EP0753055A1 - Enzymatic antimicrobial compositions - Google Patents
Enzymatic antimicrobial compositionsInfo
- Publication number
- EP0753055A1 EP0753055A1 EP95915183A EP95915183A EP0753055A1 EP 0753055 A1 EP0753055 A1 EP 0753055A1 EP 95915183 A EP95915183 A EP 95915183A EP 95915183 A EP95915183 A EP 95915183A EP 0753055 A1 EP0753055 A1 EP 0753055A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sep
- chloroperoxidase
- vanadium
- enzymatic
- hypochlorite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 51
- 230000000845 anti-microbial effect Effects 0.000 title claims abstract description 36
- 230000002255 enzymatic effect Effects 0.000 title claims description 30
- 108010035722 Chloride peroxidase Proteins 0.000 claims abstract description 62
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 54
- 241001537312 Curvularia inaequalis Species 0.000 claims abstract description 36
- 101710143559 Vanadium-dependent bromoperoxidase Proteins 0.000 claims abstract description 30
- 150000004820 halides Chemical class 0.000 claims abstract description 11
- 108010016350 vanadium chloroperoxidase Proteins 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 32
- 108090000623 proteins and genes Proteins 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 22
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 9
- 239000008103 glucose Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 8
- 241000223208 Curvularia Species 0.000 claims description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 7
- 230000012010 growth Effects 0.000 claims description 7
- 108010015776 Glucose oxidase Proteins 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 6
- 235000019420 glucose oxidase Nutrition 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 239000004366 Glucose oxidase Substances 0.000 claims description 5
- 229940116332 glucose oxidase Drugs 0.000 claims description 5
- 239000013604 expression vector Substances 0.000 claims description 4
- 230000010076 replication Effects 0.000 claims description 3
- 238000013518 transcription Methods 0.000 claims description 3
- 230000035897 transcription Effects 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 108010053835 Catalase Proteins 0.000 claims description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 claims description 2
- 108010073450 Lactate 2-monooxygenase Proteins 0.000 claims description 2
- 230000000813 microbial effect Effects 0.000 claims description 2
- 102000016938 Catalase Human genes 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims 1
- 238000011012 sanitization Methods 0.000 claims 1
- 239000004599 antimicrobial Substances 0.000 abstract 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 133
- 229940088598 enzyme Drugs 0.000 description 46
- 102000004190 Enzymes Human genes 0.000 description 45
- 108090000790 Enzymes Proteins 0.000 description 45
- 239000000243 solution Substances 0.000 description 42
- 239000000725 suspension Substances 0.000 description 37
- 239000007979 citrate buffer Substances 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 34
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 30
- 239000000872 buffer Substances 0.000 description 26
- 244000005700 microbiome Species 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 241000894006 Bacteria Species 0.000 description 24
- 238000010790 dilution Methods 0.000 description 24
- 239000012895 dilution Substances 0.000 description 24
- 229960002163 hydrogen peroxide Drugs 0.000 description 22
- 230000001580 bacterial effect Effects 0.000 description 20
- 238000011534 incubation Methods 0.000 description 19
- 229910052720 vanadium Inorganic materials 0.000 description 19
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 19
- -1 hypothiocyanite ions Chemical class 0.000 description 18
- 239000011550 stock solution Substances 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000011780 sodium chloride Substances 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 239000004094 surface-active agent Substances 0.000 description 14
- 108010073997 Bromide peroxidase Proteins 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 239000012634 fragment Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 12
- 239000003599 detergent Substances 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 11
- 108010079058 casein hydrolysate Proteins 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 229920001817 Agar Polymers 0.000 description 10
- 102000004316 Oxidoreductases Human genes 0.000 description 10
- 108090000854 Oxidoreductases Proteins 0.000 description 10
- 239000008272 agar Substances 0.000 description 10
- 230000001332 colony forming effect Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 230000002147 killing effect Effects 0.000 description 10
- 239000013615 primer Substances 0.000 description 10
- 238000007865 diluting Methods 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 239000008188 pellet Substances 0.000 description 8
- 238000007747 plating Methods 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 230000004083 survival effect Effects 0.000 description 8
- VOBIHUAWDXUCPH-UHFFFAOYSA-N 2-chloro-5,5-dimethylcyclohexane-1,3-dione Chemical compound CC1(C)CC(=O)C(Cl)C(=O)C1 VOBIHUAWDXUCPH-UHFFFAOYSA-N 0.000 description 7
- 241001474374 Blennius Species 0.000 description 7
- 241000557265 Drechslera biseptata Species 0.000 description 7
- 150000003278 haem Chemical class 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 239000000020 Nitrocellulose Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 229930182830 galactose Natural products 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 102000003896 Myeloperoxidases Human genes 0.000 description 5
- 108090000235 Myeloperoxidases Proteins 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000266330 Alternaria chartarum Species 0.000 description 4
- 241000512259 Ascophyllum nodosum Species 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000218746 Curvularia subpapendorfii Species 0.000 description 4
- 241000194032 Enterococcus faecalis Species 0.000 description 4
- 108700024827 HOC1 Proteins 0.000 description 4
- 102100038609 Lactoperoxidase Human genes 0.000 description 4
- 101100178273 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HOC1 gene Proteins 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- HHYBCLNAPQRAAN-UHFFFAOYSA-N 2,2-dichloro-5,5-dimethylcyclohexane-1,3-dione Chemical compound CC1(C)CC(=O)C(Cl)(Cl)C(=O)C1 HHYBCLNAPQRAAN-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- 108010023244 Lactoperoxidase Proteins 0.000 description 3
- 241000186805 Listeria innocua Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 102000003992 Peroxidases Human genes 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 101100112520 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CCA1 gene Proteins 0.000 description 3
- 241000191940 Staphylococcus Species 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000013611 chromosomal DNA Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000011536 extraction buffer Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- CUILPNURFADTPE-UHFFFAOYSA-N hypobromous acid Chemical compound BrO CUILPNURFADTPE-UHFFFAOYSA-N 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229940057428 lactoperoxidase Drugs 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 2
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical compound C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 101001124620 Curvularia inaequalis Vanadium chloroperoxidase Proteins 0.000 description 2
- 241001236089 Curvularia nicotiae Species 0.000 description 2
- 241001465183 Drechslera Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000588722 Escherichia Species 0.000 description 2
- 241000186781 Listeria Species 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241001103617 Pseudomonas aeruginosa ATCC 15442 Species 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- LVHHEVGYAZGXDE-KDXUFGMBSA-N Thr-Ala-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C)C(=O)N1CCC[C@@H]1C(=O)O)N)O LVHHEVGYAZGXDE-KDXUFGMBSA-N 0.000 description 2
- NRFTYDWKWGJLAR-MELADBBJSA-N Tyr-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)N)C(=O)O NRFTYDWKWGJLAR-MELADBBJSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 2
- 238000001362 electron spin resonance spectrum Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000010841 mRNA extraction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 239000003531 protein hydrolysate Substances 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000007974 sodium acetate buffer Substances 0.000 description 2
- 229940045872 sodium percarbonate Drugs 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-L (5-bromo-4-chloro-1h-indol-3-yl) phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP([O-])(=O)[O-])=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-L 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N 4-(3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl)pentanoic acid Chemical compound OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000266326 Alternaria botrytis Species 0.000 description 1
- 241000580491 Alternaria didymospora Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010089254 Cholesterol oxidase Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- PJWWRFATQTVXHA-UHFFFAOYSA-N Cyclohexylaminopropanesulfonic acid Chemical compound OS(=O)(=O)CCCNC1CCCCC1 PJWWRFATQTVXHA-UHFFFAOYSA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- 108050006227 Haem peroxidases Proteins 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- 241001632576 Hyacinthus Species 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 1
- 101710200950 Non-heme chloroperoxidase Proteins 0.000 description 1
- 102100026073 Oligodendrocyte transcription factor 1 Human genes 0.000 description 1
- 101710195940 Oligodendrocyte transcription factor 1 Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 241000266300 Ulocladium Species 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000000551 dentifrice Substances 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000012869 germination medium Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 150000003681 vanadium Chemical class 0.000 description 1
- 125000005287 vanadyl group Chemical group 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0065—Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1606—Antifouling paints; Underwater paints characterised by the anti-fouling agent
- C09D5/1612—Non-macromolecular compounds
- C09D5/1625—Non-macromolecular compounds organic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38654—Preparations containing enzymes, e.g. protease or amylase containing oxidase or reductase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/28—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Oncology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Public Health (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
An antimicrobial composition is provided, comprising a Vanadium haloperoxidase, a source of halide and hydrogen peroxide or a source of hydrogen peroxide. Preferably, the Vanadium haloperoxidase is a chloroperoxidase obtainable from Curvularia inaequalis.
