EP0745828B1 - Method for determining roll of a spinning flying object - Google Patents

Method for determining roll of a spinning flying object Download PDF

Info

Publication number
EP0745828B1
EP0745828B1 EP96108075A EP96108075A EP0745828B1 EP 0745828 B1 EP0745828 B1 EP 0745828B1 EP 96108075 A EP96108075 A EP 96108075A EP 96108075 A EP96108075 A EP 96108075A EP 0745828 B1 EP0745828 B1 EP 0745828B1
Authority
EP
European Patent Office
Prior art keywords
roll
flying object
magnetic field
field strength
roll position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP96108075A
Other languages
German (de)
French (fr)
Other versions
EP0745828A1 (en
Inventor
Jens Dr. Seidensticker
Wolfgang Dr. Kreuzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Soldier Electronics GmbH
Original Assignee
Oerlikon Contraves GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7763419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0745828(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oerlikon Contraves GmbH filed Critical Oerlikon Contraves GmbH
Publication of EP0745828A1 publication Critical patent/EP0745828A1/en
Application granted granted Critical
Publication of EP0745828B1 publication Critical patent/EP0745828B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • F41G7/343Direction control systems for self-propelled missiles based on predetermined target position data comparing observed and stored data of target position or of distinctive marks along the path towards the target

Definitions

  • the invention relates to a method for determining the Roll position of a rolling flying object, in particular for Guiding a ballistic flying projectile / missile with roll compensation.
  • the roll position is determined by vitally important, provided that a subsequent steering of these flying objects should take place during the mission.
  • this applies to the steering of ballistic flying projectiles / missiles, where the possibility a trajectory correction is provided, such as is described in P 44 01 315.9.
  • the present invention is based on the object To develop methods of the type mentioned above which is a relatively precise determination of the roll position of the Flying object takes place and which only a little effort assumes.
  • Direction reference A field strength vector of the earth's magnetic field is called Direction reference used.
  • a magnetic field sensor measures the component of the Geomagnetic field preferably in the radial direction to / r Projectile / missile. Depending on the Roll position an alternating, sinusoidal course of a measured intensity, whose minima and maxima indicate that the measuring direction on the course of the earth's magnetic field on next one is. From the time interval of the maxima / minima the roll frequency is determined.
  • the location of the magnetic field sensor is also the reference point for the rolling position.
  • the roll axis of the obedient flying object is determined by the Approximate speed vector.
  • the direction of the Velocity vector is known because it is either called Target course determined during mission planning and stored in an evaluation computer or during the Flight e.g. is measured with NAVSTAR-GPS.
  • the orientation of the field strength vector is in advance known reference system and in one Evaluation computer saved.
  • the roll position of the projectile / rocket for the times of the maximum or calculate the minimum intensity. Between these The rollage is determined with the determined times Roll frequency predetermined.
  • the System dead time i.e. the time required for the evaluation Time, the accuracy of the roll position determination is additional increased.
  • FIG. 1 is a flying object 1 with a Magnetic field sensor 2 and a measuring axis 3 shown.
  • This Flying object has a speed vector 4 and one Roll axis 5.
  • the arrow w represents the roll angle of the Flying object 1 with respect to a vertical reference axis (VRA) 6.
  • a field line 7 of the Earth's magnetic field drawn with a field strength vector 8.
  • the field strength vector 8 is used to determine the Roll position of the flying object 1, the Speed vector 4 of the flying object is known.
  • the method of operation of the present method is the following:
  • a time interval Tp between two maxima or two minima is the duration for one revolution of the roll Projectile / missile.
  • the roll frequency is determined from this.
  • the speed of the flying object 1 becomes independent of determined the full procedure. This happens for example via NAVSTAR-GPS (Global Positioning System), with the help of which position values of the / r Projectile / rocket and also speed determined become.
  • NAVSTAR-GPS Global Positioning System
  • Roll axis 5, VRA 6 and field strength vector 8 let the Determination of the roll position of a reference point, e.g. location of the Magnetic field sensor 2 at the time when the measuring axis 3 matches field line 7 as much as possible. Between The roll angle w is calculated in advance of these times from the roll frequency and the time span after the last one Reference measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

The roll position evaluation system uses a field strength vector (8) of the earth's magnetic field as a directional reference for determining the roll position of the flying object (1). The speed of the object is determined using e.g. NAVSTAR-GPS system. Pref. at least one magnetic field sensor (2) is used for providing the field strength vector of the earth's magnetic field at a given point on the flying object, used as a reference point for the roll position evaluation.

