EP0757117B1 - Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe - Google Patents

Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe Download PDF

Info

Publication number
EP0757117B1
EP0757117B1 EP19950305392 EP95305392A EP0757117B1 EP 0757117 B1 EP0757117 B1 EP 0757117B1 EP 19950305392 EP19950305392 EP 19950305392 EP 95305392 A EP95305392 A EP 95305392A EP 0757117 B1 EP0757117 B1 EP 0757117B1
Authority
EP
European Patent Office
Prior art keywords
gas
nozzle
deposition cycle
flow rate
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19950305392
Other languages
English (en)
French (fr)
Other versions
EP0757117A1 (de
Inventor
Richard H. Glaenzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunEdison Inc
Original Assignee
SunEdison Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunEdison Inc filed Critical SunEdison Inc
Priority to EP19950305392 priority Critical patent/EP0757117B1/de
Priority to DE1995610667 priority patent/DE69510667T2/de
Priority to SG1996010408A priority patent/SG49344A1/en
Publication of EP0757117A1 publication Critical patent/EP0757117A1/de
Application granted granted Critical
Publication of EP0757117B1 publication Critical patent/EP0757117B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • This invention relates generally to chemical vapor deposition of material onto semiconductor wafers, and more particularly to a method and apparatus for improving thickness uniformity of a layer of material deposited on semiconductor wafers in a barrel type chemical vapor deposition reactor.
  • Chemical vapor deposition is a process by which a stable solid may be formed by decomposition of chemical vapors using heat, plasma, ultraviolet light or other energy sources. Chemical vapor deposition is widely employed in the production of semiconductor wafers to grow epitaxial layers on a surface of the wafers, as well as for the deposition of polysilicon on the wafers. Epitaxy is an important process in the semiconductor material industry for achieving the necessary electrical properties of the semiconductor material. For example, a lightly doped epitaxial layer grown over a heavily doped substrate permits a CMOS device to be optimized for latch up immunity as a result of low resistance of the substrate. Other advantages, such as precise control of the dopant concentration profile and freedom from oxygen are also achieved.
  • Epitaxial growth is almost universally carried out by chemical vapor deposition because it is the most flexible and cost efficient method for growing epitaxial layers on semiconductor material.
  • chemical vapor deposition involves introduction of volatile reactants (e.g., SiCl 4 , SiHCl 3 , SiH 2 Cl 2 or SiH 4 ) with a carrier gas (usually hydrogen) in a reactor.
  • a carrier gas usually hydrogen
  • Achieving the desired epitaxial growth on the semiconductor material is also temperature dependent.
  • the temperature in the reactor may be from 950° C to 1250° C.
  • the environment in which the deposition occurs must be clean with the oxygen content below 1 ppma.
  • epitaxial growth can be divided into two regimes distinguished by the temperature and concentration of reactants.
  • the reaction at the surface of the wafer is so fast that the growth rate is determined by the transport of reactants to the surface.
  • the throughput is high because the growth rate is high.
  • the rate controlling factor of the deposit is determined by the reaction rate at the surface. This is the reaction rate or kinetic limited regime.
  • a barrel reactor has silicon carbide coated, graphite susceptor which is generally in the form of a polygonal tube having walls in which there are generally vertically arranged, circular recesses for receiving semiconductor wafers.
  • the reactants and carrier gas are introduced generally at the top of the reactor through two nozzles which direct streams of gas in generally horizontal directions.
  • the mass flow rate of gas through each nozzle remains substantially constant throughout the deposition cycle of the barrel reactor.
  • the streams of gas from each nozzle collide with each other and a wall of the reactor, and the gas flows generally downwardly and then up on the opposite side of the susceptor.
  • the gas flow is made more complex by interaction of the gas with the walls of the reactor and the rotation of the susceptor in the reactor, but the flow of the gas is always substantially parallel to the faces of the wafers.
  • One of the primary problems associated with chemical vapor deposition in the transport limited regime in barrel reactors is maintaining the thickness uniformity of the deposited layer of material on each wafer and between the various wafers held on the susceptor. Thickness uniformity has become increasingly important as the line widths of integrated circuits are reduced. Narrow line widths of integrated circuits require very flat surfaces to accommodate the limited depth-of-field of optical lithography.
  • the most common methods of controlling thickness uniformity are to adjust the direction of the nozzles and to adjust the valves which control the flow rate of gas to each nozzle.
