EP0745828A1 - Method for determining roll of a spinning flying object - Google Patents

Method for determining roll of a spinning flying object Download PDF

Info

Publication number
EP0745828A1
EP0745828A1 EP96108075A EP96108075A EP0745828A1 EP 0745828 A1 EP0745828 A1 EP 0745828A1 EP 96108075 A EP96108075 A EP 96108075A EP 96108075 A EP96108075 A EP 96108075A EP 0745828 A1 EP0745828 A1 EP 0745828A1
Authority
EP
European Patent Office
Prior art keywords
flying object
roll
magnetic field
roll position
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96108075A
Other languages
German (de)
French (fr)
Other versions
EP0745828B1 (en
Inventor
Jens Dr. Seidensticker
Wolfgang Dr. Kreuzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Soldier Electronics GmbH
Original Assignee
Contraves GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7763419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0745828(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Contraves GmbH filed Critical Contraves GmbH
Publication of EP0745828A1 publication Critical patent/EP0745828A1/en
Application granted granted Critical
Publication of EP0745828B1 publication Critical patent/EP0745828B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • F41G7/343Direction control systems for self-propelled missiles based on predetermined target position data comparing observed and stored data of target position or of distinctive marks along the path towards the target

Definitions

  • the invention relates to a method for determining the roll position of a rolling flying object, in particular for steering a ballistic flying projectile / rocket with roll compensation.
  • these are predominantly flying objects, the rotational movement of which is particularly pronounced about the roll axis.
  • the rotary movements around the other body axes are compared low.
  • at least one direction reference such as the direction of the speed vector of the flying object, is known, for example, by measurement.
  • Flying objects with a more or less stable, ie slowly changing roll frequency are also considered, since it is only for this type of movement that a reliable determination of the roll position is possible not only at individual times with the method presented here.
  • the present invention has for its object to develop a method of the type mentioned above, by means of which a relatively precise determination of the roll position of the flying object is carried out and which requires only little effort.
  • a field strength of the earth's magnetic field is used to determine the roll position of the flying object.
  • This method is to be used to control a ballistic flying projectile / rocket with roll compensation.
  • a field strength vector of the earth's magnetic field is used as a direction reference.
  • a magnetic field sensor preferably measures the component of the earth's magnetic field in the radial direction to the projectile / missile. Depending on the roll position, an alternating, sinusoidal curve of a measured intensity is shown, the minima and maxima of which indicate that the measuring direction is closest to the curve of the earth's magnetic field.
  • the roll frequency is determined from the time interval between the maxima / minima.
  • the location of the magnetic field sensor is also the reference point for the roll position.
  • the roll axis of the obedient flying object is approximated by the speed vector.
  • the direction of the speed vector is known, since it is either defined as a solo run during mission planning and stored in an evaluation computer, or e.g. during the flight is measured with NAVSTAR-GPS.
  • Another possibility of referencing for the rollage results from the measurement of the flying projectile / rocket by radar or laser. Since the irradiation of the projectile / rocket occurs from a known and definable direction, the direction of the earth's magnetic field can thus be assigned to the roll position of the projectile / rocket. In this case, the direction of the speed vector can be omitted.
  • the orientation of the field strength vector is known in a predefined reference system and stored in an evaluation computer.
  • the roll position of the projectile / missile can be calculated for the times of the maximum or minimum intensity. Between these times, the roll position is predetermined with the determined roll frequency. By taking into account the system dead time, i.e. the time required for the evaluation, the accuracy of the roll position determination is additionally increased.
  • a flying object 1 with a magnetic field sensor 2 and a measuring axis 3 is shown schematically.
  • This flying object has a speed vector 4 and a roll axis 5.
  • the arrow w represents the roll angle of the flying object 1 with respect to a vertical reference axis (VRA) 6.
  • a field line 7 of the earth's magnetic field with a field strength vector 8 is shown in broken lines.
  • the roll position of the flying object 1 is determined on the basis of the field strength vector 8, the speed vector 4 of the flying object being known.
  • the method of operation of the present method is as follows:
  • the magnetic field sensor 2 senses an alternating, sinusoidal course of the intensity of the magnetic field with respect to its measuring axis 3. This course is shown in FIG. 2 as a function of time t.
  • the only decisive factor for the evaluation is the qualitative course of a measurement signal 9 with its pronounced maxima and minima, as well as the times 10 belonging to these maxima / minima.
  • a time interval Tp between two maxima or two minima is the duration for one roll revolution of the projectile / rocket.
  • the roll frequency is determined from this.
  • the speed of the flying object 1 is determined independently of the method used. This happens for example via NAVSTAR-GPS (Global Positioning System), with the help of which position values of the projectile / rocket and also speed are determined.
  • NAVSTAR-GPS Global Positioning System
  • the direction of the VRA 6 is also known in a previously defined reference system.
  • the method uses the speed vector 4 as an approximation for the roll axis 5 of the flying object 1.
  • Roll axis 5, VRA 6 and field strength vector 8 permit the determination of the roll position of a reference point, for example the location of the magnetic field sensor 2, at the point in time at which the measurement axis 3 coincides maximally with the field line 7. Between these times, the roll angle w is calculated in advance from the roll frequency and time span after the last reference measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control And Safety Of Cranes (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The roll position evaluation system uses a field strength vector (8) of the earth's magnetic field as a directional reference for determining the roll position of the flying object (1). The speed of the object is determined using e.g. NAVSTAR-GPS system. Pref. at least one magnetic field sensor (2) is used for providing the field strength vector of the earth's magnetic field at a given point on the flying object, used as a reference point for the roll position evaluation.