Description
<Desc/Clms Page number 1> ENZYMATIC ANTIMICROBIAL COMPOSITIONS TECHNICAL FIELD The present invention relates to the field of enzymatic antimicrobial compositions and their use. More in particular, it relates to enzymatic antimicrobial compositions comprising a Vanadium haloperoxidase, a source of hydrogen peroxide and a source of halide. The invention also relates to the production of Vanadium haloperoxidase by means of recombinant DNA technique, which may be used in enzymatic antimicrobial compositions. BACKGROUND AND PRIOR ART Various enzymatic antimicrobial compositions are known in the art. For instance, WO-A-94/04217 discloses stabilized dentifrice compositions which are capable of producing antimicrobially effective concentrations of hypothiocyanite ions (OSCN-). The compositions contain an oxidoreductase to produce hydrogen peroxide and a peroxidase enzyme capable of oxidising thiocyanate ions, which are normally present in saliva, to antimicrobial hypothiocyanite ions (OSCN-). Suitable peroxidases include lactoperoxidase, myeloperoxidase salivary peroxidase and chloroperoxidase. Enzymatic antimicrobial compositions comprising a haloperoxidase are also disclosed in EP-A-500 387 (Exoxemis). It is described that haloperoxidases selectively bind to and inhibit the growth of target microbes in the presence of peroxide and halide. As suitable haloperoxidases EP-A-500 387 mentions myeloperoxidase (MPO), eosinophil oxidase (EPO), lactoperoxidase (LPO) and chloroperoxidase (CPO). It was reported that the ratio of halide to hydrogen peroxide is a critical factor with regard to the stability and functionality of the haloperoxidase. At very low ratios, hydrogen peroxide can inhibit the haloperoxidase function, whereas at very high ratios, the halide can block the <Desc/Clms Page number 2> enzymatic reaction. The ratio may vary over a broad range, but is preferably kept above about 50. Because of unwanted side reactions of the hydrogen peroxide, the actual hydrogen peroxide concentration in the antimicrobial composition might be lower than expected. Therefore, the present inventors found it more desirable to have the possibility to employ a high starting concentration hydrogen peroxide in the antimicrobial composition, in combination with a conventional amount of halide. Furthermore, there is a need for enzymatic antimicrobial compositions having a spectrum of antimicrobial activity which is different from that of the known enzymatic antimicrobial compositions. Preferably, the compositions should be capable of exhibiting antimicrobial activity against micro-organisms which are difficult to combat, e.g. Streptococcus faecalis. In other circumstances it may be desirable to combat also non-pathogenic microorganisms, because they may cause spoilage of food products. Thus, the purpose of the present invention is to provide an enzymatic antimicrobial composition which obviates one or more of the above disadvantages. We have now surprisingly found that particularly effective enzymatic antimicrobial compositions can be formulated when Vanadium haloperoxidases are used. The prior art mentioned above includes a variety of haloperoxidases for use in antimicrobial compositions, but no particular attention has been paid so far to the class of Vanadium haloperoxidases. Vanadium haloperoxidases are different from other haloperoxidases in that the prosthetic group in these enzymes has structural features similar to vanadate (vanadium V), whereas the other haloperoxidases are hemeperoxidases. A further purpose of the invention was to clone the gene encoding a Vanadium haloperoxidase and to determine its sequence to allow its expression in other <Desc/Clms Page number 3> micro-organisms which are more convenient to grow and also to increase the amount of enzyme which can be produced using recombinant DNA techniques. Some of the Vanadium bromoperoxidases are found in nature on the surface or seaweeds (Wever et al. 1991). In the intact plant in seawater the Vanadium bromoperoxidase is accessible to added substrates and is able to release HOBr upon addition of hydrogen peroxide. The role of the enzyme has not been established, but it is likely that formation of the highly oxidizing HOBr in seawater is part of a defense system of the plant to prevent microbial or fungal growth on its surface. After the discovery of the non-heme Vanadium bromoperoxidases from the seaweed Ascophyllum nodosum, it was shown that a large number of other seaweed species were also contains these enzymes. In particular, the bromoperoxidase from A. nodosum has been extensively studied and characterized (for reviews, see references 2-3). The prosthetic group in these enzymes has structural features similar to vanadate (Vanadium V). In the catalytic mechanism that was derived for this enzyme, hydrogen peroxide reacts with the enzyme to form a hydrogen peroxide-enzyme complex after which bromide and a proton reacted with the complex to form an enzyme-HOBr complex. It was shown (De Boer et al. , 1988) that this complex decayed to yield enzyme and HOBr. These vanadium bromo-peroxidases were also shown (De Boer et al., 1988)) to have a high operational stability in aqueous and organic media. For example, these enzymes were stable for three weeks under turnover conditions and could be stored for more than a month in organic solvents such as acetone, methanol, ethanol (present up to 60% v/v) and 1-propanol, without loss of activity. However, these enzymes have the disadvantage that for potential applications bromide should be present or added and further attempts to clone the genes coding for these bromo peroxidases from seaweeds and to determine their amino acid sequences have not been successful. <Desc/Clms Page number 4> The known existing heme-containing chloroperoxidase from Caldariomyces fumaao is less suitable for preparing enzymatic antimicrobial compositions because of its inherent instability and its low pH optimum of 2.75 (J.R. Kanofsky, 1984), which seriously limits its application. Similar arguments prevent the application of the enzyme myeloperoxidase (MPO) from human white blood cells, which is also capable of generating HOC1 (A. R.J. Bakkenist et al. , 1980). Reports (see references 8,9) have already appeared that dematiaceous hyphomyctes secrete haloperoxidases with pronounced stability. In particular it was shown that the terrestrial fungus Curvularia inaequalis secretes a Vanadium chloroperoxidase (J.W.P.M. Van Schijndel et al, 1993) which possesses a high affinity for chloride and has a pH optimum for the chlorination reaction around pH 5.5. As with the bromoperoxidase from seaweed, the prosthetic group in the chloroperoxidase has structural features similar to vanadate (vanadium V). In a subsequent more detailed study (J.W.P.M. Van Schijndel et al. , 1994), it was shown that the enzyme kinetics of the oxidation of chloride by hydrogen peroxide resemble that of the vanadium bromoperoxidase from the seaweed A. nodosum. Further, three different methods showed that the enzyme produces an oxidized chlorine species (HOC1) as reaction product and was by itself resistant towards this product. The enzyme exhibits a high thermostability (Tm 90 C) and displays high stability in organic solvent such as 40 % methanol, ethanol and propanol. DEFINITION OF THE INVENTION In a first aspect, the present invention relates to an enzymatic antimicrobial composition comprising a Vanadium haloperoxidase, a source of halide and hydrogen peroxide or a source of hydrogen peroxide. According to a second aspect, the present invention relates to the production of a Vanadium <Desc/Clms Page number 5> haloperoxidase by transforming a suitable host by means of an expression vector comprising an origin of replication, transcription and termination control sequences and at least part of the DNA sequence coding for a Vanadium haloperoxidase, cultivating the host under conditions which allow the expression of the structural gene and isolating the Vanadium haloperoxidase. DETAILED DESCRIPTION OF THE INVENTION (a) The Vanadium haloperoxidase The enzymatic antimicrobial compositions according to the invention comprise, as a first constituent, a Vanadium haloperoxidase. The Vanadium haloperoxidase may in principle be chosen from the various Vanadium haloperoxidases which have been disclosed in the art. For example, one can use the Vanadium (non-heme) haloperoxidase produced from Curvularia inaequalis, such as described in US-A-4 707 466. Alternatively, one may isolate and purify the chloroperoxidase from Curvularia inaequalis (CBS 102.42) according to the method of J. W.P.M. Van Schijndel et al. (1993). Other sources of Vanadium haloperoxidases include Drechslera biseptata (CBS 371.72), Drechslera fuqax (CBS 509.77), Drechslera nicotiae (CBS 655.74), Drechslera subpapendorfii (656.74), Embelisia hyacinthi (416.71), Embelisia didymospora (CBS 766, Ulocladium chartarum (200.67) and Ulocladium botrytis (452.72). Alternatively, Vanadium haloperoxidase can be prepared by recombinant DNA techniques by transforming a suitable host by means of an expression vector comprising an origin of replication, transcription and termination control sequences and the DNA sequence coding for a Vanadium haloperoxidase, cultivating the host under conditions which allow the expression of the structural gene and isolating the Vanadium haloperoxidase. This is described in detail in the Examples below. <Desc/Clms Page number 6> (b) The source of halide ions. The second constituent of the hygienic compositions according to the invention is a source of halide ions. These may be any halide ions, but a source of iodide or chloride ions are preferred because they are most effective. Sodium chloride is the most preferred source of halide ions. The halide may be added to the enzymatic antimicrobial compositions of the invention, or alternatively, the halide may be used which is naturally present in tap water and which is usually in the order of 2-5 mM. (c) The source of hydrogen peroxide. The hygienic compositions according to the invention further comprise a source of hydrogen peroxide, or a hydrogen peroxide-generating system. Examples of suitable hydrogen peroxide-generating systems are perborate or percarbonate salts, preferably sodium percarbonate or sodium perborate. The hydrogen peroxide may also be provided by an enzymatic hydrogen peroxide generating system. The enzymatic hydrogen peroxide-generating system may in principle be chosen from the various enzymatic hydrogen peroxide-generating systems which have been disclosed in the art. For example, one may use an amine oxidase and an amine, an amino acid oxidase and an amino acid, lactate oxidase and lactate, cholesterol oxidase and cholesterol, uric acid oxidase and uric acid or a xanthine oxidase with xanthine. Preferred, however, is the combination of glucose oxidase and glucose. The amount of glucose oxidase will depend on its specific activity and the activity of any residual catalase that may be present, but by way of example it can be stated generally that the detergent composition according to the invention will contain from 10 to 1000, preferably from 20 to 500 units glucose oxidase per g or ml of the detergent composition, a unit of enzyme activity being defined as the <Desc/Clms Page number 7> quantity required to convert 1 mol of substrate per minute under standard conditions. (d) Other ingredients. The enzymatic antimicrobial compositions of the invention generally comprise from 0.01 to 50 % by weight, preferably 0.1 to 5.0% by weight of one or more surfactants are wetting agents. Suitable surfactants or detergentactive compounds are soap or non-soap anionics, nonionics, cationics, amphoteric or zwitterionic compounds. The surfactant system usually comprises one or more anionic surfactants and one or more nonionic surfactants. The surfactant system may additionally contain amphoteric or zwitterionic detergent compounds, but this is not normally desired owing to their relatively high cost. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981. Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are C6-C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8-C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO. <Desc/Clms Page number 8> Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8-C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9-C20 benzene sulphonates, particularly sodium linear secondary alkyl C10-C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium C11-C15 alkyl benzene sulphonates and sodium C12-C18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides. Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever). Especially preferred is surfactant system which is a mixture of an alkali metal salt of a C16-C18 primary alcohol sulphate together with a C12-C15 primary alcohol 3- 7 EO ethoxylate. The nonionic detergent is preferably present in amounts greater than 10%, e. g. 25-90% by weight of the surfactant system. Anionic surfactants can be present for example in amounts in the range from about 5% to about 40% by weight of the surfactant system. The enzymatic detergent compositions of present invention may also comprise other constituents normally used in antimicrobial compositions, such as thickening agents. Particularly useful in this respect are the <Desc/Clms Page number 9> combinations of surfactants disclosed in EP-A-314 232 (Unilever), which provide thickening gels upon dissolution with water. The antimicrobial compositions of the invention may be employed to provide hygiene benefits for hardsurface cleaning and fabric washing, but also to provide hygiene and cleaning in industrial/institutional applications such as in hospitals and for cleaning and disinfecting medical equipment. Another application is in the dairy industry, for disinfecting milking equipment. The antimicrobial compositions can also be succesfully used in deodorants in view of their ability to combat bacteria which cause malodour. The antimicrobial compositions of the invention may be used in the form of powders which are to be dissolved in water before use, but the can also be formulated as liquids products or gels. In those product forms it is important that the production of hypohalite is not initiated until the composition is used. This can be achieved by physically separating the enzyme and its substrate, e. g. by encapsulating the enzyme according to well known techniques. When the enzymatic antimicrobial composition is used, it is diluted 5 to 100 times by addition of water to provide a medium having an effective antimicrobial activity. It is then brought into contact with the surface to be disinfected and allowed REFERENCES 1. R. Wever, M. G.M. Tromp. B.E. Krenn A. Marjani and M. van Tol. Brominating activity of the seaweed Ascophyllum nodosum : Impact on the biosphere. Envir. Sc. Techn. 25 (1991), 446-449. 2. R. Wever and K. Kustin. Vanadium : a biologically relevant element. Adv. Inorg. Chem. 35 (1990), 81-115. 3. D. Rehder. The bioinorganic chemistry of vanadium. Ang. Chem. Ed. Engl. 30 (1991) 148-167. <Desc/Clms Page number 10> 4. E. de Boer and R. Wever. The reaction mechanism of the novel vanadium bromoperoxidase, a steady-state kinetic analysis. J. Biol. Chem. 263 (1988), 12326-12332. 5. E. de Boer, H. Plat, M. G.M. Tromp, M.C.R. Franssen, H. C. val. der Plas, E. M. Meijer and H. E. Schoemaker. Vanadium-containing bromoperoxidase : an example of an oxidoreductase with high operational stability in aqueous and organic media. Biotechn Bioeng. 30 (1987), 607-610. 6. J. R. Kanofsky. Singlet oxygen producion by chloroperoxidase-hydrogen peroxide-halide systems. J. Biol. Chem. 259 (1984), 5596-5600. 7. A.R.J. Bakkenist, J. E.G. de Boer, H. Plat and R. Wever. The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions. Biochim. Biophys. Acta 613 (1980), 337-348. 8. J. C. Hunter-Cevera and L. Sotos. Screening for a "new" enzyme in nature: haloperoxidase production by Death Valley dematiaceous hyphomycetes. Microb. Ecol. 12 (1986) 121-127. 9. T-N. E. Liu, T. M'Timkulu, J. Geigert, B. Wolf, S.L. Neidleman, D. Silva and J.C. Hunter-Cevera. Isolation and characterization of a novel non-heme chloroperoxidase. Biochem. Biophys. Res. Commun. 142 (1987), 329-333. 10. J.W.P.M. Van Schijndel, E. G.M. Vollenbroek and R. Wever. The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme. Biochim. Biophys. Acta 1161 (1993), 249-256. 11. Van Schijndel, J.W.P.M., Barnett, P. , Roelse, J., Vollenbroek, E. G.M. and Wever, R. Vanadium chloroperoxidase from the fungus Curvularia inaeaualis; stability and steady-state kinetics (1994) Eur. J.Biochem. 225, 151-157. 12. H. Schagger and G. Von Jagow (1987) Anal.Biochem. 166, 368-379. 13. P. Matsudaira (1987) J. Biol.Chem. 262,10035-10038. 14. Sambrook, J. , Fritch, E. F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.). 15. R. Wever, H. Plat and E. de Boer (1985), Biochem. Biophys. Acta 830,181-186. <Desc/Clms Page number 11> The invention will be further illustrated by means of the following non-limiting Examples. EXAMPLE 1 Minimal Inhibitory Concentration (MIC) of hypochlorite. Materials: Bacterial strains used in this example were Escherichia coli NCTC 900, Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 13565, Streptococcus faecalis NCTC 1092 and Listeria innocua ATCC 33090 serotype 6B. Bacteria were grown for 15 to 18 hours at 30 C in Brain Heart Infusion (BHI) broth-medium. After cultivation the strains were washed two times in citrate buffer pH 5.5 (20 mM Na3citrate-NaOH buffer + 10 mM NaCl). The bacterium suspensions were centrifuged in an Eppendorf centrifuge (14,000 rpm for 5 min), then the supernatants were removed and subsequently the bacterial pellet was resuspended in citrate buffer. This washing procedure was then repeated once more for each bacterial suspension. The twice washed bacterial suspension was then diluted with citrate buffer pH 5.5 to obtain a suspension of approximately 10 bacteria per ml. During the washing steps the cells were kept on ice. Buffers and BSA-solution (1% w/v in citrate buffer pH 5.5) were filter-sterilised and stored at 4 C. The hypochlorite solutions were made from a stock-solution (107,000 ppm) by dilution with sterile demineralised water. Methodology: Using sterile techniques, a suspension of approximately 107 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.9 ml were added to sterile tubes. Subsequently 0.1 ml of cold hypochlorite solutions of various concentrations were added to the tubes, in such a way that a hypochlorite dilution range is obtained. The tubes were mixed continuously with a magnetic stirrer. Also <Desc/Clms Page number 12> blank determinations were included where only sterile buffer was added instead of a hypochlorite solution. The samples were incubated for exactly 5 min at 30 C. After this incubation period 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-5 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. Definition: the Minimal Inhibitory Concentration (MICvalue) is defined here as the concentration of hypochlorite which leads under the experimental conditions used to at least a log 6 reduction in colony forming units of the specific microorganism tested. The results obtained are shown in Table I. The values found are in the same range as reported in the literature. Table I. MIC values for various microorganisms. EMI12.1 <tb> <tb> Microorganism <SEP> MIC-value <SEP> in <SEP> ppm <tb> Escherichia <SEP> coli <SEP> 2-3 <tb> Staphylococcus <SEP> aureus <SEP> 2-3 <tb> Listeria <SEP> innocua <SEP> 2-3 <tb> Pseudomonas <SEP> aeruginosa <SEP> 2-3 <tb> Streptococcus <SEP> faecalis <SEP> 2-3 <tb> <Desc/Clms Page number 13> EXAMPLE 2 Minimal Inhibitory Concentration of hypochlorite and hypochlorite generated enzymatically by vanadiumchloroperoxidase (V-CPO) from Curvularia inaequalis. In this example the killing effect of hypochlorite is compared to the killing effect of hypochlorite generated enzymatically by vanadium-chloroperoxidase (V-CPO) from Curvularia inaequalis. In order to make comparisons possible, a micropump was used. This was done to make the hypochlorite concentration during the experiment follow the same profile as in the situation were hypochlorite is generated enzymatically. Also the V-CPO activity was determined very carefully under the conditions of the experiment, this to know the amount of hypochlorite present at each time point of the experiment. Materials: Bacterial strains used in this example were Escherichia coli NCTC 900, Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 13565, streptococcus faecalis NCTC 1092 and Listeria innocua ATCC 33090 serotype 6B. Bacteria were grown for 15 to 18 hours at 30 C in Brain Heart Infusion (BHI) broth-medium. After cultivation the strains were washed two times in citrate buffer pH 5.5 (20 mM Na3citrate-NaOH buffer + 10 mM NaCl). The bacterium suspensions were centrifuged in an Eppendorf centrifuge (14000 rpm for 5 min), then the supernatant were removed and subsequently the bacterial pellet was resuspended in citrate buffer. This washing procedure was then repeated once more for each bacterial suspension. The twice washed bacterial suspension was then diluted with citrate buffer pH 5.5 to obtain a suspension of approximately 10 bacteria per ml. During the washing steps the cells were kept on ice. Buffers and BSA-solution (1% w/v in citrate buffer pH 5.5) were filter-sterilised and stored at 4 C. The hypochlorite solutions were made from a stock-solution (107,000 ppm) by dilution with sterile demineralised water. <Desc/Clms Page number 14> H202 solutions were made from a 30% stock solution by dilution with sterile demineralised water. Casitone was obtained from Difco. Chloroperoxidase from Curvularia inaequalis was purified according to van Schijdel et al. (1993). Chloroperoxidase activity in the conversion of Clto HOC1 was determined spectrophotometrically in 20 mM sodium citrate buffer pH 5.5,10 mM NaCl, 100 M H202, 50 M monochlorodimedone at 30 C, by following the conversion of monochlorodimedone (e 290 nm = 20.2 mM-1.cm-1) to dichlorodimedone (e 290 nm = 0.2 mM-1.cm-1). 1 Unit of chloroperoxidase is defined as the amount of enzyme that converts 1 mol of monochlorodimedone (Sigma) per minute. Methodology: Using sterile techniques, a suspension of approximately 107 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.8 ml were added to a sterile reaction vessel, which was continuously stirred throughout the experiment with a magnetic stirrer. Subsequently 0.2 ml of V-CPO solutions of various concentrations (for calculations, see below) were added to the reaction vessels, in such a way that a V-CPO dilution range is obtained. Also blank determinations were included where 0.2 ml sterile buffer was added instead 0.2 ml of V-CPO solution. The reaction vessels was incubated at 30 C. Then 0.5 ml of a H202 stock solution was added, to start the VCPO reaction. The H202 stockconcentration used depended on the hypochlorite concentration produced, and was chosen in such a way that the endconcentration of H202 (at the end of the flux) was a fivefold molar excess compared to the endconcentration of hypochlorite. The samples were incubated for exactly 5 min at 30 C. After this incubation period 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-5 and plating 100 l samples of the various dilutions on <Desc/Clms Page number 15> labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. The MIC value obtained was compared to the MIC value that was obtained when the same hypochlorite amounts were added, using a micropump. This was done as follows: Using sterile techniques, a suspension of approximately 107 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.8 ml were added to a sterile reaction vessel, which was continuously stirred throughout the experiment with a magnetic stirrer. The reaction vessels were incubated at 30 C. Then 0.2 ml of a H202 stock solution was added. The H202 stock concentration used depended on the hypochlorite concentration produced, and was chosen in such a way that the end concentration of H202 (at the end of the flux) was a five-fold molar excess compared to the endconcentration of hypochlorite. Then a flux of 0.5 ml of a hypochlorite solutions of a known concentration was applied over 5 min (flow: 0.1 ml per min) at 30 C. A series of experiments were done, each using various hypochlorite solutions of a different concentration, so that a range of hypochlorite end concentrations was obtained (for calculations see below). After the incubation period of 5 minutes, 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-5 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. <Desc/Clms Page number 16> The similarity of the hypochlorite profiles obtained in the experiments described above with V-CPO respectively with hypochlorite from a stock solution were confirmed by using the same experimental set-up (as for the blank experiments without the microorganisms added) coupled to a spectrophotometer, in which the hypochlorite concentrations in time could be followed at 290 nm, making use of the conversion of monochlorodimedone (e 290nm = 20.2 mM-1.cm-1) to dichlorodimedone (e 290nm = 0.2 mM-1.cm-1). Calculations: The endconcentration of hypochlorite generated with V-CPO was calculated as follows: With 0.01 U per ml of V-CPO 0.01 mol of hypochlorite per ml per min is generated, which is equivalent to 0.05 mol hypochlorite per ml per 5 min. due to the dilution effect of the flux of 0.5 ml, which is added to 2.0 ml initial volume, the endconcentration after 5 minutes is (2.0/2.5) * 0.05 mol per ml = 0.04 mol hypochlorite per ml after 5 minutes. This concentration could subsequently be expressed as 0.04 mol hypochlorite per ml = 0.04 * 52.5 ppm hypochlorite = 2.10 ppm hypochlorite. Other