EP0763592B1 - Stabilisierte Textilweichmacherzusammensetzungen - Google Patents

Stabilisierte Textilweichmacherzusammensetzungen Download PDF

Info

Publication number
EP0763592B1
EP0763592B1 EP95870104A EP95870104A EP0763592B1 EP 0763592 B1 EP0763592 B1 EP 0763592B1 EP 95870104 A EP95870104 A EP 95870104A EP 95870104 A EP95870104 A EP 95870104A EP 0763592 B1 EP0763592 B1 EP 0763592B1
Authority
EP
European Patent Office
Prior art keywords
fabric softening
compounds
fatty acid
compositions
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95870104A
Other languages
English (en)
French (fr)
Other versions
EP0763592A1 (de
Inventor
Franciscus Joseph De Block
Bruno Albert Jean Hubesch
Raephael Angeline Alfons Ceulemans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8222155&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0763592(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to DE69526439T priority Critical patent/DE69526439T2/de
Priority to EP95870104A priority patent/EP0763592B1/de
Priority to ES95870104T priority patent/ES2174913T3/es
Priority to ZA9607563A priority patent/ZA967563B/xx
Priority to JP9512825A priority patent/JPH11512499A/ja
Priority to US09/029,780 priority patent/US5929025A/en
Priority to BR9610489A priority patent/BR9610489A/pt
Priority to CA002232413A priority patent/CA2232413C/en
Priority to PCT/US1996/014865 priority patent/WO1997011142A1/en
Publication of EP0763592A1 publication Critical patent/EP0763592A1/de
Priority to MX9802105A priority patent/MX9802105A/es
Publication of EP0763592B1 publication Critical patent/EP0763592B1/de
Application granted granted Critical
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds

Definitions

  • the present invention relates to fabric softening compositions showing excellent stability upon storage. More particularly, it relates to liquid fabric softening compositions.
  • Liquid fabric compositions are well known to the consumer and may be divided in two types: concentrated compositions with 5% to 80% of fabric softening agents and diluted compositions with 1% to 5% of fabric softening agents.
  • Concentrated fabric softening compositions are well appreciated by consumer. However, concentrated compositions may be expensive. This may be due to processing cost and/or material cost of the formulation.
  • Diluted fabric softening compositions are also known by consumer for providing a cheaper alternative to concentrated compositions without reducing the softness performance. Consumer acceptance of such compositions is determined not only by the performance achieved with these products but the aesthetics associated therewith. Viscosity of the product is therefore an important aspect of the successful formulation of such commercial products: stable medium to medium-high viscosities being highly preferred by consumer.
  • medium-high viscosities is meant viscosities of 50cps to 150cps when the fabric softening composition is in a diluted form and viscosities of 30cps to 90cps when the fabric softening composition is in a concentrated form.
  • thickeners such as compounds of the polyacrylamide, polysacharide or polyurethanes type have been widely used in such compositions. Although, these compounds are effective in providing the thickening effect, they increase the cost of the formulation without adding any other benefit to the product.
  • EP-A-0,643,128 discloses aqueous fabric softener composition comprising quaternary ammonium salt containing group selected from -CONH- and -NHCO-.
  • WO 94/20597 discloses softening compositions comprising a diester fabric softening component.
  • Example XIV first formulation gives a diester softening component with fatty acid in weight ratio of 21.33:1.
  • EP-A-0,387,064 discloses a softening composition comprising a softening component.
  • the exemplified softening component is Arquad 2HT which is hardened ditallow dimethyl ammonium chloride.
  • Another aesthetic point which may be of concern to the consumer is that of resulting odour of the product.
  • products which contain a high level of perfume relative to the total amount of biodegradable fabric softening components and fatty acid components present within the composition are most preferred.
  • the present invention relates to claim 1.
  • the liquid fabric softening composition further comprises a perfume composition in a ratio of said perfume to said total amount of biodegradable fabric softening components and fatty acid components of 1:40 to 1:2.
  • the liquid fabric softening composition is used in the rinse cycle of a laundry washing process.
  • An essential component of the invention is a biodegradable fabric softening compound.
  • Fabric softening compositions in particular fabric softening compositions to be used in the rinse cycle of laundry washing processes, are well known.
  • Biodegradable quaternary ammonium compounds contain long chain alk(en)yl groups interrupted by functional groups such as carboxy groups.
  • EPA 239 910 a pH range of from 2.5 to 4.2 provides optimum storage stability to said rapidly biodegradable ammonium compounds.
  • the quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below : or
  • Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.
  • the alkyl, or alkenyl, chain T 1 , T 2 , T 3 , T 4 , T 5 must contain at least 11 carbon atoms, preferably at least 16 carbon atoms.
  • the chain may be straight or branched.
  • Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material.
  • the compounds wherein T 1 , T 2 , T 3 , T 4 , T 5 represents the mixture of long chain materials typical for tallow are particularly preferred.
  • Specific examples of quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
  • compounds 1-7 are examples of compounds of Formula (I); compound 8 is a compound of Formula (II).
  • N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium chloride where the tallow chains are at least partially unsaturated.
  • the level of unsaturation of the tallow chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
  • IV Iodine Value
  • the anion is merely present as a counterion of the positively charged quaternary ammonium compounds.
  • the nature of the counterion is not critical at all to the practice of the present invention. The scope of this invention is not considered limited to any particular anion.
  • amine precursors thereof is meant the secondary or tertiary amines corresponding to the above quaternary ammonium compounds, said amines being substantially protonated in the present compositions due to the claimed pH values.
  • the pH of the compositions herein is an essential parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions.
  • the pH is measured in the neat compositions at 20°C.
  • the neat pH measured in the above-mentioned conditions, must be in the range of from 2.0 to 4.5.
  • the pH of the neat composition is in the range of 2.0 to 3.5, while if it is in a diluted form, the pH of the neat composition is in the range of 2.0 to 3.0.
  • the pH of these compositions herein can be regulated by the addition of a Bronsted acid.
  • Suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C 1 -C 5 ) carboxylic acids, and alkylsulfonic acids.