Description

Die Erfindung betrifft ein Verfahren zum Bestimmen der Rollage eines rollenden Flugobjektes, insbesondere zur Lenkung eines/r ballistisch fliegenden Projektils/Rakete mit Rollausgleich.The invention relates to a method for determining the roll position of a rolling flying object, in particular for steering a ballistic flying projectile / rocket with roll compensation.

Bei ballistisch fliegenden Projektilen/Raketen aber auch bei anderen Flugobjekten ist die Bestimmung der Rollage von entscheidender Bedeutung, sofern eine nachträgliche Lenkung dieser Flugobjekte während der Mission erfolgen soll. Insbesondere gilt dies für die Lenkung von ballistisch fliegenden Projektilen/Raketen, bei denen die Möglichkeit einer Flugbahnkorrektur vorgesehen ist, wie beispielsweise in der P 44 01 315.9 beschrieben wird.In the case of ballistic flying projectiles / rockets but also in the case of other flying objects, the determination of the roll position is of crucial importance, provided that these flying objects are to be subsequently controlled during the mission. This applies in particular to the guidance of ballistic flying projectiles / missiles, in which the possibility of a trajectory correction is provided, as described for example in P 44 01 315.9.

Im vorliegenden Fall handelt es sich vorwiegend um Flugobjekte, deren Drehbewegung um die Rollachse besonders ausgeprägt ist. Die Drehbewegungen um die anderen Körperachsen (Nick- und Gierbewegung) sind im Vergleich dazu gering. Dabei wird vorausgesetzt, daß zumindest eine Richtungsreferenz, wie die Richtung des Geschwindigkeitsvektors des Flugobjektes z.B. durch Messung bekannt ist. Ferner werden Flugobjekte mit quasi stabiler, d.h., langsam veränderlicher Rollfrequenz betrachtet, da nur für diese Bewegungsart mit dem hier vorgestellten Verfahren eine gesicherte Bestimmung der Rollage nicht nur zu einzelnen Zeitpunkten möglich ist.In the present case, these are predominantly flying objects, the rotational movement of which is particularly pronounced about the roll axis. The rotary movements around the other body axes (pitch and yaw movement) are compared low. It is assumed that at least one direction reference, such as the direction of the speed vector of the flying object, is known, for example, by measurement. Flying objects with a more or less stable, ie slowly changing roll frequency are also considered, since it is only for this type of movement that a reliable determination of the roll position is possible not only at individual times with the method presented here.

