EP0766055A1 - Procédé et installation de production d'un gaz sous pression par distillation cryogénique - Google Patents

Procédé et installation de production d'un gaz sous pression par distillation cryogénique Download PDF

Info

Publication number
EP0766055A1
EP0766055A1 EP96402014A EP96402014A EP0766055A1 EP 0766055 A1 EP0766055 A1 EP 0766055A1 EP 96402014 A EP96402014 A EP 96402014A EP 96402014 A EP96402014 A EP 96402014A EP 0766055 A1 EP0766055 A1 EP 0766055A1
Authority
EP
European Patent Office
Prior art keywords
liquid
exchanger
withdrawn
make
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96402014A
Other languages
German (de)
English (en)
Other versions
EP0766055B1 (fr
Inventor
Mike De L'isle
Yves Koeberlé
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0766055A1 publication Critical patent/EP0766055A1/fr
Application granted granted Critical
Publication of EP0766055B1 publication Critical patent/EP0766055B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/46Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • the present invention relates to a method and an installation for producing pressurized gas by cryogenic distillation.
  • it relates to a process in which pressurized gas is produced by the vaporization of a liquid withdrawn from a cryogenic distillation column.
  • the pressures in question are absolute pressures.
  • the expression “condensation” and “vaporization” is intended to mean either a condensation or a vaporization proper, or a pseudo-condensation or a pseudo-vaporization, depending on whether the pressures are subcritical or supercritical.
  • the object of the invention is to make it possible to supply the maximum demand for gas under pressure with an apparatus sized to produce only part of the liquid required to supply the maximum demand for gas.
  • the liquefied make-up gas can have the same composition as the flow rate of liquid withdrawn.
  • the liquid can be an air gas.
  • liquid nitrogen can be drawn from the head of a single column or from a low column or medium pressure of a double column.
  • Liquid argon can be obtained at the top of an argon column.
  • the invention also applies to the separation of other cryogenic fluids; the liquid to be vaporized could be methane, carbon monoxide or hydrogen for example.
  • the liquid Before its vaporization, the liquid can be pressurized either by hydrostatic pressure, or with a pump.
  • make-up gas If the make-up gas is already at the vaporization pressure of the withdrawn liquid, after its liquefaction, it can be added to the withdrawn liquid downstream of the pressurization means. Otherwise, the liquefied make-up gas mixes with the liquid upstream of the pump in order to be pressurized there.
  • the liquefied make-up gas constitutes 20% of the vaporized liquid flow rate, thus allowing the device to be sized at a capacity which represents 80% of the maximum demand.
  • an installation for producing a flow of gas under pressure by cryogenic distillation comprising at least one distillation column, a heat exchanger, means for sending a fluid to be separated by distillation to a column.
  • distillation means for withdrawing a liquid from a distillation column, means for sending the withdrawn liquid to the heat exchanger to heat the liquid, characterized in that it comprises means for adding a make-up liquid to the liquid withdrawn upstream of the exchanger and means for sending the mixture thus formed to the exchanger in order to vaporize it to produce the gas under pressure.
  • FIG. 1 schematically represents an installation according to the invention.
  • An air flow 1 is compressed in a compressor to 5.6 x 10 5 kPa, before being divided into three fractions.
  • the first fraction 1A is compressed by compressor 3 to 62 x 10 5 kPa, refrigerated in 4 and compressed to 76 x 10 5 kPa.
  • the fraction 1A is cooled in a main exchanger 9. Part of the partially cooled air 11A is drawn off at an intermediate temperature level of the exchanger 9 and then expanded in a turbine 7, which drives the compressor 5, up to the pressure of a medium pressure column 13 of a double column 12. The expanded air is then sent to this column 13.
  • the remaining part of the flow 1A continues to cool in the exchanger 9, condenses and is expanded in the valve 11 at the pressure of the column 13, before being sent there.
  • the fraction 1B crosses the exchanger 9 before being introduced into the tank of the column 13.
  • the fraction 1C is compressed by the compressor 15 to 8.9 x 10 5 kPa, partially cooled in the exchanger 9 and expanded by the blowing turbine 17 to the pressure of a low pressure column 14.
  • the expanded fraction 1C is sent to column 14, possibly after a sub-cooling step.
  • the insufflation turbine 17 drives the compressor 15.
  • the double column 12 comprising the low pressure column 14 and the medium pressure column 13 is dimensioned to produce an average flow of liquid which vaporizes in the exchanger 9 to form a gas under pressure.
  • the liquid is oxygen withdrawn from the bottom of column 14 through line 31 at a pressure of approximately 1.5 ⁇ 10 5 kPa.
  • the liquid is pressurized to 76 x 10 5 kPa by a pump 25 before being vaporized in the exchanger 9 to form the oxygen under pressure.
  • An additional gaseous oxygen comes from a 19 to 30 x 10 5 kPa network.
  • the make-up gas in line 20 cools in exchanger 9, expands through valve 21 and is separated into two phases in separator 23.
  • the gaseous part of the oxygen is sent at least in part to the low pressure column 14.
  • the liquid part is sent to line 31 when the oxygen demand passes above the maximum capacity of the double column 12, which represents 80% of the maximum demand.
  • the liquid coming from the network is vaporized to supply up to 20% of the maximum demand. This percentage is limited by the liquefaction capacity of the network oxygen acceptable by the exchanger 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Dans un procédé de production de gaz sous pression par distillation cryogénique, on produit le gaz par vaporisation (ou pseudo-vaporisation) d'un liquide soutiré d'une colonne de distillation. Pour fournir du gaz supplémentaire sous pression,- un débit d'un gaz provenant d'une source extérieure est au moins partiellement liquéfié et le liquide ainsi formé est ajouté au liquide soutiré de la colonne avant ou après une éventuelle étape de pressurisation. <IMAGE>

