EP0743184A2 - Düsenplatte in Verbundstoff - Google Patents
Düsenplatte in Verbundstoff Download PDFInfo
- Publication number
- EP0743184A2 EP0743184A2 EP96303396A EP96303396A EP0743184A2 EP 0743184 A2 EP0743184 A2 EP 0743184A2 EP 96303396 A EP96303396 A EP 96303396A EP 96303396 A EP96303396 A EP 96303396A EP 0743184 A2 EP0743184 A2 EP 0743184A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle plate
- high density
- fabricating
- metal
- long array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 title 1
- 239000002184 metal Substances 0.000 claims abstract description 37
- 229920000642 polymer Polymers 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 238000005530 etching Methods 0.000 claims description 6
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 238000000608 laser ablation Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005323 electroforming Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1626—Manufacturing processes etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/162—Manufacturing of the nozzle plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1632—Manufacturing processes machining
- B41J2/1634—Manufacturing processes machining laser machining
Definitions
- the present invention relates to the field of ink jet printers and, more particularly, to the manufacture or fabrication of long array high density nozzle plates for the printheads of ink jet printers.
- electrically conductive ink is supplied under pressure to a manifold region that distributes the ink to a plurality of orifices, typically arranged in a linear array(s).
- the ink discharges from the orifices in filaments which break into droplet streams.
- Individual droplet streams are selectively charged in the region of the break off from the filaments and charge drops are deflected from their normal trajectories. The deflected drops may be caught and recirculated, and the undeflected drops allowed to proceed to a print receiving medium.
- Drops are charged by a charge plate having a plurality of charging electrodes along one edge, and a corresponding plurality of connecting leads along one surface.
- the edge of the charge plate having the charging electrodes is placed in close proximity to the break off point of the ink jet filaments, and charges applied to the leads to induce charges in the drops as they break off from the filaments.
- nozzle plates Long array high density orifice plates, or nozzle plates, have previously been made exclusively by electroforming or by butting short nozzle arrays together to form a long array, i.e., an array length greater than one inch.
- the problem with making nozzle plates with high density nozzle arrays is twofold.
- the nozzle plate must be rigidly attached to a solid droplet generator which, because of the necessary dimensional tolerances, must be of a metal or ceramic.
- a material necessarily has a small coefficient of thermal expansion. This necessitates that the nozzle plate likewise has a similarly small coefficient of thermal expansion.
- the nozzle plate can only be a material with a small coefficient of thermal expansion, yet must meet the thermal expansion criteria of the droplet generator.
- Electroformed nozzle plates have aspect ratio problems that also lead to noisy jets while involving expensive manufacturing processes.
- a polymer is retained against a single metal laminate, or can be constrained between metal laminates, to provide mechanical and thermal stability to the nozzle plate. Apertures are chemically etched in the metal laminates. Subsequently, an axial aperture, or nozzle, is laser ablated through a portion of the polymer layer which corresponds to the aperture through the laminates.
- Fig. 1 is a partial, magnified view of a laser ablated nozzle plate, in accordance with the present invention.
- a laminated structure or nozzle plate 10 comprises a polymer or polyimide 12, generally a polymer filler, laminated to a metal.
- the metal laminate may comprise one or more metal laminate layers. However, even a single layer of metal laminate achieves the objective of prohibiting the polymer from changing its dimensions under stress.
- the polymer 12 is sandwiched between two metal sheets, first metal laminate 14 and second metal laminate 16.
- the lamination provides both mechanical and thermal stability.
- the polymer would tend to be contained by the metal sheets such that its coefficient of thermal expansion would lie very near that of the metal.
- the polymer may be any suitable material, such as Kapton or any other material that readily ablates.
- non-critical windows or openings 18 are provided, such as by chemically etching.
- Subsequent laser ablation 20 of the polymer layer of the nozzle 10 allows for very small apertures through various polymers, without changing any dimensions of the nozzle plate.