Bislang werden Rollagen mittels Lagereferenzkreisel oder anderen Trägheitsreferenzsystemen ermittelt. Diese Vorrichtungen bzw. Systeme sind mechanische/optronische Präzisionsgeräte und daher entsprechend teuer.Rollages have so far been determined using position reference gyroscopes or other inertial reference systems. These devices or systems are mechanical / optronic precision devices and therefore correspondingly expensive.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der oben genannten Art zu entwickeln, mittels welchem eine relativ genaue Bestimmung der Rollage des Flugobjektes erfolgt und welches einen nur geringen Aufwand voraussetzt.The present invention has for its object to develop a method of the type mentioned above, by means of which a relatively precise determination of the roll position of the flying object is carried out and which requires only little effort.

Zur Lösung dieser Aufgabe führt, daß eine Feldstärke des Erdmagnetfeldes insbesondere ein Feldstärkevektor zur Bestimmung der Rollage des Flugobjektes verwendet wird.To achieve this object, a field strength of the earth's magnetic field, in particular a field strength vector, is used to determine the roll position of the flying object.

Dieses Verfahren soll zur Lenkung eines/r ballistisch fliegenden Projektils/Rakete mit Rollausgleich eingesetzt werden. Ein Feldstärkevektor des Erdmagnetfeldes wird als Richtungsreferenz genutzt.This method is to be used to control a ballistic flying projectile / rocket with roll compensation. A field strength vector of the earth's magnetic field is used as a direction reference.

Ein Magnetfeldsensor mißt die Komponente des Erdmagnetfeldes vorzugsweise in radialer Richtung zum/r Projektil/Rakete. Dabei zeigt sich in Abhängigkeit der Rollage ein alternierender, sinusartiger Verlauf einer gemessenen Intensität, dessen Minima und Maxima anzeigen, daß die Meßrichtung dem Verlauf des Erdmagnetfeldes am nächsten ist. Aus dem zeitlichen Abstand der Maxima/Minima wird die Rollfrequenz bestimmt.A magnetic field sensor preferably measures the component of the earth's magnetic field in the radial direction to the projectile / missile. Depending on the roll position, an alternating, sinusoidal curve of a measured intensity is shown, the minima and maxima of which indicate that the measuring direction is closest to the curve of the earth's magnetic field. The roll frequency is determined from the time interval between the maxima / minima.

Der Ort des Magnetfeldsensors ist zugleich Bezugspunkt für die Rollage.The location of the magnetic field sensor is also the reference point for the roll position.

Die Rollachse des folgsamen Flugobjektes wird durch den Geschwindigkeitsvektor angenähert. Die Richtung des Geschwindigkeitsvektors ist bekannt, da er entweder als Soliverlauf noch während der Missionsplanung festgelegt und in einem Auswerterechner gespeichert oder während des Fluges z.B. mit NAVSTAR-GPS gemessen wird.The roll axis of the obedient flying object is approximated by the speed vector. The direction of the speed vector is known, since it is either defined as a solo run during mission planning and stored in an evaluation computer, or e.g. during the flight is measured with NAVSTAR-GPS.

Eine weitere Möglichkeit der Referenzierung für die Rollage ergibt sich aus der Vermessung des/r fliegenden Projektils/Rakete durch Radar oder Laser. Da die Bestrahlung des/r Projektils/Rakete aus einer bekannten und festlegbaren Richtung geschieht, kann damit die Richtung des Erdmagnetfeldes der Rollage des/r Projektils/Rakete zugeordnet werden. Auf die Richtung des Geschwindigkeitsvektors kann in diesem Fall verzichtet werden.Another possibility of referencing for the rollage results from the measurement of the flying projectile / rocket by radar or laser. Since the irradiation of the projectile / rocket occurs from a known and definable direction, the direction of the earth's magnetic field can thus be assigned to the roll position of the projectile / rocket. In this case, the direction of the speed vector can be omitted.

Die Orientierung des Feldstärkevektors ist in einem vorab definierten Bezugssystem bekannt und in einem Auswerterechner gespeichert.The orientation of the field strength vector is known in a predefined reference system and stored in an evaluation computer.

