, il est nécessaire de réduire d'une façon progressive, la tension d'alimentation de la lampe à décharge 11 afin d'éviter les décrochages intempestifs, et donc l'extinction de celle-ci. C'est pourquoi cette réduction est commandée par le microprocesseur 23 par petits paliers successifs, en augmentant progressivement la valeur de la consigne appliquée en entrée du convertisseur numérique/analogique 29. Dans la pratique, pour améliorer cette progressivité, une constante de temps peut être rajoutée en sortie du convertisseur 29.
    Les courbes C9 à C13 illustrent la détection des décrochages de la lampe.
    Le décrochage ou une panne de la lampe se traduit par l'absence de courant IB en entrée du ballast 14. La charge est alors uniquement déterminée par l'impédance Z3 placée entre le commutateur K2 et le neutre 16, cette charge étant insuffisante pour maintenir le commutateur K2 à l'état passant. L'impédance capacitive Z3 est alors traversée par un courant Iz en avance de phase 43, et pratiquement en quadrature de phase avec la tension Uc en entrée du commutateur K2 (courbe C9). L'impédance résistive de Z2 et l'impédance capacitive de Z3 forment alors un pont diviseur de tension de manière à ce que la tension résultante UK2 aux bornes du commutateur K2 soit inférieure au seuil 45 de tension de déclenchement de celui-ci (courbe C10).
    Le seuil de détection 44 du circuit de synchronisation lampe Z2 étant très inférieur au seuil de déclenchement 45 du commutateur K2, le signal de synchronisation lampe SL est donc au niveau logique 1 au voisinage de chaque passage à zéro de la tension secteur Us (courbe C11).
    La courbe C12 montre le signal SI en sortie de l'intégrateur 28, obtenu à partir du signal de synchronisation lampe SL présentant la forme de la courbe C11. La courbe C13 montre la forme du signal CK2 de commande du commutateur K2, qui se trouve au niveau logique 1 lorsque la courbe C12 dépasse le seuil de consigne 46. Cependant, comme précédemment mentionné, la tension UK2 aux bornes du commutateur K2 est inférieure au seuil de déclenchement 45 de celui-ci, il reste donc bloqué indépendamment de la commande qui lui est appliquée.
    Le microprocesseur 23 peut déterminer si la lampe 11 est éteinte ou allumée en comparant les signaux de synchronisation secteur SS et lampe SL. Si aux instants des fronts montants et/ou descendants du signal SS correspondent des instants où le signal SL est nul (courbes 2 et 6), la lampe est détectée allumée. Dans le cas contraire (courbes 2 et 11) la lampe est détectée éteinte.
    On a donc ainsi un dispositif simple et efficace pour commander l'intensité lumineuse de la lampe 11 et déterminer le bon fonctionnement de celle-ci.
    En effet, lorsque la lampe 11 est en bon fonctionnement, la charge est selfique. Le commutateur K2 dispose donc d'une centaine de volts à ses bornes pour être déclenché, et au passage à zéro de la tension secteur Us, le signal de synchronisation lampe SL est également à zéro.
    Lorsque la lampe décroche, la charge devient capacitive. Le commutateur K2 n'a donc plus assez de courant IB de maintien, et la tension à ses bornes UK2 est insuffisante pour pouvoir être déclenché. En outre lors du passage à zéro de la tension secteur Us, le signal de synchronisation SL lampe est à 1.
    Par ailleurs, les consignes de programmation de chaque dispositif de commande et de surveillance 10 sont fixes. Cependant, chaque dispositif 10 dispose de consignes variables qui peuvent évoluer en fonction de l'état de la lampe qu'il commande. Cet état est déterminé au cours du régime de réduction : si le microprocesseur 23 s'aperçoit qu'au cours de la réduction d'intensité d'éclairage, la lampe décroche, il diminue alors le taux de réduction prévu. Le microprocesseur 23 dispose avantageusement de 7 taux de réduction, et lorsqu'il atteind un taux d'alerte prédéterminé, il avertit le poste central 3 de la dégradation de la lampe 11.
    Le microprocesseur 23 est en outre conçu pour déclarer en panne une lampe 11 qui ne tolère plus de réduction ou qui n'arrive plus à s'amorcer à la tension maximale. En pratique une temporisation de quelques minutes est laissée au circuit d'amorçage 13 avant de déclarer la lampe 11 en panne et d'en avertir le poste central 3.