  • Suitable inorganic acids include HCl, H 2 SO 4 , HNO 3 and H 3 PO 4 .
  • Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid.
  • Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids.
  • the quaternary ammonium or amine precursors compounds herein are present at levels of from 1% to 80% of compositions herein, depending on the composition execution which can be dilute with a preferred level of active biodegradable fabric softening components from 1% to 5%, or concentrated, with a preferred level of active biodegradable fabric softening components from 5% to 80%, more preferably 10% to 50%, most preferably 15% to 35% by weight.
  • Additional fabric softening materials may be used in addition to the biodegradable fabric softener. Theses may be selected from additional cationic fabric softening material such as di-long alkyl chain ammonium chloride, nonionic, amphoteric or anionic fabric softening material excluding fatty acids as defined herein after. Disclosure of such materials may be found in US 4,327,133; 4,421,792; 4,426,299; 4,460,485; 3,644,203 and 4,661,269.
  • Another essential component of the invention is a fatty acid compound.
  • Suitable fatty acids include those containing from 10 to 25, preferably from 12 to 25 total carbon atoms, with the fatty moiety containing from 10 to 22, preferably from 16 to 22, carbon atoms.
  • the shorter moiety contains from 1 to 4, preferably from 1 to 2 carbon atoms.
  • the level of unsaturation of the tallow chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100, more preferably in the range of from 5 to 25.
  • IV Iodine Value
  • fatty acid compounds suitable for use in the aqueous fabric softening compositions herein include compounds selected from lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, oleic acid, coconut fatty acid, tallow fatty acid, partially hydrogenated tallow fatty acid and mixtures thereof.
  • a most preferred fatty acid compound is tallow fatty acid with an Iodine Value (IV) of 18.
  • Another essential element of the invention is the ratio of said biodegradable fabric softening agents to said fatty acid compounds.
  • Preferred ratios of said biodegradable fabric softening agents to said fatty acid compounds are from 20:1 to 10:1 and more preferably from 20:1 to 15:1.
  • Ratios below 6.5:1 would tend to provide fabric softening compositions with a poor storage stability due to a phase instability, while ratios above 25:1 would not produce sufficient built-on viscosity of the fabric softening compositions to be noticeable.
  • compositions according to the present invention have further been found to be beneficial to high ratios of perfumes relative to the total amount of biodegradable fabric softening components and fatty acid components which allows the use of highly scented product favoured by some consumer.
  • high ratios is meant ratios of perfume to said total amount of biodegradable fabric softener components and fatty acid components components of 1:40 to 1:2, preferably 1:20 to 1:2 and more preferably 1:10 to 1:3.
  • Fully formulated fabric softening compositions can contain polymers having a partial or net cationic charge.
  • Such polymers can be used at levels of from 0.001% to 10%, preferably 0.01% to 2% by weight of the compositions.
  • Such polymers having a partial cationic charge can be polyamine N-oxide containing polymers which contain units having the following structure formula (A): wherein P is a polymerisable unit, whereto the R-N ⁇ O group can be attached to or wherein the R-N ⁇ O group forms part of the polymerisable unit or a combination of both.
  • the N ⁇ O group can be represented by the following general structures : wherein R 1 , R 2 , and R 3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N ⁇ O group can be attached or wherein the nitrogen of the N ⁇ O group forms part of these groups.
  • the N ⁇ O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N ⁇ O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N ⁇ O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N ⁇ O group is attached to the R-group.
  • polyamine N-oxides are the polyamine oxides whereto the N ⁇ O group is attached to the polymerisable unit.
  • Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (A) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N ⁇ O functional group is part of said R group.
  • polyamine oxides wherein R is a heterocyclic compound such as pyridine, pyrrole, imidazole and derivatives thereof.
  • polyamine N-oxides are the polyamine oxides having the general formula (A) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N ⁇ O functional group is attached to said R groups.
  • polyamine oxides wherein R groups can be aromatic such as phenyl.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • the amine N-oxide polymers useful herein typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000.
  • the amount of amine oxide groups present in the polyamine N-oxide containing polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation.
  • the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000.
  • the polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not.
  • the amine oxide unit of the polyamine N-oxides has a PKa ⁇ 10, preferably PKa ⁇ 7, more preferred PKa ⁇ 6.
  • the polyamine N-oxide containing polymer can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight of the polyamine N-oxide containing polymer is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