Aus der Orientierung von Richtungsreferenz (z.B. Geschwindigkeitsvektor) und Feldstärkevektor läßt sich die Rollage des/r Projektils/Rakete für die Zeitpunkte der maximalen bzw. minimalen Intensität berechnen. Zwischen diesen Zeitpunkten wird die Rollage mit der ermittelten Rollfrequenz vorausbestimmt. Durch Berücksichtigung der Systemtotzeit, d.h., der für die Auswertung erforderliche Zeit, wird die Genauigkeit der Rollagebestimmung zusätzlich gesteigert.From the orientation of the directional reference (e.g. speed vector) and field strength vector, the roll position of the projectile / missile can be calculated for the times of the maximum or minimum intensity. Between these times, the roll position is predetermined with the determined roll frequency. By taking into account the system dead time, i.e. the time required for the evaluation, the accuracy of the roll position determination is additionally increased.

Im Rahmen der Erfindung liegt selbstverständlich auch, daß mehrere Magnetfeldsensoren verwendet werden, wodurch eine genauere Bestimmung der Rollage möglich wird.It is of course also within the scope of the invention that a plurality of magnetic field sensors are used, whereby a more precise determination of the roll position is possible.

Der Fall, daß die Flugbahn des/r Projektils/Rakete auf einer Feldlinie des Erdmagnetfeldes liegt, kann insbesondere bei ballistisch fliegenden Flugkörpern als singulärer Ausnahmefall gesehen werden. In diesem Ausnahmefall ist eine Bestimmung der Rollage mit diesem Verfahren nicht möglich, da trotz Rollbewegung keine Feldstärkeänderungen quer zur Flugbahn auftreten. Dieser Ausnahmefall kann durch eine entsprechende Missionsplanung vermieden werden. Tritt er dennoch ein, so wird er vom Verfahren automatisch erkannt.The case that the trajectory of the projectile / missile lies on a field line of the earth's magnetic field can be seen as a singular exceptional case, in particular in the case of ballistic flying missiles. In this exceptional case, it is not possible to determine the roll position using this method, since no field strength changes occur across the flight path despite the roll movement. Appropriate mission planning can avoid this exceptional case. If it does occur, the procedure will automatically recognize it.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

  • Figur 1 eine schematische Darstellung der Beziehung zwischen einem Flugkörper und dem Erdmagnetfeld;
  • Figur 2 eine diagrammartige Darstellung des erfindungsgemäßen Verfahrens zum Bestimmen der Rollage eines Flugobjektes.
Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments and from the drawing; this shows in
  • Figure 1 is a schematic representation of the relationship between a missile and the earth's magnetic field;
  • Figure 2 is a diagrammatic representation of the inventive method for determining the roll position of a flying object.

Gemäß Figur 1 ist schematisch ein Flugobjekt 1 mit einem Magnetfeldsensor 2 und einer Meßachse 3 dargestellt. Dieses Flugobjekt hat einen Geschwindigkeitsvektor 4 und eine Rollachse 5. Der Pfeil w stellt den Rollwinkel des Flugobjektes 1 gegenüber einer vertikalen Referenzachse (VRA) 6 dar. Strichpunktiert ist eine Feldlinie 7 des Erdmagnetfeldes mit einem Feldstärkevektor 8 eingezeichnet.According to FIG. 1, a flying object 1 with a magnetic field sensor 2 and a measuring axis 3 is shown schematically. This flying object has a speed vector 4 and a roll axis 5. The arrow w represents the roll angle of the flying object 1 with respect to a vertical reference axis (VRA) 6. A field line 7 of the earth's magnetic field with a field strength vector 8 is shown in broken lines.

Anhand des Feldstärkevektors 8 erfolgt die Bestimmung der Rollage des Flugobjektes 1, wobei der Geschwindigkeitsvektor 4 des Flugobjektes bekannt ist.The roll position of the flying object 1 is determined on the basis of the field strength vector 8, the speed vector 4 of the flying object being known.