    Au changement de la lampe 11, l'opérateur actionne le bouton 34, permettant d'une part de prévenir le poste central 3 du changement de lampe, et d'autre part de réinitialiser les paramètres variables tels que le taux de réduction de l'éclairage de la lampe.
    Le calculateur 5 du poste central 3 est connecté à une base de données 8 où sont stockées des informations concernant chaque lampe et notamment :
    • un code d'identification de la lampe,
    • les heures d'allumage et d'extinction de la lampe,
    • la période et le taux de réduction de l'intensité d'éclairage,
    • la durée d'utilisation de la lampe depuis sa mise en service, et
    • l'état de la lampe, en bon fonctionnement, dégradé ou en panne.
    Ainsi, connaissant les heures d'allumage et d'extinction de chaque lampe 11, le calculateur 5 du poste central 3 peut comptabiliser la durée de fonctionnement de chaque lampe, et comparer cette durée à un seuil d'alerte, le franchissement de ce seuil indiquant que la lampe est à remplacer. Le poste central 3 peut ainsi établir une liste de lampes à remplacer en regroupant les informations de dépassement de ce seuil d'alerte, de détection de dégradation de lampe, et de lampe en panne, de manière à préparer et déclencher les interventions de remplacement, lorsque les lampes à remplacer sont en un nombre suffisant. On peut ainsi regrouper les interventions afin d'en diminuer le coût unitaire, l'équipe d'entretien étant prévenue des changements de lampes à prévoir avant que celles-ci ne soient véritablement hors service.
    Ces dispositions permettent donc de réduire considérablement le coût unitaire de maintenance par candélabre, et d'adapter aux besoins l'intensité lumineuse de chaque candélabre, et ainsi de réaliser d'importantes économies d'énergie.
    Sur la figure 5, le circuit d'émission / réception 25 montré sur la figure 3 est un modulateur / démodulateur à modulation de phase, du type asynchrone synchronisé, comprenant par exemple, une première porte OU EXCLUSIF 53 qui combine une porteuse Ft avec le signal des données à émettre en provenance de la borne de connexion Tx du microprocesseur 23, et délivre un signal modulé en phase ou en opposition de phase avec la porteuse en fonction du niveau logique 0 ou 1 de la donnée à émettre.
    La sortie de la porte 53 est reliée circuit de couplage 22 qui est soit positionné en émission, soit en réception grâce à un signal TxRx émis par le microprocesseur 23 et appliqué à l'entrée E/R du circuit de couplage 22.
    Lorsque le circuit de couplage 22 est positionné en émission, il présente une impédance de sortie faible, de l'ordre de quelques Ohms. Il permet également de filtrer le signal émis pour le transformer en un signal sinusoïdal.
    La porteuse Ft est obtenue grâce à un oscillateur 54 contrôlé en fréquence et en phase par une boucle d'asservissement appliquant une tension de commande U0 en entrée de l'oscillateur 54. Cette boucle d'asservissement comprend :
    • une porte OU EXCLUSIF 52 dont une entrée est reliée à la sortie de l'oscillateur 54,
    • un échantillonneur-bloqueur constitué par un générateur d'impulsions 56 qui commande un interrupteur 60 dont l'entrée est connectée à la sortie de la porte 52, et qui permet de charger un condensateur Cd relié à la masse,
    • une porte OU EXCLUSIF 51 dont les entrées sont connectées aux sorties de la porte 52 et de l'interrupteur 60, et
    • un filtre-intégrateur 62 présentant une constante de temps RC, relié à la sortie de la porte 51, et fournissant le signal de commande U0.
    Le générateur d'impulsions 56 délivre un signal d(Ft) constitué d'une impulsion à chaque front du signal Ft en entrée, c'est-à-dire, deux impulsions par période du signal Ft. Lorsque l'interrupteur 60 est ouvert entre deux impulsions du signal d(Ft), la tension aux bornes du condensateur Cd reste bloquée au niveau logique 0 ou 1 de la dernière valeur de la tension prélevée par l'interrupteur 60 lorsque celui-ci a été fermé durant une impulsion fournie par le générateur 56.
    Par ailleurs le signal TxRx sert également à commander un commutateur 57 qui permet de sélectionner soit le signal de données Fx reçu par le circuit de couplage 22, soit un signal F0 engendré par un oscillateur 58, de préférence piloté par un quartz. Ce signal F0 présente une tension rectangulaire périodique ayant une fréquence constante, égale à celle de la porteuse.