Description

  • La présente invention concerne un procédé et une installation de production de gaz sous pression par distillation cryogénique. En particulier, elle concerne un procédé dans lequel du gaz sous pression est produit par la vaporisation d'un liquide soutiré d'une colonne de distillation cryogénique.
  • Des procédés de ce genre sont bien connus dans le domaine et existent depuis plusieurs décennies.
  • Dans le présent mémoire, les pressions dont il est question sont des pressions absolues. De plus, on entend par "condensation" et "vaporisation" soit une condensation ou une vaporisation proprement dite, soit une pseudo-condensation ou une pseudo-vaporisation, selon que les pressions sont subcritiques ou supercritiques.
  • Le but de l'invention est de permettre de fournir la demande maximale en gaz sous pression avec un appareil dimensionné pour produire seulement une partie du liquide requis pour fournir la demande maximale en gaz.
  • Selon l'invention, il est prévu un procédé de production d'un gaz sous pression dans un appareil de séparation cryogénique comprenant les étapes de :
    • i) refroidir un fluide à séparer dans un échangeur de chaleur et l'envoyer à une colonne de distillation de l'appareil pour y être séparé ;
    • ii) soutirer un débit liquide d'une colonne de l'appareil et le réchauffer dans l'échangeur,
       caractérisé en ce que :
    • iii) on rajoute au moins un liquide d'appoint au débit liquide soutiré de l'étape ii) ;
    • iv) on réchauffe dans un échangeur le mélange ainsi formé par le liquide d'appoint et le débit soutiré par échange thermique indirect ; et
    • v) on récupère en sortie d'appareil un gaz sous pression.
  • De cette manière, un gaz provenant d'une source extérieure sert d'appoint pour suppléer au manque de liquide lorsque l'appareil fonctionne à sa capacité maximale.
  • Le gaz d'appoint liquéfié peut avoir la même composition que le débit de liquide soutiré.
  • Le liquide peut être un gaz de l'air. Par exemple, de l'azote liquide peut être soutiré de la tête d'une simple colonne ou d'une colonne basse ou moyenne pression d'une double colonne. De l'argon liquide peut être obtenu en tête d'une colonne argon. Néanmoins, l'invention s'applique également à la séparation d'autres fluides cryogéniques ; le liquide à vaporiser pourrait être du méthane, du monoxyde de carbone ou de l'hydrogène par exemple.
  • Avant sa vaporisation, le liquide peut être pressurisé soit par pression hydrostatique, soit avec une pompe.
  • Si le gaz d'appoint se trouve déjà à la pression de vaporisation du liquide soutiré, après sa liquéfaction, il peut être rajouté au liquide soutiré en aval des moyens de pressurisation. Sinon, le gaz d'appoint liquéfié se mélange au liquide en amont de la pompe afin d'y être pressurisé.
  • De préférence, le gaz d'appoint liquéfié constitue 20 % du débit liquide vaporisé, permettant ainsi à l'appareil d'être dimensionné à une capacité qui représente 80 % de la demande maximale.