Description

Die Erfindung betrifft ein Verfahren zum Bestimmen der Rolllage eines rollenden Flugobjektes, insbesondere zur Lenkung eines/r ballistisch fliegenden Projektils/Rakete mit Rollausgleich.The invention relates to a method for determining the Roll position of a rolling flying object, in particular for Guiding a ballistic flying projectile / missile with roll compensation.

Bei ballistisch fliegenden Projektilen/Raketen aber auch bei anderen Flugobjekten ist die Bestimmung der Rolllage von entscheidender Bedeutung, sofern eine nachträgliche Lenkung dieser Flugobjekte während der Mission erfolgen soll. Insbesondere gilt dies für die Lenkung von ballistisch fliegenden Projektilen/Raketen, bei denen die Möglichkeit einer Flugbahnkorrektur vorgesehen ist, wie beispielsweise in der P 44 01 315.9 beschrieben wird.But also with ballistic flying projectiles / rockets for other flying objects, the roll position is determined by vitally important, provided that a subsequent steering of these flying objects should take place during the mission. In particular, this applies to the steering of ballistic flying projectiles / missiles, where the possibility a trajectory correction is provided, such as is described in P 44 01 315.9.

Im vorliegenden Fall handelt es sich vorwiegend um Flugobjekte, deren Drehbewegung um die Rollachse besonders ausgeprägt ist. Die Drehbewegungen um die anderen Körperachsen (Nick- und Gierbewegung) sind im Vergleich dazu gering. Dabei wird vorausgesetzt, daß zumindest eine Richtungsreferenz, wie die Richtung des Geschwindigkeitsvektors des Flugobjektes z.B. durch Messung bekannt ist. Ferner werden Flugobjekte mit quasi stabiler, d.h., langsam veränderlicher Rollfrequenz betrachtet, da nur für diese Bewegungsart mit dem hier vorgestellten Verfahren eine gesicherte Bestimmung der Rolllage nicht nur zu einzelnen Zeitpunkten möglich ist.In the present case, it is mainly about Flying objects, their rotation around the roll axis especially is pronounced. The rotating movements around the others Body axes (pitch and yaw movement) are compared low. It is assumed that at least one Direction reference, such as the direction of the speed vector of the flying object e.g. is known by measurement. Flying objects also become more stable, i.e., slow variable roll frequency considered, because only for this Movement type with the procedure presented here reliable determination of the roll position not only for individual ones Times is possible.

Bislang werden Rolllagen mittels Lagereferenzkreisel oder anderen Trägheitsreferenzsystemen ermittelt. Diese Vorrichtungen bzw. Systeme sind mechanische/optronische Präzisionsgeräte und daher entsprechend teuer.Up to now, roll positions have been determined by means of other inertial reference systems. This Devices and systems are mechanical / optronic Precision devices and therefore correspondingly expensive.

Ein o.g. Verfahren ist aus der DE 31 31 394 A1 bekannt. Zur Bestimmung der Rotations- und Rolllage von Flugkörpern wird das erdmagnetische Feld benutzt. Dem Flugkörper wird ein Erdmagnetfeldsensor zur Anzeige der Normalausrichtung zum Erdboden und ein Verstärker zur laufenden Berechnung der Rolllage unter dem Einfluss veränderlicher Azimuth- und Elevationswinkel zugeordnet. Zur Bestimmung der Rollfrequenz wird die Amplitude einer induzierten Wechselspannung ausgewertet. Allerdings erfolgt keine messtechnische Darstellung der Lösung für die Auswertung der erforderlichen Raumlage von Körperachse und Erdmagnetfeldvektor zum Horizont. Dementsprechend ist eine Zuordnung der Rollphase "0" relativ zum Erdmagnetfeld durch eine Zusatzeinrichtung am Startgerät erforderlich.An above The method is known from DE 31 31 394 A1. For Determination of the rotational and roll position of missiles uses the geomagnetic field. The missile becomes a Earth's magnetic field sensor for displaying the normal orientation to Soil and an amplifier for the ongoing calculation of the Roll position under the influence of changing azimuth and Assigned elevation angle. To determine the Roll frequency is the amplitude of an induced AC voltage evaluated. However, there is no Metrological representation of the solution for the evaluation the required spatial position of the body axis and Earth magnetic field vector to the horizon. Accordingly, one Assignment of the roll phase "0" relative to the earth's magnetic field an additional device on the starting device is required.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der oben genannten Art zu entwickeln, mittels welchem eine relativ genaue Bestimmung der Rolllage des Flugobjektes erfolgt und welches einen nur geringen Aufwand voraussetzt. The present invention is based on the object To develop methods of the type mentioned above which is a relatively precise determination of the roll position of the Flying object takes place and which only a little effort assumes.

