EP0742053B1 - Hydrodynamic nozzle for the cleaning of tubes and conduits - Google Patents

Hydrodynamic nozzle for the cleaning of tubes and conduits Download PDF

Info

Publication number
EP0742053B1
EP0742053B1 EP96107047A EP96107047A EP0742053B1 EP 0742053 B1 EP0742053 B1 EP 0742053B1 EP 96107047 A EP96107047 A EP 96107047A EP 96107047 A EP96107047 A EP 96107047A EP 0742053 B1 EP0742053 B1 EP 0742053B1
Authority
EP
European Patent Office
Prior art keywords
radius
inlet opening
nozzle
water inlet
hydrodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96107047A
Other languages
German (de)
French (fr)
Other versions
EP0742053A1 (en
Inventor
Kurt Hörger
Hans Prof. Dr. Lutze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keg Kommunaler Bedarf Technischer Handel Beratungverkauf GmbH
Original Assignee
Keg Kommunaler Bedarf Technischer Handel Beratungverkauf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7761321&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0742053(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Keg Kommunaler Bedarf Technischer Handel Beratungverkauf GmbH filed Critical Keg Kommunaler Bedarf Technischer Handel Beratungverkauf GmbH
Publication of EP0742053A1 publication Critical patent/EP0742053A1/en
Application granted granted Critical
Publication of EP0742053B1 publication Critical patent/EP0742053B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/04Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
    • B08B9/049Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes having self-contained propelling means for moving the cleaning devices along the pipes, i.e. self-propelled
    • B08B9/0495Nozzles propelled by fluid jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle

Definitions

  • the invention relates to a hydrodynamic nozzle for cleaning pipes and channels according to the preamble of the first claim.
  • Numerous sewer cleaning nozzles are already known which have a water connection as a pressurized water inlet opening and associated recoil openings connected to the rear. Due to the recoil force of the water, the nozzle experiences a feed movement in the pipe or channel.
  • DE-U-92 14 268.8 describes such a nozzle body made of solid material.
  • the connection between the water connection and the water outlets (recoil openings) takes place via a first hole that leads obliquely outwards into the nozzle body from the water connection and a second hole that leads obliquely inwards from the water outlet, which extends as far as the first hole and is connected to it .
  • the apex areas of the holes are rounded off to avoid turbulence.
  • the water connection has a conical bottom of the bore, the cone being open in the direction of the hose connection.
  • the first holes are drilled in the bottom of the hole.
  • the decisive disadvantage of this design is that the water hits the bottom of the water connection, causing turbulence and loss of performance.
  • Another disadvantage is that the two connecting bores meet at an acute angle.
  • a nozzle which is already somewhat improved in terms of flow technology is described in WO 85/05295.
  • the connecting channels between the pressurized water inlet opening and the recoil opening have a relatively large radius.
  • FIG. 2 shows such a nozzle, which has a conical water divider in the center of the hose connection, to which the radius adjoins.
  • the cavity in the nozzle widens relatively sharply, so that an annular baffle is formed in the direction of the recoil openings.
  • the outflow openings lead from the baffle in the cavity to the outside in the radiation angle.
  • Nozzles are inserted into the outflow openings and have a conical widening of the inner diameter in the direction of the cavity.
  • the impact of the liquid flow on the baffle creates a discontinuous cross-sectional constriction, which already reduces the efficiency to approx. 70%.
  • there is the pressure and form resistance of the baffle plate which leads to a further considerable reduction in efficiency, the greatest resistance value of a circular plate being used in the present case. This unfavorable fluidic design weakens the axial pressure of the emerging water jet and thus reduces the cleaning effect.
  • the object of the invention is a hydrodynamic nozzle for the cleaning of pipes and ducts, the highest possible efficiency and thus one optimal cleaning power guaranteed and a simple has a constructive structure.
  • the sewer cleaning nozzle consists of a nozzle body with a connection for a water hose as a pressurized water inlet opening.
  • the pressurized water outlet openings are arranged on the same or different pitch circles and connected to the pressurized water inlet opening via channels.
  • the channels are inclined at a defined angle to the axis of the nozzle body.
  • a distribution cavity adjoins the pressurized water inlet opening, into which the channels connected to the pressurized water outlet openings open.
  • a conical water divider with a defined cone angle is arranged centrally to the axis of the nozzle body, the cone tip of the water divider being directed towards the pressurized water inlet opening.
  • a defined, substantially semicircular radius adjoins the cone bottom of the water divider, the curvature of which is opposite to the pressurized water inlet opening.
  • Each channel opens into the distribution cavity in such a way that the outermost line of the outside diameter of the channel lies tangentially to the radius or merges into the radius.
  • the pressurized water inlet opening has a radius which increases the diameter in the direction of the distribution cavity and which has the same direction of curvature as the radius which adjoins the water divider.
  • each channel is funnel-shaped at the end that opens into the distribution cavity.
  • the opening angle of the funnel is preferably 45 to 90 °.
  • the nozzle body is of divided design. In the case of nozzles with relatively large dimensions, the division plane lies in the region of the distribution cavity in the center of the radius and perpendicular to the axis of the nozzle body. Nozzles of smaller dimensions can have the parting plane in the region of the distribution cavity at the center of the radius and parallel to the axis of the nozzle body.
  • a central axial through bore is conventionally arranged from the distribution cavity to the end of the nozzle body, which lies opposite the pressurized water outlet openings.
  • this through hole has a funnel-shaped diameter widening at its end in the water divider in the direction of the distribution cavity.
  • the opening angle of the funnel of the through hole is preferably 20 to 90 °.
  • a funnel-shaped supply of the flow medium from the pressurized water inlet to the ducts is achieved in particular by the tangential abutment of the channels on the radius that adjoins the funnel and by the gradual radius-shaped widening of the diameter of the pressurized water inlet opening.
  • the fluidic behavior is further improved by the funnel-shaped widening of the diameter of the channels in the direction of the distribution cavity.