  • adjustment of the direction of the nozzles affects the thickness uniformity in a vertical direction along the wafers, and adjustment of the relative mass flow rates between the nozzles affects the thickness uniformity in horizontal directions.
  • minor changes to achieve thickness uniformity can be made through temperature adjustments and altering the flow of carrier gas (H 2 ) through the nozzles and purge gas (H 2 ) through the susceptor. It is also known to reverse the direction of rotation of the susceptor half way through the deposition cycle of the barrel reactor to improve thickness uniformity.
  • a barrel reactor which carries out the method of the present invention; the provision of such a barrel reactor which alters mass flow rates during the deposition process to achieve greater thickness uniformity in the layer of material deposited on the wafers.
  • a barrel reactor for use in chemical vapor deposition of a layer of material on one face of wafers of semiconductor material, is generally indicated at 10.
  • the barrel reactor includes a quartz bell jar 12 (in an inverted position) having an upper lip (not shown) secured between an annular baseplate 16 and a radially projecting flange 17 of a gas ring indicated generally at 18.
  • the gas ring at least partially houses a first nozzle 20 and a second nozzle 21 for introduction of gas, including a reactant which is to be decomposed for deposition on the wafers and a carrier, into the bell jar 12.
  • the gas is delivered through a delivery system, generally indicated at 31, to the nozzles 20, 21.
  • the bell jar 12 is formed with an exhaust port (not shown) in its bottom through which spent gas is exhausted.
  • a housing 24 containing the bell jar 12 also contains radiant heat lamps 26 and heat exchangers 28 for controlling the heat applied to the chamber of the bell jar.
  • a five sided, silicon carbide coated graphite susceptor (indicated generally at 30) is hung by a quartz hanger 32 from a lift assembly (indicated generally at 34) capable of lowering the susceptor into the bell jar 12 and raising it out of the bell jar.
  • the susceptor 30 has three, vertically arranged recesses (not shown) in each wall, each of which is sized to hold a 150 millimeter semiconductor wafer. It is to be understood that the susceptor 30 may have different numbers of walls and wafer recesses, and being constructed for processing wafers of different sizes while still falling within the scope of the present invention.
  • the lift assembly 34 includes a cap 36 supporting a sealing plate 37 sealingly engageable with the gas ring 18 for sealing the bell jar chamber, and lift arms 38 connected to the cap for raising and lowering the cap.
  • a purge baffle 40 depends from the cap 36.
  • a drive assembly 42 for rotating the susceptor 30 about its longitudinal axis is located on top of the cap 36.
  • Purge gas lines 46 connected through the cap 36 deliver purge gas generally through the center of the susceptor 30.
  • a preferred delivery system 31 for delivering gas from a source of vaporized deposit material and carrier gas (collectively, "gas") is shown in Fig. 1.
  • gas flows in a primary delivery line 47 from the source through a governor device (not shown, but well known to those of ordinary skill in the art) for maintaining a constant total mass flow rate of gas to the first and second nozzles 20, 21.
  • the primary line 47 separates into a first branch (generally indicated at 47A) which continues on to the first nozzle 20, and a second branch (generally indicated at 47B) which continues on to the second nozzle 21.
  • the first branch 47A includes a feed line 49 extending from a junction with the primary line 47 to a three way valve 48 operable to selectively divert gas to a first bellows metering valve 50 or a second bellows metering valve 52 piped in parallel with the first bellows metering valve.
  • a terminal line 54 in communication with both of the first and second bellows metering valves 50, 52 transports the gas to the first nozzle 20.
  • the second branch 47B has a similar arrangement, i.e., a feed line 56 extending from the primary line 47 to a three way valve 58 capable of selectively diverting flow to a third bellows metering valve 60 or a fourth bellows metering valve 62 connected in parallel, and a terminal line 64 leading from the third and fourth bellows metering valves to the second nozzle 21.
  • the three way valves 48, 58 and bellows metering valves 50, 52, 60, 62 constitute means for changing the mass flow rates through the first and second nozzles 20, 21 in the piping arrangement shown in Fig. 1.
  • first and second nozzles 20, 21 may be used without departing from the scope of the present invention.
  • one of the pairs of bellows metering valves may be eliminated and replaced with a single bellows metering valve in a line (not shown) extending from the primary line to the first or second nozzle.