Zur Lösung dieser Aufgabe führt, daß

  • eine Feldstärke des Erdmagnetfeldes insbesondere ein Feldstärkevektor zur Bestimmung der Rolllage des Flugobjektes verwendet wird und
  • ein Geschwindigkeitsvektor des/r Projektils/Rakete gemessen oder als Funktion oder in Form einer Tabelle im Auswerterechner gespeichert, zeitrichtig berechnet und als Referenz für die Rollagebestimmung verwendet wird.
To solve this problem leads that
  • a field strength of the earth's magnetic field, in particular a field strength vector, is used to determine the roll position of the flying object and
  • a speed vector of the projectile / rocket is measured or saved as a function or in the form of a table in the evaluation computer, calculated in good time and used as a reference for determining the roll position.

Dieses Verfahren soll zur Lenkung eines/r ballistisch fliegenden Projektils/Rakete mit Rollausgleich eingesetzt werden. Ein Feldstärkevektor des Erdmagnetfeldes wird als Richtungsreferenz genutzt.This procedure is intended to control a ballistic flying projectile / rocket with roll compensation used become. A field strength vector of the earth's magnetic field is called Direction reference used.

Ein Magnetfeldsensor mißt die Komponente des Erdmagnetfeldes vorzugsweise in radialer Richtung zum/r Projektil/Rakete. Dabei zeigt sich in Abhängigkeit der Rolllage ein alternierender, sinusartiger Verlauf einer gemessenen Intensität, dessen Minima und Maxima anzeigen, daß die Meßrichtung dem Verlauf des Erdmagnetfeldes am nächsten ist. Aus dem zeitlichen Abstand der Maxima/Minima wird die Rollfrequenz bestimmt.A magnetic field sensor measures the component of the Geomagnetic field preferably in the radial direction to / r Projectile / missile. Depending on the Roll position an alternating, sinusoidal course of a measured intensity, whose minima and maxima indicate that the measuring direction on the course of the earth's magnetic field on next one is. From the time interval of the maxima / minima the roll frequency is determined.

Der Ort des Magnetfeldsensors ist zugleich Bezugspunkt für die Rolllage.The location of the magnetic field sensor is also the reference point for the rolling position.

Die Rollachse des folgsamen Flugobjektes wird durch den Geschwindigkeitsvektor angenähert. Die Richtung des Geschwindigkeitsvektors ist bekannt, da er entweder als Sollverlauf noch während der Missionsplanung festgelegt und in einem Auswerterechner gespeichert oder während des Fluges z.B. mit NAVSTAR-GPS gemessen wird. The roll axis of the obedient flying object is determined by the Approximate speed vector. The direction of the Velocity vector is known because it is either called Target course determined during mission planning and stored in an evaluation computer or during the Flight e.g. is measured with NAVSTAR-GPS.

Die Orientierung des Feldstärkevektors ist in einem vorab definierten Bezugssystem bekannt und in einem Auswerterechner gespeichert.The orientation of the field strength vector is in advance known reference system and in one Evaluation computer saved.

Aus der Orientierung von Richtungsreferenz (z.B. Geschwindigkeitsvektor) und Feldstärkevektor läßt sich die Rolllage des/r Projektils/Rakete für die Zeitpunkte der maximalen bzw. minimalen Intensität berechnen. Zwischen diesen Zeitpunkten wird die Rollage mit der ermittelten Rollfrequenz vorausbestimmt. Durch Berücksichtigung der Systemtotzeit, d.h., der für die Auswertung erforderliche Zeit, wird die Genauigkeit der Rolllagebestimmung zusätzlich gesteigert.From the orientation of the direction reference (e.g. speed vector) and field strength vector, the roll position of the projectile / rocket for the times of the maximum or calculate the minimum intensity. Between these The rollage is determined with the determined times Roll frequency predetermined. By considering the System dead time, i.e. the time required for the evaluation Time, the accuracy of the roll position determination is additional increased.