  • the split design of the nozzle makes it easy possible the interiors to reduce the drag coefficient and to increase wear resistance to process accordingly, e.g. to coat. Already the coating of the water divider and of it subsequent radius in the lower part of the nozzle causes a substantial reduction in the drag coefficient. With these relatively minor design changes can the efficiency of the hydrodynamic invention Nozzle compared to conventional sewer cleaning nozzles same design surprisingly increase.
  • FIGS. 1, 2 and 3 A hydrodynamic nozzle with a total of 8 outlet openings and a divided nozzle body 1 is shown in FIGS. 1, 2 and 3.
  • the nozzle body 1 consists of an upper part 2 and a lower part 3, the pressurized water inlet opening 4 being arranged in the form of the hose connection in the upper part.
  • a total of 8 pressurized water outlet openings 5a and 5b are provided, alternately lying on different pitch circles T1 and T2, at an angle of 45 °.
  • the pressurized water outlet openings 5a which lie on the inner pitch circle T1, have a smaller radiation angle ⁇ than the pressurized water outlet openings 5b on the outer pitch circle T2.
  • 1 shows the longitudinal section in the region of the pressurized water outlet openings 5a with the radiation angle ⁇ 1 and in FIG.
  • a distribution cavity 6 is formed at the connection to the pressurized water inlet opening.
  • the pressurized water outlet openings 5a and 5b are connected to the pressurized water inlet opening 4 via channels 6a and 6b, which open into the distribution cavity 7.
  • a conical water divider 8 is arranged, the cone tip of which points in the direction of the pressurized water inlet opening 4.
  • a radius r1 is provided from the bottom of the water divider 8 to the outermost point of the diameter d1 of the channels 6.
  • the channels 6a and 6b are tangential to this radius r1 with the outermost point of their diameter d1.
  • the angle of inclination in comparison to the axis M of the nozzle body 1 corresponds to ⁇ 1 in the channels 6a which are connected to the outlet openings 5a and ⁇ 2 in the channels 6b which are connected to the outlet openings 5b.
  • the pressure water inlet opening 4 widens at its end in the direction of the distribution cavity 7 in a radius r2, which has the same direction of curvature as the radius r1 at the base of the distribution cavity 7.
  • Both radii r1 and r2 are connected to one another via a further radius r3, which has an opposite direction of curvature to the radii r1 and r2.
  • 3 shows the top view of the nozzle according to FIGS. 1 and 2.
  • the pressurized water outlet openings 5a and 5b lie on different pitch circles T1 and T2.
  • Fig. 4 the upper part 2 and the lower part 3 of the nozzle shown in a separate state.
  • the cutting plane was placed along the line A-A in Fig. 3a.
  • the division of the The nozzle was at the center of the radius r1.
  • the Connection of the two nozzle halves 2 and 3 takes place at this embodiment via a thread 9.
  • Das The lower threaded part is used for mounting in the upper part of the nozzle screwed in.
  • the lower part 3 of the nozzle Radii r1 and the water divider 8 arranged, the The water divider is assembled into the upper part of the nozzle protrudes.
  • the Pressurized water inlet opening 4 which at its end in Radius r2 and itself in the direction of the nozzle interior then has the radius r3.
  • This shared Nozzle design has essential manufacturing technology Advantages and is easy to manufacture. Doing so advantageously upper part 2 and lower part 3 manufactured and after their joining channels 6a and 6b and the pressurized water outlet openings 5a and 5b be introduced. Another advantage of the shared Nozzle design is that it is dirty can be easily disassembled and cleaned.
  • the Water divider 8 and the radii r1 are in this example provided with a coating B, which the resistance coefficient decreased.
  • Fig. 5 again shows a sectional view of the Upper nozzle part 2 with introduced channels 6a and Pressurized water outlet openings 5a.
  • the pressurized water inlet opening has one in front of radius r2 conical extension 10 on.
  • Fig. 6 shows a view acc. Fig. 5 from the direction of Lower part of the nozzle 3.
  • the channels 5a and 5b point advantageously at its end, which each opposite to the pressurized water outlet opening 6a and 6b lies, a funnel-shaped extension 11.
  • FIG. 7 A cut and an unfolding along the line X in 5 and 6 is shown in FIG. 7. Go there the funnel-shaped extensions 11 of the channels 5a and 5b into each other.
  • This funnel-shaped extension 11 preferably has an opening angle ⁇ 1 of 90 °.
  • traction nozzles With so-called traction nozzles with a central bore 12 from the distribution cavity 7 to the end of the nozzle body 1 opposite the pressurized water inlet opening 4 acc. Fig. 8, has this bore 12 at its end in the direction of Distribution cavity 7 also a funnel-shaped Extension 13 on.
  • the opening angle is ⁇ 2 preferably 30 °.
  • the two nozzle halves can also be connected to one another in a detachable or non-detachable manner by other known joining methods.
  • the detachable connection as already described, has the advantage of being easier to clean.
  • detachably divided nozzles can be regenerated in the event of any damage in the interior of the nozzle (distribution cavity 7), so that their service life is extended many times over. In continuation of this idea, it is still possible, according to Fig.
  • the lower part 3 has a shaped element 14 which forms the water divider 8 and the radius r1 and is made of wear-resistant and resistance-reducing material.
  • the shaped element 14 is preferably releasably inserted into the lower part so that it can be replaced when worn, and in particular, as shown schematically, is locked with the connecting element 15 by screwing and pinning.
  • the shaped element 14 can also be divided into a plurality of chambers 16 in the form of a segment (FIG. 11 a), the number of the chambers 16 should correspond to the number of pressurized water outlet openings 5.
  • 11b and 11c show the representation of two chamber segments with different shapes along the line X in FIG. 11a. 11b, the chambers 16 are also semicircular in cross section with a radius rk. Another variant is that the chambers 16 have flanks 17 with a defined opening angle ⁇ K and a radius rK2 in the base (FIG. 11c) in order to ensure optimal fluidic behavior of the liquid jet.
  • the number of pressurized water outlet openings 5 (or 5a and 5b) is determined in accordance with the desired requirement profile, and their radiation angle ⁇ can also be the same, so that they lie on a common pitch circle T. 6 or more pressurized water outlet openings are usually selected.
  • the radiation angle ⁇ can be between 5 ° and 40 °.
  • the radii r1, r2 and r3 the dimensions of the water divider 8 and the distance L from the center of the radius r1, from the start of the nozzle on the side of the hose connection, are defined determine.
  • the continuous flow area is lengthened or the axial pressure PK in the area of the core zone (K) and the axial pressure PH in the main area (H) are increased (FIG. 12).
  • D1 is the nozzle diameter.