    Le signal F0 ou Fx sélectionné par le commutateur 57 est envoyé à l'entrée de la porte OU EXCLUSIF 52. La boucle d'asservissement permet ainsi de caler la fréquence et la phase du signal Ft délivré par l'oscillateur 54, à l'émission, sur celles du signal F0, et à la réception, sur celles du signal reçu Fx.
    A l'émission, le commutateur 57 est positionné par le signal TxRx de façon à appliquer le signal de sortie F0 de l'oscillateur 58 sur une entrée de la porte 52. Le signal F0 étant constant, le signal Ft engendré par l'oscillateur 54 est lui aussi constant, ainsi que le signal d(Ft) engendré par le générateur d'impulsions 6 et qui vient commander l'interrupteur 10.
    Ainsi, le signal passant par l'interrupteur 60 vient charger au niveau logique 0 ou 1 le condensateur Cd, ce qui bloque la tension aux bornes du condensateur au niveau logique 0 ou 1 du dernier échantillon prélevé jusqu'à l'échantillon suivant. Le filtre 62 permet d'obtenir une tension U0 de commande de l'oscillateur 54 de manière à ce que le signal Ft corresponde en fréquence au signal F0.
    Le signal Tx émis par le microprocesseur 23 commence par un bit de début pour permettre au destinataire de ce signal de lever l'incertitude sur la phase initiale du signal. En réception, la valeur de ce bit de début pourra être exploitée pour déterminer s'il faut inverser ou non la valeur des bits suivants contenus dans le signal reçu.
    Il résulte de la table de vérité de la fonction OU EXCLUSIF que pendant les intervalles de temps où le signal Tx de données émis par le microprocesseur 23 est au niveau logique 0, la tension en sortie de la porte 53 correspond en forme et en phase exactement à la porteuse Ft. Lorsque le signal Tx de données est au niveau logique 1, le signal Ft+Tx en sortie de la porte 53 correspond en forme et en phase à la porteuse Ft déphasée de 180° (inversion de phase).
    En réception, le circuit de couplage 22 est positionné en réception par le signal TxRx, il présente alors une impédance d'entrée élevée, de l'ordre de quelques centaines d'Ohms, de manière à transmettre le signal de données Fx du réseau électrique à un amplificateur 59 qui effectue également un filtrage des fréquences parasites circulant sur le réseau de distribution électrique. Le commutateur 7 est positionné par le signal TxRx de façon à appliquer le signal Fx à l'entrée de la porte 52.
    La porte OU EXCLUSIF 52 combine alors la porteuse avec le signal reçu Fx, pour obtenir un signal Ft+Fx au niveau logique 0 ou 1 suivant que le signal reçu Fx est en phase ou en opposition de phase avec la porteuse Ft, le signal Ft+Fx étant introduit dans la boucle d'asservissement décrite ci-avant.
    L'échantillonneur-bloqueur constitué par le générateur 56 qui commande l'interrupteur 60, ainsi que le condensateur Cd permet de remettre le signal reçu Fx à phase constante par rapport à la fréquence Ft, et fournit au microprocesseur 23 le signal démodulé Ud disponible aux bornes du condensateur Cd. Ce signal démodulé est appliqué par l'intermédiaire d'un inverseur 63, d'une part à l'entrée Rx des données reçues du microprocesseur 23, et d'autre part à l'entrée P de détection de la porteuse du microprocesseur 23, au travers d'un générateur d'impulsions 64 et d'un circuit à constante de temps 65. De cette manière, le microprocesseur 23 peut déterminer s'il doit se mettre en attente de réception d'un message en cas de détection de la porteuse sur son entrée Rx, et s'il peut émettre un message en cas d'absence de porteuse.
    L'emploi d'un échantillonneur-bloqueur permet donc d'effectuer une démodulation très rapide du signal reçu. Ainsi la vitesse de transmission numérique exprimée en kilo-bits par seconde, peut théoriquement atteindre la vitesse de la porteuse.
    Ainsi, par exemple, avec une fréquence de porteuse égale à 135 kHz, ce circuit peut émettre et recevoir un signal numérique à la vitesse de 90 Kilo-bits par seconde.
    Pour s'affranchir de la portée réduite (quelques centaines de mètres) de la transmission par courant porteur, le microprocesseur 23 reçoit tous les messages détectés par les circuits de couplage 22 et de réception 25, et commande la réémission des messages qui ne lui sont pas destinés. Cette solution permet de commander et surveiller un grand nombre de candélabres, grâce au principe de démodulation qui permet d'atteindre des vitesses de transmission élevées.