  • FIG. 1A Another gas delivery system 31' capable of achieving the objects of the present invention is shown in Fig. 1A to comprise a single bellows metering valve (designated 100, 102, respectively) for each branch 47A, 47B of the delivery system.
  • each bellows metering valve 100, 102 has associated with it an automatic adjustment mechanism capable 104 of adjusting the orifice size of that bellows metering valve, and therefore the mass flow rate of gas through the valve and the corresponding nozzle (20 or 21).
  • the automatic adjustment mechanisms 104 are connected to a suitable controller (not shown) which controls their operation. It is also possible to adjust the bellows metering valves 100, 102 manually.
  • the susceptor 30 is loaded with wafers and lowered into the bell jar 12 of the reactor by the lift assembly 34 which simultaneously lowers the seal plate 37 into sealing engagement with the gas ring 18 to seal the interior of the bell jar 12.
  • the environment in the bell jar 12 is purged of oxygen and the heating lamps 26 are activated.
  • the control (not shown) activates the drive assembly 42 to begin rotation of the susceptor in a first direction (clockwise as seen in Fig. 3). Flow of reactant vapor and carrier gas is initiated so that the first and second nozzles 20, 21 emit streams of gas into the bell jar 12.
  • the deposition cycle of the barrel reactor 10 begins as the reactants carried by the carrier gas decompose in the environment of the bell jar 12 and are deposited on the exposed faces of the wafers.
  • the direction of rotation of the susceptor 30 may be reversed during a second half of the deposition cycle, as shown in Fig. 4.
  • the mass flow rate of gas from the first and second nozzles 20, 21 is substantially constant throughout the entire deposition cycle.
  • the mass flow rates of gas from each nozzle 20, 21 are approximately the same.
  • the mass flow rates of gas from the first and second nozzles 20, 21 are selectively varied during different portions of the deposition cycle.
  • gas is emitted from the first nozzle 20 at a greater mass flow rate than from the second nozzle 21 during a first portion of the deposition cycle. As shown in Fig.
  • gas is emitted from the first nozzle 20 at a lesser mass flow rate that from the second nozzle 21 during a second portion of the deposition cycle.
  • the mass flow rates are indicated in Figs. 3 and 4 with heavy and light arrows, the heavier arrow indicating the greater mass flow rate.
  • the change in the mass flow rate of the gas in the gas delivery system 31 is achieved by operation of the three way valves 48, 58 and bellows metering valves (50, 52, 60, 62) of the first and second branches 47A, 47B of the delivery system 31.
  • the three way valve 48 of the first branch is set by operation of the control 44 to divert the gas flow through the first bellows metering valve 50 which has been set to permit gas to pass through it at a first rate.
  • the control 44 operates the three way valve 58 of the second branch 47B to divert gas through the third bellows metering valve 60 which is set to permit gas to pass through it at a second rate which is substantially less than the first rate.
  • the control 44 operates the three way valve 48 of the first branch 47A to divert the flow of gas through the second bellows metering valve 52 so that gas is now emitted from the first nozzle 20 at approximately the same (second) rate at which it was formerly emitted from the second nozzle 21.
  • the three way valve 58 of the second branch 47B is simultaneously activated to divert flow through the fourth bellows metering valve 62 so that gas is now emitted from the second nozzle 21 at approximately the same (first) rate it was formerly emitted from the first nozzle 20.
  • the mass flow rates of gas through the first and second nozzles 20, 21 is unbalanced by an approximately equal and opposite amount during the first and second portions of the deposition cycle.
  • the mass flow rate from the first and second nozzles 20, 21 is changed during the deposition cycle, the total mass flow through the nozzles remains substantially constant throughout the deposition cycle.
  • the second branch would have a single bellows metering valve (not shown) through which gas would pass to the corresponding nozzle throughout the entire deposition cycle.
  • the pair of bellows metering valves 50, 52 on the first branch 47A would be set so that during the mass flow rate of gas through the first nozzle 20 was greater than the mass flow rate through the second nozzle 21 during a first half of the deposition cycle, and less than the mass flow rate through the second nozzle during a second half of the deposition cycle. The difference between the two flow rates is again approximately the same during both halves of the deposition cycle.
  • the first nozzle 20 is initially supplied with gas at a greater mass flow rate than is supplied to the second nozzle 21.
  • the valve adjusting mechanisms 104 adjust the bellows metering valves 100, 102 to gradually decrease the mass flow rate through the first nozzle 20 and gradually increase the mass flow rate through the second nozzle 21 throughout the deposition cycle.