Description

Die Erfindung betrifft eine hydrodynamische Düse für die Reinigung von Rohren und Kanälen nach dem Oberbegriff des ersten Patentanspruchs.
Es sind bereits zahlreiche Kanalreinigungsdüsen bekannt, die einen Wasseranschluß als Druckwassereintrittsöffnung und damit verbundene nach hinten gerichtete Rückstoßöffnungen aufweisen. Durch die Rückstoßkraft des Wassers erfährt die Düse im Rohr oder Kanal eine Vorschubbewegung. Einen derartigen Düsenkörper aus Vollmaterial beschreibt DE-U-92 14 268.8. Die Verbindung zwischen Wasseranschluß und den Wasserauslässen (Rückstoßöffnungen) erfolgt dabei über eine vom Wasseranschluß aus schräg nach außen in den Düsenkörper hineinführende erste Bohrung und eine vom Wasserauslaß schräg nach innen führende zweite Bohrung, die bis an die erste Bohrung hinanreicht und mit dieser in Verbindung steht. Die Scheitelbereiche der Bohrungen werden dabei abgerundet, um Verwirbelungen zu vermeiden. Der Wasseranschluß weist einen kegelförmigen Bohrungsgrund auf, wobei der Kegel in Richtung des Schlauchanschlusses geöffnet ist. In dem Bohrungsgrund werden die ersten Bohrungen eingebracht. Der entscheidende Nachteil dieser konstruktiven Ausführung besteht darin, daß das Wasser auf dem Bohrungsgrund des Wasseranschlusses aufprallt, wodurch Verwirbelungen und damit Leistungsverluste auftreten. Weiterhin wirkt sich nachteilig aus, daß die beiden Verbindungsbohrungen in einem spitzen Winkel aufeinander treffen.
Eine strömungstechnisch bereits etwas verbesserte Düse wird in WO 85/05295 beschrieben. Dabei weisen die Verbindungskanäle zwischen Druckwassereintrittsöffnung und Rückstoßöffnung einen relativ großen Radius auf.
In Fig. 2 wird eine derartige Düse gezeigt, die mittig im Bereich des Schlauchanschlusses einen kegelförmigen Wasserteiler aufweist, an welchen sich der Radius anschließt. Vom Schlauchanschluß aus verbreitert sich der Hohlraum in der Düse relativ scharfkantig, so daß eine ringförmige Prallfläche in Richtung der Rückstoßöffnungen gebildet wird. Die Ausströmöffnungen führen von der Prallfläche im Hohlraum im Abstrahlwinkel nach außen. In die Ausströmöffnungen sind Düsen eingesetzt, die in Richtung zum Hohlraum eine kegelförmige Erweiterung des Innendurchmessers aufweisen. Durch das Auftreffen des Flüssigkeitsstroms auf die Prallfläche entsteht nach der Strömungslehre eine unstetige Querschnittsverengung, die den Wirkungsgrad bereits auf ca. 70% verringert. Dazu kommt der Druck- und Formwiderstand der Prallplatte, der zu einer weiteren erheblichen Verringerung des Wirkungsgrades führt, wobei im vorliegenden Fall der größte Widerstandswert einer kreisförmigen Platte anzusetzen ist.
Durch diese ungünstige strömungstechnische Gestaltung wird der Axialdruck des austretenden Wasserstrahls geschwächt und somit die Reinigungswirkung verringert.
The invention relates to a hydrodynamic nozzle for cleaning pipes and channels according to the preamble of the first claim.
Numerous sewer cleaning nozzles are already known which have a water connection as a pressurized water inlet opening and associated recoil openings connected to the rear. Due to the recoil force of the water, the nozzle experiences a feed movement in the pipe or channel. DE-U-92 14 268.8 describes such a nozzle body made of solid material. The connection between the water connection and the water outlets (recoil openings) takes place via a first hole that leads obliquely outwards into the nozzle body from the water connection and a second hole that leads obliquely inwards from the water outlet, which extends as far as the first hole and is connected to it . The apex areas of the holes are rounded off to avoid turbulence. The water connection has a conical bottom of the bore, the cone being open in the direction of the hose connection. The first holes are drilled in the bottom of the hole. The decisive disadvantage of this design is that the water hits the bottom of the water connection, causing turbulence and loss of performance. Another disadvantage is that the two connecting bores meet at an acute angle.
A nozzle which is already somewhat improved in terms of flow technology is described in WO 85/05295. The connecting channels between the pressurized water inlet opening and the recoil opening have a relatively large radius.
FIG. 2 shows such a nozzle, which has a conical water divider in the center of the hose connection, to which the radius adjoins. From the hose connection, the cavity in the nozzle widens relatively sharply, so that an annular baffle is formed in the direction of the recoil openings. The outflow openings lead from the baffle in the cavity to the outside in the radiation angle. Nozzles are inserted into the outflow openings and have a conical widening of the inner diameter in the direction of the cavity. The impact of the liquid flow on the baffle creates a discontinuous cross-sectional constriction, which already reduces the efficiency to approx. 70%. In addition, there is the pressure and form resistance of the baffle plate, which leads to a further considerable reduction in efficiency, the greatest resistance value of a circular plate being used in the present case.
This unfavorable fluidic design weakens the axial pressure of the emerging water jet and thus reduces the cleaning effect.

Aufgabe der Erfindung ist es, eine hydrodynamische Düse für die Reinigung von Rohren und Kanälen zu entwickeln, die einen höchstmöglichen Wirkungsgrad und somit eine optimale Reinigungskraft gewährleistet und einen einfachen konstruktiven Aufbau aufweist.The object of the invention is a hydrodynamic nozzle for the cleaning of pipes and ducts, the highest possible efficiency and thus one optimal cleaning power guaranteed and a simple has a constructive structure.

Diese Aufgabe wird durch die Merkmale des ersten Patentanspruches und die weiteren Merkmale in den Unteransprüchen gelöst.
Die Kanalreinigungsdüse besteht dabei aus einem Düsengrundkörper mit einem Anschluß für einen Wasserschlauch als Druckwassereintrittsöffnung. Auf der Seite der Druckwassereintrittsöffnung sind die Druckwasseraustrittsöffnungen auf gleichen oder unterschiedlichen Teilkreisen angeordnet und über Kanäle mit der Druckwassereintrittsöffnung verbunden. Die Kanäle sind in definierten Winkel zur Achse des Düsenkörpers geneigt.
Erfindungsgemäß schließt sich an die Druckwassereintrittsöffnung ein Verteilungshohlraum an, in welchen die mit den Druckwasseraustrittsöffnungen verbundenen Kanäle münden. Am Grund des Verteilungshohlraumes, welcher der Druckwassereintrittsöffnung gegenüberliegt, ist zentrisch zur Achse des Düsenkörpers ein kegelförmiger Wasserteiler mit einem definierten Kegelwinkel angeordnet, wobei die Kegelspitze des Wasserteilers in Richtung zur Druckwassereintrittsöffnung gerichtet ist.
An den Kegelgrund des Wasserteilers schließt sich ein definierter, im wesentlichen halbkreisförmiger Radius an, dessen Krümmung der Druckwassereintrittsöffnung entgegengesetzt ist. Jeder Kanal mündet so in den Verteilungshohlraum, daß die äußerste Linie des Außendurchmessers des Kanals tangential am Radius anliegt, bzw. in den Radius übergeht.
Weiterhin weist die Druckwassereintrittsöffnung in Richtung des Verteilungshohlraumes umlaufend einen durchmesservergrößernden Radius auf, der die gleiche Krümmungsrichtung wie der Radius hat, der sich an den Wasserteiler anschließt.
Diese beiden Radien sind zur Vermeidung von Wirbelbildungen über einen weiteren Radius mit entgegengesetzter Krümmungsrichtung miteinander verbunden. Zusätzlich ist der Durchmesser jedes Kanals, an dem Ende, welches in den Verteilungshohlraum mündet, trichterförmig erweitert. Der Öffnungswinkel des Trichters beträgt vorzugsweise 45 bis 90°.
Zur Gewährleistung einer ökonomischen Fertigung ist der Düsenkörper geteilt ausgebildet. Die Teilungsebene liegt bei Düsen mit relativ großen Abmessungen im Bereich des Verteilungshohlraumes im Mittelpunkt des Radius und senkrecht zur Achse des Düsenkörpers.
Düsen kleinerer Abmessung können die Teilungsebene im Bereich des Verteilungshohlraumes im Mittelpunkt des Radius und parallel zur Achse des Düsenkörpers aufweisen. Bei sogenannten Zugdüsen ist herkömmlich vom Verteilungshohlraum bis zum Ende des Düsenkörpers, welches den Druckwasseraustrittsöffnungen gegenüberliegt, eine zentrische axiale Durchgangsbohrung angeordnet. Diese Durchgangsbohrung weist erfindungsgemäß an ihrem Ende im Wasserteiler in Richtung zum Verteilungshohlraum eine trichterförmige Durchmessererweiterung auf.
Der Öffnungswinkel des Trichters der Durchgangsbohrung beträgt vorzugsweise 20 bis 90°.
Erfindungsgemäß besteht auch die Möglichkeit, den Wasserteiler oder eine Einheit aus Wasserteiler und sich daran anschließenden Radius separat zu fertigen und in den Düsenkörper bzw. dessen Unterteil einzusetzen.
This object is achieved by the features of the first claim and the further features in the subclaims.
The sewer cleaning nozzle consists of a nozzle body with a connection for a water hose as a pressurized water inlet opening. On the side of the pressurized water inlet opening, the pressurized water outlet openings are arranged on the same or different pitch circles and connected to the pressurized water inlet opening via channels. The channels are inclined at a defined angle to the axis of the nozzle body.
According to the invention, a distribution cavity adjoins the pressurized water inlet opening, into which the channels connected to the pressurized water outlet openings open. At the bottom of the distribution cavity, which is opposite the pressurized water inlet opening, a conical water divider with a defined cone angle is arranged centrally to the axis of the nozzle body, the cone tip of the water divider being directed towards the pressurized water inlet opening.
A defined, substantially semicircular radius adjoins the cone bottom of the water divider, the curvature of which is opposite to the pressurized water inlet opening. Each channel opens into the distribution cavity in such a way that the outermost line of the outside diameter of the channel lies tangentially to the radius or merges into the radius.
Furthermore, the pressurized water inlet opening has a radius which increases the diameter in the direction of the distribution cavity and which has the same direction of curvature as the radius which adjoins the water divider.
To avoid eddy formation, these two radii are connected to one another over a further radius with the opposite direction of curvature. In addition, the diameter of each channel is funnel-shaped at the end that opens into the distribution cavity. The opening angle of the funnel is preferably 45 to 90 °.
To ensure economical production, the nozzle body is of divided design. In the case of nozzles with relatively large dimensions, the division plane lies in the region of the distribution cavity in the center of the radius and perpendicular to the axis of the nozzle body.
Nozzles of smaller dimensions can have the parting plane in the region of the distribution cavity at the center of the radius and parallel to the axis of the nozzle body. In the case of so-called traction nozzles, a central axial through bore is conventionally arranged from the distribution cavity to the end of the nozzle body, which lies opposite the pressurized water outlet openings. According to the invention, this through hole has a funnel-shaped diameter widening at its end in the water divider in the direction of the distribution cavity.
The opening angle of the funnel of the through hole is preferably 20 to 90 °.
According to the invention, there is also the possibility of separately manufacturing the water divider or a unit consisting of the water divider and the radius connected to it and inserting it into the nozzle body or its lower part.