hypochlorite endconcentrations were obtained by increasing or decreasing the V-CPO concentration. The endconcentration of hypochlorite added was calculated as follows: Since a flux of 0.5 ml is added to a reaction volume of 2.0 ml, the endvolume is 2.5 ml, which corresponds to diluting fivefold. In order to obtain a hypochlorite end concentration of 2.10 ppm, a stock solution of 10.50 ppm was used. Other hypochlorite concentrations were obtained by increasing or decreasing the hypochlorite stock solution. Definition: the Minimal Inhibitory Concentration (MICvalue) is defined here as the concentration of hypochlorite which leads under the experimental conditions used to at least a log 6 reduction in colony forming units of the specific microorganism tested. <Desc/Clms Page number 17> The results are shown in Table II. The killing effects of various endconcentrations of hypochlorite, either produced by V-CPO or at the end of- the hypochlorite flux, are compared. As can be concluded from Table II, hypochlorite produced enzymatically by V-CPO already gives total inhibition of growth at hypochlorite concentrations as low as 0.4 ppm for all organisms tested except for Staphylococcus aureus, whereas 2 ppm hypochlorite is needed to obtain the same growth inhibition. This shows that vanadium-containing haloperoxidase is a more efficient hygienic component than would have been expected from just its hypochlorite producing capacity. Also it is apparent that V-CPO gives killing of all microorganisms tested, pathogenic or non-pathogenic, whereas heme-containing haloperoxidase are claimed to give only efficient killing of pathogenic bacteria (see EP-A-500 387). Table II. MIC values for various microorganisms. EMI17.1 <tb> <tb> Microorganism <SEP> MIC-value <SEP> with <SEP> MIChypochlorite <SEP> value <tb> (in <SEP> ppm) <SEP> with <SEP> VCPO <SEP> ( <SEP> in <SEP> <tb> ppm) <tb> Escherichia <SEP> coli <SEP> 2 <SEP> 0.4 <tb> Staphylococcus <SEP> aureus <SEP> 2-3 <SEP> 1.6 <tb> Listeria <SEP> innocua <SEP> 2 <SEP> 0.4 <tb> Pseudomonas <SEP> aeruginosa <SEP> 2 <SEP> 0.4 <tb> Streptococcus <SEP> faecalis <SEP> 2 <SEP> 0.4 <tb> EXAMPLE 3 Killing efficiencies of hypochlorite and hypochlorite generated enzymatically by V-CPO in the presence of protein hydrolysate. <Desc/Clms Page number 18> For obtaining hygiene it is known that in situations encountered in practice, overdosing of hypochlorite is necessary, since this reactive molecule will not only react with microorganisms, but also with other compounds that are present. Therefor it was important to test the behaviour of vanadium-containing haloperoxidase in a fluid containing e. g. a protein hydrolysate. Materials: The bacterial strain used in this example was Escherichia coli NCTC 900. Bacteria were grown for 15 to 18 hours at 30 C in Brain Heart Infusion (BHI) broth-medium. After cultivation the strains were washed two times in citrate buffer pH 5.5 (20 mM Na3citrate-NaOH buffer + 10 mM NaCl). The bacterium suspensions were centrifuged in an Eppendorf centrifuge (14,000 rpm for 5 min), then the supernatants were removed and subsequently the bacterial pellet was resuspended in citrate buffer. This washing procedure was then repeated once more for each bacterial suspension. The twice washed bacterial suspension was then diluted with citrate buffer pH 5.5 to obtain a suspension of approximately 108 bacteria per ml. During the washing steps the cells were kept on ice. Buffers and BSA-solution (1% w/v in citrate buffer pH 5.5) were filter-sterilised and stored at 4 C. The hypochlorite solutions were made from a stock-solution (107,000 ppm) by dilution with sterile demi. H202 solutions were made from a 30% stock solution by dilution with sterile demineralised water. Casitone was obtained from Difco. Chloroperoxidase from Curvularia inaequalis was isolated and purified according to Van Schijndel et al. , 1993. Methodology: Using sterile techniques, a suspension of approximately 108 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.3 ml were added to a sterile reaction vessel, which was continuously stirred throughout the experiment with a magnetic stirrer. Then 0.5 ml of a <Desc/Clms Page number 19> 0.5 mg per ml casitone (in citrate buffer pH 5.5) solution, respectively 0.5 ml citrate buffer pH 5.5 were added. Subsequently 0.2 ml of V-CPO solutions of various concentrations (for calculations see Example 2) were added to the react-on vessels, in such a way that end concentrations of 3.2 ppm hypochlorite or 6.5 ppm hypochlorite were achieved. Also blank determinations were included were 0.2 ml sterile buffer was added instead 0.2 ml of a V-CPO solution. The reaction vessels were incubated at 30 C. Then 0.5 ml of a H202 solution was added (the concentration was chosen so that a fivefold molar excess of hydrogen peroxide was obtained at the end of the flux), to start the V-CPO reaction. The samples were incubated for exactly 5 min at 30 C. After this incubation period 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-6 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. The killing efficiencies obtained was compared to the killing efficiencies obtained when the same hypochlorite amounts were added, using a micropump. This was done as follows: Using sterile techniques, a suspension of approximately 108 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.3 ml were added to a sterile reaction vessel, which was continuously stirred throughout the experiment with a magnetic stirrer. Then 0.5 ml of a 0.5 mg per ml casitone solution (in citrate buffer pH 5.5), respectively 0.5 ml citrate buffer pH 5.5 were added. Subsequently 0.2 ml of sterile citrate buffer pH 5.5 was <Desc/Clms Page number 20> added. The reaction vessels were incubated at 30 C. Then a flux of 0.5 ml of hypochlorite solutions, yielding an endconcentration of 3.2 ppm hypochlorite respectively 6.5 ppm hypochlorite (for calculations on the concentration see Example 2) were applied over 5 min (flow: 0 .1 ml per min) at 30 C. After the incubation period of 5 min 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-6 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. The results are shown in Table III. Table III. The influence of casitone on the killing efficiencies of HC10, generated by V-CPO. EMI20.1 <tb> <tb> casitone <SEP> log <SEP> log <SEP> log <SEP> log <tb> concen- <SEP> reductio <SEP> reduction <SEP> reduction <SEP> reduction <tb> tration <SEP> n <SEP> with <SEP> with <SEP> 3.2 <SEP> with <SEP> 6.5 <SEP> with <SEP> 6.5 <tb> (mg/ml) <SEP> 3.2 <SEP> ppm <SEP> ppm <SEP> ppm <SEP> ppm <tb> hypochlo <SEP> hypochlorit <SEP> hypochlori <SEP> hypochlori <tb> rite <SEP> e <SEP> te <SEP> te <tb> generate <SEP> generated <tb> d <SEP> by <SEP> V- <SEP> by <SEP> V-CPO <tb> CPO <tb> 0.0 <SEP> 8.0 <SEP> 8.2 <SEP> 8.0 <SEP> 8.2 <tb> (= <SEP> total <SEP> (= <SEP> total <SEP> (= <SEP> total <SEP> (= <SEP> total <SEP> <tb> kill) <SEP> kill) <SEP> kill) <SEP> kill) <tb> 0.1 <SEP> 5.0 <SEP> 0.5 <SEP> 8.0 <SEP> 1.0 <tb> (= <SEP> total <tb> kill) <tb> <Desc/Clms Page number 21> EXAMPLE 4 Comparison between the killing efficiencies of Vanadium containing haloperoxidase and a heme-containing haloperoxidase. Materials: Bacterial strains used in this example were Escherichia coli NCTC 900, Streptococcus faecalis NCTC 1092 and Listeria innocua ATCC 33090 serotype 6B. Bacteria were grown for 15 to 18 hours at 30 C in Brain Heart Infusion (BHI) broth-medium. After cultivation the strains were washed two times in citrate buffer pH 5.5 (20 mM Na3citrate-NaOH buffer + 10 mM NaCl). The bacterium suspensions were centrifuged in an Eppendorf centrifuge (14,000 rpm for 5 min), then the supernatants were removed and subsequently the bacterial pellet was resuspended in citrate buffer. This washing procedure was then repeated once more for each bacterial suspension. The twice washed bacterial suspension was then diluted with citrate buffer pH 5.5 to obtain a suspension of approximately 107 bacteria per ml. During the washing steps the cells were kept on ice. Buffers and BSA-solution (1% w/v in citrate buffer pH 5.5) were filter-sterilised and stored at 4 C. Chloroperoxidase from Curvularia inaequalis was purified according to van Schijndel et al. , (1993). The hemecontaining chloroperoxidase was obtained from Sigma (ex Caldariomyces fumaqo). Chloroperoxidase activity in the conversion of Cl- to HOC1 was determined spectrophotometrically in 20 mM sodium citrate buffer pH 5.5,10 mM NaCl, 100 M H202, 50 M monochlorodimedone at 30 C, by following the conversion of monochlorodimedone (e 290 nm = 20.2 mM-l.cm-1) to dichlorodimedone (e 290 nm = 0.2 mM-1.cm-1). 1 Unit of chloroperoxidase is defined as the amount of enzyme that converts 1 mol of monochlorodimedone (Sigma) per minute. The same assay (and activity definition) was used for both enzymes, in order to be able to dose the two enzymes at equeal activity. <Desc/Clms Page number 22> Methodology: Using sterile techniques a suspension of approximately 107 bacteria per ml in 20 mM sodium citrate buffer pH 5.5, 10 mM NaCl was made. From this suspension aliquots of 1.9 ml were added to sterile tubes. Subsequently 0.1 ml of stock solutions of vanadium-containing chloroperoxidase respectively of heme-containing chloroperoxidase were added to the tubes, in such a way that a dilution range for both enzymes was obtained. Also blank determinations were included where only sterile buffer was added instead of an enzyme stock solution. Then 0.5 ml of an 25 mM H202 stock solution was added. The sample were incubated for exactly 5 min at 30 C. After this incubation period 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-5 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. The results are presented in Table IV. The data clearly show that vanadium-containing chloroperoxidase provides a by far more effective hygienic system than the hemecontaining chloroperoxidase, even when they are dosed at equal activity. <Desc/Clms Page number 23> Table IV. EMI23.1 <tb> <tb> 10 <SEP> mM <SEP> NaCl <SEP> vanadium <SEP> heme <SEP> log <SEP> reduction <tb> chloro- <SEP> chloroperoxidase <SEP> peroxidase <tb> (U <SEP> per <SEP> ml) <SEP> (U <SEP> per <SEP> ml) <tb> E <SEP> coli <SEP> 0.000 <SEP> 0.0 <tb> 0.00156 <SEP> 4.0 <tb> 0.0030 <SEP> 5.0 <tb> 0.0060 <SEP> 7.0(=total <SEP> kill) <tb> 0.012 <SEP> 7.0(=total <SEP> kill) <tb> 0.025 <SEP> 7.0(=total <SEP> kill) <tb> 0.050 <SEP> 7.0(=total <SEP> kill) <tb> 0.10 <SEP> 7.0(=total <SEP> kill) <tb> 0.000 <SEP> 0.0 <tb> 0.00156 <SEP> 0.1 <tb> 0.0030 <SEP> 0.1 <tb> 0.0060 <SEP> 0.1 <tb> 0.012 <SEP> 0.2 <tb> 0.025 <SEP> 1.0 <tb> 0.050 <SEP> 1.2 <tb> 0.10 <SEP> 1.2 <tb> <Desc/Clms Page number 24> EMI24.1 <tb> <tb> L. <SEP> innocua <SEP> 0.000 <SEP> 0.0 <tb> 0.00156 <SEP> 7.0 <SEP> (total <SEP> kill) <tb> 0.0030 <SEP> 7.0 <SEP> (total <SEP> kill) <tb> 0.0060 <SEP> 7.0 <SEP> (total <SEP> kill) <tb> 0.012 <SEP> 7.0 <SEP> (total <SEP> kill) <tb> 0.025 <SEP> 7.0(total <SEP> kill) <tb> 0.050 <SEP> 7.0(total <SEP> kill) <tb> 0.10 <SEP> 7.0(total <SEP> kill) <tb> 0.00 <SEP> 0.0 <tb> 0.00156 <SEP> 0.0 <tb> 0.0030 <SEP> 0.0 <tb> 0.0060 <SEP> 0.0 <tb> 0.012 <SEP> 0.0 <tb> 0.025 <SEP> 0.0 <tb> 0.050 <SEP> 0.0 <tb> 0.10 <SEP> 0.0 <tb> S. <SEP> faecalis <SEP> 0.00 <SEP> 0.0 <tb> 0.00156 <SEP> 5.0 <tb> 0.0030 <SEP> 5.0 <tb> 0.0060 <SEP> 7.0(total <SEP> kill) <tb> 0.012 <SEP> 7.0(total <SEP> kill) <tb> 0.025 <SEP> 7.0 <SEP> (total <SEP> kill) <tb> 0.050 <SEP> 7.0(total <SEP> kill) <tb> 0.10 <SEP> 7.0(total <SEP> kill) <tb> 0.00 <SEP> 0.0 <tb> 0.00156 <SEP> 0.0 <tb> 0.0030 <SEP> 0.1 <tb> 0.0060 <SEP> 0.1 <tb> 0.012 <SEP> 0.1 <tb> 0.025 <SEP> 0.1 <tb> 0.050 <SEP> 0.1 <tb> 0.10 <SEP> 0.9 <tb> <Desc/Clms Page number 25> EXAMPLE 5 The effect of various hydrogen peroxide sources on the inhibitory action of V-CPO. In the previous examples hydrogen peroxide, which is one of the substrates in the V-CPO reaction, was added from a stock solution. In this example the effects of using other hydrogenperoxide sources is described. Oxidases were assayed at 30 C in a Biological Oxygen Monitor YSI Model 5300 (Oxygen chamber model 5301) in which oxygen consumption was monitored, using citrate buffer pH 5.5 (20 mM Na3citrate-NaOH buffer + 10 mM NaCl) as a buffer. The Buffer were saturated with air at 30 C. As a substrate for glucose oxidases 15 g.l-1 (end concentration) glucose was used. The bacterial strain used in this example was Escherichia coli NCTC 900. Bacteria were grown for 15 to 18 hours at 30 C in Brain Heart Infusion (BHI) brothmedium. After cultivation the strains were washed two times in citrate buffer pH 5.5 (20 mM Na3citrate-NaOH buffer + 10 mM NaCl). The bacterium suspensions were centrifuged in an Eppendorf centrifuge (14,000 rpm for 5 min), then the supernatant were removed and subsequently, the bacterial pellet was resuspended in citrate buffer. This washing procedure was then repeated once more for each