Die Funktionsweise der vorliegenden Verfahrens ist folgende:The method of operation of the present method is as follows:

Infolge der Rollbewegung des Flugobjektes 1 sensiert der Magnetfeldsensor 2 bezüglich seiner Meßachse 3 einen alternierenden, sinusartigen Verlauf der Intensität des Magnetfeldes. Dieser Verlauf ist in Fig. 2 als Funktion über der Zeit t dargestellt.As a result of the rolling movement of the flying object 1, the magnetic field sensor 2 senses an alternating, sinusoidal course of the intensity of the magnetic field with respect to its measuring axis 3. This course is shown in FIG. 2 as a function of time t.

Entscheidend für die Auswertung ist allein der qualitative Verlauf eines Meßsignals 9 mit seinen ausgeprägten Maxima und Minima, sowie den zu diesem Maxima/Minima gehörenden Zeitpunkten 10.The only decisive factor for the evaluation is the qualitative course of a measurement signal 9 with its pronounced maxima and minima, as well as the times 10 belonging to these maxima / minima.

Ein zeitlicher Abstand Tp zweier Maxima bzw. zweier Minima ist die Dauer für eine Rollumdrehung des/r Projektils/Rakete. Daraus wird die Rollfrequenz bestimmt.A time interval Tp between two maxima or two minima is the duration for one roll revolution of the projectile / rocket. The roll frequency is determined from this.

Die Geschwindigkeit des Flugobjektes 1 wird unabhängig von dem voliegenden Verfahren bestimmt. Dies geschieht beispielsweise über NAVSTAR-GPS (Global Positioning System), mit dessen Hilfe positionswerte des/r Projektils/Rakete und auch Geschwindigkeit ermittelt werden.The speed of the flying object 1 is determined independently of the method used. This happens for example via NAVSTAR-GPS (Global Positioning System), with the help of which position values of the projectile / rocket and also speed are determined.

Neben Position und Geschwindigkeit des Flugobjektes 1 ist auch die Richtung der VRA 6 in einem vorher definierten Bezugssystem bekannt. Das Verfahren nutzt den Geschwindigkeitsvektor 4 als Näherung für die Rollachse 5 des Flugobjektes 1.In addition to the position and speed of the flying object 1, the direction of the VRA 6 is also known in a previously defined reference system. The method uses the speed vector 4 as an approximation for the roll axis 5 of the flying object 1.

Rollachse 5, VRA 6 und Feldstärkevektor 8 lassen die Bestimmung der Rollage eines Referenzpunktes, bspw. Ort des Magnetfeldsensors 2, zum Zeitpunkt, in dem die Meßachse 3 mit der Feldlinie 7 maximal übereinstimmt, zu. Zwischen diesen Zeitpunkten wird der Rollwinkel w vorausberechnet und zwar aus Rollfrequenz und Zeitspanne nach der letzten Referenzmessung.Roll axis 5, VRA 6 and field strength vector 8 permit the determination of the roll position of a reference point, for example the location of the magnetic field sensor 2, at the point in time at which the measurement axis 3 coincides maximally with the field line 7. Between these times, the roll angle w is calculated in advance from the roll frequency and time span after the last reference measurement.

Claims (9)

