EP0764500B1 - System und Verfahren zum Polieren von Weichmetallflächen mittels CO2-Schnee - Google Patents

System und Verfahren zum Polieren von Weichmetallflächen mittels CO2-Schnee Download PDF

Info

Publication number
EP0764500B1
EP0764500B1 EP96115274A EP96115274A EP0764500B1 EP 0764500 B1 EP0764500 B1 EP 0764500B1 EP 96115274 A EP96115274 A EP 96115274A EP 96115274 A EP96115274 A EP 96115274A EP 0764500 B1 EP0764500 B1 EP 0764500B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
gas
component
jet spray
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96115274A
Other languages
English (en)
French (fr)
Other versions
EP0764500A1 (de
Inventor
Charles W. Bowers
Herbert C. Bitting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eco-Snow Systems Inc
Original Assignee
Eco-Snow Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eco-Snow Systems Inc filed Critical Eco-Snow Systems Inc
Publication of EP0764500A1 publication Critical patent/EP0764500A1/de
Application granted granted Critical
Publication of EP0764500B1 publication Critical patent/EP0764500B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
    • B24C9/003Removing abrasive powder out of the blasting machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material

Definitions

  • the present invention relates to a system for polishing a metal surface, comprising
  • the known system is utilized for automatically cleaning test probes which may be plated with gold or other materials. Abbrasive materials shall be avoided to prevent dust and similar problems.
  • this object is achieved in a system as mentioned in the outset in that an operator-controllable robotic arm is disposed within the enclosure for positioning the component whose metal surface is to be polished and for moving and positioning the CO 2 jet spray system relative to the surface of the component to polish it.
  • the CO 2 jet spray system polishes the metal surface using mechanical action derived from the solid CO 2 gas snow produced by controlled expansion of liquid CO 2 .
  • the present invention employs a gas/solid jet spray device disposed within the enclosure, such as is provided by an ultra-clean process enclosure.
  • the enclosure houses precision process tools for inspecting, testing, and polishing soft metal coatings, including gold mirror coatings, and the like.
  • the jet spray polishing system includes a CO 2 gas delivery system and orifice and nozzle combinations that are used to optimally expel CO 2 snow.
  • the jet spray orifice and nozzle combinations are designed to polish metal surfaces with mechanical action derived from solid gas snow produced by controlled expansion of liquid CO 2 .
  • the polishing is performed in the ultra-clean enclosure.
  • Environmental dust and condensation causes damage to soft metal surfaces, and particularly to gold surfaces.
  • the ultra-clean enclosure includes a large sealed chamber or processing space, a pre-filter, a high capacity blower, a high flow rate, high efficiency particulate air (HEPA) filter, a ducting system, and a dry gas purge system to reduce humidity.
  • a dry, clean environment is provided within the ultra-clean enclosure, which is necessary to eliminate condensation that interferes with the polishing process.
  • the solid/gas jet spray polishing system was specifically designed to be used as a final step required to produce ultra-low scattering gold mirrors employed in optical systems manufactured by the assignee of the present invention.
  • the present system and method may also be used to prepare other soft metal surfaces used in metrology and other fields where Angstrom quality surfaces are required.
  • the present method comprises disposing a component having a metal surface that is to be polished into an enclosure.
  • Solid CO 2 gas snow is generated within the enclosure using a CO 2 jet spray system.
  • the CO 2 jet spray system is moved to move the solid CO 2 gas snow relative to the surface of the component to polish the metal surface.
  • the solid CO 2 gas snow polishes the metal surface using mechanical action produced by controlled expansion of liquid CO 2 .
  • the polishing system and method of the present invention can polish a delicate surface, such as gold, without scratching or mechanical contact that is encountered with using an abrasive agent.