bacterial suspension. The twice washed bacterial suspension was then diluted with citrate buffer pH 5.5 to obtain a suspension of approximately 108 bacteria per ml. During the washing steps the cells were kept on ice. Buffers and BSA-solution (1% w/v in citrate buffer pH 5.5) were filter-sterilised and stored at 4 C. The hypochlorite solutions were made from a stock-solution (107,000 ppm) by dilution with sterile demi. H202 solutions were made from a 30% stock solution by dilution with sterile demineralised water. Casitone was obtained from Difco. Chloroperoxidase from Curvularia inaegualis was isolated and purified according to Van Schijndel et al., (1993). oxidase ex Aspergillus niger was obtained from Sigma. <Desc/Clms Page number 26> Methodology: Using sterile techniques, a suspension of approximately 108 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.3 ml were added to a sterile reaction vessel, which was continuously stirred throughout the experiment with a magnetic stirrer. Then 0.5 ml of a 0.5 mg per ml casitone solution (in citrate buffer pH 5.5) was added. Subsequently, 0.2 ml of V-CPO solutions were added to the reaction vessels to give a final concentration of 6.5 ppm hypochlorite. Also blank determinations were included were 0.2 ml sterile buffer was added instead 0.2 ml of a V-CPO solution. The reaction vessels was incubated at 30 C. Then 0.5 ml of one following three hydrogen peroxide generating systems were added: 1. H202 from a 3 mM stock solution; 2. sodium percarbonate from a 3 mM stock solution; 3. a mixture of glucose oxidase (0.39 Units/ml) and 75 mg/ml glucose. The samples were incubated for exactly 5 min at 30 C. After this incubation period 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-6 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. The values obtained were compared to the MIC value that was obtained when exactly the same amounts of hypochlorite were added, using a micropump. This was done as follows: Using sterile techniques, a suspension of approximately 108 bacteria per ml in citrate buffer pH 5.5 was made. From this suspension aliquots of 1.3 ml were added to a sterile reaction vessel, which was continuously stirred throughout <Desc/Clms Page number 27> the experiment with a magnetic stirrer. Then 0.5 ml of a casitone solution (0.5 mg/ml in citrate buffer pH 5.5) was added. Subsequently 0.2 ml of sterile citrate buffer pH 5.5 was. The reaction vessels was incubated at 30 C. Then a flux of 0.5 ml of a hypochlorite solutions of 32.5 ppm was applied over 5 min (flow: 0.1 ml per min) at 30 C. After the incubation period of 5 min 1 ml of the reaction mixture was taken and added to 9 ml cold BSA (1% w/v) solution and put on ice immediately. This was done to stop the reaction of hypochlorite with the microorganisms. Survival as Colony Forming Units (CFU) per ml was determined by diluting the sample from 10-1 to 10-6 and plating 100 l samples of the various dilutions on labelled BHI-agar plates. The plates were then incubated for 15-18 hours at 30 C. When there were no CFU detectable after this incubation period, the plates are incubated for another 24 hours at 30 C. The results are shown in Table V. <Desc/Clms Page number 28> Table V. V-CPO reaction with different H202 sources. EMI28.1 <tb> <tb> hydrogen- <SEP> casitone <SEP> log <SEP> log <SEP> reduction <tb> peroxide <SEP> concen- <SEP> reduction <SEP> at <SEP> 6.5 <SEP> ppm <tb> source <SEP> tration <SEP> at <SEP> 6.5 <SEP> ppm <SEP> hypochlorite <tb> (mg/ml) <SEP> hypo- <SEP> generated <tb> chlorite <SEP> enzymatically <tb> by <SEP> V-CPO <tb> H202 <SEP> 0.0 <SEP> 8.2 <SEP> 8.0 <tb> stock <SEP> (= <SEP> total <SEP> (= <SEP> total <tb> solution <SEP> kill) <SEP> kill) <tb> per- <SEP> 0.0 <SEP> 8.0 <SEP> 8.2 <SEP> (=total <tb> carbonate <SEP> (= <SEP> total <SEP> kill) <tb> kill) <tb> glucose <SEP> 0.0 <SEP> 6.4 <SEP> 6.4 <SEP> (= <SEP> total <tb> oxidase <SEP> (= <SEP> total <SEP> kill) <tb> kill) <tb> H202 <SEP> 0.1 <SEP> 1.0 <SEP> 8.0 <SEP> (= <SEP> total <tb> stock <SEP> kill) <tb> solution <tb> per- <SEP> 0.1 <SEP> 0.8 <SEP> 8.2 <SEP> (= <SEP> total <tb> carbonate <SEP> kill) <tb> glucose <SEP> 0.1 <SEP> 1.0 <SEP> 6.4 <SEP> (= <SEP> total <tb> oxidase <SEP> kill) <tb> EXAMPLE 6 Method to determine the coding sequence of the chloro peroxidase gene (cDNA) and the gene from Curvularia inaeaualis (Centraal Bureau voor Schimmelcultures, the Netherlands, strain No 102.42) and possible expression systems. Chloroperoxidase was isolated and purified from liquid cultures of C. inaequalis as described by Van Schijndel et <Desc/Clms Page number 29> al. , 1993), except that after DEAE chromatography two additional purification steps were performed using an FPLC system (Pharmacia LKB). First a phenyl-sepharose Cl-4B hydrophobic interaction column was used to bind the enzyme in the presence of 2 M NaCl in 50 mM Tris-HC1 (pH 8.3), followed by elution with a descending gradient from 2 M NaCl in 50 mM Tris-HC1 (pH 8.3). For the final purification a MonoQ HR 5/5 anion exchange column (ex Pharmacia LKB) was used to bind the enzyme, followed by elution with a gradient from 0 M to 0.5 M NaCl in 20 mM piperazine-HC1 (pH 5.4). Subsequent concentration of the enzyme was carried out using rotation evaporation, followed by dialysis against 50 mM Tris-S04 buffer (pH 8). The purified chloroperoxidase was enzymatically digested with the proteases Staphylococcus V8 and trypsin respectively, according to standard procedures known in the art, or chemically cleaved with CNBr (Gross, E. (1967), Methods Enzymology 11,238-255). The resulting peptides were separated using SDS-PAGE according to Laemmli (Laemmli, U. K. (1970) Nature 227,680-685) or on a tricine gel as according to Schagger and Von Jagow (1987) and subsequently transferred to PVDF membranes (Immobilon-P ex Millipore) using CAPS transfer buffer (10 mM 3-[cyclohexylamino]-1propanesulfonic acid, 10% methanol, pH 11) as described by Matsudaira (1987). After electrophoretic elution the membrane was rinsed for 5 min with deionized water, stained with 0.1% Coomassie Blue R-250 in 50% methanol for 5 min, and destained in 50% methanol, 10% acetic acid for 10 min at room temperature and air dried. Peptide bands were submitted to automatic Edmann sequencing on a Porton LF 3000 protein sequencer (Beckman Instruments, Inc., USA). The results of the amino acid sequence determination are summarized in Figure 1. Based on the amino acid sequences of the peptides fully degenerated oligonucleotides were designed (see Table VII). These degenerated primers were used in Polymerase Chain <Desc/Clms Page number 30> Reaction (PCR) reactions, using first-strand cDNA as a template. First-strand cDNA was prepared as follows: For the isolation of RNA spores of C. inaequalis were inoculated into a fermentation medium containing 4 g yeast extract and 2 ml of a microelement solution (Van Schijndel et al. , 1993) per litre. After several days of growth the mycelium were harvested by filtration and lyophilized. The lyophilized C. inaequalis mycelia were ground under liquid nitrogen. RNA was extracted by adding an RNA extraction buffer (42 mM sodium citrate pH 7,0.83% N-laurylsarcosine, 50 mM beta-mercaptoethanol, 1% Triton X-100 and 4 M guanidine isothiocyanate), and incubating for 1 hour at room temperature. 0.1 Volumes of 2 M sodium acetate (pH 4) and 1 volume of phenol:chloroform:isoamyl alcohol (25:24:1) was added and the mixture placed on ice for 15 min. After centrifugation for 10 min at 10000xg (4 C), the aqueous phase was collected, 1 volume of absolute alcohol was added and the mixture was incubated for 1 hour at -20 C followed by brief centrifugation at 10,000xg. The pellet was resuspended in an appropriate volume of RNA extraction buffer and fractionated by ultracetrifugation in a gradient of cesium chloride (Sambrook et al. , 1989). The pellet was carefully washed and stored in a 75% ethanol solution at - 70 C. For mRNA isolation the RNA was precipitated and resuspended in RNAse free water after which the mRNA was extracted using the polyAtract mRNA isolation kit (Promega corporation, USA). First strand cDNA synthesis was carried out on isolated mRNA from C. inaequalis using the Pharmacia first-strand cDNA synthesis kit (Pharmacia Biotech). Four 20-meric degenerated oligonucleotides were designed based on the amino acid sequences of chloroperoxidase peptides (see also Table VII) and used as primers in polymerase chain reactions with first strand cDNA from C. ineaqualis as a template. Polymerase chain reactions were performed using a thermocycler (Eppendorf mastercycler 5330) and Taq polymerase (Promega corporation). For optimal amplification of the chloroperoxidase encoding cDNA using the degenerated primers the polymerase chain reaction was performed at 46 C <Desc/Clms Page number 31> (annealing step) for 30 cycles. The two resulting specific fragments were ligated into a pUC18 vector, cloned and sequenced from both strands. Based on the DNA sequence results the following two specific primers were designed: 5'- CATAGCGATAGCGACGCGGA-3' and 5'- CTAACCCCGGCGCCAACATC-3' These two primers were used in polymerase chain reactions with first strand cDNA as a template. Thus a gene-specific DNA fragment was obtained joining the two known DNA sequences. This fragment was cloned in a pUC18 vector and subsequently sequenced. To obtain the 5' region of the mRNA encoding the chloroperoxidase the 5'-Amplifinder RACE kit (Clonetech corporation) was used. The genomic chloroperoxidase gene from C. ineaqualis was isolated as follows: C. ineaqualis genomic DNA was isolated from lyophilized mycelia which was ground under liquid nitrogen and extracted with an appropriate amount of extraction buffer (200 mM Tris-HC1, pH 8.5,25 mM EDTA, 250 mM NaCl, 1% SDS and 0.2 mg per ml proteinase K). After incubation overnight at room temperature 0.7 volumes of phenol and 0.3 volumes of chloroform were added and mixed vigorously. The tubes were centrifuged at 10,000xg and the aqueous layer was transferred to a clean tube. The genomic DNA was precipitated with 2 volumes of absolute ethanol. After centrifugation for 5 min at 5000xg the pellet was resuspended in 2 ml of 10 mM Tris-HC1, pH 8.0,1 mM EDTA and treated with RNAse (Boehringer Mannheim) as recommended by the manufacturer. The genomic DNA containing solution was extracted with phenol:chloroform:isoamylalcohol (25: 24:1) and after ethanol precipitation, finally dissolved in a suitable volume of 10 mM Tris-HC1 pH 8,1 mM EDTA buffer. For Southern analysis of the genomic DNA, the <Desc/Clms Page number 32> DNA was digested with several combinations of restriction enzymes and after agarose gel electrophoresis blotted to a nitrocellulose membrane (Sambrook et al. , 1989). Hybridization was carried out using a radiolabeled gene specific fragment (amplified with the two specific primers described above), which was made by random priming using alpha-32P labelled dATP (Sambrook et al. , 1989). Based on the results obtained a mini-library was made using genomic DNA digested with Pst I which was inserted in the vector pUC18. The library was screened with the same probe as described for the Southern blot. A positive clone was isolated and also partly sequenced from both strands to confirm the cDNA sequence results. The C. inaequalis chloroperoxidase encoding gene and its putative gene product are disclosed in Figure 2. A chloroperoxidase production system in Saccharomyces cerevisiae was made as follows: The well known GAL1 inducible yeast promoter was obtained as an EcoRl BamHl fragment from the S. cerevisiae wild type GALL gene (Molecular and Cellular Biology 10,4757-4769, 1990) and cloned into the EcoRl BamHl sites of respectively plasmid YCplac33 and YEplac95 (Gietz and Sugino (1988) Gene 74,527-534). The plasmids obtained were named TNT1 respectively TNT2. A BamHl restriction site was created in front of the 5' begin of the C. inaeaualis chloroperoxidase gene by performing a PCR experiment using as a template the PstI EcoRI 5' fragment of the C. inaequalis chloroperoxidase gene subcloned into pUC18 and as primers the M13/pUC 22-mer reverse sequence primer and the primer : 5' GAG AGA GGA TCC ACT CAC TAC TTA CAA TCA CAC 3' The amplified fragment was digested with BamHI and EcoRI. The EcoRI PvuII fragment from the C. inaeaualis chloroperoxidase gene, containing the 3' part of the gene, was subcloned into EcoRI SmaI digested pUC18. From this clone, after digesting it with EcoRI and XbaI, a fragment <Desc/Clms Page number 33> containing the 3' part of the C. inaequalis chloroperoxidase gene was purified. A three point ligation was performed, which comprised either TNT1 or TNT2 digested each with BamHI and XbaI, and the 5' BamHI EcoRI fragment and the 3' EcoRI XbaI fragment. After ligation and cloning the obtained plasmids were checked for their identity. Plasmids thus obtained were named TNT3 (derived from