  • the adjustments can be made continuously, or at intervals during the deposition cycle. Preferably the adjustments are made at the same time, and in equal and opposite amounts.
  • Rotation of the susceptor 30 is preferably into the flow of gas emitted from the nozzle having the greater mass flow rate during a particular portion of the cycle.
  • the direction of motion of the portion of the susceptor 30 adjacent to the stream of gas emitted from the nozzle at the greater mass flow rate is generally opposite to the direction of flow of gas in the stream. Accordingly, the direction of rotation of the susceptor 30 is reversed by the control 44 at the same time the three way metering valves 48, 58 are activated by the control to change the relative mass flow rates through the first and second nozzles 20, 21.
  • the final thickness of the layer of material deposited on the wafers is a composite of the thickness profiles graphically illustrated in Figs. 9A and 9B.
  • Figure 9A illustrates the right to left thickness profile of all three wafers on one wall of the susceptor during the first half of the deposition cycle
  • Fig. 9B illustrates the thickness profile during the second half of the cycle.
  • the "right" side and the "left" side of the wafers referred to herein, as well as the top and bottom of the wafers are the right, left, top and bottom of the wafers as they would be seen on the wall of the susceptor 30 from the vantage indicated by arrow V in Figs. 3 and 4.
  • the material is deposited to a significantly greater thickness on the right side of the wafers than on the left during the first half of the deposition cycle.
  • the reverse is true during the second half of the deposition cycle (see Fig. 9B).
  • the composite thickness profile, shown in Fig. 8, is flatter than the wavy, W-shaped thickness profile (Fig. 6) of the wafers processed according to the prior art method described above. In other words, more of the measurements are concentrated around a normalized thickness of 1 with the method of the present invention than in the prior art method.
  • FIG. 5 Another important result of the present invention is the improvement in the thickness profile measured at intervals from the top to the bottom of each of the three wafers on one wall of the susceptor 30.
  • the profile for wafers processed according to the existing method is shown in Fig. 5.
  • the thickness of the deposited layer of material drops off dramatically near the top of the top wafer (wafer #1) on the wall.
  • the barrel reactor and method of the present invention produces a top to bottom thickness profile which is very flat.
  • the top wafer (wafer #1) does not exhibit the substantial fall off in thickness found in the prior art.
  • top to bottom thickness is caused by the imbalance in mass flow rates from the first and second nozzles 20, 21 during the deposition cycle.
  • the imbalance in mass flow rates imparts a spiral motion to the gas around susceptor 30 after the streams from the two nozzles 20, 21 collide.
  • the horizontal component is believed to permit the gas to reside longer at the top of the susceptor 30, causing more material to be deposited at the top of the top wafer (wafer #1).
  • the greater the imbalance in mass flow rates from the nozzles the tighter the pitch of the spiral and the longer undecomposed reactant vapor resides near the top of the susceptor 30 in the bell jar 12.
  • the barrel reactor 10 and method of the present invention also produce overall thickness uniformity superior to the reactors and methods known in the prior art.
  • measurements of the wafers processed in existing reactors and those processed in the reactor 10 of the present invention were taken at the locations indicated by an "+" in Fig. 10.
  • Ten runs were made using the old process and ten runs using the process of the present invention. In each case, 150 millimeter wafers were used.
  • Twenty-five epitaxial layer thickness measurements were made along eight radii 45° apart around the center of the processed wafers. Measurements were made in the center and at 25 millimeters, 45 millimeters and 65 millimeters from the center, and an area was assigned to each position.
  • the greatest area (5.86% of the wafer face area) is assigned to the radially outermost measurement locations, and the smallest assigned area (1.86%) is at the center measurement location.
  • An area weight cumulative average thickness was calculated for each set of 30 wafers processed corresponding to a respective method.
  • a cumulative plot of the area thicknesses according to a percent deviation from the area weighted thickness average is shown for both wafers processed according to the present invention and those processed according to the prior art in Fig. 11.
  • the thickness of all of the areas of the wafers processed according to the present invention fall within 4.2% of the area weighted average thickness.
  • only 95% of the areas have a thickness which falls within 5% of the area weighted average.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Claims (14)