  • Such polymers having a net cationic charge include polyvinylpyrrolidone (PVP) as well as copolymers of N-vinylimidazole N-vinyl pyrrolidone, having an average molecular weight range in the range 5,000 to 100,000, preferably 5,000 to 50,000; said copolymers having a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, preferably from 0.8 to 0.3.
  • PVP polyvinylpyrrolidone
  • copolymers of N-vinylimidazole N-vinyl pyrrolidone having an average molecular weight range in the range 5,000 to 100,000, preferably 5,000 to 50,000; said copolymers having a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, preferably from 0.8 to 0.3.
  • Additional softening agents which are nonionic fabric softener materials.
  • nonionic fabric softener materials typically have a HLB of from 2 to 9, more typically from 3 to 7.
  • Such nonionic fabric softener materials tend to be readily dispersed either by themselves, or when combined with other materials such as single-long-chain alkyl cationic surfactant described in detail hereinafter. Dispersibility can be improved by using more single-long-chain alkyl cationic surfactant, mixture with other materials as set forth hereinafter, use of hotter water, and/or more agitation.
  • the materials selected should be relatively crystalline, higher melting, (e.g. >40°C) and relatively water-insoluble.
  • the level of optional nonionic softener in the compositions herein is typically from 0.1% to 10%, preferably from 1% to 5%.
  • Preferred nonionic softeners are fatty acid partial esters of polyhydric alcohols, or anhydrides thereof, wherein the alcohol, or anhydride, contains from 2 to 18, preferably from 2 to 8, carbon atoms, and each fatty acid moiety contains from 12 to 30, preferably from 16 to 20, carbon atoms.
  • such softeners contain from one to 3, preferably 2 fatty acid groups per molecule.
  • the polyhydric alcohol portion of the ester can be ethylene glycol, glycerol, poly (e.g., di-, tri-, tetra, penta-, and/or hexa-) glycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan. Sorbitan esters and polyglycerol monostearate are particularly preferred.
  • the fatty acid portion of the ester is normally derived from fatty acids having from 12 to 30, preferably from 16 to 20, carbon atoms, typical examples of said fatty acids being lauric acid, myristic acid, palmitic acid, stearic acid and behenic acid.
  • Highly preferred optional nonionic softening agents for use in the present invention are the sorbitan esters, which are esterified dehydration products of sorbitol, and the glycerol esters.
  • sorbitan monostearate is a suitable material. Mixtures of sorbitan stearate and sorbitan palmitate having stearate/palmitate weight ratios varying between 10:1 and 1:10, and 1,5-sorbitan esters are also useful.
  • Glycerol and polyglycerol esters especially glycerol, diglycerol, triglycerol, and polyglycerol mono- and/or diesters, preferably mono-, are preferred herein (e.g. polyglycerol monostearate with a trade name of Radiasurf 7248).
  • Useful glycerol and polyglycerol esters include monoesters with stearic, oleic, palmitic, lauric, isostearic, myristic, and/or behenic acids and the diesters of stearic, oleic, palmitic, lauric, isostearic, behenic, and/or myristic acids. It is understood that the typical monoester contains some di- and tri-ester, etc.
  • the "glycerol esters” also include the polyglycerol, e.g., diglycerol through octaglycerol esters.
  • the polyglycerol polyols are formed by condensing glycerin or epichlorohydrin together to link the glycerol moieties via ether linkages.
  • the mono- and/or diesters of the polyglycerol polyols are preferred, the fatty acyl groups typically being those described hereinbefore for the sorbitan and glycerol esters.
  • compositions of the unsaturated material of Formula (I) and (II) above can be prepared that are stable without the addition of concentration aids
  • the concentrated compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients.
  • Surfactant concentration aids are typically selected from the group consisting of single long chain alkyl cationic surfactants; nonionic surfactants; amine oxides; fatty acids; or mixtures thereof, typically used at a level of from 0 to 15% of the composition.
  • Such mono-long-chain-alkyl cationic surfactants useful in the present invention are, preferably, quaternary ammonium salts of the general formula : [R 2 N + R 3 ] X - wherein the R 2 group is C 10 -C 22 hydrocarbon group, preferably C 12 -C 18 alkyl group of the corresponding ester linkage interrupted group with a short alkylene (C 1 -C 4 ) group between the ester linkage and the N, and having a similar hydrocarbon group, e.g., a fatty acid ester of choline, preferably C 12 -C 14 (coco) choline ester and/or C 16 -C 18 tallow choline ester at from 0.1% to 20% by weight of the softener active.
  • R 2 group is C 10 -C 22 hydrocarbon group, preferably C 12 -C 18 alkyl group of the corresponding ester linkage interrupted group with a short alkylene (C 1 -C 4 ) group between the este
  • Each R is a C 1 -C 4 alkyl or substituted (e.g., hydroxy) alkyl, or hydrogen, preferably methyl, and the counterion X - is a softener compatible anion, for example, chloride, bromide, methyl sulfate, etc.
  • cationic materials with ring structures such as alkyl imidazoline, imidazolinium, pyridine, and pyridinium salts having a single C 12 -C 30 alkyl chain can also be used. Very low pH is required to stabilize, e.g., imidazoline ring structures.