  • Selon l'invention, il est également prévu une installation de production d'un débit de gaz sous pression par distillation cryogénique comprenant au moins une colonne de distillation, un échangeur de chaleur, des moyens pour envoyer un fluide à séparer par distillation à une colonne de distillation, des moyens pour soutirer un liquide d'une colonne de distillation, des moyens pour envoyer le liquide soutiré à l'échangeur de chaleur pour réchauffer le liquide, caractérisée en ce qu'elle comprend des moyens pour rajouter un liquide d'appoint au liquide soutiré en amont de l'échangeur et des moyens pour envoyer le mélange ainsi formé à l'échangeur afin de le vaporiser pour produire le gaz sous pression.
  • Un exemple de mise en oeuvre de l'invention est illustré à la figure 1 qui représente schématiquement une installation selon l'invention.
  • Un débit d'air 1 est comprimé dans un compresseur jusqu'à 5,6 x 105 kPa, avant d'être divisé en trois fractions. La première fraction 1A est comprimée par le compresseur 3 jusqu'à 62 x105 kPa, réfrigérée en 4 et comprimée à 76 x 105 kPa. Après une deuxième étape de réfrigération en 6, la fraction 1A est refroidie dans un échangeur principal 9. Une partie de l'air 11A partiellement refroidie est soutirée à un niveau de température intermédiaire de l'échangeur 9 puis détendue dans une turbine 7, qui entraîne le compresseur 5, jusqu'à la pression d'une colonne moyenne pression 13 d'une double colonne 12. L'air détendu est ensuite envoyé dans cette colonne 13. La partie restante du débit 1A poursuit son refroidissement dans l'échangeur 9, se condense et est détendue dans la vanne 11 à la pression de la colonne 13, avant d'y être envoyée.
  • La fraction 1B traverse l'échangeur 9 avant d'être introduite en cuve de la colonne 13.
  • La fraction 1C est comprimée par le compresseur 15 à 8,9 x 105 kPa, partiellement refroidie dans l'échangeur 9 et détendue par la turbine d'insufflation 17 jusqu'à la pression d'une colonne basse pression 14. La fraction détendue 1C est envoyée à la colonne 14, éventuellement après une étape de sous-refroidissement. La turbine d'insufflation 17 entraîne le compresseur 15.
  • La double colonne 12 comprenant la colonne basse pression 14 et la colonne moyenne pression 13 est dimensionnée pour produire un débit moyen de liquide qui se vaporise dans l'échangeur 9 pour former un gaz sous pression. En l'occurrence, le liquide est l'oxygène soutiré en cuve de la colonne 14 par la conduite 31 à une pression d'environ 1,5 x 105 kPa. Le liquide est pressurisé jusqu'à 76 x 105 kPa par une pompe 25 avant de se vaporiser dans l'échangeur 9 pour former l'oxygène sous pression.
  • Un appoint d'oxygène gazeux provient d'un réseau 19 à 30 x 105 kPa. Le gaz d'appoint de la conduite 20 se refroidit dans l'échangeur 9, se détend à travers la vanne 21 et est séparé en deux phases dans le séparateur 23. La partie gazeuse de l'oxygène est envoyée au moins en partie à la colonne basse pression 14. La partie liquide est envoyée à la conduite 31 quand la demande en oxygène passe au-dessus de la capacité maximale de la double colonne 12, qui représente 80 % de la demande maximale. Ainsi, le liquide provenant du réseau est vaporisé pour fournir jusqu'à 20 % de la demande maximale. Ce pourcentage est limité par la capacité de liquéfaction de l'oxygène du réseau acceptable par l'échangeur 9.
  • De cette manière, avec un appareil sous-dimensionné, on peut néanmoins fournir toute la demande en oxygène gazeux sous pression, pour un coût énergétique moindre.

Claims (17)