Im Rahmen der Erfindung liegt selbstverständlich auch, daß mehrere Magnetfeldsensoren verwendet werden, wodurch eine genauere Bestimmung der Rolllage möglich wird.It is of course also within the scope of the invention that multiple magnetic field sensors are used, making one more precise determination of the roll position is possible.

Der Fall, daß die Flugbahn des/r Projektils/Rakete auf einer Feldlinie des Erdmagnetfeldes liegt, kann insbesondere bei ballistisch fliegenden Flugkörpern als singulärer Ausnahmefall gesehen werden. In diesem Ausnahmefall ist eine Bestimmung der Rolllage mit diesem Verfahren nicht möglich, da trotz Rollbewegung keine Feldstärkeänderungen quer zur Flugbahn auftreten. Dieser Ausnahmefall kann durch eine entsprechende Missionsplanung vermieden werden. Tritt er dennoch ein, so wird er vom Verfahren automatisch erkannt. The case that the trajectory of the projectile / missile is open a field line of the earth's magnetic field, can especially with ballistic flying missiles as singular exceptional case can be seen. In this An exception is a determination of the roll position with this Procedure not possible because none despite rolling motion Field strength changes across the trajectory occur. This Exceptional cases can be achieved through appropriate mission planning be avoided. If he does enter, he will be removed from the Process recognized automatically.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

  • Figur 1 eine schematische Darstellung der Beziehung zwischen einem Flugkörper und dem Erdmagnetfeld;
  • Figur 2 eine diagrammartige Darstellung des erfindungsgemäßen Verfahrens zum Bestimmen der Rollage eines Flugobjektes.
  • Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments and from the drawing; this shows in
  • Figure 1 is a schematic representation of the relationship between a missile and the earth's magnetic field;
  • Figure 2 is a diagrammatic representation of the inventive method for determining the roll position of a flying object.
  • Gemäß Figur 1 ist schematisch ein Flugobjekt 1 mit einem Magnetfeldsensor 2 und einer Meßachse 3 dargestellt. Dieses Flugobjekt hat einen Geschwindigkeitsvektor 4 und eine Rollachse 5. Der Pfeil w stellt den Rollwinkel des Flugobjektes 1 gegenüber einer vertikalen Referenzachse (VRA) 6 dar. Strichpunktiert ist eine Feldlinie 7 des Erdmagnetfeldes mit einem Feldstärkevektor 8 eingezeichnet.According to Figure 1 is a flying object 1 with a Magnetic field sensor 2 and a measuring axis 3 shown. This Flying object has a speed vector 4 and one Roll axis 5. The arrow w represents the roll angle of the Flying object 1 with respect to a vertical reference axis (VRA) 6. A field line 7 of the Earth's magnetic field drawn with a field strength vector 8.

    Anhand des Feldstärkevektors 8 erfolgt die Bestimmung der Rolllage des Flugobjektes 1, wobei der Geschwindigkeitsvektor 4 des Flugobjektes bekannt ist.The field strength vector 8 is used to determine the Roll position of the flying object 1, the Speed vector 4 of the flying object is known.

    Die Funktionsweise der vorliegenden Verfahrens ist folgende:The method of operation of the present method is the following:

    Infolge der Rollbewegung des Flugobjektes 1 sensiert der Magnetfeldsensor 2 bezüglich seiner Meßachse 3 einen alternierenden, sinusartigen Verlauf der Intensität des Magnetfeldes. Dieser Verlauf ist in Fig. 2 als Funktion über der Zeit t dargestellt.As a result of the rolling movement of the flying object 1, the Magnetic field sensor 2 with respect to its measuring axis 3 alternating, sinusoidal course of the intensity of the Magnetic field. This curve is a function in FIG. 2 shown over time t.

    Entscheidend für die Auswertung ist allein der qualitative Verlauf eines Meßsignals 9 mit seinen ausgeprägten Maxima und Minima, sowie den zu diesem Maxima/Minima gehörenden Zeitpunkten 10. Only the qualitative is decisive for the evaluation Course of a measurement signal 9 with its pronounced maxima and minima, as well as those belonging to this maxima / minima Points in time 10.