- the metal becomes irrelevant in terms of the nozzle. Since the metal acts as a constraint on the polymer, apertures 18 etched through the top and bottom layers of metal 14 and 16 need not meet any jetting parameters, such as aspect ratios, surface finish, round circularity, or hole size uniformity, and are only there to access the polymer.
- the ablated nozzle now meets the jetting parameters.
- the actual nozzle is then laser machined through the polymer where aspect ratios (axial length to nozzle diameter) greater than unity have readily been accomplished, offering laminar flow advantages.
- the laser ablation according to the present invention can be accomplished by translating the nozzle plate in front of the laser very accurately, such that the position of each nozzle is well defined.
- dimensional changes in the mandrel during electroforming processes are avoided.
- the present invention is useful in the field of ink jet printing, and has the advantage of providing a long array high density nozzle plate.
- the present invention provides the further advantage of a relatively inert nozzle, fabrication simplicity, and choice of axial shape. It is an advantage of the present invention that it provides mechanical and thermal stability to the nozzle plate.
- the process of the present invention has the advantage of avoiding dimensional changes of the plate, while achieving laser ablation.
- the present invention has the advantage of etching non-critical windows with subsequent laser ablation, so that the metal becomes irrelevant in terms of the nozzle.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44392395A | 1995-05-18 | 1995-05-18 | |
US443923 | 1995-05-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0743184A2 true EP0743184A2 (de) | 1996-11-20 |
EP0743184A3 EP0743184A3 (de) | 1997-07-16 |
Family
ID=23762739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96303396A Withdrawn EP0743184A3 (de) | 1995-05-18 | 1996-05-14 | Düsenplatte in Verbundstoff |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0743184A3 (de) |
JP (1) | JPH0999560A (de) |
CA (1) | CA2176856A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2484796A (en) * | 2010-10-15 | 2012-04-25 | Xerox Corp | Aperture plate for an inkjet printhead and method for preparing same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2957528B2 (ja) | 1997-10-07 | 1999-10-04 | 株式会社東京機械製作所 | インクジェット印刷用ノズル、そのオリフィス部材及びオリフィス部材の製造方法 |
GB0113639D0 (en) * | 2001-06-05 | 2001-07-25 | Xaar Technology Ltd | Nozzle plate for droplet deposition apparatus |
GB0608526D0 (en) * | 2006-04-28 | 2006-06-07 | Xaar Technology Ltd | Droplet deposition component |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62202743A (ja) * | 1986-03-04 | 1987-09-07 | Ricoh Co Ltd | インクジエツト記録装置用インク噴射ノズルの撥水処理方法 |
JPH03108554A (ja) * | 1989-09-22 | 1991-05-08 | Seiko Epson Corp | インクジェット記録用ヘッド |
JPH05147223A (ja) * | 1991-12-02 | 1993-06-15 | Matsushita Electric Ind Co Ltd | インクジエツトヘツド |
JPH06336009A (ja) * | 1993-05-28 | 1994-12-06 | Sankyo Seiki Mfg Co Ltd | インクジェットヘッド等のコントロールノズル及びその製造方法 |
EP0629504A2 (de) * | 1993-06-16 | 1994-12-21 | Hewlett-Packard Company | Düsenplatte für Tintenstrahldrucker |
-
1996
- 1996-05-14 EP EP96303396A patent/EP0743184A3/de not_active Withdrawn
- 1996-05-17 CA CA 2176856 patent/CA2176856A1/en not_active Abandoned
- 1996-05-20 JP JP12470096A patent/JPH0999560A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62202743A (ja) * | 1986-03-04 | 1987-09-07 | Ricoh Co Ltd | インクジエツト記録装置用インク噴射ノズルの撥水処理方法 |
JPH03108554A (ja) * | 1989-09-22 | 1991-05-08 | Seiko Epson Corp | インクジェット記録用ヘッド |