Mit dieser erfindungsgemäßen hydrodynamischen Düse, wird insbesondere durch das tangentiale Anliegen der Kanäle an dem Radius, der sich an den Trichter anschließt, und durch die allmähliche radienförmige Durchmessererweiterung der Druckwassereintrittsöffnung eine trichterförmige Zuführung des Strömungsmediums von der Druckwassereintrittsöffnung zu den Kanälen erzielt. Weiter verbessert wird das strömungstechnische Verhalten durch die trichterförmige Durchmessererweiterung der Kanäle in Richtung des Verteilungshohlraumes.
Durch die erstmalige vollständige Beseitigung von unstetigen Querschnittsänderungen sowie Formwiderständen mit der neuartigen und eleganten Innengestaltung der Düse werden Stoßverluste und turbulente Strömungen nahezu bis auf Null reduziert.
With this hydrodynamic nozzle according to the invention, a funnel-shaped supply of the flow medium from the pressurized water inlet to the ducts is achieved in particular by the tangential abutment of the channels on the radius that adjoins the funnel and by the gradual radius-shaped widening of the diameter of the pressurized water inlet opening. The fluidic behavior is further improved by the funnel-shaped widening of the diameter of the channels in the direction of the distribution cavity.
The first complete elimination of discontinuous changes in cross-section as well as shape resistance with the new and elegant interior design of the nozzle reduces shock losses and turbulent flows almost to zero.

Durch die geteilte Ausführung der Düse ist es leicht möglich, die Innenräume zur Verringerung des Widerstandsbeiwertes und zur Erhöhung der Verschleißfestigkeit entsprechend zu bearbeiten, z.B. zu beschichten. Bereits die Beschichtung des Wasserteilers und des sich daran anschließenden Radius im Düsenunterteil bewirkt eine wesentliche Verringerung des Widerstandsbeiwertes. Mit diesen relativ geringfügigen konstruktiven Veränderungen kann der Wirkungsgrad der erfindungsgemäßen hydrodynamischen Düse im Vergleich zu herkömmlichen Kanalreinigungsdüsen gleicher Bauart überraschender Weise erhöht werden.The split design of the nozzle makes it easy possible the interiors to reduce the drag coefficient and to increase wear resistance to process accordingly, e.g. to coat. Already the coating of the water divider and of it subsequent radius in the lower part of the nozzle causes a substantial reduction in the drag coefficient. With these relatively minor design changes can the efficiency of the hydrodynamic invention Nozzle compared to conventional sewer cleaning nozzles same design surprisingly increase.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel und zugehörigen Zeichnungen näher erläutert.The invention is described below using an exemplary embodiment and associated drawings explained in more detail.

Es zeigen:

Fig. 1:
Düse in Schnittdarstellung
Fig. 2:
Düse in Schnittdarstellung um 45° gedreht
Fig. 3:
Draufsicht auf die Düse gem. Fig. 1
Fig. 4:
Düse geteilt
Fig. 5:
Oberteil der geteilten Düse mit Kanälen und Druckwasseraustrittsöffnungen
Fig. 6:
Ansicht des Düsenoberteils aus Richtung des Verteilungshohlraumes
Fig. 7:
Schnitt und Abwicklung durch drei Kanäle und Austrittsöffnungen gem. Fig. 5 und 6
Fig. 8:
Zugdüse
Fig. 9:
Düse mit eingesetztem Wasserteiler
Fig. 10a:
Düsenunterteil mit eingesetztem Formelement
Fig. 10b und 10c:
Darstellung des Formelementes
Fig. 11a:
Formelement mit kammerförmiger Unterteilung
Fig. 11b und 11c:
Schnittdarstellung von Kammersegmenten
Fig. 12:
Verlauf des Axialdruckes im Flüssigkeitsstrahl
Show it:
Fig. 1:
Sectional nozzle
Fig. 2:
Sectional nozzle rotated 45 °
Fig. 3:
Top view of the nozzle acc. Fig. 1
Fig. 4:
Split nozzle
Fig. 5:
Upper part of the divided nozzle with channels and pressurized water outlet openings
Fig. 6:
View of the upper part of the nozzle from the direction of the distribution cavity
Fig. 7:
Cutting and processing through three channels and outlet openings acc. 5 and 6
Fig. 8:
Traction nozzle
Fig. 9:
Nozzle with water divider inserted
10a:
Lower part of the nozzle with inserted molded element
10b and 10c:
Representation of the form element
11a:
Form element with chamber-shaped subdivision
11b and 11c:
Sectional view of chamber segments
Fig. 12:
Course of the axial pressure in the liquid jet