  1. Procédé de production d'un gaz sous pression dans un appareil de séparation cryogénique comprenant les étapes de :
    i) refroidir un fluide à séparer dans un échangeur de chaleur (9) et l'envoyer à une colonne de distillation (12) de l'appareil ;
    ii) soutirer un débit liquide d'une colonne (14) de l'appareil et le réchauffer dans l'échangeur (9),
       caractérisé en ce que :
    iii) on ajoute au moins un liquide d'appoint au débit liquide soutiré de l'étape ii) ;
    iv) on réchauffe et éventuellement on vaporise dans un échangeur (9) le mélange ainsi formé par le liquide d'appoint et le débit soutiré par échange thermique indirect; et
    v) on récupère en sortie d'appareil un gaz sous pression.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on envoie du gaz d'appoint provenant d'une source extérieure (19) à un échangeur, on refroidit le gaz d'appoint et on le condense au moins partiellement pour former le liquide d'appoint.
  3. Procédé selon la revendication 1 ou 2, dans lequel le liquide d'appoint et le débit soutiré ont substantiellement la même composition.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel le liquide soutiré est un liquide enrichi en oxygène, en azote, argon ou en méthane.
  5. Procédé selon l'une des revendications précédentes dans lequel la plupart du gaz sous pression provient d'une colonne de distillation (14).
  6. Procédé selon la revendication 5 dans lequel au moins 80 % du gaz sous pression provient d'une colonne de l'appareil.
  7. Procédé selon l'une des revendications 1 à 6 dans lequel on rajoute le liquide d'appoint au débit soutiré en amont ou en aval d'un moyen de pressurisation (25).
  8. Procédé selon l'une des revendications précédentes dans lequel le fluide à séparer se condense au moins partiellement dans l'échangeur (9) où se vaporise le liquide soutiré de l'étape (ii).
  9. Procédé selon l'une des revendications précédentes, dépendantes de la revendication 2, dans lequel on refroidit le gaz d'appoint dans l'échangeur (9) où se vaporise le liquide soutiré de l'étape (ii).
  10. Procédé selon l'une des revendications précédentes dans lequel on ne produit aucun produit final sous forme liquide.
  11. Installation de production d'un débit de gaz sous pression par distillation cryogénique comprenant au moins une colonne de distillation (13, 14), un échangeur de chaleur (9), des moyens (1A, 1B, 1C) pour envoyer un fluide à séparer par distillation à une colonne de distillation (13, 14), des moyens (31) pour soutirer un liquide d'une colonne de distillation (14), des moyens pour envoyer le liquide soutiré à l'échangeur de chaleur (9) pour réchauffer le liquide, caractérisée en ce qu'elle comprend :
    - des moyens (27) pour rajouter un liquide d'appoint au liquide soutiré en amont de l'échangeur et des moyens pour envoyer le mélange ainsi formé à l'échangeur (9) afin de former le gaz sous pression.
  12. Installation selon la revendication 11 comprenant des moyens (20) pour envoyer un gaz d'appoint provenant d'une source extérieure à l'échangeur (9) afin de refroidir le gaz d'appoint et des moyens (21, 23) pour liquéfier le gaz d'appoint refroidi au moins partiellement pour former le liquide d'appoint.
  13. Installation selon la revendication 11 ou 12, dans laquelle le liquide soutiré est un liquide enrichi en oxygène, en azote ou en argon.
  14. Installation selon la revendication 11, 12 ou 13, dans laquelle les moyens pour soutirer un liquide sont reliés à la colonne basse pression (14) d'une double colonne de distillation d'air (12).
  15. Installation selon l'une des revendications 11 à 14, dans laquelle les moyens pour envoyer le liquide soutiré à l'échangeur sont reliés à un moyen de pressurisation (25) en amont de l'échangeur.
  16. Installation selon la revendication 15, dans laquelle les moyens pour rajouter du gaz d'appoint liquéfié au liquide soutiré sont reliés aux moyens pour envoyer le liquide soutiré à l'échangeur en aval ou en amont des moyens de pressurisation (25).
  17. Installation selon l'une des revendications 11 à 16, dans laquelle les moyens (1A, 1B, 1C) pour envoyer le fluide à séparer à une colonne traversent au moins partiellement l'échangeur (9).
EP96402014A 1995-09-29 1996-09-24 Procédé et installation de production d'un gaz sous pression par distillation cryogénique Expired - Lifetime EP0766055B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9511474 1995-09-29
FR9511474A FR2739439B1 (fr) 1995-09-29 1995-09-29 Procede et installation de production d'un gaz sous pression par distillation cryogenique

Publications (2)

Publication Number Publication Date
EP0766055A1 true EP0766055A1 (fr) 1997-04-02
EP0766055B1 EP0766055B1 (fr) 2001-04-18

Family

ID=9483065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96402014A Expired - Lifetime EP0766055B1 (fr) 1995-09-29 1996-09-24 Procédé et installation de production d'un gaz sous pression par distillation cryogénique

Country Status (7)