    Ein zeitlicher Abstand Tp zweier Maxima bzw. zweier Minima ist die Dauer für eine Rollumdrehung des/r Projektils/Rakete. Daraus wird die Rollfrequenz bestimmt.A time interval Tp between two maxima or two minima is the duration for one revolution of the roll Projectile / missile. The roll frequency is determined from this.

    Die Geschwindigkeit des Flugobjektes 1 wird unabhängig von dem voliegenden Verfahren bestimmt. Dies geschieht beispielsweise über NAVSTAR-GPS (Global Positioning System), mit dessen Hilfe Positionswerte des/r Projektils/Rakete und auch Geschwindigkeit ermittelt werden.The speed of the flying object 1 becomes independent of determined the full procedure. this happens for example via NAVSTAR-GPS (Global Positioning System), with the help of which position values of the / r Projectile / rocket and also speed determined become.

    Neben Position und Geschwindigkeit des Flugobjektes 1 ist auch die Richtung der VRA 6 in einem vorher definierten Bezugssystem bekannt. Das Verfahren nutzt den Geschwindigkeitsvektor 4 als Näherung für die Rollachse 5 des Flugobjektes 1.In addition to the position and speed of the flying object 1 also the direction of the VRA 6 in a previously defined Reference system known. The process uses the Velocity vector 4 as an approximation for the roll axis 5 of the flying object 1.

    Rollachse 5, VRA 6 und Feldstärkevektor 8 lassen die Bestimmung der Rolllage eines Referenzpunktes, bspw. Ort des Magnetfeldsensors 2, zum Zeitpunkt, in dem die Meßachse 3 mit der Feldlinie 7 maximal übereinstimmt, zu. Zwischen diesen Zeitpunkten wird der Rollwinkel w vorausberechnet und zwar aus Rollfrequenz und Zeitspanne nach der letzten Referenzmessung.Roll axis 5, VRA 6 and field strength vector 8 let the Determination of the roll position of a reference point, e.g. location of the Magnetic field sensor 2 at the time when the measuring axis 3 matches field line 7 as much as possible. Between The roll angle w is calculated in advance of these times from the roll frequency and the time span after the last one Reference measurement.

    Claims (6)

    1. Method of determining the roll position of a rolling flying object, more especially of steering a ballistically flying projectile/rocket having compensating roll movement, wherein
      a field strength of the earth's magnetic field, more especially a field strength vector (8) is used for determining the roll position of the flying object (1), and
      a velocity vector (4) of the projectile/rocket is measured and used as the reference for determining the roll position or is stored as a function of, or in the form of, a table in the evaluation computer, calculated in a correctly timed manner and used as the reference for determining the roll position.
    2. Method according to claim 1, characterised in that the field strength vector (8) is used as the direction reference.
    3. Method according to claim 1 or 2, characterised in that at least one magnetic field sensor (2) of the flying object (1) detects, at at least one specific location on the flying object (1), the field strength of the earth's magnetic field and, hence, the field strength vector (8).
    4. Method according to claim 3, characterised in that the locat~on of the magnetic field sensor (2) is used as the reference point for detecting the roll position.
    5. Method according to claim 3 or 4, characterised in that, caused by the rotation of the flying object (1) about its axis of roll (5), alternating intensities of a measurement signal (9) are detected as minima and maxima over the time (t), and hence over an angle of roll, by the magnetic field sensor (2) in dependence on its roll position.
    6. Method according to one of claims 3 to 5, characterised in that the field strength, and hence the field strength vector (8), is detected by the magnetic field sensor (2) radially relative to the axis of roll (5) of the flying object (1).
    EP96108075A 1995-06-01 1996-05-21 Method for determining roll of a spinning flying object Revoked EP0745828B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19520115 1995-06-01
    DE19520115A DE19520115A1 (en) 1995-06-01 1995-06-01 Method for determining the roll position of a rolling flying object

    Publications (2)

    Publication Number Publication Date
    EP0745828A1 EP0745828A1 (en) 1996-12-04
    EP0745828B1 true EP0745828B1 (en) 2001-10-17

    Family

    ID=7763419

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96108075A Revoked EP0745828B1 (en) 1995-06-01 1996-05-21 Method for determining roll of a spinning flying object

    Country Status (4)