Eine hydrodynamische Düse mit insgesamt 8 Austrittsöffnungen und einem geteilten Düsenkörper 1 ist in Fig. 1, 2 und 3 dargestellt. Der Düsenkörper 1 besteht aus einem Oberteil 2 und einem Unterteil 3, wobei im Oberteil die Druckwassereintrittsöffnung 4 in Form des Schlauchanschlusses angeordnet ist. Jeweils im Winkel von 45° sind, abwechselnd auf unterschiedlichen Teilkreisen T1 und T2 liegend, insgesamt 8 Druckwasseraustrittsöffnungen 5a und 5b vorgesehen. Dabei haben die Druckwasseraustrittsöffnungen 5a, die auf dem inneren Teilkreis T1 liegen einen kleineren Abstrahlwinkel α als die Druckwasseraustrittsöffnungen 5b auf dem äußeren Teilkreis T2. In Fig. 1 ist der Längsschnitt im Bereich der Druckwasseraustrittsöffnungen 5a mit dem Abstrahlwinkel α1 und in der Fig. 2 der Längsschnitt im Bereich der Druckwasseraustrittsöffnungen 5b mit dem Abstrahlwinkel α2 dargestellt.
Am Anschluß an die Druckwassereintrittsöffnung wird ein Verteilungshohlraum 6 gebildet. Die Druckwasseraustrittsöffnungen 5a und 5b sind über Kanäle 6a und 6b, die in den Verteilungshohlraum 7 münden, mit der Druckwassereintrittsöffnung 4 verbunden. Am Grund des Verteilungshohlraumes 7 ist ein kegelförmiger Wasserteiler 8 angeordnet, dessen Kegelspitze in Richtung zur Druckwassereintrittsöffnung 4 weist. Vom Grund des Wasserteilers 8 bis zum äußersten Punkt des Durchmessers d1 der Kanäle 6 ist ein Radius r1 vorgesehen. An diesem Radius r1 liegen die Kanäle 6a und 6b mit dem äußersten Punkt ihres Durchmessers d1, tangential an. Der Neigungswinkel im Vergleich zur Achse M des Düsenkörpers 1 entspricht bei den Kanälen 6a, die mit den Austrittsöffnungen 5a in Verbindung stehen α1 und bei den Kanälen 6b, die mit den Austrittsöffnungen 5b in Verbindung stehen α2. Die Druckwassereintrittsöffnung 4 verbreitert sich an ihrem Ende in Richtung des Verteilungshohlraumes 7 in einem Radius r2, der die gleiche Krümmungsrichtung wie der Radius r1 am Grund des Verteilungshohlraumes 7 aufweist. Beide Radien r1 und r2 sind über einen weiteren Radius r3 miteinander verbunden, der zu den Radien r1 und r2 eine entgegengesetzte Krümmungsrichtung hat. In Fig. 3 ist die Draufsicht der Düse nach Fig. 1 und 2 dargestellt. Da alle Kanäle tangential am Radius r1 anliegen, aber abwechselnd unterschiedliche Neigungsrichtungen aufweisen, liegen die Druckwasseraustrittsöffnungen 5a und 5b auf unterschiedlichen Teilkreisen T1 und T2. Je größer der Neigungswinkel und damit der Abstrahlwinkel gewählt wird, um so weiter in Richtung zum Außendurchmesser D des Düsenkörpers liegen die Teilkreise.
A hydrodynamic nozzle with a total of 8 outlet openings and a divided nozzle body 1 is shown in FIGS. 1, 2 and 3. The nozzle body 1 consists of an upper part 2 and a lower part 3, the pressurized water inlet opening 4 being arranged in the form of the hose connection in the upper part. A total of 8 pressurized water outlet openings 5a and 5b are provided, alternately lying on different pitch circles T1 and T2, at an angle of 45 °. The pressurized water outlet openings 5a, which lie on the inner pitch circle T1, have a smaller radiation angle α than the pressurized water outlet openings 5b on the outer pitch circle T2. 1 shows the longitudinal section in the region of the pressurized water outlet openings 5a with the radiation angle α1 and in FIG. 2 the longitudinal section in the region of the pressurized water outlet openings 5b with the radiation angle α2.
A distribution cavity 6 is formed at the connection to the pressurized water inlet opening. The pressurized water outlet openings 5a and 5b are connected to the pressurized water inlet opening 4 via channels 6a and 6b, which open into the distribution cavity 7. At the bottom of the distribution cavity 7, a conical water divider 8 is arranged, the cone tip of which points in the direction of the pressurized water inlet opening 4. A radius r1 is provided from the bottom of the water divider 8 to the outermost point of the diameter d1 of the channels 6. The channels 6a and 6b are tangential to this radius r1 with the outermost point of their diameter d1. The angle of inclination in comparison to the axis M of the nozzle body 1 corresponds to α1 in the channels 6a which are connected to the outlet openings 5a and α2 in the channels 6b which are connected to the outlet openings 5b. The pressure water inlet opening 4 widens at its end in the direction of the distribution cavity 7 in a radius r2, which has the same direction of curvature as the radius r1 at the base of the distribution cavity 7. Both radii r1 and r2 are connected to one another via a further radius r3, which has an opposite direction of curvature to the radii r1 and r2. 3 shows the top view of the nozzle according to FIGS. 1 and 2. Since all the channels are tangent to the radius r1, but alternately have different inclination directions, the pressurized water outlet openings 5a and 5b lie on different pitch circles T1 and T2. The larger the angle of inclination and thus the angle of radiation is chosen, the further the partial circles lie in the direction of the outer diameter D of the nozzle body.

In Fig. 4 ist das Oberteil 2 und das Unterteil 3 der Düse in getrenntem Zustand dargestellt. Die Schnittebene wurde entlang der Linie A-A in Fig. 3a gelegt. Die Teilung der Düse erfolgte hierbei im Mittelpunkt des Radius r1. Die Verbindung der beiden Düsenhälften 2 und 3 erfolgt bei dieser Ausführungsform über ein Gewinde 9. Das Gewindeunterteil wird zur Montage in das Düsenoberteil eingeschraubt. Im Düsenunterteil 3 werden dabei die Radien r1 und der Wasserteiler 8 angeordnet, wobei der Wasserteiler im montierten Zustand in das Düsenoberteil hineinragt. Im Oberteil 2 befindet sich die Druckwassereintrittsöffnung 4, die an ihrem Ende in Richtung des Düseninnenraumes den Radius r2 und sich daran anschließend den Radius r3 aufweist. Diese geteilte Düsenausführung hat wesentliche fertigungstechnische Vorteile und ist einfach herstellbar. Dabei sollten vorteilhafter Weise zuerst Oberteil 2 und Unterteil 3 gefertigt und nach deren Zusammenfügen die Kanäle 6a und 6b und die Druckwasseraustrittsöffnungen 5a und 5b eingebracht werden. Ein weiterer Vorteil der geteilten Düsenausführung besteht darin, daß sie bei Verschmutzung leicht auseinandergenommen und gereinigt werden kann. Der Wasserteiler 8 und die Radien r1 sind in diesem Beispiel mit einer Beschichtung B versehen, welche den Widerstandsbeiwert verringert.In Fig. 4, the upper part 2 and the lower part 3 of the nozzle shown in a separate state. The cutting plane was placed along the line A-A in Fig. 3a. The division of the The nozzle was at the center of the radius r1. The Connection of the two nozzle halves 2 and 3 takes place at this embodiment via a thread 9. Das The lower threaded part is used for mounting in the upper part of the nozzle screwed in. In the lower part 3 of the nozzle Radii r1 and the water divider 8 arranged, the The water divider is assembled into the upper part of the nozzle protrudes. In the upper part 2 is the Pressurized water inlet opening 4, which at its end in Radius r2 and itself in the direction of the nozzle interior then has the radius r3. This shared Nozzle design has essential manufacturing technology Advantages and is easy to manufacture. Doing so advantageously upper part 2 and lower part 3 manufactured and after their joining channels 6a and 6b and the pressurized water outlet openings 5a and 5b be introduced. Another advantage of the shared Nozzle design is that it is dirty can be easily disassembled and cleaned. The Water divider 8 and the radii r1 are in this example provided with a coating B, which the resistance coefficient decreased.