TNT1) respectively TNT4 (derived from TNT2). Yeast strain BJ1991 was transformed with plasmids TNT3 respectively TNT4 according to procedures known in the art and selected for ura+ transformants. Ura+ transformants were replicated to YP-plates containing either glucose (2%) or galactose (2%). After growth some cells were taken from the plates and resuspended in 200 l 20 mM Tris-HC1 pH 8.1. After incubation for 5 minutes 10 l was taken from the fluid and spotted on a nitrocellulose filter. The nitrocellulose filters were incubated in 100 mM sodium acetate buffer (pH 5.5), 1 mM orthodianisidine, 100 mM KBr and 2 mM H202. A clear colour formation was observed on all spots derived from galactose grown yeast strains, whereas no colour formation was observed for the glucose grown yeasts. This indicates that a galactose inducible production system for the Curvularia inaequalis chloroperoxidase gene in the yeast Saccharomyces cerevisiae has been constructed. A similar assay, making use of 100 mM potassium phosphate buffer (pH 6.5), 100 mM KBr, 1 mM H202 and 40 M phenol red (BDH), clearly showed a blue/purple colour formation with fluids from galactose grown yeast, whereas no colour changes occurred with fluids from glucose grown yeasts. To further confirm that a heterologous chloroperoxidase gene expression system in yeast was made that produced C. inaegualis chloroperxidase with the same functionality as the C. inaequalis chloroperoxidase, the recombinant enzyme was purified from galactose induced TNT3 or TNT4 transformed yeast strains. After growth in galactose containing medium, yeast cells were harvested and <Desc/Clms Page number 34> resuspended in 20 mM Tris-HC1 (pH 8.1). Sterile glass beads were then added and the suspension was shaken vigorously. After centrifugation for 15 minutes at 10,000xg the supernatant was taken and applied to a DEAE column as the recombinant enzyme was purified using essentially the purification protocol as for the wild type C. inaequalis enzyme (see above). After purification a recombinant chloroperoxidase was obtained with a specific activity of 22 U per mg protein (determined in 100 mM sodium acetate buffer pH 5.0,1 mM H202, 5 mM potassium chloride and 50 M MCD, see also van Schijndel et al. , 1993), which compares very well to the specific activity of approximately 20 U per of protein that was obtained with purified (see above) chloroperoxidase from C. inaequalis itself. The pH activity profiles of the wild type chloroperoxidase and the recombinant chloroperoxidase derived from yeast are shown in Figure 3. Figure 3 provides further evidence that the recombinant yeast produced enzyme has the same functionality as the wild type enzyme. EXAMPLE 7 Screening for suitable haloperoxidases in other microorganisms. The microorganisms used in this example are Curvularia inaeaualis (CBS 102.42), Drechslera biseptata (CBS 371.72), Drechslera fuqax (CBS 509.77), Drechslera nicotiae (CBS 655.74), Drechslera subpapendorfii (656.74), Embelisia hyacinth! (416.71), Embelisia didymospora (CBS 766, Ulocladium chartarum (200.67) and Ulocladium botrvtis (452.72). Various fungi are grown on agar plates. When the growth is completed the extracellular proteins are transferred (replica blotted) to a nitrocellulose filter, which was prewetted in 50 mM Tris-HC1 buffer (pH 8.3). After 15 minutes of incubation on the agar plates, the filter was tested for haloperoxidase activity by soaking the filter in 100 mM sodium acetate (pH 5.5) or potassium <Desc/Clms Page number 35> phosphate (pH 6.5 and 7.5), 1 mM orthodianisidine, 2 mM hydrogen peroxide in the presence and absence of 0.1 M potassium bromide. Thus the production of a bromoperoxidase and/or chloroperoxidase can be detected. To test whether the produced haloperoxidase is a vanadium-containing haloperoxidase, the test described above was repeated in the presence and absence of 10 and 100 M sodium vanadate. In the case of vanadium-containing haloperoxidases an increase in signal could be observed in situations where vanadate was supplemented. To test whether the chloroperoxidases identified are indeed similar to the vanadium haloperoxidase from C. inaequalis, small amounts of chloroperoxidases were purified (essentially as described in van Schijndel et al. , 1993) from Ulocladium chartarum, Embelisia didymospora and Drechslera subpapendorfii. The pH optima of these enzymes varied from pH 4.5-5.5. The chlorinating activity of these enzymes increased upon addition of vanadate, which clearly indicates that these enzymes are indeed vanadium haloperoxidases. To further test the similarity of the enzymes identified with C. inaequalis vanadiumchloroperoxidase, one of the haloperoxidases identified was further characterised. For this the chloroperoxidase produced by the fungus Drechslera biseptata (CBS 371.72) was chosen. It has properties similar to the chloroperoxidase from Curvularia inaequalis that is high thermostability and high affinity for its substrates. The EPR spectrum of the purified enzyme was also recorded. As for other vanadium haloperoxidases (de Boer et al. , 1988; Wever et al. , 1988), the oxidized enzyme is EPR silent; however upon reduction with sodium dithionite a typical vanadyl EPR spectrum was observed (data not shown). The isotropic EPR parameters go of 1.969 and Ao of 9.0 mT are almost the same as those found for the enzyme from C. inaequalis (Wever et al, 1985). Furthermore, the purified enzyme has been split into peptides using proteases and cyanogen bromide. The peptide maps show the same patterns suggesting that these two enzymes have a large sequence <Desc/Clms Page number 36> homology. This is indeed the case, two separated peptides of the enzymes which were obtained by treatment of the enzyme with a protease and which were purified, were sequenced. The sequences show a very large homology and therefore it can be concluded that the two enzymes are very similar. Amino acid sequence of a peptide from C. inaequalis : (Asp)-leu-arg-gln-pro-tyr-asp-pro-thr-ala-pro-ile-glu-asp-g In-pro-gly-ile-val-arg-thr- Amino acid sequence of a similar peptide from D. biseptata Asp-leu-arg-gln-pro-tyr-asp-pro-thr-ala-pro-ile-glu-glu-gln -pro-gly-ile-val-arg-thr- Suitable vanadium containing haloperoxidases can thus be identified by using a replica technique in which the increase in activity after addition of vanadate is tested, and/or by (partially) purifying the enzyme and looking for increase in activity after addition of vanadate. EXAMPLE 8 Further screening for suitable chloroperoxidases in other microorganisms, using antibodies. The strains used in this example are: Curvularia inaegualis (CBS 102.42), Drechslera biseptata (CBS 371.72), Drechslera subpapendorfii (CBS 656.74), Embellissia didymospora (CBS 766.79) and Ulocladium chartarum (CBS 200.67). The microorganisms were grown in two phases. First, 50 ml of sterile germination medium (as described in Van Schijndel, et al. , 1993) was inoculated with the spore mass of the microorganisms. The culture was shaken for 3 days at 23 C after which the culture was transferred to a 3 litre Erlenmeyer flask containing 1 litre of fermentation medium (5 g of casein hydrolysate (Gibco BRL), 3 g of yeast extract and 1 g of fructose per litre of deionized water). <Desc/Clms Page number 37> The medium, which was shaken at 23 C, was collected after 14-17 days, filtered and the chloroperoxidases were purified essentially according to Van Schijndel et al. (1994). Polyclonal antibodies were raised (using Freunds complete adjuvans in the first injection and Freunds incomplete adjuvans in the booster injection) against the purified (according to van Schijndel et al. , 1994) chloroperoxidase from Curvularia inaequalis in a (2-monthold female) rabbit. The rabbit was bled 6 days after the last booster injection. The sera were heated for 30 min at 56 C to inactivate complement and then centrifuged. The supernatant was taken. A dilution series was made of each of the purified chloroperoxidases and also of bromoperoxidase from Ascophylum nodosum (purified according to Wever et al, 1985), starting with 50 l of each protein (of approximately 0.1 mg per ml), and each sample was diluted sequentially two times. The dilutions were spotted using a dot-blot apparatus (Bio-Rad) on a nitrocellulose filter, washed with 2% BSA and incubated sequentially with a 1:800 dilution of rabbit anti-chloroperoxidase antiserum, biotinylated goat anti-rabbit (dilution 1: 3000), alkaline phosphatase-conjugated streptavidin (dilution 1: 2000) and colour development reagent (5-bromo-4-chloro-3-indolyl phosphate, 4-NitroBlue Tetrazolium chloride (Boehringer Mannheim). All steps were performed according to standard protocols. The results obtained are shown in Table VI. <Desc/Clms Page number 38> Table VI EMI38.1 <tb> <tb> haloperoxidase <SEP> from <SEP> cross-reactivity <SEP> with <tb> polyclonal <SEP> antibodies <tb> raised <SEP> against <SEP> C. <tb> inaequalis <SEP> chloroperoxidase <tb> C. <SEP> inaequalis <SEP> yes <tb> D. <SEP> biseptata <SEP> yes <tb> D. <SEP> subpapendorfii <SEP> yes <tb> E. <SEP> didymospora <SEP> yes <tb> U. <SEP> chartarum <SEP> yes <tb> bromoperoxidase <SEP> from <SEP> no <tb> A. <SEP> nodosum <tb> Based on the results disclosed in Table VI it can be concluded that immunoassays with antibodies raised against C. inaeaualis chloroperoxidase is suitable to identify other suitable vanadium containing haloperoxidases. These haloperoxidases can be either in crude form, partially or totally purified. Purification techniques can be all techniques known in the art, like gelfiltration, ion exchange chromatography, hydrophobic interaction chromatography, precipitation techniques, (ultra)filtration techniques, affinity chromatography, gelelectrophoresis and others. EXAMPLE 9 Further screening for suitable chloroperoxidases in other microorganisms. In this example it si described how a radio-active probe derived from the chloroperoxidase gene from Curvularia inaequalis can be used to detect homologous genes in other microorganisms. This was done as follows: <Desc/Clms Page number 39> Chromosomal DNA from C. inaequalis (CBS 102.42), Embelissia didymospora (CBS 766.79) and, Drechlera biseptata (CBS 371.72) was purified essentially as described for C. inaequalis chromosomal DNA (as described in example 6). For Southern analysis of the genomic DNA, the DNA was digested with several combinations of restriction enzymes and after agarose gel electrophoresis blotted to a nitrocellulose membrane (Sambrook et al. , 1989). Hybridization was carried out using a radiolabeled gene specific fragment, which was made by random priming using alpha-32P labelled dATP (Sambrook et al. 1989). The gene specific fragment used was amplified (before radio-active labelling) in a polymerase chain reaction, using first strand cDNA (see Example 6) as a template and making use of the primers: 5'-CACGATGGGGTCCGTTACAC and 5'-GTACCGCTATCGCTGCGCCTG The hybridisation conditions were as follows: In the prehybridisation and hybridisation 6 * SSPE, 5 * Denhardts, 0.5% SDS and 10 mg salmon sperm DNA were used as a buffer. Prehybridisation was done for 1 hour at 55 C, then the radioactive probe was boiled for 1 min and then directly added. Subsequently, hybridisation was continued overnight. The autoradiograph, which was obtained with Curvularia inaequalis and Drechlera biseptata DNA is presented as Figure 4. In the figure, lane 1: lambda DNA; lane 2: non-digested C. inaequalis genomic DNA; lane 3: idem, digested with EcoRI; lane 4: digested with BamHI; lane 5: EcoRI and BamHI; lane 6 digested with XbaI; lane 7 PstI; lane 8 XbaI and PstI; lanes 9 - 14: idem, using D. biseptata. As can be seen in the figure, a positive signal is obtained with chromosomal DNA from Drechslera biseptata, indicating a high degree of similarity of both genes. Similar results were obtained with DNA from Embellisia didymospora. We therefor conclude that the chloroperoxidase gene, or parts derived from this gene, or probes based on <Desc/Clms Page number 40> the sequence of the C. inaequalis chloroperoxidase gene can be used to detect suitable vanadium haloperoxidases from other microorganisms. Table VII. Oligonucleotide primers (20mers), based on amino acid sequences from the vanadium chloroperoxidase ex Curvularia inaegualis. I: inosine A/G: at this position at equal mix of A and G is used. C/T: at this position at equal mix of C and T is used. G/A/T/C: at this position at equal mix of G, A, C and T is used. Oligo1: 5'-T A C/T A T G A A A/G C C I G T I G A A/G C A -3' Oligo 2: 5'-A G/A T/C T G I G C G/A T A I G C G/A T T G/A T C-3' Oligo 3: 5' -G A C/T G A A/G A C I G C I G A A/G T A C/T G A-3' Oligo 4: 5'-A G/A I G C T/C T G I G C I C C G/A/T/C C C C A T-3'
Claims
CLAIMS 1. Enzymatic antimicrobial composition comprising a Vanadium haloperoxidase, a source of halide and hydrogen peroxide or a source of hydrogen peroxide.