    Claims (17)

    1. Dispositif pour la commande et la surveillance à distance d'une pluralité de lampes à décharge alimentées par un réseau de distribution électrique, ledit dispositif comprenant un poste central (3) et une pluralité de modules (10) de commande et de surveillance d'une lampe, à raison d'un module (10) par lampe (11), installé à proximité celle-ci, chaque module comprenant :
      des moyens d'émission et de réception (22,23,25) pour émettre et recevoir des messages véhiculés par l'intermédiaire de la ligne électrique (15,16) d'alimentation de la lampe (11), par courant porteur bidirectionnel modulé, lui permettant de communiquer avec le poste central (3),
      des moyens pour commander l'allumage et l'extinction de la lampe, en fonction de consignes émises par le poste central (3) et reçues par les moyens d'émission et de réception (22,23,25), et
      des moyens pour détecter les défaillances de la lampe (11) et en avertir le poste central (3) par les moyens d'émission et de réception (22,23,25),
      caractérisé en ce que le poste central (3) comprend un circuit d'interface (4) connecté au réseau de distribution électrique et qui assure l'échange d'informations entre le poste central et le réseau de distribution électrique, et en ce que les moyens d'émission et de réception (22,23,24) de chaque module sont conçus pour recevoir tous les messages véhiculés par la ligne électrique (15, 16), et réémettre les messages qui ne leur sont pas destinés.
    2. Dispositif selon la revendication 1,
      caractérisé en ce que chaque module (10) comprend des moyens pour commander l'intensité lumineuse de la lampe (11) en fonction de consignes émises par le poste central (3).
    3. Dispositif selon la revendication 1 ou 2,
      caractérisé en ce que chaque module (10) comprend des moyens pour détecter la dégradation de l'état de fonctionnement de la lampe (11).
    4. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que chaque module (10) comprend des moyens pour détecter que la lampe (11) est allumée.
    5. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que chaque module (10) comprend des moyens pour compter la durée de fonctionnement de la lampe (11).
    6. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que les moyens (22,23,25) pour communiquer avec le poste central (3) émettent et reçoivent des messages transmis par courant porteur, en modulation de phase, via le réseau de distribution électrique.
    7. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que les moyens (22,23,25) pour communiquer avec le poste central (3) émettent et reçoivent des messages transmis par courant porteur, en modulation de phase, à une fréquence de 132 kHz, via le réseau de distribution électrique.
    8. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que les moyens (22,23,25) pour communiquer avec le poste central (3) sont conçus pour recevoir tous les messages véhiculés par la ligne électrique (15,16), et réémettre les messages qui ne leur sont pas destinés.
    9. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que chaque module (10) comprend un premier commutateur (K1) permettant de déclencher l'allumage et l'extinction de la lampe (11), commandé par un microprocesseur (23), et un second commutateur (K2) associé à un circuit de commande (Z2,28,29,30) permettant de faire varier l'intensité lumineuse de la lampe (11) en fonction d'une consigne émise par le microprocesseur (23).
    10. Dispositif selon la revendication 9,
      caractérisé en ce que ledit second commutateur (K2) reste bloqué à l'état ouvert lorsque la lampe (11) est en panne, chaque module (10) comprenant, en parallèle avec le second commutateur (K2), un circuit de détection (Z2) fournissant au microprocesseur (23) un signal représentatif de l'état du second commutateur (K2) et donc de l'état éteint / allumé de la lampe (11).
    11. Dispositif selon l'une des revendications 9 et 10,
      caractérisé en ce que l'état dégradé de la lampe (11) est détecté grâce au second commutateur (K2) associé au circuit de commande (Z2,28,29,30), en abaissant progressivement la tension appliquée aux bornes de la lampe (11), la lampe étant déclarée en état dégradé par le microprocesseur (23), lorsque l'extinction de la lampe (11) est détecté avant d'avoir atteint un certain taux de réduction de l'intensité d'éclairage.