Fig. 5 zeigt nochmals eine Schnittdarstellung des Düsenoberteils 2 mit eingebrachten Kanälen 6a und Druckwasseraustrittsöffnungen 5a. Die Druckwassereintrittsöffnung weist vor dem Radius r2 zusätzlich eine kegelförmige Erweiterung 10 auf.Fig. 5 again shows a sectional view of the Upper nozzle part 2 with introduced channels 6a and Pressurized water outlet openings 5a. The pressurized water inlet opening has one in front of radius r2 conical extension 10 on.

Fig. 6 zeigt eine Ansicht gem. Fig. 5 aus Richtung des Düsenunterteiles 3. Die Kanäle 5a und 5b weisen vorteilhafter Weise an ihrem Ende, welches jeweils gegenüber zur Druckwasseraustrittsöffnung 6a und 6b liegt, eine trichterförmige Erweiterung 11 auf.Fig. 6 shows a view acc. Fig. 5 from the direction of Lower part of the nozzle 3. The channels 5a and 5b point advantageously at its end, which each opposite to the pressurized water outlet opening 6a and 6b lies, a funnel-shaped extension 11.

Ein Schnitt und eine Abwicklung entlang der Linie X in Fig. 5 und 6 wird in der Fig. 7 dargestellt. Dabei gehen die trichterförmigen Erweiterungen 11 der Kanäle 5a und 5b ineinander über. Diese trichterförmige Erweiterung 11 weist vorzugsweise einen Öffnungswinkel β1 von 90° auf . A cut and an unfolding along the line X in 5 and 6 is shown in FIG. 7. Go there the funnel-shaped extensions 11 of the channels 5a and 5b into each other. This funnel-shaped extension 11 preferably has an opening angle β1 of 90 °.

Bei sogenannten Zugdüsen mit einer zentrischen Bohrung 12 vom Verteilungshohlraum 7 zum Ende des Düsenkörpers 1 gegenüber der Druckwassereintrittsöffnung 4 gem. Fig. 8, weist diese Bohrung 12 an ihrem Ende in Richtung des Verteilungshohlraumes 7 ebenfalls eine trichterförmige Erweiterung 13 auf. Der Öffnungswinkel β2 beträgt vorzugsweise 30°.With so-called traction nozzles with a central bore 12 from the distribution cavity 7 to the end of the nozzle body 1 opposite the pressurized water inlet opening 4 acc. Fig. 8, has this bore 12 at its end in the direction of Distribution cavity 7 also a funnel-shaped Extension 13 on. The opening angle is β2 preferably 30 °.

Es besteht auch die Möglichkeit, die Düsen aus einem Stück zu fertigen. Um die gleichen strömungstechnischen Verteile zu erzielen, sind dabei andere Fertigungsverfahren, z.B. das Urformen anzuwenden.There is also the option of making the nozzles from one To manufacture pieces. To the same fluidic To achieve distributions are different Manufacturing processes, e.g. to apply the original form.

Neben den vorgenannten dargestellten Beispielen einer geteilten Düse besteht auch die Möglichkeit, die Teilungsebene zwischen Ober- und Unterteil des Düsenkörpers anders zu legen.
Weiterhin können die beiden Düsenhälften bei der geteilten Ausführung auch durch andere bekannte Fügeverfahren lösbar oder unlösbar miteinander verbunden werden. Dabei hat die lösbare Verbindung, wie bereits beschrieben, den Vorteil einer einfacheren Reinigungsmöglichkeit. Gleichzeitig können lösbar geteilte Düsen bei eventuellen Beschädigungen im Düseninnenraum (Verteilungshohlraum 7) regeneriert werden, so daß deren Lebensdauer um ein Vielfaches verlängert wird.
In Fortsetzung dieses Gedankens ist es weiterhin möglich, gem. Fig. 9 den kegelförmigen Wasserteiler 8 separat zu fertigen und in das Düsenunterteil 3 lösbar oder unlösbar einzusetzen. Eine weitere vorteilhafte Ausführungsform der hydrodynamischen Düse besteht darin, daß das Unterteil 3 ein Formelement 14 aufweist, welches den Wasserteiler 8 und den Radius r1 bildet und aus verschleißfestem und widerstandsbeiwertsenkendem Werkstoff besteht. Das Formelement 14 wird vorzugsweise lösbar in das Unterteil eingesetzt, so daß es bei Verschleiß ausgewechselt werden kann, und ist insbesondere, wie schematisch dargestellt, mit Verbindungselement 15 durch Verschrauben und Verstiften arretiert.
Das Formelement 14 kann auch in mehrere Kammern 16 segmentförmig unterteilt sein (Fig. 11a), wobei die Anzahl der Kammern 16 mit der Anzahl der Druckwasseraustrittsöffnungen 5 übereinstimmen sollte. Die Darstellung von zwei Kammersegmenten mit unterschiedlichen Formen entlang der Linie X in Fig. 11a zeigen Fig. 11b und 11c.
Gem. Fig. 11b sind die Kammern 16 in ihrem Querschnitt ebenfalls halbkreisförmig mit einem Radius rk ausgebildet. Eine weitere Variante besteht darin, daß die Kammern 16 Flanken 17 mit definiertem Öffnungswinkel βK und einen Radius rK2 im Grund aufweisen (Fig. 11c), um ein optimales strömungstechnisches Verhalten des Flüssigkeitsstrahls zu gewährleisten.
Entsprechend des gewünschten Anforderungsprofiles wird die Anzahl der Druckwasseraustrittsöffnungen 5 (bzw. 5a und 5b) festgelegt, wobei deren Abstrahlwinkel α auch gleich sein können, so daß sie auf einem gemeinsamen Teilkreis T liegen. Üblicherweise werden 6 oder mehr Druckwasseraustrittsöffnungen gewählt.
Der Abstrahlwinkel α kann zwischen 5° und 40° betragen. Je nach Düsenabmessung (Länge und Durchmesser), und dem erforderlichem Abstrahlwinkel α sind die Radien r1, r2 und r3, die Abmessungen des Wasserteilers 8 sowie der Abstand L des Mittelpunktes des Radius r1, vom Beginn der Düse an der Seite des Schlauchanschlusses, definiert zu bestimmen.
In addition to the above-mentioned examples of a divided nozzle, there is also the possibility of placing the parting plane between the upper and lower part of the nozzle body differently.
Furthermore, the two nozzle halves can also be connected to one another in a detachable or non-detachable manner by other known joining methods. The detachable connection, as already described, has the advantage of being easier to clean. At the same time, detachably divided nozzles can be regenerated in the event of any damage in the interior of the nozzle (distribution cavity 7), so that their service life is extended many times over.
In continuation of this idea, it is still possible, according to Fig. 9 to manufacture the conical water divider 8 separately and to use it in the lower nozzle part 3 detachably or non-detachably. Another advantageous embodiment of the hydrodynamic nozzle is that the lower part 3 has a shaped element 14 which forms the water divider 8 and the radius r1 and is made of wear-resistant and resistance-reducing material. The shaped element 14 is preferably releasably inserted into the lower part so that it can be replaced when worn, and in particular, as shown schematically, is locked with the connecting element 15 by screwing and pinning.
The shaped element 14 can also be divided into a plurality of chambers 16 in the form of a segment (FIG. 11 a), the number of the chambers 16 should correspond to the number of pressurized water outlet openings 5. 11b and 11c show the representation of two chamber segments with different shapes along the line X in FIG. 11a.
11b, the chambers 16 are also semicircular in cross section with a radius rk. Another variant is that the chambers 16 have flanks 17 with a defined opening angle βK and a radius rK2 in the base (FIG. 11c) in order to ensure optimal fluidic behavior of the liquid jet.
The number of pressurized water outlet openings 5 (or 5a and 5b) is determined in accordance with the desired requirement profile, and their radiation angle α can also be the same, so that they lie on a common pitch circle T. 6 or more pressurized water outlet openings are usually selected.
The radiation angle α can be between 5 ° and 40 °. Depending on the nozzle dimensions (length and diameter) and the required radiation angle α, the radii r1, r2 and r3, the dimensions of the water divider 8 and the distance L from the center of the radius r1, from the start of the nozzle on the side of the hose connection, are defined determine.