    Country Link
    US (1) US5740986A (en)
    EP (1) EP0745828B1 (en)
    AT (1) ATE207201T1 (en)
    DE (2) DE19520115A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102009024508A1 (en) 2009-06-08 2011-07-28 Rheinmetall Air Defence Ag Method for correcting the trajectory of an end-phase guided munition

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6163021A (en) * 1998-12-15 2000-12-19 Rockwell Collins, Inc. Navigation system for spinning projectiles
    US6592070B1 (en) * 2002-04-17 2003-07-15 Rockwell Collins, Inc. Interference-aided navigation system for rotating vehicles
    FR2872928B1 (en) * 2004-07-12 2006-09-15 Giat Ind Sa METHOD FOR GUIDING AND / OR PILOTING A PROJECTILE AND DEVICE FOR GUIDING AND / OR PILOTTING USING SUCH A METHOD
    US8113118B2 (en) * 2004-11-22 2012-02-14 Alliant Techsystems Inc. Spin sensor for low spin munitions
    US7566027B1 (en) 2006-01-30 2009-07-28 Alliant Techsystems Inc. Roll orientation using turns-counting fuze
    SE536846C2 (en) * 2011-09-20 2014-09-30 Bae Systems Bofors Ab Method and GNC system for determining the angle of roll of a projectile

    Family Cites Families (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3860199A (en) * 1972-01-03 1975-01-14 Ship Systems Inc Laser-guided projectile system
    CA1088653A (en) * 1975-09-15 1980-10-28 George E. Schmidt, Jr. Magnetic control of spacecraft roll disturbance torques
    DE2835232A1 (en) * 1978-08-11 1980-02-21 Licentia Gmbh Directional antenna to determine aircraft roll - detects black body radiation arising from reflections from earth and sky
    US4328938A (en) * 1979-06-18 1982-05-11 Ford Aerospace & Communications Corp. Roll reference sensor
    AU546338B2 (en) * 1980-09-22 1985-08-29 Commonwealth Of Australia, The Stabilising rotating body
    DE3131394A1 (en) * 1981-08-07 1983-03-03 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Method for determining the rotational position of a rotating missile with the aid of the earth's magnetic field
    DE3214373A1 (en) * 1982-04-20 1983-10-27 Messerschmitt-Bölkow-Blohm GmbH, 8000 München METHOD AND DEVICE FOR THE POSITION CONTROL OF A SATELLITE
    US4662580A (en) * 1985-06-20 1987-05-05 The United States Of America As Represented By The Secretary Of The Navy Simple diver reentry method
    US4646990A (en) * 1986-02-18 1987-03-03 Ford Aerospace & Communications Corporation Magnetic roll sensor calibrator
    DE3620402A1 (en) * 1986-06-18 1987-12-23 Bundesrep Deutschland DEVICE FOR CONTROLLING A MAGNETIC SELF-PROTECTION (MES) SYSTEM
    NL8900118A (en) * 1988-05-09 1989-12-01 Hollandse Signaalapparaten Bv SYSTEM FOR DETERMINING THE ROTATION POSITION OF AN ARTICLE ROTATABLE ON AN AXLE.
    DE3728385A1 (en) * 1987-08-26 1989-03-09 Honeywell Regelsysteme Gmbh Device for determining the initial roll position of a projectile
    DE3741498A1 (en) * 1987-12-08 1989-06-22 Rheinmetall Gmbh ARRANGEMENT FOR DETERMINING THE ROLLING ANGLE POSITION
    DE3829573A1 (en) * 1988-08-31 1990-03-08 Messerschmitt Boelkow Blohm Roll-attitude determination in the case of guided projectiles
    DE3830634A1 (en) * 1988-09-09 1990-03-15 Bodenseewerk Geraetetech FLIGHT DATA SENSOR
    DE3934363A1 (en) * 1989-10-14 1991-04-25 Rheinmetall Gmbh DEVICE FOR GENERATING REFERENCE IMPULSES
    FR2655448B1 (en) * 1989-12-04 1992-03-13 Vigilant Ltd CONTROL SYSTEM FOR A TELEGUID AIRCRAFT.
    DE4018198C2 (en) * 1990-03-12 2000-04-20 Daimlerchrysler Aerospace Ag Steering method for projectiles and arrangements for carrying out the method
    SE465794B (en) * 1990-03-15 1991-10-28 Bofors Ab DEVICE FOR DETERMINING THE ROLLING ANGLE
    US5076511A (en) * 1990-12-19 1991-12-31 Honeywell Inc. Discrete impulse spinning-body hard-kill (disk)
    US5141175A (en) * 1991-03-22 1992-08-25 Harris Gordon L Air launched munition range extension system and method
    US5340056A (en) * 1992-02-27 1994-08-23 The State Of Israel, Ministry Of Defence, Rafael Armament Development Authority Active defense system against tactical ballistic missiles
    DE4401315B4 (en) * 1994-01-19 2006-03-09 Oerlikon Contraves Gmbh Device for trajectory correction