  • alkyl imidazolinium salts and their imidazoline precursors useful in the present invention have the general formula : wherein Y 2 is -C(O)-O-, -O-(O)C-, -C(O)-N(R 5 )-, or -N(R 5 )-C(O)- in which R 5 is hydrogen or a C 1 -C 4 alkyl radical; R 6 is a C 1 -C 4 alkyl radical or H (for imidazoline precursors); R 7 and R 8 are each independently selected from R and R 2 as defined hereinbefore for the single-long-chain cationic surfactant with only one being R 2 .
  • alkyl pyridinium salts useful in the present invention have the general formula : wherein R 2 and X- are as defined above.
  • a typical material of this type is cetyl pyridinium chloride.
  • Nonionic Surfactant Alkoxylated Materials
  • Suitable nonionic surfactants for use herein include addition products of ethylene oxide and, optionally, propylene oxide, with fatty alcohols, fatty acids, fatty amines, etc.
  • Suitable compounds are substantially water-soluble surfactants of the general formula : R 2 - Y - (C 2 H 4 O) z - C 2 H 4 OH wherein
  • nonionic surfactants herein are characterized by an HLB (hydrophilic-lipophilic balance) of from 7 to 20, preferably from 8 to 15.
  • HLB hydrophilic-lipophilic balance
  • nonionic surfactants examples include buthionic surfactants
  • Suitable amine oxides include those with one alkyl or hydroxyalkyl moiety of 8 to 28 carbon atoms, preferably from 8 to 16 carbon atoms, and two alkyl moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups with 1 to 3 carbon atoms.
  • Examples include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecyl-amine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, and coconut fatty alkyl dimethylamine oxide.
  • Inorganic viscosity control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention. Incorporation of these components to the composition must be processed at a very slow rate. Components of this type have now been found less needed in the compositions of the invention, especially where such compositions are in a concentrated form. This has result in a simplification of the process formulation (i.e process time reduction).
  • ionizable salts can be used.
  • suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
  • the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
  • the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from 20 to 20,000 parts per million (ppm), preferably from 20 to 11,000 ppm, by weight of the composition. Where the compositions of the invention are in a concentrated form, levels of salts used to control the composition viscosity are reduced by 20% to 50% of such typical levels.
  • Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
  • these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance. These agents may stabilize the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes.
  • Specific examples of alkylene polyammonium salts include l-lysine monohydrochloride and 1,5-diammonium 2-methyl pentane dihydrochloride.
  • the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost relative availability, safety, and environmental compatibility.
  • the level of water in the liquid carrier is preferably at least 50%, most preferably at least 60%, by weight of the carrier.
  • Mixtures of water and low molecular weight, e.g., ⁇ 200, organic solvent, e.g., lower alcohol such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
  • Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
  • antioxidants and reductive agents such as well known antioxidants and reductive agents, Soil Release Polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti ionisation agents, antifoam agents, enzymes, chelants and builders.
  • Soil Release Polymers such as antioxidants and reductive agents, Soil Release Polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti ionisation agents, antifoam agents, enzymes, chelants and builders.
  • emulsifiers such as well known antioxidants and reductive agents, Soil Release Polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti ionisation agents, antifoam agents, enzymes, chelants and builders.
  • compositions A and B were prepared, where Composition A is in accord with the invention and Composition B is a prior art composition: A B DEQA 2.6 2.9 Fatty acid 0.3 - Hydrochloride acid 0.02 0.02 Perfume 1.0 1.0 Silicone antifoam 0.01 0.01 Dye 10ppm 10ppm Water and minors to balance to 100 Viscosity (cps) 100 10
  • Composition A was seen to have a good phase stability and a stable medium viscosity while Composition B was seen to have perfume phase separation and a water-like viscosity.
  • compositions C to E were prepared, where Composition C is in accord with the invention and Compositions D and E are prior art compositions: C D E DEQA 18.0 19.0 19.0 Fatty acid 1.0 - - Hydrochloride acid 0.02 0.02 0.02 Polyethylene Glycol 4000 0.6 0.6 0.6 Perfume 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
  • compositions C was seen to have a good phase stability and a stable medium viscosity as did Composition E which had compensated the absence of fatty acid with an increased level of electrolyte while Composition D was seen to have a gel-like viscosity.
  • compositions C and E were then assessed for their storage stability.
  • Viscosity measures were first made on freshly made product. The products were then put in a room with constant temperature for a specified period of time (See table below).
  • composition C of the invention has a better storage stability than Composition E.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Biological Depolymerization Polymers (AREA)