  1. Verfahren zur chemischen Dampfabscheidung von Material auf einer Halbleiterscheibe (W), die auf einem Halter (30) in einer Reaktionskammer eines trommelartigen, chemischen Dampfabscheidungsreaktors (10) gehalten ist, mit den Stufen der Einführung von Gas, das wenigstens zum Teil aus auf der Halbleiterscheibe abzuscheidendem, verdampftem Material besteht, durch eine erste Düse (20) und eine von der ersten Düse auf Abstand gehaltene zweite Düse (21), und Drehung des Halters um eine Achse, wobei die Stufen der Gaseinführung und Halterdrehung während eines Abscheidungszyklus des Reaktors durchgeführt werden, dadurch gekennzeichnet, daß die erste Düse (20) während eines ersten Teils des Abscheidungszyklus Gas mit einer größeren Massenströmungsgeschwindigkeit als die zweite Düse (21) liefert und die zweite Düse (21) während eines zweiten Teils des Abscheidungszyklus Gas mit einer größeren Massenströmungsgeschwindigkeit als die erste Düse (20) liefert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Halter (30) während des ersten Teils des Abscheidungszyklus des Reaktors (10) in einer ersten Richtung dreht und während des zweiten Teils des Abscheidungszyklus in einer zu der ersten Richtung entgegengesetzten zweiten Richtung dreht.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die erste Richtung im allgemeinen gegen die Strömung des durch die erste Düse (20) während des ersten Teils des Abscheidungszyklus eingeführten Gases gerichtet ist und daß die zweite Richtung im allgemeinen gegen die Strömung des während des zweiten Teils des Abscheidungszyklus durch die zweite Düse (21) eingeführten Gases gerichtet ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Massenströmungsgeschwindigkeit, mit der Gas durch die erste Düse (20) geliefert wird, in dem ersten und zweiten Teil des Abscheidungszyklus verringert wird und die Massenströmungsgeschwindigkeit, mit der Gas durch die zweite Düse (21) geliefert wird, in dem ersten und zweiten Teil des Abscheidungszyklus erhöht wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Massenströmungsgeschwindigkeiten, mit denen Gas durch die erste und zweite Düse (20,21) geliefert wird, während des Abscheidungszyklus um im wesentlichen gleiche und entgegengesetzte Beträge verändert werden.
  6. Verfahren nach Anspruch 4 oder Anspruch 5, dadurch gekennzeichnet, daß die Massenströmungsgeschwindigkeit, mit der Gas durch die erste Düse (20) geliefert wird, während des Abscheidungszyklus kontinuierlich vermindert wird und die Massenströmungsgeschwindigkeit, mit der Gas durch die zweiten Düse (21) geliefert wird, während des Abscheidungszyklus kontinuierlich erhöht wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, ferner dadurch gekennzeichnet, daß man den gesamten Massenstrom des Gases aus der ersten und zweiten Düse (20,21) zusammen während des Abscheidungszyklus im wesentlichen konstant hält.
  8. Trommelreaktor (10) für die Abscheidung von Material auf einer Halbleiterscheibe, mit einer Reaktionskammer, einem zur Aufnahme in der Reaktionskammer geeigneten Halter (30), der die Halbleiterscheibe (W) hält und in der Reaktionskammer um eine Achse drehbar angebracht ist, und einem Gaszuführungssystem (31, 31') für die Zuführung von Gas, das wenigstens teilweise aus auf der Halbleiterscheibe abzuscheidendem, verdampftem Material besteht, aus einer Quelle in die Reaktionskammer, wobei das Zuführungssystem (31,31') eine erste Zweigleitung (47A) mit einer ersten Düse (20) zur Gaseinführung in die Reaktionskammer und eine zweite Zweigleitung (47B) mit einer zweiten Düse (21) für die Gaseinführung in die Reaktionskammer umfaßt, und wobei der Trommelreaktor (10) dadurch gekennzeichnet ist, daß wenigstens eine von der ersten und zweiten Zweigleitung (47A,47B) Einrichtungen zur Änderung der Massenströmungsgeschwindigkeit des Gases enthält, so daß die Massenströmungsgeschwindigkeit durch die erste Düse (20) in einem ersten Teil eines Abscheidungszyklus größer als die Massenströmungsgeschwindigkeit durch die zweite Düse (21) ist und die Massenströmungsgeschwindigkeit durch die zweite Düse (21) in einem zweiten Teil des Abscheidungszyklus größer als die Massenströmungsgeschwindigkeit durch die erste Düse (20) ist, wobei die genannte Änderungseinrichtung so konstruiert ist, daß die Massenströmungsgeschwindigkeit des Gases ohne Änderung der Konzentration des verdampften Abscheidungsmaterials in dem Gas geändert wird.