    12. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que le poste central (3) comprend un calculateur (5) connecté au réseau électrique par l'intermédiaire du circuit d'interface (4) permettant le transfert de données entre le calculateur (5) et le réseau électrique, et à une base de données (8) où sont stockées les informations concernant chaque lampe (11) commandée et surveillée par le poste central (3), ces informations comprenant pour chaque lampe :
      un code d'identification de la lampe,
      les horaires d'allumage et d'extinction de la lampe,
      la période et le taux de réduction de l'intensité d'éclairage,
      la durée d'utilisation de la lampe depuis sa mise en service, et
      l'état de la lampe, en bon fonctionnement, dégradé, ou en panne.
    13. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que la consigne de réduction de l'intensité lumineuse de la lampe (11) est appliquée progressivement par le microprocesseur (23), de manière à éviter l'extinction de la lampe (11).
    14. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que le calculateur (5) du poste central (3) comprend des moyens pour comparer la durée d'utilisation de chaque lampe (11) à un seuil d'alerte et établit une liste des lampes à remplacer comprenant les lampes en pannes ou en état dégradé, et les lampes dont la durée d'utilisation dépasse le seuil d'alerte.
    15. Dispositif selon l'une des revendications précédentes,
      caractérisé en ce que les moyens (22,23,25) pour émettre et recevoir comprennent un circuit modulateur / démodulateur à modulation de phase du type asynchrone synchronisé, capable de transmettre des données numériques à l'aide d'une porteuse (Ft) en forme de créneaux, ce circuit comprenant une première porte OU EXCLUSIF (53) sur laquelle sont appliqués en entrée, la porteuse (Ft) et le signal (Tx) contenant les données à transmettre, et dont la tension de sortie est en phase ou en opposition de phase avec la porteuse (Ft) en fonction du niveau logique 1 ou 0 de la donnée émise ; et une seconde porte OU EXCLUSIF (52) sur laquelle sont appliqués en entrée, la porteuse (Ft) et le signal reçu (Fx), et dont la tension de sortie est au niveau logique 0 ou 1 suivant que le signal reçu (Fx) est en phase ou en opposition de phase avec la porteuse (Ft).
    16. Dispositif selon la revendication 15,
      caractérisé en ce le circuit modulateur / démodulateur comprend en outre :
      un oscillateur (54) engendrant la porteuse (Ft) et dont la phase est commandée par une tension (U0), de manière à être synchrone en fréquence et en phase en émission, avec un signal de (F0) engendré par un oscillateur (58), et en réception, avec le signal (Fx) reçu ; et
      un échantillonneur-bloqueur auquel est appliqué le signal issu de la seconde porte OU EXCLUSIF (52), conçu pour prélever des échantillons du signal issu de l'oscillateur commandé en phase (54), à une fréquence double de celle de la porteuse (Ft), et délivrer une tension de sortie qui reste bloquée au niveau logique 0 ou 1 du dernier échantillon prélevé, de manière à démoduler le signal (Fx) de transmission de données numériques reçu.
    17. Dispositif selon la revendication 16,
      caractérisé en ce que l'oscillateur commandé en phase (54) est contrôlé en phase par une tension (U0) fournie par une boucle d'asservissement comprenant :
      la seconde porte OU EXCLUSIF (52),
      l'échantillonneur-bloqueur,
      une troisième porte OU EXCLUSIF (51), et
      un filtre intégrateur (62).
    EP96919886A 1995-05-12 1996-05-10 Dispositif pour la commande et la surveillance a distance d'une lampe a decharge Expired - Lifetime EP0766905B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9505748 1995-05-12
    FR9505748A FR2734118B1 (fr) 1995-05-12 1995-05-12 Dispositif pour la commande et la surveillance a distance d'une lampe a decharge
    PCT/FR1996/000701 WO1996036202A1 (fr) 1995-05-12 1996-05-10 Dispositif pour la commande et la surveillance a distance d'une lampe a decharge