Claims (8)

  1. Flüssige Textilweichmacherzusammensetzung, umfassend
    a) eine oder mehrere bioabbaubare Textilweichmacherverbindungen.
    b) eine oder mehrere Fettsäureverbindungen,
    wobei das Verhältnis der Textilweichmachermittel zu den Fettsäureverbindungen 20:1 bis 6.5:1 beträgt, wobei die bioabbaubaren Textilweichmacherverbindungen gewählt sind aus bioabbaubaren quaternären Ammoniumverbindungen der Formel:
    Figure 00260001
    oder
    Figure 00260002
    worin bedeuten:
    Q gewählt aus -O-C(O)-. -C(O)-O-. -O-C(O)-O-;
    R1 (CH2)n-Q-T2 oder T3:
    R2 (CH2)m-Q-T4 oder T5 oder R3;
    R3 C1-C4-Alkyl oder C1-C4-Hydroxyalkyl oder H;
    R4 H oder C1-C4-Alkyl oder C1-C4-Hydroxyalkyl:
    T1, T2, T3, T4, T5 unabhängig C11-C22-Alkyl oder -Alkenyl;
    n und m ganze Zahlen von 1 bis 4: und
    X- ein weichmacherverträgliches Anion.
  2. Textilweichmacherzusammensetzung nach Anspruch 1, wobei das Verhältnis der Textilweichmacherverbindungen zu den Fettsäureverbindungen 20:1 bis 10:1 beträgt.
  3. Textilweichmacherzusammensetzung nach Anspruch 1 und/oder 2, wobei die Fettsäureverbindungen eine Iodzahl von 0 bis 25 aufweisen.
  4. Textilweichmacherzusammensetzung nach mindestens einem der Ansprüche 1-3, wobei die Zusammensetzung weiterhin zusätzliche Textilweichmacherverbindungen, welche von den bioabbaubaren Textilweichmacherverbindungen verschieden sind, und welche aus kationischen, nichtionischen, amphoteren, anionischen Textilweichmacherverbindungen und Mischungen hiervon gewählt sind, enthält.
  5. Textilweichmacherzusammensetzung nach mindestens einem der Ansprüche 1-4, wobei die bioabbaubare Textilweichmacherverbindung N,N-Di(tallowoyl-oxylethyl)-N,N-dimethylammoniumchlorid ist.
  6. Textilweichmacherzasammensetzung nach mindestens einem der Ansprüche 1-5, wobei die Textilweichmacherzusammensetzung einen unverdünnten pH bei 20°C im Bereich von 2,0 bis 4,5 aufweist.
  7. Textilweichmacherzusammensetzung nach mindestens einem der Ansprüche 1-6, wobei die Textilweichmacherzusammensetzung weiterhin ein Parfüm in einem Verhältnis von Parfüm zu Gesamtmenge an bioabbaubaren Textilweichmacherkomponenten und Fettsäurekomponenten von 1:40 bis 1:2 umfaßt.
  8. Verwendung einer Textilweichmacherzusammensetzung nach mindestens einem der Ansprüche 1-7 im Spülzyklus eines Wäschewaschverfahrens.
EP95870104A 1995-09-18 1995-09-18 Stabilisierte Textilweichmacherzusammensetzungen Revoked EP0763592B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE69526439T DE69526439T2 (de) 1995-09-18 1995-09-18 Stabilisierte Textilweichmacherzusammensetzungen
EP95870104A EP0763592B1 (de) 1995-09-18 1995-09-18 Stabilisierte Textilweichmacherzusammensetzungen
ES95870104T ES2174913T3 (es) 1995-09-18 1995-09-18 Composiciones estabilizadas suavizantes de tejidos.
ZA9607563A ZA967563B (en) 1995-09-18 1996-09-06 Stabilised fabric softening compositions.
BR9610489A BR9610489A (pt) 1995-09-18 1996-09-13 Composições estabilizadas para amaciar tecidos
US09/029,780 US5929025A (en) 1995-09-18 1996-09-13 Stabilized fabric softening compositions comprising a fabric softening compound, fatty acid, and perfume
JP9512825A JPH11512499A (ja) 1995-09-18 1996-09-13 安定な布地柔軟化組成物
CA002232413A CA2232413C (en) 1995-09-18 1996-09-13 Stabilised fabric softening compositions
PCT/US1996/014865 WO1997011142A1 (en) 1995-09-18 1996-09-13 Stabilised fabric softening compositions
MX9802105A MX9802105A (es) 1995-09-18 1998-03-17 Composiciones estabilizadas suavizadoras de telas.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95870104A EP0763592B1 (de) 1995-09-18 1995-09-18 Stabilisierte Textilweichmacherzusammensetzungen