Verfahren zum Bestimmen der Rollage eines rollenden Flugobjektes, insbesondere zur Lenkung eines/r ballistisch fliegenden Projektils/Rakete mit Rollausgleich,
dadurch gekennzeichnet,
daß eine Feldstärke des Erdmagnetfeldes insbesondere ein Feldstärkevektor zur Bestimmung der Rollage des Flugobjektes verwendet wird.
Method for determining the roll position of a rolling flying object, in particular for steering a ballistic flying projectile / rocket with roll compensation,
characterized,
that a field strength of the earth's magnetic field, in particular a field strength vector, is used to determine the roll position of the flying object.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Feldstärkevektor als Richtungsreferenz benutzt wird.Method according to Claim 1, characterized in that the field strength vector is used as a direction reference. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß wenigstens ein Magnetfeldsensor des Flugobjektes an zumindest einem bestimmten Ort an dem Flugobjekt die Feldstärke des Erdmagnetfeldes und damit den Feldstärkevektor ermittelt.Method according to Claim 1 or 2, characterized in that at least one magnetic field sensor of the flying object determines the field strength of the earth's magnetic field and thus the field strength vector at at least one specific location on the flying object. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Ort des Magnetfeldsensors als Bezugspunkt zur Ermittlung der Rollage verwendet wird.A method according to claim 3, characterized in that the location of the magnetic field sensor is used as a reference point for determining the roll position. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß, bedingt durch die Drehung des Flugobjektes um seine Rollachse, abhängig von seiner Rollage durch den Magnetfeldsensor alternierende Intensitäten eines Meßsignals als Minima und Maxima über die Zeit und damit über einen Rollwinkel ermittelt werden.Method according to claim 3 or 4, characterized in that, due to the rotation of the flying object about its roll axis, depending on its roll position by the magnetic field sensor, alternating intensities of a measurement signal are determined as minima and maxima over time and thus over a roll angle. Verfahren nach einem der Ansprüche 3 bis 5 dadurch gekennzeichnet, daß die Feldstärke und damit der Feldstärkevektor von dem Magnetfeldsensor radial zur Rollachse des Flugobjektes ermittelt wird.Method according to one of claims 3 to 5, characterized in that the field strength and thus the field strength vector is determined by the magnetic field sensor radially to the roll axis of the flying object. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Geschwindigkeitsvektor des/r Projektils/Rakete gemessen und als Referenz für die Rollagebestimmung verwendet wird.Method according to at least one of Claims 1 to 6, characterized in that the speed vector of the projectile / rocket is measured and used as a reference for determining the roll position. Verfahren nach wenistens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Geschwindigkeitsvektor des/r Projektils/Rakete als Funktion oder in Form einer Tabelle im Auswerterechner gespeichert, zeitrichtig berechnet und als Referenz für die Rollagebestimmung verwendet wird.The method according to at least one of claims 1 to 6, characterized in that the speed vector of the projectile / rocket is stored as a function or in the form of a table in the evaluation computer, calculated correctly and used as a reference for determining the roll position. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Flugobjekt durch Radar und/oder aus einer bekannten und festlegbaren Richtung bestrahlt wird, und damit die Richtung des Erdmagnetfeldes der Rollage des/r Projektils/Rakete zugeordnet wird.Method according to at least one of Claims 1 to 6, characterized in that the flying object is irradiated by radar and / or from a known and definable direction, and thus the direction of the earth's magnetic field is assigned to the roll position of the projectile / missile.
EP96108075A 1995-06-01 1996-05-21 Method for determining roll of a spinning flying object Revoked EP0745828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19520115 1995-06-01
DE19520115A DE19520115A1 (en) 1995-06-01 1995-06-01 Method for determining the roll position of a rolling flying object

Publications (2)

Publication Number Publication Date
EP0745828A1 true EP0745828A1 (en) 1996-12-04
EP0745828B1 EP0745828B1 (en) 2001-10-17

Family

ID=7763419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96108075A Revoked EP0745828B1 (en) 1995-06-01 1996-05-21 Method for determining roll of a spinning flying object

Country Status (4)