  • the present system and method is clean and produces no waste residue in the form of liquid slurries or chemical residues.
  • the jet spray produced by the polishing system is environmentally friendly and the snow that is produced sublimes away and is vented to the atmosphere.
  • the present jet spray polishing system and method is believed to be the only currently-available technology capable of polishing a gold or other soft metal surface without damaging the surface.
  • the present system and method for polishing gold and other soft metal surfaces is relatively slower than chemical or mechanical polishing methods.
  • Fig. 1 is illustrative of a gas/solid jet spray polishing system 10 and method 40 in accordance with the present invention that is used to polish a soft metal surface 20 to sub-Angstrom surface roughness.
  • the gas/solid jet spray polishing system 10 is comprised of a jet spray system 11, that may comprise an ECO-SNOWTM jet spray device manufactured by the assignee of the present invention, for example, that is disposed within an ultra-clean processing enclosure 12.
  • the jet spray system 11 includes a gas delivery system 13 comprising a tank 14 for storing liquid CO 2 21 and tubing 15, a valve assembly 16 or assemblies, and a nozzle and orifice assembly 17 that includes different nozzle and orifice combinations that are used to produce solid CO 2 gas snow 18.
  • the jet spray nozzle and orifice combinations that form the nozzle and orifice assembly 17 are designed to polish the metal surface 20 with mechanical action derived from the solid gas snow 18 produced by controlled expansion of the liquid CO 2 21 through the selected nozzle and orifice combination that is used.
  • the ultra-clean processing enclosure 12 is comprised of a loadlock pass-through 22 having a front entry door 22a and a rear exit door 22b that permits entry into a laminar flow, inner processing space 23 of the enclosure 12.
  • a high efficiency particulate air (HEPA) filter 24 is provided to filter nitrogen gas 25 or dry air 25 supplied from a nitrogen or dry air tank 26.
  • a stainless steel mesh surface 31 or floor 31 is provided within the ultra-clean processing enclosure 12 through which the filtered nitrogen gas 25 or dry air 25 passes to permit recirculation thereof.
  • the nitrogen gas 25 or dry air 25 is pre-filtered by means of an inlet filter 35 and a second filter 27 or pre-filter 27, and the prefiltered nitrogen gas 25 or dry air 25 is recirculated through the inner processing space 23 using a high scfm capacity recirculation blower 28.
  • a heater 33 surrounds the second filter 27 which is controlled by a temperature controller 29.
  • the HEPA filter 24, blower 28, stainless steel mesh surface 31, and inner processing space 23 form a nitrogen gas 25 or dry air 25 purging system.
  • An operator-controllable XYZ robotic arm 30 is disposed within the inner processing space 23 that is used to move and position the nozzle and orifice assembly 17 and to move and position a component 32 that is to be polished into position.
  • the ultra-clean processing enclosure 12 also includes temperature controls (not shown) that are part of the temperature controller 29.
  • the ultra-clean processing enclosure 12 encloses precision process inspection and testing tools (not shown), in addition to the present jet spray system 11.
  • the inspection, testing and jet spray system 11 provides a complete system 10 for polishing soft metal surfaces 20 and coatings, including gold mirror surfaces and coatings, and the like.
  • an operator of the system 10 loads the component 32 having a metal surface 20 or coating that to be polished through the loadlock pass-through 22 and into the inner processing space 23.
  • Initial entry into the loadlock pass-through 22 may be gained by opening the front access door 22a.
  • the rear door 22b is opened, and the robotic arm 30 is manipulated by the operator to pick up the component 32.
  • the robotic arm 30 is used to transport the component 32 into the inner processing space 23 for cleaning, testing and polishing.
  • the temperature of the inner processing space 23 is held above ambient and is regulated by feedback controls (not shown) on the heater 33 that surrounds the second filter 27.