Publications (2)

Publication Number Publication Date
EP0763592A1 EP0763592A1 (de) 1997-03-19
EP0763592B1 true EP0763592B1 (de) 2002-04-17

Family

ID=8222155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95870104A Revoked EP0763592B1 (de) 1995-09-18 1995-09-18 Stabilisierte Textilweichmacherzusammensetzungen

Country Status (9)

Country Link
EP (1) EP0763592B1 (de)
JP (1) JPH11512499A (de)
BR (1) BR9610489A (de)
CA (1) CA2232413C (de)
DE (1) DE69526439T2 (de)
ES (1) ES2174913T3 (de)
MX (1) MX9802105A (de)
WO (1) WO1997011142A1 (de)
ZA (1) ZA967563B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP9802207A3 (en) * 1995-07-11 2000-11-28 Procter And Gamble Company Cin Concentrated, stable fabric softening compositions including chelants
GB9602608D0 (en) 1996-02-09 1996-04-10 Unilever Plc Fabric softening composition
JP4781527B2 (ja) * 1997-07-29 2011-09-28 ザ プロクター アンド ギャンブル カンパニー アミン布地柔軟剤を含有する濃縮された安定な、好ましくは透明な布地柔軟組成物
JP2003519293A (ja) * 1999-07-02 2003-06-17 ザ ダウ ケミカル カンパニー アルコキシレート化添加剤を含有する透明な軟化用調合物
AU2008247488B2 (en) 2007-05-04 2014-02-27 Marina Biotech, Inc. Amino acid lipids and uses thereof
DE102010030217A1 (de) 2010-06-17 2011-12-22 Henkel Ag & Co. Kgaa Verdickter Weichspüler
GB201215753D0 (en) * 2012-09-04 2012-10-17 Reckitt Benckiser Nv Composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707059A2 (de) * 1994-10-14 1996-04-17 Kao Corporation Flüssige Weichspülerzusammensetzung, ihre Verwendung und Verfahren zur Herstellung eines quaternären Ammoniumsalzes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK131432A (de) 1968-12-09
US4327133A (en) 1977-11-21 1982-04-27 Lever Brothers Company Additives for clothes dryers
FR2440433A1 (fr) * 1978-11-03 1980-05-30 Unilever Nv Composition d'assouplissement des etoffes et procede pour la preparer
EP0013780B2 (de) 1979-01-11 1988-08-31 THE PROCTER & GAMBLE COMPANY Konzentrierte Textilweichmachungs-Zusammensetzung
FR2482636A1 (fr) 1980-05-14 1981-11-20 Lesieur Cotelle Et Associes Sa Composition adoucissante concentree pour fibres textiles
US4421792A (en) 1980-06-20 1983-12-20 Lever Brothers Company Additives for clothes dryers
US4460485A (en) 1983-07-15 1984-07-17 Lever Brothers Company Polyester fabric conditioning and whitening composition
US4661269A (en) 1985-03-28 1987-04-28 The Procter & Gamble Company Liquid fabric softener
GB2188653A (en) 1986-04-02 1987-10-07 Procter & Gamble Biodegradable fabric softeners
GB8905552D0 (en) * 1989-03-10 1989-04-19 Unilever Plc Fabric conditioning
US5409621A (en) * 1991-03-25 1995-04-25 Lever Brothers Company, Division Of Conopco, Inc. Fabric softening composition
GB9209170D0 (en) * 1992-04-28 1992-06-10 Unilever Plc Rinse conditioner
EP0687291B2 (de) * 1993-03-01 2005-08-24 The Procter & Gamble Company Konzentrierte biologisch abbaubare weichspülerzusammensetzungen auf der basis von quartären ammoniumverbindungen
JP3357453B2 (ja) * 1993-09-10 2002-12-16 花王株式会社 液体柔軟仕上剤組成物並びに新規第4級アンモニウム塩並びに該塩の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707059A2 (de) * 1994-10-14 1996-04-17 Kao Corporation Flüssige Weichspülerzusammensetzung, ihre Verwendung und Verfahren zur Herstellung eines quaternären Ammoniumsalzes