Country Link
US (1) US5685173A (fr)
EP (1) EP0766055B1 (fr)
AR (1) AR003711A1 (fr)
CA (1) CA2186837A1 (fr)
ES (1) ES2158262T3 (fr)
FR (1) FR2739439B1 (fr)
PL (1) PL316350A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800859B1 (fr) * 1999-11-05 2001-12-28 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
JP3715497B2 (ja) * 2000-02-23 2005-11-09 株式会社神戸製鋼所 酸素の製造方法
US6484533B1 (en) * 2000-11-02 2002-11-26 Air Products And Chemicals, Inc. Method and apparatus for the production of a liquid cryogen
MY143107A (en) * 2006-06-28 2011-03-15 Air Liquide Process for the production of pressurised oxygen and nitrogen by cryogenic distillation of air
US8136369B2 (en) 2006-07-14 2012-03-20 L'air Liquide Societe Anonyme Pour L'etude System and apparatus for providing low pressure and low purity oxygen
US8640496B2 (en) * 2008-08-21 2014-02-04 Praxair Technology, Inc. Method and apparatus for separating air
US9238477B2 (en) * 2014-03-03 2016-01-19 Xtreme Manufacturing, Llc Method and system for a lift device having independently steerable wheels
US10281207B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air with variable liquid production and power usage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908144A (en) * 1956-01-04 1959-10-13 Union Carbide Corp Process and apparatus for separating gas mixtures
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383994A3 (fr) * 1989-02-23 1990-11-07 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
FR2681415B1 (fr) * 1991-09-18 1999-01-29 Air Liquide Procede et installation de production d'oxygene gazeux sous haute pression par distillation d'air.
FR2706195B1 (fr) * 1993-06-07 1995-07-28 Air Liquide Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908144A (en) * 1956-01-04 1959-10-13 Union Carbide Corp Process and apparatus for separating gas mixtures
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern

Also Published As

Publication number Publication date
EP0766055B1 (fr) 2001-04-18
FR2739439A1 (fr) 1997-04-04
AR003711A1 (es) 1998-09-09
CA2186837A1 (fr) 1997-03-30
FR2739439B1 (fr) 1997-11-14
ES2158262T3 (es) 2001-09-01
PL316350A1 (en) 1997-04-01
US5685173A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
CA2527381C (fr) Procede et installation de production simultanee d&#39;un gaz naturel apte a etre liquefie et d&#39;une coupe de liquides du gaz naturel
US6125653A (en) LNG with ethane enrichment and reinjection gas as refrigerant
JP4216765B2 (ja) 凝縮天然ガスからの窒素除去方法及び装置
EP1623172B1 (fr) Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air
EP2122282B1 (fr) Procédé de séparation d&#39;un mélange de monoxyde de carbone, de méthane, d&#39;hydrogène et d&#39;azote par distillation cryogénique
FR2885679A1 (fr) Procede et installation de separation de gaz naturel liquefie
JP2002508054A (ja) 天然ガスの改良液化方法
TW201213692A (en) Integrated liquid storage
KR20100039353A (ko) Lng를 생산하는 방법 및 시스템
JP2008539282A (ja) 天然ガス流の液化方法及び装置
US7096688B2 (en) Liquefaction method comprising at least a coolant mixture using both ethane and ethylene
EP0766055B1 (fr) Procédé et installation de production d&#39;un gaz sous pression par distillation cryogénique
EP1446620B1 (fr) Procede et installation de production d&#39;helium
EP0641983B1 (fr) Procédé et installation de production d&#39;oxygène et/ou d&#39;azote gazeux sous pression
FR2767317A1 (fr) Procede de conversion d&#39;un debit contenant des hydrocarbures par oxydation partielle
EP1143216A1 (fr) Procédé et appareil de production d&#39;un fluide enrichi en oxygène par distillation cryogénique
FR2865024A1 (fr) Procede et installation de separation d&#39;air par distillation cryogenique
FR2701553A1 (fr) Procédé et installation de production d&#39;oxygène sous pression.
EP2562502A1 (fr) Procédé et installation pour la fourniture d&#39;un monoxyde de carbone gazeux par distillation cryogénique
KR20230154423A (ko) Co2가 풍부한 가스의 액화 방법 및 장치
KR102142610B1 (ko) 천연가스 처리방법 및 처리장치
WO2023129404A2 (fr) Procédé et appareil de pré-refroidissement d&#39;hydrogène pour liquéfaction à l&#39;aide d&#39;azote liquide externe et d&#39;azote gazeux à haute pression
FR3135134A1 (fr) Procédé d’augmentation de la capacité d’un appareil de séparation d’air par distillation cryogénique existant et appareil de séparation d’air
FR3128776A3 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
FR3110685A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE ES FR IT NL

17P Request for examination filed

Effective date: 19971002

17Q First examination report despatched

Effective date: 19990810

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE ES FR IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010813

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010820

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158262

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010914

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010920

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050924