  • Nitrogen gas 25 or air 25 coming into the inner processing space 23 is filtered three times, by the inlet filter 35, by the second filter 27, and by the high flow HEPA filter 24.
  • the nitrogen gas 25 or air 25 is pulled through the high capacity blower 28 and pushed through the HEPA filter 24 into the inner processing space 23.
  • Gas flowing during the polishing process is collected by a return duct 34 and is recirculated through the inner processing space 23.
  • the high velocity spray of solid gas particles that forms the solid gas snow 18 is directed over the surface 20 of the component 32 that is to be polished.
  • the contact of the solid gas particles with the surface 20 removes protruding surface features one atom at a time. This removal leaves a very fine, sub-Angstrom, polished surface 20.
  • Atomic force microscopy confirms polishing of a gold mirror surface 20 with a CO 2 gas, solid jet spray.
  • Fig. 2 is a graph showing the measured surface roughness of a gold surface 20 prior to use of the system 10 and method 40 of the present invention
  • Fig. 3 is a graph showing the measured surface roughness of the gold surface 20 after use of the present system 10 and method 40.
  • a WYCO surface profiler was used to measure the surface roughness of the polished component 32 which supports the atomic force microscopy data of the component 32 that was polished and tested.
  • the gold surface 20 had an root-mean-square (RMS) roughness of 9.83 ⁇ prior to polishing, and after polishing with solid C02 as snow 18, the RMS roughness was 6.13 ⁇ .
  • the peak-to-valley went from 4.48 ⁇ . before polishing to 2.65 ⁇ after polishing, further indicating the effectiveness of the sub-Angstrom polishing of the surface 20 of the component 32 using the CO 2 gas/solid jet spray system 10.
  • the polishing process using the present system 10 and method 40 is performed in the ultra-clean enclosure 12.
  • Environmental dust and condensation causes damage to metal surfaces 20, and particularly to gold surfaces.
  • the second filter 27, high capacity blower 28, HEPA filter 24, ducting 34, and dry gas purge system reduces humidity.
  • the dry, clean environment provided within the ultra-clean enclosure 12 eliminates condensation that interferes with the polishing process.
  • the solid/gas jet spray polishing system 10 was specifically designed to be used as the final step required to produce ultra-low scattering gold mirrors employed in optical systems manufactured by the assignee of the present invention. However, the present system 10 and method 40 may also have use in preparing other metal or soft metal surfaces 20 for metrology and other fields where Angstrom quality surfaces 20 are required.
  • the polishing system 10 and method 40 of the present invention is capable of polishing a delicate surface 20, such as gold, without scratching or mechanical contact using an abrasive agent.
  • the process is clean with no waste residue in the form of liquid slurries or chemical residues.
  • the gas/solid jet spray 18 is environmentally friendly and the snow that is produced sublimes away and may be vented to the atmosphere.
  • the present solid/gas jet spray polishing system 10 and method 40 is believed to be the only available technology capable of polishing a gold surface 20 without damaging the surface 20. While the present system 10 and method 40 polishes gold and other soft metal surfaces 20 to sub-Angstrom surface roughness, it is relatively slow compared to conventional chemical or mechanical polishing methods.
  • Fig. 4 is a flow diagram illustrating one embodiment of the present method.
  • the present method 40 comprises the steps of disposing 41 a component having a metal surface that is to be polished into an enclosure 12.
  • Solid CO 2 gas snow 18 is generated 42 within the enclosure 12 using a CO 2 jet spray system 11.
  • the CO 2 jet spray system 11 is moved 43 to move the solid CO 2 gas snow 18 relative to the surface 20 of the component 32 to polish the metal surface 20.
  • the solid CO 2 gas snow 18 polishes the metal surface 20 using mechanical action produced by controlled expansion of liquid CO 2 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Claims (9)