JPH05147223A (ja) * | 1991-12-02 | 1993-06-15 | Matsushita Electric Ind Co Ltd | インクジエツトヘツド |
JPH06336009A (ja) * | 1993-05-28 | 1994-12-06 | Sankyo Seiki Mfg Co Ltd | インクジェットヘッド等のコントロールノズル及びその製造方法 |
EP0629504A2 (de) * | 1993-06-16 | 1994-12-21 | Hewlett-Packard Company | Düsenplatte für Tintenstrahldrucker |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 012, no. 055 (M-669), 19 February 1988 & JP 62 202743 A (RICOH CO LTD), 7 September 1987, * |
PATENT ABSTRACTS OF JAPAN vol. 015, no. 298 (M-1141), 29 July 1991 & JP 03 108554 A (SEIKO EPSON CORP), 8 May 1991, * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 537 (M-1487), 28 September 1993 & JP 05 147223 A (MATSUSHITA ELECTRIC IND CO LTD), 15 June 1993, & US 5 455 998 A (YUTAKA MIYAZONO) 10 October 1995 * |
PATENT ABSTRACTS OF JAPAN vol. 095, no. 003, 28 April 1995 & JP 06 336009 A (SANKYO SEIKI MFG CO LTD), 6 December 1994, * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2484796A (en) * | 2010-10-15 | 2012-04-25 | Xerox Corp | Aperture plate for an inkjet printhead and method for preparing same |
Also Published As
Publication number | Publication date |
---|---|
CA2176856A1 (en) | 1996-11-19 |
JPH0999560A (ja) | 1997-04-15 |
EP0743184A3 (de) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0629504B1 (de) | Düsenplatte für Tintenstrahldrucker | |
EP0937579B1 (de) | Tintenstrahlkopf und sein Herstellungsverfahren, Aufflussöffnungsplatte für diesen Kopf und sein Herstellungsverfahren, und Tintenstrahlgerät damit versehen | |
US5208604A (en) | Ink jet head and manufacturing method thereof, and ink jet apparatus with ink jet head | |
DE69932911T2 (de) | Fluidausstossvorrichtung und verfahren zu deren herstellung | |
US7607764B2 (en) | Multi-nozzle ink jet head and manufacturing method thereof | |
US4954225A (en) | Method for making nozzle plates | |
DE69314315T2 (de) | Tintenstrahlkopf und verfahren zur herstellung | |
US5255017A (en) | Three dimensional nozzle orifice plates | |
EP1282521B1 (de) | Monolithischer druckkopf mit mehreren tintenzuführkanälen und entsprechende verfahren zur herstellung | |
EP0640042B1 (de) | Düsenplattenherstellungsverfahren für einen tintenstrahldruckkopf hoher dichte | |
US4536250A (en) | Method of making liquid jet recording head | |
CN101119847B (zh) | 高分辨率喷墨打印机 | |
US5682187A (en) | Method for manufacturing an ink jet head having a treated surface, ink jet head made thereby, and ink jet apparatus having such head | |
EP1027991A2 (de) | Verfahren zur Herstellung eines Flüssigkeitsausstosskopfes, damit hergestellter Flüssigkeitsausstosskopf, Kopfkassette und Flüssigkeitsausstossvorrichtung | |
DE69807623T2 (de) | Polyimiden enthaltendes Druckkopfsystem mit langer Lenbebsdauer und dessen Herstellungsverfahren | |
EP0743184A2 (de) | Düsenplatte in Verbundstoff | |
US6368515B1 (en) | Method of manufacturing ink-jet printer head | |
EP0110534B1 (de) | Monolithische Tintenstrahldüsenöffnungsplatten/Widerstandskombination | |
US6484400B1 (en) | Method of manufacturing an orifice member | |
JP3224798B2 (ja) | インクジェットプリントヘッド用アクチュエータ | |
JP2000218827A (ja) | 印刷ヘッドからの流体除去方法 | |
US7540589B2 (en) | Integrated charge and orifice plates for continuous ink jet printers | |
JPH09187950A (ja) | インクジェットヘッドの製造方法及びインクジェットヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19961125 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
18W | Application withdrawn |
Withdrawal date: 19970901 |
|
D18W | Application withdrawn (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8570 |
|
17Q | First examination report despatched |
Effective date: 19981022 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19990504 |