Country Link
US (1) US5740986A (en)
EP (1) EP0745828B1 (en)
AT (1) ATE207201T1 (en)
DE (2) DE19520115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288698B2 (en) 2009-06-08 2012-10-16 Rheinmetall Air Defence Ag Method for correcting the trajectory of terminally guided ammunition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163021A (en) * 1998-12-15 2000-12-19 Rockwell Collins, Inc. Navigation system for spinning projectiles
US6592070B1 (en) * 2002-04-17 2003-07-15 Rockwell Collins, Inc. Interference-aided navigation system for rotating vehicles
FR2872928B1 (en) * 2004-07-12 2006-09-15 Giat Ind Sa METHOD FOR GUIDING AND / OR PILOTING A PROJECTILE AND DEVICE FOR GUIDING AND / OR PILOTTING USING SUCH A METHOD
US8113118B2 (en) * 2004-11-22 2012-02-14 Alliant Techsystems Inc. Spin sensor for low spin munitions
US7566027B1 (en) * 2006-01-30 2009-07-28 Alliant Techsystems Inc. Roll orientation using turns-counting fuze
SE536846C2 (en) * 2011-09-20 2014-09-30 Bae Systems Bofors Ab Method and GNC system for determining the angle of roll of a projectile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084773A (en) * 1975-09-15 1978-04-18 Rca Corporation Magnetic control of spacecraft roll disturbance torques
DE3131394A1 (en) * 1981-08-07 1983-03-03 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Method for determining the rotational position of a rotating missile with the aid of the earth's magnetic field
GB2121984A (en) * 1982-04-20 1984-01-04 Messerschmitt Boelkow Blohm Method of and equipment for adjusting the position of an earth satellite
US4646990A (en) * 1986-02-18 1987-03-03 Ford Aerospace & Communications Corporation Magnetic roll sensor calibrator
EP0249838B1 (en) * 1986-06-18 1991-03-06 Bundesrepublik Deutschland vertr. durch d. Bundesm. d. Vert. vertr. durch den Präs. d. Bundesamt. für Wehrtech. u. Beschaffung Device for controlling a magnetic installation for self-protection

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860199A (en) * 1972-01-03 1975-01-14 Ship Systems Inc Laser-guided projectile system
DE2835232A1 (en) * 1978-08-11 1980-02-21 Licentia Gmbh Directional antenna to determine aircraft roll - detects black body radiation arising from reflections from earth and sky
US4328938A (en) * 1979-06-18 1982-05-11 Ford Aerospace & Communications Corp. Roll reference sensor
AU546338B2 (en) * 1980-09-22 1985-08-29 Commonwealth Of Australia, The Stabilising rotating body
US4662580A (en) * 1985-06-20 1987-05-05 The United States Of America As Represented By The Secretary Of The Navy Simple diver reentry method
NL8900118A (en) * 1988-05-09 1989-12-01 Hollandse Signaalapparaten Bv SYSTEM FOR DETERMINING THE ROTATION POSITION OF AN ARTICLE ROTATABLE ON AN AXLE.
DE3728385A1 (en) * 1987-08-26 1989-03-09 Honeywell Regelsysteme Gmbh Device for determining the initial roll position of a projectile
DE3741498A1 (en) * 1987-12-08 1989-06-22 Rheinmetall Gmbh ARRANGEMENT FOR DETERMINING THE ROLLING ANGLE POSITION
DE3829573A1 (en) * 1988-08-31 1990-03-08 Messerschmitt Boelkow Blohm Roll-attitude determination in the case of guided projectiles
DE3830634A1 (en) * 1988-09-09 1990-03-15 Bodenseewerk Geraetetech FLIGHT DATA SENSOR
DE3934363A1 (en) * 1989-10-14 1991-04-25 Rheinmetall Gmbh DEVICE FOR GENERATING REFERENCE IMPULSES
FR2655448B1 (en) * 1989-12-04 1992-03-13 Vigilant Ltd CONTROL SYSTEM FOR A TELEGUID AIRCRAFT.
DE4018198C2 (en) * 1990-03-12 2000-04-20 Daimlerchrysler Aerospace Ag Steering method for projectiles and arrangements for carrying out the method
SE465794B (en) * 1990-03-15 1991-10-28 Bofors Ab DEVICE FOR DETERMINING THE ROLLING ANGLE
US5076511A (en) * 1990-12-19 1991-12-31 Honeywell Inc. Discrete impulse spinning-body hard-kill (disk)
US5141175A (en) * 1991-03-22 1992-08-25 Harris Gordon L Air launched munition range extension system and method
US5340056A (en) * 1992-02-27 1994-08-23 The State Of Israel, Ministry Of Defence, Rafael Armament Development Authority Active defense system against tactical ballistic missiles
DE4401315B4 (en) * 1994-01-19 2006-03-09 Oerlikon Contraves Gmbh Device for trajectory correction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084773A (en) * 1975-09-15 1978-04-18 Rca Corporation Magnetic control of spacecraft roll disturbance torques
DE3131394A1 (en) * 1981-08-07 1983-03-03 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Method for determining the rotational position of a rotating missile with the aid of the earth's magnetic field
GB2121984A (en) * 1982-04-20 1984-01-04 Messerschmitt Boelkow Blohm Method of and equipment for adjusting the position of an earth satellite
US4646990A (en) * 1986-02-18 1987-03-03 Ford Aerospace & Communications Corporation Magnetic roll sensor calibrator
EP0249838B1 (en) * 1986-06-18 1991-03-06 Bundesrepublik Deutschland vertr. durch d. Bundesm. d. Vert. vertr. durch den Präs. d. Bundesamt. für Wehrtech. u. Beschaffung Device for controlling a magnetic installation for self-protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288698B2 (en) 2009-06-08 2012-10-16 Rheinmetall Air Defence Ag Method for correcting the trajectory of terminally guided ammunition