    Publications (2)

    Publication Number Publication Date
    EP0766905A1 EP0766905A1 (fr) 1997-04-09
    EP0766905B1 true EP0766905B1 (fr) 2001-06-20

    Family

    ID=9478999

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96919886A Expired - Lifetime EP0766905B1 (fr) 1995-05-12 1996-05-10 Dispositif pour la commande et la surveillance a distance d'une lampe a decharge

    Country Status (5)

    Country Link
    EP (1) EP0766905B1 (fr)
    DE (1) DE69613445T2 (fr)
    ES (1) ES2160251T3 (fr)
    FR (1) FR2734118B1 (fr)
    WO (1) WO1996036202A1 (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ES2333078A1 (es) * 2006-12-28 2010-02-16 Prointec, S.A. Sistema de informacion y control en tiempo real del estado del alumbrado publico.
    US10317441B2 (en) 2013-10-14 2019-06-11 Signify Holding B.V. Problem detection for cable-fed-loads

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FI113500B (fi) * 1998-01-05 2004-04-30 Valo Oy I Menetelmä ja järjestelmä sähköisen laitteen toimintatilan havainnoimiseksi
    JP3603643B2 (ja) * 1999-02-15 2004-12-22 松下電工株式会社 放電灯点灯装置
    DE19925597C2 (de) * 1999-06-04 2003-09-25 Eberhard Issendorff System zur Überwachung von Außenleuchten sowie Datenmodul mit einem Überwachungssensor
    JP4422832B2 (ja) * 1999-11-05 2010-02-24 アビックス株式会社 Led電灯
    JP2001195448A (ja) * 2000-01-12 2001-07-19 Sharp Corp 使用履歴記憶装置、使用履歴に基づく残価算出装置および方法、それらの装置を含む電気機器、残価算出方法を実現するプログラムを記録した記録媒体、および電気機器のリサイクル方法
    FR2804570B1 (fr) 2000-01-27 2002-07-19 Eclairage Public Beep Bureau E Dispositif electronique modulaire d'alimentation pour lampe a decharge
    FR2806501A1 (fr) * 2000-03-14 2001-09-21 Dev Ind Et Commercial De Syste Systeme et procede de gestion centralisee des defauts pour un ensemble de lampes a decharge en vue d'une maintenance anticipee, et module local de detection associe
    GB2372160B (en) * 2001-02-09 2003-09-10 Larry Taylor Street lighting management system
    JP4204772B2 (ja) * 2001-08-30 2009-01-07 独立行政法人科学技術振興機構 生体内薬物徐放材料の製造方法
    EP1528843A1 (fr) * 2003-10-28 2005-05-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Méthode pour l'entretien d'une installation technique
    CA2559153C (fr) * 2005-09-12 2018-10-02 Acuity Brands, Inc. Systeme de gestion d'eclairage a gestionnaires de luminaires intelligents en reseau
    JP2009543279A (ja) * 2006-06-27 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 大面積照明
    ES2299372B1 (es) * 2006-09-28 2009-04-01 Bebitec, S.L. Sistema de alumbrado.
    DE102006061137A1 (de) * 2006-12-22 2008-06-26 Siemens Ag Steuereinheit zur Steuerung mindestens eines Verbrauchers
    US8140276B2 (en) 2008-02-27 2012-03-20 Abl Ip Holding Llc System and method for streetlight monitoring diagnostics
    US7518715B1 (en) 2008-06-24 2009-04-14 International Business Machines Corporation Method for determination of efficient lighting use
    US8274649B2 (en) 2008-06-24 2012-09-25 International Business Machines Corporation Failure detection in lighting systems
    FR2948527B1 (fr) 2009-07-27 2012-07-27 Etde Module de gestion d'un candelabre et systeme de telegestion de l'eclairage public
    ES2424833B1 (es) * 2012-04-02 2014-12-10 Pablo José REIG GURREA Sistema de gestión del alumbrado exterior

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4427968A (en) * 1981-04-09 1984-01-24 Westinghouse Electric Corp. Distribution network communication system with flexible message routes
    NL8902811A (nl) * 1989-11-14 1991-06-03 Arkalite B V Verlichtingssysteem.
    FR2681754B1 (fr) * 1991-09-23 1993-12-24 Electricite De France Installation d'eclairage electrique et procede de commande et de surveillance de ladite installation.
    FR2695286B1 (fr) * 1992-08-31 1994-10-14 Francis Guillot Système de détection et de signalisation de lampes défaillantes dans un réseau d'éclairage.
    FR2705186B1 (fr) * 1993-05-12 1995-08-04 Electricite De France Installation de surveillance, de maintenance et de commande d'un réseau d'éclairage électrique.