  1. Verfahren zum Polieren einer Metalloberfläche, umfassend eine Umhüllung (12) zur Aufnahme einer Komponente, die eine zu polierende Metalloberfläche (20) besitzt und
    ein CO2-Sprühdüsensystem (11) zum Erzeugen von festem CO2-Gasschnee (18);
    wobei das CO2-Sprühdüsensystem (11) die Metalloberfläche (20) durch mechanische Wirkung poliert, die von dem festen CO2-Gasschnee (18), der durch kontrollierte Expansion von flüssigem CO2 (21) erzeugt wird, abgeleitet ist;
    dadurch gekennzeichnet, daß
       ein von einer Bedienungsperson steuerbarer Roboterarm (30) innerhalb der Umhüllung (12) vorgesehen ist, um die Komponente (32), deren Metalloberfläche zu polieren ist, zu positionieren und zu bewegen, und um das CO2-Sprühdüsensystem (11) in bezug auf die Oberfläche (20) der Komponente (32) zu positionieren, um diese zu polieren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Umhüllung (12) einen Arbeitsraum (23) und Mittel zum Überführen der zu polierenden Komponente in den Arbeitsraum (23) aufweist;
    daß das CO2-Sprühdüsensystem (11) mit der Umhüllung (12) gekoppelt ist und einen Tank (14) aufweist, der flüssiges CO2 enthält, eine Anordnung (17) mit Düsen und Öffnungen, die eine Düse und eine Öffnung zum Erzeugen von festem CO2-Gasschnee (18) aufweist, sowie Rohre (15), die zwischen dem Tank (14) und der Anordnung aus Düsen und Öffnungen (17) angeordnet sind, um das flüssige CO2 der Anordnung (17) aus Düsen und Öffnungen zuzuführen; und
    daß der von der Bedienungsperson steuerbare Roboterarm (30) innerhalb des Arbeitsraumes (23) vorgesehen ist, um die zu polierende Komponente (32) zu positionieren, und um die Anordnung (17) mit Düsen und Öffnungen zu bewegen und in bezug auf die Oberfläche der Komponente (32) zum Polieren derselben zu positionieren.
  3. Verfahren nach irgend einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das CO2-Sprühdüsensystem (11) ferner eine Ventilanordnung (16) aufweist.
  4. Verfahren nach irgend einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Umhüllung (12) eine ultrasaubere Arbeitsumhüllung (12) aufweist.
  5. System nach irgend einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Umhüllung (12) eine Lade-sperre/Durchlaßschleuse (22) mit einer vorderen Zugangstür (22) und einer rückwärtigen Auslaßtür (22) aufweist, was ein Zuführen der Komponente in den inneren Arbeitsraum (23) der Umhüllung (12) erlaubt.
  6. System nach irgend einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Umhüllung (12) eine Temperatursteuerung (29) aufweist, die mit einer Heizung (33) zur Steuerung der Temperatur des Arbeitsraums (23) gekoppelt ist.
  7. System nach irgend einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mittel zur Umwälzung von Gas durch den Arbeitsraum (23) umfassen:
    ein Gebläse (28);
    ein hochwirksames Teilchen-Luftfilter (24) zum Filtern des Gases (25); und
    eine Edelstahl-Gitterfläche (31), durch die gefiltertes Gas (25) gelangt, um ein Umwälzen desselben zu erlauben.
  8. Verfahren zum Polieren einer Metalloberfläche unter Verwendung eines Systems gemäß irgend einem der Ansprüche 1 bis 7, gekennzeichnet durch die Schritte:
    Bereitstellen (41) einer Komponente mit einer zu polierenden Metalloberfläche (20) in der Umhüllung (12);
    Erzeugen (42) von festem CO2-Gasschnee (18) innerhalb der Umhüllung (12) unter Verwendung des CO2-Sprühdüsensystems (11); und
    Bewegen (43) des CO2-Sprühdüsensystems (11), um den festen CO2-Gasschnee (18) in bezug auf die Oberfläche (20) der Komponente (32) zu bewegen, um die Metalloberfläche zu polieren.
  9. Verfahren nach Anspruch 8, gekennzeichnet durch den Schritt des Umwälzens des Gases durch die Umhüllung (12) um die Umhüllung zu entleeren.
EP96115274A 1995-09-25 1996-09-24 System und Verfahren zum Polieren von Weichmetallflächen mittels CO2-Schnee Expired - Lifetime EP0764500B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53341195A 1995-09-25 1995-09-25
US533411 1995-09-25