Also Published As

Publication number Publication date
US5740986A (en) 1998-04-21
DE59607919D1 (en) 2001-11-22
ATE207201T1 (en) 2001-11-15
DE19520115A1 (en) 1996-12-05
EP0745828B1 (en) 2001-10-17

Similar Documents

Publication Publication Date Title
DE3024908C2 (en) Target search system for a missile executing a roll motion
DE2951941C2 (en) Optical remote control device for a projectile
DE4416211C2 (en) Method and device for missile trajectory correction
DE2310557C2 (en) Guide device for aiming and directing an organ to be directed towards a moving target
DE3323685C2 (en) Process for the automatic approach of submunitions from the air to, in particular, moving ground targets
DE3442598C2 (en) Guidance system for missiles
DE2813189C2 (en) Procedure for precise flight guidance and navigation
EP0745828A1 (en) Method for determining roll of a spinning flying object
DE2830502A1 (en) CONTROL DEVICE FOR MISSILE
DE2618703A1 (en) DEVICE FOR DIRECTING A STORY AGAINST ITS TARGET
DE2126690C3 (en) Process for the self-guidance of destructive projectiles and projectile for carrying out the process
DE2325355B2 (en) Method for targeting a missile
DE1293040B (en) Method and system for remote control of a missile rotating about its longitudinal axis
DE2204261C1 (en)
DE3131394C2 (en) Method for determining the roll attitude of a rotating missile using the earth's magnetic field
CH635428A5 (en) DEVICE FOR DETERMINING THE SOLDERING DIRECTION IN A SYSTEM ATTACHED ON A MOVABLE BASE.
EP0401693B1 (en) Method for improving the accuracy of hit of a controlled missile
DE2216734C3 (en) Method and arrangement for controlling a target optics for a gun
DE4018198C2 (en) Steering method for projectiles and arrangements for carrying out the method
DE1498043A1 (en) Method of measuring line-of-sight rotation speed in a homing head system
DE1113652B (en) System, consisting of a fire control device and at least one servo system connected to the fire control device
DE1531486C3 (en) Method for self-steering an unmanned, automatically moving missile and device for carrying out the method
DE3918058C2 (en) Method and device for determining the flight altitude and position of a missile from on-board measurements
DE2800527C2 (en)
DE3125954A1 (en) Method for engaging airborne targets using an air-to-air missile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19970115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON CONTRAVES GESELLSCHAFT MIT BESCHRAENKTER

17Q First examination report despatched

Effective date: 19991119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011017

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20011017

REF Corresponds to:

Ref document number: 207201

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011017

REF Corresponds to:

Ref document number: 59607919

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020117

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: DIEHL STIFTUNG & CO.

Effective date: 20020615

R26 Opposition filed (corrected)

Opponent name: DIEHL STIFTUNG & CO.

Effective date: 20020615

26 Opposition filed

Opponent name: DEUTSCH-FRANZOESISCHES FORSCHUNGSINSTITUT SAINT-LO

Effective date: 20020717

Opponent name: DIEHL STIFTUNG & CO.

Effective date: 20020615

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090513

Year of fee payment: 14

Ref country code: DE

Payment date: 20090525

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090522

Year of fee payment: 14

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20091118