Infolge der strömungstechnischen Verbesserungen und der Reibungsverminderung durch die Beschichtung wird der kontinuierliche Strömungsbereich verlängert bzw. der Axialdruck PK im Bereich der Kernzone (K) und der Axialdruck PH im Hauptbereich (H) erhöht (Fig. 12). D1 ist dabei der Düsendurchmesser.
Durch die Erhöhung des Axialdruckes wird die Reinigungswirkung der erfindungsgemäßen hydrodynamischen Düse im Vergleich zu herkömmlichen Düsen gleicher Bauart wesentlich verbessert.
As a result of the improvements in flow technology and the reduction in friction due to the coating, the continuous flow area is lengthened or the axial pressure PK in the area of the core zone (K) and the axial pressure PH in the main area (H) are increased (FIG. 12). D1 is the nozzle diameter.
By increasing the axial pressure, the cleaning effect of the hydrodynamic nozzle according to the invention is significantly improved compared to conventional nozzles of the same type.

Claims (12)

  1. Hydrodynamic nozzle for cleaning of pipes and conduits, consisting of a nozzle base body with a connection for a water hose as pressurised water inlet opening and with pressurised water outlet openings which are disposed on the side of the pressurised water inlet opening on the same or different pitch circles and which are connected by means of passages to the pressurised water inlet opening, whereby the pressurised water outlet openings and the passages are inclined at a defined angle to the axis of the nozzle body,
    whereby the pressurised water inlet opening (4) is followed by a distribution chamber (7) into which the passages (6a and 6b) connected to the pressurised water outlet openings (5a, 5b) debouch, whereby a conical water divider (8) with a defined cone angle ( ) is disposed at the base of the distribution chamber (7) facing the pressurised water inlet opening (4) centrally in relation to the axis of the nozzle body (1) and the cone tip (8) of which is aligned in the direction of the pressurised water inlet opening (4),
    and the base of the cone of the water divider (8) is followed by a defined, essentially semi-circular first radius (R1) the curvature of which faces the pressurised water inlet opening (4) and which forms the base of the distribution chamber (7),
    characterised in that each passage (6a, 6b) inclined at the angle ( 1, 2) debouches into the distribution chamber (7) so that the outermost line of the outside diameter of the passage (6a, 6b) lies tangentially on the first radius (R1) or passes into the first radius (R1), and the pressurised water inlet opening (4) exhibits a diameter-enlarging second radius (R2) running around radially in the direction of the distribution chamber (7) and which has the same direction of curvature as the first radius (R1) and is connected to the first radius (R1) by means of a further third radius (R3) with the opposite direction of curvature.
  2. Hydrodynamic nozzle according to claim 1, characterised in that at the end which debouches into the distribution chamber (7), the diameter of each passage (6a, 6b) is enlarged in the shape of a funnel.
  3. Hydrodynamic nozzle according to claim 2, characterised in that the opening angle ( 1) of the funnel-shaped widening (11) is 90°.
  4. Hydrodynamic nozzle according to one of claims 1 to 3, characterised in that the nozzle body (1) is divided into an upper part (2) and a lower part (3).
  5. Hydrodynamic nozzle according to claim 4, characterised in that the dividing plane lies in the area of the distribution chamber (7) at the central point of the first radius (R1) and perpendicular to the axis of the nozzle body (1), whereby the pressurised water inlet opening (4) and the pressurised water outlet openings (6a and 6b) and the second radius (r2) and the third radius (r3) are disposed in the upper part (2) and the water divider (8) and the first radius (r1) are disposed in the lower part (3).
  6. Hydrodynamic nozzle according to claim 4, characterised in that the dividing plane lies in the area of the distribution chamber (7) at the central point of the first radius (R1) and parallel to the axis (M) of the nozzle body (1).
  7. Hydrodynamic nozzle according to one of claims 1 to 6, characterised in that the water divider (8) is inserted detachably or non-detachably in the nozzle body (1).
  8. Hydrodynamic nozzle according to one of claims 1 to 7, characterised in that the water divider (8) is inserted detachably or non-detachably in the lower part (3) of the nozzle body (1).
  9. Hydrodynamic nozzle according to one of claims 1 to 8, characterised in that the faces of the cavities along which the hydraulic medium flows are machined so that the coefficient of resistance is minimised.
  10. Hydrodynamic nozzle according to one of claims 1 to 9, characterised in that the water divider (8) and the base of the distribution chamber (7) formed by the peripheral first radius (r1) are provided with a coating (B) reducing the coefficient of resistance.
  11. Hydrodynamic nozzle according to one of claims 1 to 10, characterised in that the unit comprising water divider (8) and first radius (r1) takes the form of a separate shaped element (14) and is disposed detachably in a corresponding recess in the lower part (3).
  12. Hydrodynamic nozzle according to claim 11, characterised in that the shaped element (14) is made of a wear-resistant material.
EP96107047A 1995-05-11 1996-05-04 Hydrodynamic nozzle for the cleaning of tubes and conduits Expired - Lifetime EP0742053B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19516780A DE19516780C1 (en) 1995-05-11 1995-05-11 Hydrodynamic cleaning nozzle for pipes and canals
DE19516780 1995-05-11

Publications (2)

Publication Number Publication Date
EP0742053A1 EP0742053A1 (en) 1996-11-13
EP0742053B1 true EP0742053B1 (en) 1999-08-18

Family

ID=7761321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96107047A Expired - Lifetime EP0742053B1 (en) 1995-05-11 1996-05-04 Hydrodynamic nozzle for the cleaning of tubes and conduits

Country Status (4)