2. Enzymatic antimicrobial composition according to claim 1, wherein the Vanadium haloperoxidase is a chloroperoxidase.
3. Enzymatic antimicrobial composition according to any one of the preceding claims, wherein the Vanadium haloperoxidase is a chloroperoxidase obtainable from Curvularia inaequalis 4. Enzymatic antimicrobial composition according to any one of the preceding claims, wherein the Vanadium haloperoxidase is a chloroperoxidase which is immunologically cross-reactive with the chloroperoxidase from Curvularia inaequalis CBS 102.42.
5. Enzymatic antimicrobial composition according to any one of the preceding claims, wherein the source of hydrogen peroxide is an enzymatic hydrogen peroxide-generating system.
6. Enzymatic antimicrobial composition according to claim 5, wherein the enzymatic hydrogen peroxide-generating system is glucose/glucose oxidase or lactate/lactate oxidase.
7. Enzymatic antimicrobial composition according to any one of the preceding claims, said composition being essentially free from catalase activity.
<Desc/Clms Page number 42>
8. Process for inhibiting microbial growth, comprising applying a composition according to any one of the preceding claims to a surface which is to be disinfected.
9. Use of Vanadium haloperoxidases as sanitizing agent.
10. DNA sequence comprising a structural gene coding for Vanadium chloroperoxidase from Curvularia inaegualis CBS 102.42.
11. DNA sequence comprising a structural gene for Vanadium chloroperoxidase from Curvularia inaequalis CBS 102.42 as shown in Figure 2.
12. Expression vector comprising an origin of replication, transcription and termination control sequences and at least part of the DNA sequence according to claim 10 or 11.
13. Process for preparing a Vanadium haloperoxidase by transforming a suitable host by means of an expression vector according to claim 12, cultivating the host under conditions which allow the expression of the structural gene and isolating the Vanadium haloperoxidase.
*****
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95915183A EP0753055A1 (en) | 1994-03-31 | 1995-03-31 | Enzymatic antimicrobial compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94200893 | 1994-03-31 | ||
EP94200893 | 1994-03-31 | ||
PCT/EP1995/001229 WO1995027046A2 (en) | 1994-03-31 | 1995-03-31 | Enzymatic antimicrobial compositions containing haloperoxidases |
EP95915183A EP0753055A1 (en) | 1994-03-31 | 1995-03-31 | Enzymatic antimicrobial compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0753055A1 true EP0753055A1 (en) | 1997-01-15 |
Family
ID=8216755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95915183A Withdrawn EP0753055A1 (en) | 1994-03-31 | 1995-03-31 | Enzymatic antimicrobial compositions |
Country Status (12)
Country | Link |
---|---|
EP (1) | EP0753055A1 (en) |
JP (1) | JPH09511396A (en) |
CN (1) | CN1146782A (en) |
AU (1) | AU2215495A (en) |
BR (1) | BR9507226A (en) |
CA (1) | CA2182966A1 (en) |
CZ (1) | CZ288041B6 (en) |
HU (1) | HUT74967A (en) |
NL (1) | NL9401048A (en) |
PL (2) | PL181397B1 (en) |
SK (1) | SK123096A3 (en) |
WO (1) | WO1995027046A2 (en) |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69737828T2 (en) * | 1996-04-29 | 2008-03-06 | Novozymes A/S | LIQUID, NON-AQUEOUS ENZYMES CONTAINING COMPOSITIONS |
ATE221729T1 (en) * | 1996-05-09 | 2002-08-15 | Novozymes As | ANTIMICROBIAL PEROXIDASE COMPOSITIONS |
AU6469698A (en) * | 1997-03-24 | 1998-10-20 | Clorox Company, The | A chloroperoxidase enzyme system for generating hypochlorous acid and hypochlorite (in situ) |
CA2295953A1 (en) * | 1997-07-09 | 1999-01-21 | The Procter & Gamble Company | Cleaning compositions comprising an oxidoreductase |
US6074631A (en) * | 1997-08-14 | 2000-06-13 | Novo Nordisk A/S | Reduction of malodour |
US6080391A (en) * | 1997-08-14 | 2000-06-27 | Novo Nordisk A/S | Reduction of malodour |
CN1265561A (en) * | 1997-08-14 | 2000-09-06 | 诺沃挪第克公司 | AntimicroBial composition containing a haloperoxidase, a hydrogen peroxide cource, a halide source and an ammonium source |
US6025186A (en) * | 1997-08-14 | 2000-02-15 | Novo Nordisk A/S | Reduction of malodor |
US6492110B1 (en) | 1998-11-02 | 2002-12-10 | Uab Research Foundation | Reference clones and sequences for non-subtype B isolates of human immunodeficiency virus type 1 |
US6232457B1 (en) | 1998-09-10 | 2001-05-15 | The Regents Of The University Of California | Recombinant vanadium haloperoxidases and their uses |
US6656715B1 (en) | 1998-09-10 | 2003-12-02 | The Regents Of The University Of California | Recombinant minimal catalytic vanadium haloperoxidases and their uses |
US6592867B2 (en) * | 1998-11-09 | 2003-07-15 | Novozymes A/S | Antimicrobial composition containing an oxidoreductase and an enhancer of the N-hydroxyanilide-type |
DE60041134D1 (en) * | 1999-05-06 | 2009-01-29 | Novozymes As | ENZYMATIC PRESERVATION OF AQUEOUS LACQUERS |
US7063970B1 (en) | 1999-05-06 | 2006-06-20 | Norozymes A/S | Enzymatic preservation of water based paints |
AU6557900A (en) * | 1999-08-10 | 2001-03-05 | Novozymes A/S | Reduction of malodour in soiled animal litter |
WO2001011969A1 (en) * | 1999-08-13 | 2001-02-22 | Novozymes A/S | ENZYMATIC METHOD FOR KILLING OR INHIBITING MICROBIAL CELLS AT HIGH pH |
US6410292B1 (en) | 2000-04-14 | 2002-06-25 | Novozymes A/S | Nucleic acids encoding polypeptides having haloperoxidase activity |
US6511835B1 (en) | 2000-04-14 | 2003-01-28 | Novozymes, A/S | Nucleic acids encoding polypeptides having haloperoxidase activity |
AU2001246403A1 (en) * | 2000-04-14 | 2001-10-30 | Novozymes A/S | Polypeptides having haloperoxidase activity |
US6509181B1 (en) | 2000-04-14 | 2003-01-21 | Novozymes, A/S | Polypeptides having haloperoxide activity |
US6410291B1 (en) | 2000-04-14 | 2002-06-25 | Novozymes A/S | Polypeptides having haloperoxidase activity |
AU2001246404A1 (en) | 2000-04-14 | 2001-10-30 | Novozymes A/S | Polypeptides having haloperoxidase activity |
AU2001246402A1 (en) | 2000-04-14 | 2001-10-30 | Novozymes A/S | Polypeptides having haloperoxidase activity |
WO2001079464A2 (en) * | 2000-04-14 | 2001-10-25 | Novozymes A/S | Nucleic acids encoding polypeptides having haloperoxidase activity |
WO2002047483A1 (en) * | 2000-12-15 | 2002-06-20 | Novozymes A/S | Use of haloperoxidase, peroxide and carboxylic acid |
IL162043A0 (en) * | 2001-12-04 | 2005-11-20 | Novozymes As | Methods for killing spores |
EP1497382A1 (en) * | 2002-04-12 | 2005-01-19 | Biolocus Aps | Antifouling composition comprising an enzyme in the absence of its substrate |
EP3219804B1 (en) | 2007-04-24 | 2019-07-17 | Novozymes North America, Inc. | Detoxifying pre-treated lignocellulose-containing materials |
JP2011500761A (en) * | 2007-10-23 | 2011-01-06 | ノボザイムス アクティーゼルスカブ | Method for killing spores and for disinfecting or sterilizing equipment |
EP2362732B1 (en) * | 2008-10-23 | 2015-05-20 | Getinge Disinfection AB | A method of obtaining high-level disinfection in a washer disinfector, and a washer disinfector |
US20120020946A1 (en) | 2009-04-03 | 2012-01-26 | Novozymes A/S | Methods for Inactivating Viruses |
WO2010122100A1 (en) | 2009-04-22 | 2010-10-28 | Novozymes A/S | Methods for killing or inhibiting growth of mycobacteria |
EP2510944A1 (en) * | 2011-04-15 | 2012-10-17 | National University of Ireland, Galway | Treatment of bacterial infections |
WO2013164429A1 (en) | 2012-05-02 | 2013-11-07 | Novozymes A/S | Enzymatic solubilization of metals |
EP2941485B1 (en) | 2013-01-03 | 2018-02-21 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP2970830B1 (en) | 2013-03-14 | 2017-12-13 | Novozymes A/S | Enzyme and inhibitor contained in water-soluble films |
EP3569611A1 (en) | 2013-04-23 | 2019-11-20 | Novozymes A/S | Liquid automatic dish washing detergent compositions with stabilised subtilisin |
EP2992076B1 (en) | 2013-05-03 | 2018-10-24 | Novozymes A/S | Microencapsulation of detergent enzymes |
WO2014180953A1 (en) * | 2013-05-08 | 2014-11-13 | Novozymes A/S | Animal feed enzymes |
US20160083703A1 (en) | 2013-05-17 | 2016-03-24 | Novozymes A/S | Polypeptides having alpha amylase activity |
EP3309249B1 (en) | 2013-07-29 | 2019-09-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
CN106103708A (en) | 2014-04-01 | 2016-11-09 | 诺维信公司 | There is the polypeptide of alpha amylase activity |
EP3406697B1 (en) | 2014-04-11 | 2020-06-10 | Novozymes A/S | Detergent composition |
CN106459937B (en) | 2014-05-27 | 2024-09-10 | 诺维信公司 | Method for producing lipase |
WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2016001319A1 (en) | 2014-07-03 | 2016-01-07 | Novozymes A/S | Improved stabilization of non-protease enzyme |
WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
CN107636134A (en) | 2015-04-10 | 2018-01-26 | 诺维信公司 | Detergent composition |
EP3280791A1 (en) | 2015-04-10 | 2018-02-14 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
CN107835853B (en) | 2015-05-19 | 2021-04-20 | 诺维信公司 | Odor reduction |
US10717576B2 (en) | 2015-06-17 | 2020-07-21 | Novozymes A/S | Container for polypeptide |
EP3317388B1 (en) | 2015-06-30 | 2019-11-13 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
WO2017005816A1 (en) | 2015-07-06 | 2017-01-12 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
US11053486B2 (en) | 2015-09-17 | 2021-07-06 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