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ES2333078A1 (es) * 2006-12-28 2010-02-16 Prointec, S.A. Sistema de informacion y control en tiempo real del estado del alumbrado publico.
    ES2333078B1 (es) * 2006-12-28 2011-02-10 Prointec, S.A. Sistema de informacion y control en tiempo real del estado del alumbrado publico.
    US10317441B2 (en) 2013-10-14 2019-06-11 Signify Holding B.V. Problem detection for cable-fed-loads

    Also Published As

    Publication number Publication date
    FR2734118A1 (fr) 1996-11-15
    DE69613445T2 (de) 2002-05-02
    FR2734118B1 (fr) 1997-07-11
    EP0766905A1 (fr) 1997-04-09
    DE69613445D1 (de) 2001-07-26
    WO1996036202A1 (fr) 1996-11-14
    ES2160251T3 (es) 2001-11-01

    Similar Documents

    Publication Publication Date Title
    EP0766905B1 (fr) Dispositif pour la commande et la surveillance a distance d'une lampe a decharge
    EP0250320B1 (fr) Adaptateur de puissance pour installations électriques, notamment domestiques, à commande dite par courants porteurs
    CA2847812C (fr) Optimisation d'un systeme domotique utilisant un reseau local de courant porteur de ligne
    CH624250A5 (fr)
    FR2550900A1 (fr) Poste recepteur a faible consommation d'energie
    FR2610463A1 (fr) Circuit de commutation d'alimentation pour cable sous-marin
    EP0501887A1 (fr) Procédé et dispositif de surveillance d'au moins une source de rayonnement lumineux
    FR2695286A1 (fr) Système de détection et de signalisation de lampes défaillantes dans un réseau d'éclairage.
    EP0577532B1 (fr) Installation de distribution d'énergie électrique avec structure de communication domotique
    EP2460364B1 (fr) Module de gestion de candelabres et de services et systeme de telegestion comportant au moins un tel module
    EP0236147B1 (fr) Procédé et système de surveillance des défaillances d'au moins une source de rayonnement lumineux
    EP0634069B1 (fr) Installation de transmission de donnees, du type reseau radio, et procede correspondant
    FR2859856A1 (fr) Systeme et disposiif d'alimentation a distance d'un equipement de traitement d'informations
    FR2856236A1 (fr) Procede et dispositif d'auto-adaptation d'un variateur a une charge
    FR2658010A1 (fr) Systeme d'eclairage de secours pour installations alimentees par un reseau electrique.
    EP0770286B1 (fr) Procede et dispositif de transmission entre une pluralite d'unites locales connectees a differents reseaux de distribution de courant electrique
    FR2981529A1 (fr) Procede de synchronisation d'un appareillage connecte a un reseau de communication
    FR2705186A1 (fr) Installation de surveillance, de maintenance et de commande d'un réseau d'éclairage électrique.
    FR2858738A1 (fr) Procede de tele-alimentation d'un equipement de telecommunications et systeme de mise en oeuvre
    EP0183881A1 (fr) Procédé et dispositif de réception de télécommande centralisée à fréquences multiples
    FR2823801A1 (fr) Gestion a distance des pompes electriques
    FR3098679A1 (fr) Luminaire de rue pour une gestion centralisée et procédé de gestion associée
    FR2631194A1 (fr) Procede de telemaintenance et de supervision de liaisons point a point
    WO1983002375A1 (fr) Dispositif de telecommande par le reseau telephonique
    BE891645A (fr) Appareil simplifie de telecommande et telesignalisation utilisant comme support de transmission le reseau telephonique public.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970120

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES GB

    17Q First examination report despatched

    Effective date: 19990803

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB

    REF Corresponds to:

    Ref document number: 69613445

    Country of ref document: DE

    Date of ref document: 20010726

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010921

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2160251

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: PC2A

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140530

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140530

    Year of fee payment: 19

    Ref country code: ES

    Payment date: 20140627

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69613445

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150510

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150510

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20160629

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150511