Country Link
US (1) US5992432A (en)
EP (1) EP0742053B1 (en)
DE (2) DE19516780C1 (en)
WO (1) WO1996035523A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533654C2 (en) * 1995-09-12 1997-12-04 Kurt Hoerger Hydrodynamic tool for cleaning pipes and channels
DE59607422D1 (en) * 1996-11-07 2001-09-06 Kurt Hoerger Hydrodynamic tool for cleaning pipes and channels
DE19805374C2 (en) 1998-02-11 2000-03-23 Richard Siedler Cleaning bodies for pipes and sewer systems
DE19915413B4 (en) * 1998-04-07 2014-08-07 Emilia Steinicke Nozzle body for a cleaning device
DE19913728C1 (en) * 1999-03-26 2000-10-26 Lufthansa Technik Ag Pipe cleaning nozzle
US7011158B2 (en) * 2003-09-05 2006-03-14 Jerry Wayne Noles, Jr., legal representative Method and apparatus for well bore cleaning
ES2355292T3 (en) * 2005-06-20 2011-03-24 Hammelmann Maschinenfabrik Gmbh TOBERA AND PROCEDURE FOR THE MECHANIZATION OF A LOWER SPACE OF A WORK PIECE.
US7559362B2 (en) * 2007-02-23 2009-07-14 Miner Daniel P Downhole flow reversal apparatus
SE531509C2 (en) 2007-08-31 2009-05-05 Bo Larsson Med Bl Consult Bo L Hydrodynamic nozzle
DE202008006034U1 (en) 2008-05-02 2009-09-10 Simpfendörfer, Ulrich Nozzle for a cleaning device
EP2288453B1 (en) 2008-05-07 2018-11-21 Hydrascan Limited Conduit cleaning apparatus
IES20090473A2 (en) * 2009-06-18 2011-01-05 Aidan Francis Mullane A sewer cleaning nozzle
RU2472596C1 (en) * 2011-07-25 2013-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет"(ФГБОУ ВПО "ЯГТУ") Pulse rotary nozzle
RU2494822C1 (en) * 2012-03-27 2013-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" Rotary nozzle
DE202012009908U1 (en) 2012-10-17 2014-01-20 USB-Düsen GmbH Nozzle for cleaning pipes and ducts
DE202012010204U1 (en) 2012-10-25 2014-01-30 USB-Düsen GmbH Nozzle for cleaning pipes and ducts
US11413665B2 (en) * 2018-08-02 2022-08-16 Shane D. Frost Commercial vacuum hose clearing apparatus
DE102019107292A1 (en) * 2019-03-21 2020-09-24 Ecoclean Gmbh High pressure tool and method of making a high pressure tool
CN110206132A (en) * 2019-05-06 2019-09-06 常州市捷甲非开挖管道技术有限公司 A kind of urban Underground pipeline dredging is nozzle specially used
RU207193U1 (en) * 2021-06-15 2021-10-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный аграрный университет имени П.А. Столыпина" DEVICE FOR CLEANING VACUUM MILK PIPES OF MILKING PLANTS

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE400011C (en) * 1923-03-28 1924-08-11 Gustav O A Liebau Dipl Ing Pipe cleaning device with tools moved and driven forward by pressurized water
US1587194A (en) * 1925-07-23 1926-06-01 Sidney C Sladden Self-propelling hose nozzle
US1628070A (en) * 1926-05-12 1927-05-10 Sidney C Sladden Self-propelled hose nozzle
DE805209C (en) * 1949-11-03 1951-05-10 Otto Helm Jet head for cleaning clogged or silted, also for extinguishing burning pipes, ducts, ducts, etc. like
US3656694A (en) * 1970-12-10 1972-04-18 John A Kirschke Sewer cleaning chemical dispensing nozzles
DE2137627C3 (en) * 1971-07-28 1974-02-14 Ludwig-Ofag-Indugas Industrieofenanlagen Gmbh, 4300 Essen Device for internal quenching of pipes
US3702685A (en) * 1971-11-10 1972-11-14 John A Kirschke Sewer cleaning chemical dispensing nozzle
US3814330A (en) * 1973-03-01 1974-06-04 Mcneil Corp Nozzle
US4312679A (en) * 1978-03-27 1982-01-26 Klein Sr Richard W Method for cleaning clogged pipes
DE3412319C1 (en) * 1984-04-03 1985-06-27 Woma-Apparatebau Wolfgang Maasberg & Co Gmbh, 4100 Duisburg Working tool designed as a hydraulic vortex jet nozzle
SE446159B (en) * 1984-05-24 1986-08-18 Bo Larsson WANDERING HYDRODYNAMIC NOZZLE FOR PRESSURE WATER CLEANING OF WATER, WASTE AND DAYWATER PIPES
GB2183774B (en) * 1984-10-17 1989-06-07 Trest Juzhvodoprovod Method and apparatus for cleaning the inner surface of a pipeline and forming a protective coating thereon
US4799554A (en) * 1987-04-10 1989-01-24 Otis Engineering Corporation Pressure actuated cleaning tool
DE3906937A1 (en) * 1989-03-01 1990-09-06 Mannesmann Ag METHOD AND DEVICE FOR DESCALING AND PLASTERING A WARM-PUMPED TUBE
SE500894C2 (en) * 1990-10-04 1994-09-26 Johan Faxon Method and apparatus for cleaning pipelines
CA2075089A1 (en) * 1992-07-31 1994-02-01 Gerald Howard Lawther Apparatus and method for removing undesired coatings from the interior of tubes
DE9214268U1 (en) * 1992-10-22 1993-03-18 Steinicke, Emilia, 6477 Limeshain, De
SE9300645L (en) * 1993-02-26 1994-08-27 Johan Faxon Method and apparatus for cleaning pipelines
US5535473A (en) * 1994-12-05 1996-07-16 Maniar; Mark A. Drain cleaning apparatus

Also Published As

Publication number Publication date
WO1996035523A1 (en) 1996-11-14
DE59602768D1 (en) 1999-09-23
US5992432A (en) 1999-11-30
EP0742053A1 (en) 1996-11-13
DE19516780C1 (en) 1996-08-08

Similar Documents

Publication Publication Date Title
EP0742053B1 (en) Hydrodynamic nozzle for the cleaning of tubes and conduits
DE3039633C2 (en) Rotary drill bits, in particular for deep drilling
EP2301670B1 (en) Shower head for a sanitary shower
DE2224320A1 (en) Output head for irrigation systems or the like
EP2091657B1 (en) Centrifuge, especially separator, with solid discharge orifices
DE1913713A1 (en) Spray nozzle
EP1900962A1 (en) Ventilated brake disk
DE2542240B2 (en) Hollow cone nozzle for atomizing liquid
EP0672443A1 (en) Control device for at least two partial fluid streams
DE102006024841B4 (en) Electromagnetic actuator
DE69830527T2 (en) Hochdruckreinigungsdüse
DE2048161A1 (en) Fuel injector
DE19849814A1 (en) Nozzle to form jet of water in water jet cutting heads has wear-resistant nozzle inserts fitted one behind other in point of body's central bore and forming nozzle segments of different shapes which form jet pipe
DE3138081C2 (en) Weft insertion nozzle for a jet loom
DE3024472A1 (en) FULL CONE NOZZLE FOR SPRAYING LIQUID
EP3088087B1 (en) Spray nozzle and method for producing non-round spray cones
DE3922619C1 (en)
DE202007009472U1 (en) Device for dividing liquid transported by gas flow has rounded transition section in transition region between feed bore and distribution chamber with especially concentric deflection cone at feed bore end of chamber for expanding flow
EP0841101B1 (en) Hydrodynamic tool for the cleaning of tubes and conduits
DE19533654C2 (en) Hydrodynamic tool for cleaning pipes and channels
DE102004057974A1 (en) Extrusion head with nozzle gap adjustment
DE102005015091A1 (en) Pressure-driven fluid actuator has alternating annular recesses and projections formed around circumference of damping bush of piston at inner peripheral wall of axial bore between cylinder space and cylinder connection port
EP1358922B1 (en) Nozzle, especially for cleaning cylindrical gas filter cartridge by pressure pulsing
DE2559239A1 (en) Gun cartridge chamber with non jamming section - has chamber walls slightly tapered with helical pattern riflings to take up firing expansion
DE10157284A1 (en) Automobile brake disk has cooling channels formed between the friction disks, with a venturi tube system to accelerate cooling air through them

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT NL

17P Request for examination filed

Effective date: 19970221

17Q First examination report despatched

Effective date: 19980330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990818

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990818

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990818

REF Corresponds to:

Ref document number: 59602768

Country of ref document: DE

Date of ref document: 19990923

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991118

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050530

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090528

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100331

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59602768

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59602768

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130