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102009024508A1 (en) 2009-06-08 2011-07-28 Rheinmetall Air Defence Ag Method for correcting the trajectory of an end-phase guided munition

    Also Published As

    Publication number Publication date
    DE19520115A1 (en) 1996-12-05
    ATE207201T1 (en) 2001-11-15
    EP0745828A1 (en) 1996-12-04
    DE59607919D1 (en) 2001-11-22
    US5740986A (en) 1998-04-21

    Similar Documents

    Publication Publication Date Title
    DE4034965C2 (en) System for determining the true direction of travel of a vehicle
    DE2641447A1 (en) ARRANGEMENT FOR NAVIGATORY CONTROL OF AIRCRAFT
    EP0745828B1 (en) Method for determining roll of a spinning flying object
    DE2310557C2 (en) Guide device for aiming and directing an organ to be directed towards a moving target
    DE2813189C2 (en) Procedure for precise flight guidance and navigation
    DE3442598A1 (en) CONTROL SYSTEM
    EP2581748B1 (en) Method and apparatus for the determination of inertial parameters
    DE2126690C3 (en) Process for the self-guidance of destructive projectiles and projectile for carrying out the process
    DE3741498A1 (en) ARRANGEMENT FOR DETERMINING THE ROLLING ANGLE POSITION
    DE2204261C1 (en)
    DE3835883C2 (en) Procedure for target detection for missiles with a seeker head
    CH635428A5 (en) DEVICE FOR DETERMINING THE SOLDERING DIRECTION IN A SYSTEM ATTACHED ON A MOVABLE BASE.
    DE4018198C2 (en) Steering method for projectiles and arrangements for carrying out the method
    DE3131394A1 (en) Method for determining the rotational position of a rotating missile with the aid of the earth's magnetic field
    DE1548415B2 (en) LOCATION AND GUIDANCE PROCEDURES FOR AIRCRAFT
    EP0401693B1 (en) Method for improving the accuracy of hit of a controlled missile
    DE3918058C2 (en) Method and device for determining the flight altitude and position of a missile from on-board measurements
    DE960412C (en) Conversion device in a beacon guided missile
    DE3827764A1 (en) METHOD FOR DETERMINING GUIDANCE CORRECTION VALUES
    EP0887657B1 (en) Process for horizontally aligning the receiving plane of an active sonar
    DE977961C (en)
    EP1094292B1 (en) Method for guiding a missile towards a target in case of target loss
    DE4203224C2 (en) Two-phase command / beacon guidance of a controllable projectile
    DE3122644A1 (en) Method for acoustic measurement of the hit offset when firing at airborne practice targets
    DE102019105556A1 (en) Method for providing the reception of a satellite navigation signal during flight of a missile rotating about its roll axis

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE ES FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19970115

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: OERLIKON CONTRAVES GESELLSCHAFT MIT BESCHRAENKTER

    17Q First examination report despatched

    Effective date: 19991119

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011017

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20011017

    REF Corresponds to:

    Ref document number: 207201

    Country of ref document: AT

    Date of ref document: 20011115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011017

    REF Corresponds to:

    Ref document number: 59607919

    Country of ref document: DE

    Date of ref document: 20011122

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020117

    ET Fr: translation filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020521

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: DIEHL STIFTUNG & CO.

    Effective date: 20020615

    R26 Opposition filed (corrected)

    Opponent name: DIEHL STIFTUNG & CO.

    Effective date: 20020615

    26 Opposition filed

    Opponent name: DEUTSCH-FRANZOESISCHES FORSCHUNGSINSTITUT SAINT-LO

    Effective date: 20020717

    Opponent name: DIEHL STIFTUNG & CO.

    Effective date: 20020615

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090513

    Year of fee payment: 14

    Ref country code: DE

    Payment date: 20090525

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090522

    Year of fee payment: 14

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20091118