Publications (2)

Publication Number Publication Date
EP0764500A1 EP0764500A1 (de) 1997-03-26
EP0764500B1 true EP0764500B1 (de) 2001-08-22

Family

ID=24125842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96115274A Expired - Lifetime EP0764500B1 (de) 1995-09-25 1996-09-24 System und Verfahren zum Polieren von Weichmetallflächen mittels CO2-Schnee

Country Status (4)

Country Link
EP (1) EP0764500B1 (de)
JP (1) JPH09183064A (de)
DE (1) DE69614627T2 (de)
IL (1) IL119300A0 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538035B2 (en) * 2005-03-18 2009-05-26 Hitachi Global Storage Technologies Netherlands B.V. Lapping of gold pads in a liquid medium for work hardening the surface of the pads
US7784477B2 (en) * 2006-02-14 2010-08-31 Raytheon Company Automated non-contact cleaning
DE102008027217B4 (de) * 2008-06-06 2010-05-20 Schwarz Gmbh Reinigungsvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702519A (en) * 1971-07-12 1972-11-14 Chemotronics International Inc Method for the removal of unwanted portions of an article by spraying with high velocity dry ice particles
JPS603555B2 (ja) * 1979-02-13 1985-01-29 株式会社島津製作所 物質表面除去方法
US4475794A (en) * 1982-02-03 1984-10-09 Martin Marietta Corporation Aluminum, aluminum oxide, cromium, gold mirror
US4806171A (en) * 1987-04-22 1989-02-21 The Boc Group, Inc. Apparatus and method for removing minute particles from a substrate
FR2655887B1 (fr) * 1989-12-20 1992-03-06 Sochata Snecma Procede d'enlevement d'un revetement sur pieces par projection d'un jet d'eau sous haute tension.
US5315793A (en) * 1991-10-01 1994-05-31 Hughes Aircraft Company System for precision cleaning by jet spray
US5364472A (en) * 1993-07-21 1994-11-15 At&T Bell Laboratories Probemat cleaning system using CO2 pellets

Also Published As

Publication number Publication date
DE69614627T2 (de) 2001-12-06
JPH09183064A (ja) 1997-07-15
IL119300A0 (en) 1996-12-05
EP0764500A1 (de) 1997-03-26
DE69614627D1 (de) 2001-09-27

Similar Documents

Publication Publication Date Title
US5989355A (en) Apparatus for cleaning and testing precision components of hard drives and the like
US5766061A (en) Wafer cassette cleaning using carbon dioxide jet spray
US5853962A (en) Photoresist and redeposition removal using carbon dioxide jet spray
US5315793A (en) System for precision cleaning by jet spray
US6066032A (en) Wafer cleaning using a laser and carbon dioxide snow
Sherman et al. Surface cleaning with the carbon dioxide snow jet
US5836809A (en) Apparatus and method for cleaning large glass plates using linear arrays of carbon dioxide (CO2) jet spray nozzles
US5651723A (en) Method and apparatus for cleaning substrates in preparation for deposition of thin film coatings
US8292698B1 (en) On-line chamber cleaning using dry ice blasting
JP4988597B2 (ja) 酸溶液によるシリコン電極アセンブリ表面の汚染除去
EP2810721B1 (de) Automatisierte kontaktfreie Reinigung
US5167720A (en) High pressure water treatment method
US5765578A (en) Carbon dioxide jet spray polishing of metal surfaces
US5806544A (en) Carbon dioxide jet spray disk cleaning system
JPH08254817A (ja) ホトマスクをクリーニングする方法および装置
EP0764500B1 (de) System und Verfahren zum Polieren von Weichmetallflächen mittels CO2-Schnee
Mukhopadhyay Sample preparation for microscopic and spectroscopic characterization of solid surfaces and films
Sherman et al. Carbon dioxide snow cleaning—the next generation of clean
EP0202338A1 (de) Verfahren und vorrichtung zur behandlung von werkstücken mit verwendung einer sandstrahleinheit
US6744489B2 (en) Semiconductor exposure apparatus and method of driving the same
US20070151583A1 (en) Method and apparatus for particle removal
EP0569708A1 (de) Reinigungseinrichtung für harte Oberflächen mittels cryogenen Aerosols
WO2001074538A1 (en) Dense fluid spray cleaning process and apparatus
Nagarajan Survey of cleaning and cleanliness measurement in disk drive manufacture
JPH07103863A (ja) 付着物検査装置および付着物検査方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19970825

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECO-SNOW SYSTEMS, INC.

17Q First examination report despatched

Effective date: 19990604

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BITTING, HERBERT C.

Inventor name: BOWERS, CHARLES W.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69614627

Country of ref document: DE

Date of ref document: 20010927

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071031

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070917

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080924

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080924