Also Published As

Publication number Publication date
DE69526439T2 (de) 2002-12-12
BR9610489A (pt) 1999-03-23
MX9802105A (es) 1998-08-30
JPH11512499A (ja) 1999-10-26
DE69526439D1 (de) 2002-05-23
CA2232413C (en) 2002-11-12
ZA967563B (en) 1997-10-24
WO1997011142A1 (en) 1997-03-27
EP0763592A1 (de) 1997-03-19
ES2174913T3 (es) 2002-11-16
CA2232413A1 (en) 1997-03-27

Similar Documents

Publication Publication Date Title
EP0757715B1 (de) Cellulase enthaltende gewebeweichmachende zusammensetzungen
CA2250909C (en) Fabric softener compositions
EP0713523B1 (de) Wäscheweichmacherzusammentzungen enthaltend zellulase
EP0907701B1 (de) Textilweichmacherzusammensetzungen
US6008184A (en) Block copolymers for improved viscosity stability in concentrated fabric softeners
US6020304A (en) Fabric softener compositions
EP0713522B1 (de) Wäscheweichmachenzusammensetzungen
EP0763592B1 (de) Stabilisierte Textilweichmacherzusammensetzungen
EP0705900B1 (de) Blockkopolymere für verbesserte Viskositätsstabilität in konzentrierten Weichspülmitteln
US6143712A (en) Fabric softening compositions
US5929025A (en) Stabilized fabric softening compositions comprising a fabric softening compound, fatty acid, and perfume
CA2257199C (en) Fabric softening compositions
EP0811679B1 (de) Textilweichmacherzusammensetzungen
EP0754749A1 (de) Textilweichmacher, die wasserlösliche Farbstoffe für verringerte Verfärbung enthalten
EP0839899B1 (de) Gewebeweichmacherzusammensetzungen
WO1997036976A1 (en) Use of a fabric softener composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19970804

17Q First examination report despatched

Effective date: 19991222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 69526439

Country of ref document: DE

Date of ref document: 20020523

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2174913

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: UNILEVER PLC

Effective date: 20030117

Opponent name: HENKEL KGAA

Effective date: 20030113

R26 Opposition filed (corrected)

Opponent name: UNILEVER PLC

Effective date: 20030117

Opponent name: HENKEL KGAA

Effective date: 20030113

NLR1 Nl: opposition has been filed with the epo

Opponent name: UNILEVER PLC

Opponent name: HENKEL KGAA

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050808

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050902

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050916

Year of fee payment: 11

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060919

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070918

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: UNILEVER PLC

Effective date: 20030117

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20030113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090807

Year of fee payment: 15

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090930

Year of fee payment: 15

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20100120

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20100120