  9. Trommelreaktor nach Anspruch 8, dadurch gekennzeichnet, daß die genannte mit der ersten Zweigleitung (47A) verbundene Änderungseinrichtung ein erstes Dosiergerät (50) zur Dosierung der Gasströmung durch die erste Düse (20) bei einer ersten Strömungsgeschwindigkeit und ein zweites Dosiergerät (52) zur Dosierung der Gasströmung durch die erste Düse bei einer zweiten Strömungsgeschwindigkeit und ein Ventil (48) umfaßt, um in dem ersten Teil des Abscheidungssyklus das erste Dosiergerät und im zweiten Teil des Abscheidungszyklus das zweite Dosiergerät mit der Gasquelle und der ersten Düse (20) zu verbinden.
  10. Trommelreaktor nach Anspruch 8 oder Anspruch 9, dadurch gekennzeichnet, daß die mit der zweiten Zweigleitung (47B) verbundene Änderungseinrichtung ein erstes Dosiergerät (60) zur Dosierung der Gasströmung durch die zweite Düse (21) bei einer ersten Strömungsgeschwindigkeit und ein zweites Dosiergerät (62) zur Dosierung der Gasströmung durch die zweite Düse (21) bei einer zweiten Strömungsgeschwindigkeit sowie ein Ventil (58) umfaßt, um während des ersten Teils des Abscheidungszyklus das erste Dosiergerät (60) und in dem zweiten Teil des Abscheidungszyklus das zweite Dosiergerät (62) mit der Gasquelle und der zweiten Düse (21) zu verbinden.
  11. Trommelreaktor nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die mit der ersten Zweigleitung (47A) verbundene Änderungseinrichtung (100) und die mit der zweiten Zweigleitung (47B) verbundene Änderungseinrichtung (102) in dem ersten und zweiten Teil des Abscheidungszyklus des Trommelreaktors (10) die Massenströmungsgeschwindigkeiten der ersten und zweiten Düse (20,21) allmählich um entgegengesetzte Beträge verändern.
  12. Trommelreaktor nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß zur Änderung der Massenströmungsgeschwindigkeit des Gases die genannte Änderungseinrichtung so konstruiert ist, daß unterschiedliche Drosselungen geschaffen werden, durch die das Gas mit dem verdampften Abscheidungsmaterial dosiert wird.
  13. Trommelreaktor nach einem der Ansprüche 8 bis 12, ferner mit einer automatischen Regelung, dadurch gekennzeichnet, daß die automatische Regelung die genannte Änderungseinrichtung so regelt, daß die Massenströmungsgeschwindigkeit durch die erste Düse (20) in dem ersten Teil des Abscheidungszyklus größer als die Massenströmungsgeschwindigkeit durch die zweite Düse (21) ist und die Massenströmungsgeschwindigkeit durch die zweite Düse (21) in dem zweiten Teil des Abscheidungszyklus größer als die Massenströmungsgeschwindigkeit durch die erste Düse (20) ist.
  14. Trommelreaktor nach einem der Ansprüche 8 bis 13, bei dem das Zuführungssystem (31,31') weiter dadurch gekennzeichnet ist, daß ein Stromregler für die Gasversorgung zu der ersten und zweiten Zweigleitung (47A,47B) während des Abscheidungszyklus einen im wesentlichen konstanten Gesamtgasstrom aus der ersten und zweiten Düse (20,21) aufrechterhält.
EP19950305392 1995-08-01 1995-08-01 Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe Expired - Lifetime EP0757117B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19950305392 EP0757117B1 (de) 1995-08-01 1995-08-01 Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe
DE1995610667 DE69510667T2 (de) 1995-08-01 1995-08-01 Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe
SG1996010408A SG49344A1 (en) 1995-08-01 1996-08-01 Method and apparatus for deposition of material on a semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19950305392 EP0757117B1 (de) 1995-08-01 1995-08-01 Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe

Publications (2)

Publication Number Publication Date
EP0757117A1 EP0757117A1 (de) 1997-02-05
EP0757117B1 true EP0757117B1 (de) 1999-07-07

Family

ID=8221278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950305392 Expired - Lifetime EP0757117B1 (de) 1995-08-01 1995-08-01 Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe

Country Status (3)

Country Link
EP (1) EP0757117B1 (de)
DE (1) DE69510667T2 (de)
SG (1) SG49344A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404049B2 (en) 2007-12-27 2013-03-26 Memc Electronic Materials, Inc. Epitaxial barrel susceptor having improved thickness uniformity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195934B2 (en) * 2005-07-11 2007-03-27 Applied Materials, Inc. Method and system for deposition tuning in an epitaxial film growth apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913676A1 (de) * 1969-03-18 1970-09-24 Siemens Ag Verfahren zum Abscheiden von Schichten aus halbleitendem bzw. isolierendem Material aus einem stroemenden Reaktionsgas auf erhitzte Halbleiterkristalle bzw. zum Dotieren solcher Kristalle aus einem stroemenden dotierenden Gas
JP2882605B2 (ja) * 1987-08-27 1999-04-12 テキサス インスツルメンツ インコーポレイテッド 歪み層超格子構造の連続成長方法
US4928626A (en) * 1989-05-19 1990-05-29 Applied Materials, Inc. Reactant gas injection for IC processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404049B2 (en) 2007-12-27 2013-03-26 Memc Electronic Materials, Inc. Epitaxial barrel susceptor having improved thickness uniformity

Also Published As

Publication number Publication date
DE69510667D1 (de) 1999-08-12
DE69510667T2 (de) 1999-12-02
SG49344A1 (en) 1998-05-18
EP0757117A1 (de) 1997-02-05

Similar Documents

Publication Publication Date Title
US10364509B2 (en) Alkyl push flow for vertical flow rotating disk reactors
EP0637058B1 (de) Verfahren zum Einleiten reaktiven Gases in eine Substratbearbeitungsvorrichtung
EP1069599B1 (de) Vorrichtung zur Abscheidung von Dünnschichten auf Wafern
US7253084B2 (en) Deposition from liquid sources
US5916369A (en) Gas inlets for wafer processing chamber
US8889533B2 (en) Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus
EP1386981B1 (de) Gerät zur Herstellung von Dünnschichten
US6500734B2 (en) Gas inlets for wafer processing chamber
EP0738789A2 (de) Suszeptor sowie Ablenkplatte dafür
JPH01202829A (ja) 電子装置の製造方法および使用する反応容器
WO1992005577A1 (fr) Procede et appareil pour former par croissance des cristaux de composes semi-conducteurs
US10793949B2 (en) Substrate processing apparatus and substrate processing method using the same
US8450220B2 (en) Substrate processing apparatus , method of manufacturing semiconductor device, and method of manufacturing substrate
US6972050B2 (en) Method for depositing in particular crystalline layers, and device for carrying out the method
US20100151682A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
EP0505251A2 (de) Verfahren zur Züchtung von einer gemischten II-VI-Halbleiterverbindung und Einrichtung dafür
JP2011205059A (ja) 半導体装置の製造方法及び基板製造方法及び基板処理装置
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
WO2012120991A1 (ja) 基板処理装置、及び、基板の製造方法
EP0757117B1 (de) Verfahren und Vorrichtung zur Materialabscheidung auf einer Halbleiterscheibe
CA1325160C (en) Apparatus for producing compound semiconductor
KR20040091651A (ko) 반도체층의 증착방법과 장치
JPH05243161A (ja) 気相成長装置及びエピタキシャル膜の成長方法
JPH0479233A (ja) 化合物半導体結晶の製造装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69510667

Country of ref document: DE

Date of ref document: 19990812

ITF It: translation for a ep patent filed

Owner name: BIANCHETTI - BRACCO - MINOJA S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030730

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030808

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030814

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050801