EP3359658A2 (en) | 2015-10-07 | 2018-08-15 | Novozymes A/S | Polypeptides |
BR112018007474A2 (en) | 2015-10-14 | 2018-10-30 | Novozymes A/S | ? cleaning water filtration membranes? |
CN108291212A (en) | 2015-10-14 | 2018-07-17 | 诺维信公司 | Polypeptide variants |
WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
WO2017117089A1 (en) | 2015-12-28 | 2017-07-06 | Novozymes Bioag A/S | Heat priming of bacterial spores |
BR112018069220A2 (en) | 2016-03-23 | 2019-01-22 | Novozymes As | use of polypeptide that has dnase activity for tissue treatment |
EP3464538A1 (en) | 2016-05-31 | 2019-04-10 | Novozymes A/S | Stabilized liquid peroxide compositions |
WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
JP6858850B2 (en) | 2016-07-13 | 2021-04-14 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Bacillus CIBI DNase mutant and its use |
EP3519547A1 (en) | 2016-09-29 | 2019-08-07 | Novozymes A/S | Spore containing granule |
EP3519548A1 (en) | 2016-09-29 | 2019-08-07 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
US20210284933A1 (en) | 2016-10-25 | 2021-09-16 | Novozymes A/S | Detergent compositions |
CN110072986B (en) | 2016-11-01 | 2023-04-04 | 诺维信公司 | Multi-core particles |
CA3043443A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
EP3551740B1 (en) | 2016-12-12 | 2021-08-11 | Novozymes A/S | Use of polypeptides |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
CN111108183A (en) | 2017-06-30 | 2020-05-05 | 诺维信公司 | Enzyme slurry composition |
MX2020002953A (en) | 2017-09-20 | 2020-07-22 | Novozymes As | Use of enzymes for improving water absorption and/or whiteness. |
US11414814B2 (en) | 2017-09-22 | 2022-08-16 | Novozymes A/S | Polypeptides |
CN111356762B (en) | 2017-09-27 | 2024-09-17 | 诺维信公司 | Lipase variants and microcapsule compositions comprising such lipase variants |
WO2019076834A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019076833A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
BR112020008251A2 (en) | 2017-10-27 | 2020-11-17 | Novozymes A/S | dnase variants |
CN111247245A (en) | 2017-10-27 | 2020-06-05 | 宝洁公司 | Detergent compositions comprising polypeptide variants |
EP3749758A1 (en) | 2018-02-08 | 2020-12-16 | Novozymes A/S | Lipase variants and compositions thereof |
CN111868239A (en) | 2018-02-08 | 2020-10-30 | 诺维信公司 | Lipase, lipase variants and compositions thereof |
CN111770788B (en) | 2018-03-13 | 2023-07-25 | 诺维信公司 | Microencapsulation using amino sugar oligomers |
CN112262207B (en) | 2018-04-17 | 2024-01-23 | 诺维信公司 | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use for reducing wrinkles in textiles or fabrics |
EP3781680A1 (en) | 2018-04-19 | 2021-02-24 | Novozymes A/S | Stabilized cellulase variants |
CN112272701B (en) | 2018-04-19 | 2024-05-14 | 诺维信公司 | Stabilized cellulase variants |
WO2019238761A1 (en) | 2018-06-15 | 2019-12-19 | Basf Se | Water soluble multilayer films containing wash active chemicals and enzymes |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
US20220017844A1 (en) | 2018-12-03 | 2022-01-20 | Novozymes A/S | Low pH Powder Detergent Composition |
CN113366103A (en) | 2018-12-21 | 2021-09-07 | 诺维信公司 | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
AU2020242303A1 (en) | 2019-03-21 | 2021-06-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
US20220186151A1 (en) | 2019-04-12 | 2022-06-16 | Novozymes A/S | Stabilized glycoside hydrolase variants |
EP3994255A1 (en) | 2019-07-02 | 2022-05-11 | Novozymes A/S | Lipase variants and compositions thereof |
CN114787329A (en) | 2019-08-27 | 2022-07-22 | 诺维信公司 | Detergent composition |
CN114616312A (en) | 2019-09-19 | 2022-06-10 | 诺维信公司 | Detergent composition |
US20220340843A1 (en) | 2019-10-03 | 2022-10-27 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
WO2021105336A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions comprising polymer and enzyme |
EP4077656A2 (en) | 2019-12-20 | 2022-10-26 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
EP4133066A1 (en) | 2020-04-08 | 2023-02-15 | Novozymes A/S | Carbohydrate binding module variants |
US20230167384A1 (en) | 2020-04-21 | 2023-06-01 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
EP3907271A1 (en) | 2020-05-07 | 2021-11-10 | Novozymes A/S | Cleaning composition, use and method of cleaning |
EP4172298A1 (en) | 2020-06-24 | 2023-05-03 | Novozymes A/S | Use of cellulases for removing dust mite from textile |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
JP2023538740A (en) | 2020-08-25 | 2023-09-11 | ノボザイムス アクティーゼルスカブ | Variants of family 44 xyloglucanase |
BR112023005128A2 (en) | 2020-09-22 | 2023-04-25 | Basf Se | COMPOSITION, DETERGENT COMPOSITION, METHOD FOR PROVIDING A DETERGENT COMPOSITION WITH IMPROVED STABILITY AND/OR WASHING PERFORMANCE, AND, USE OF A COMPOSITION |
CN116507725A (en) | 2020-10-07 | 2023-07-28 | 诺维信公司 | Alpha-amylase variants |
EP4232539A2 (en) | 2020-10-20 | 2023-08-30 | Novozymes A/S | Use of polypeptides having dnase activity |
CN116615523A (en) | 2020-10-28 | 2023-08-18 | 诺维信公司 | Use of lipoxygenase |
WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
CN116829685A (en) | 2021-01-28 | 2023-09-29 | 诺维信公司 | Lipase with low malodor production |
EP4291646A2 (en) | 2021-02-12 | 2023-12-20 | Novozymes A/S | Alpha-amylase variants |
EP4305146A1 (en) | 2021-03-12 | 2024-01-17 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
AU2023228020A1 (en) | 2022-03-04 | 2024-07-11 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
EP4309500A1 (en) * | 2022-07-18 | 2024-01-24 | Acies Bio d.o.o. | Peroxidase based biocontrol agents |
WO2024017883A1 (en) * | 2022-07-18 | 2024-01-25 | Acies Bio D.O.O. | Peroxidase based biocontrol agents |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4707446A (en) * | 1983-05-24 | 1987-11-17 | Cetus Corporation | Stable haloperoxidase method |
AU642980B2 (en) * | 1990-03-21 | 1993-11-04 | Quest International B.V. | Ultilization of enzymes |
GB9015910D0 (en) * | 1990-07-19 | 1990-09-05 | Univ Bruxelles | Novel use |
JP3399549B2 (en) * | 1990-11-16 | 2003-04-21 | サントリー株式会社 | Microbial peroxidase gene |
JP4063317B2 (en) * | 1991-02-21 | 2008-03-19 | エクソゼミス,インコーポレイテッド | Methods and compositions for infection treatment and plexus control |
US5262151A (en) * | 1991-11-25 | 1993-11-16 | Montgomery Robert E | Stabilized enzymatic antimicrobial compositions |
-
1994
- 1994-06-24 NL NL9401048A patent/NL9401048A/en not_active Application Discontinuation
-
1995
- 1995-03-31 PL PL95341279A patent/PL181397B1/en unknown
- 1995-03-31 SK SK1230-96A patent/SK123096A3/en unknown
- 1995-03-31 JP JP7525418A patent/JPH09511396A/en active Pending
- 1995-03-31 EP EP95915183A patent/EP0753055A1/en not_active Withdrawn
- 1995-03-31 CZ CZ19962850A patent/CZ288041B6/en not_active IP Right Cessation
- 1995-03-31 WO PCT/EP1995/001229 patent/WO1995027046A2/en active IP Right Grant
- 1995-03-31 BR BR9507226A patent/BR9507226A/en not_active Application Discontinuation
- 1995-03-31 AU AU22154/95A patent/AU2215495A/en not_active Abandoned
- 1995-03-31 HU HU9602673A patent/HUT74967A/en unknown
- 1995-03-31 CA CA002182966A patent/CA2182966A1/en not_active Abandoned
- 1995-03-31 PL PL95316571A patent/PL181389B1/en unknown
- 1995-03-31 CN CN95192407A patent/CN1146782A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO9527046A2 * |
Also Published As
Publication number | Publication date |
---|---|
PL181389B1 (en) | 2001-07-31 |
JPH09511396A (en) | 1997-11-18 |
NL9401048A (en) | 1995-11-01 |
CN1146782A (en) | 1997-04-02 |
AU2215495A (en) | 1995-10-23 |
HU9602673D0 (en) | 1996-11-28 |
SK123096A3 (en) | 1997-06-04 |
CZ285096A3 (en) | 1997-10-15 |
BR9507226A (en) | 1997-09-09 |
WO1995027046A3 (en) | 1995-11-30 |
PL316571A1 (en) | 1997-01-20 |
WO1995027046A2 (en) | 1995-10-12 |
CA2182966A1 (en) | 1995-10-12 |
CZ288041B6 (en) | 2001-04-11 |
PL181397B1 (en) | 2001-07-31 |
HUT74967A (en) | 1997-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0753055A1 (en) | Enzymatic antimicrobial compositions | |
US5866393A (en) | Haloperoxidases from curvularia verruculosa and nucleic acids encoding same | |
JP2801398B2 (en) | Prevent dye transfer | |
JP2716233B2 (en) | Detergent additive for fabric bleaching | |
Simons et al. | Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curvularia inaequails | |
MXPA98000419A (en) | Haloperoxidasas of vervulular curvular and nucleic acids that codify for the mis | |
EP0912097A1 (en) | Antimicrobial peroxidase compositions | |
US6426410B1 (en) | Phenol oxidizing enzymes | |
US7160709B2 (en) | Phenol oxidizing enzymes | |
MXPA01006388A (en) | Phenol oxidizing enzymes. | |
US6372465B2 (en) | Haloperoxidases with altered pH profiles | |
WO1999047651A1 (en) | HALOPEROXIDASES WITH ALTERED pH PROFILES | |
WO2002020711A2 (en) | Detergent compositions comprising phenol oxidizing enzymes | |
WO2000005349A1 (en) | Phenol oxidizing enzymes | |
EP1066364A2 (en) | Phenol oxidizing enzymes and their use | |
MXPA00008969A (en) | HALOPEROXIDASES WITH ALTERED pH PROFILES | |
KR19990028959A (en) | A haloperoxidase derived from CURVULARIA VERRUCULOSA and a nucleic acid encoding the same | |
DK164818B (en) | Detergent additive, detergent composition and process for bleaching stains on textile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960820 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 20010309 |