EP0733961A1 - Reference current generator in CMOS technology - Google Patents

Reference current generator in CMOS technology Download PDF

Info

Publication number
EP0733961A1
EP0733961A1 EP96400595A EP96400595A EP0733961A1 EP 0733961 A1 EP0733961 A1 EP 0733961A1 EP 96400595 A EP96400595 A EP 96400595A EP 96400595 A EP96400595 A EP 96400595A EP 0733961 A1 EP0733961 A1 EP 0733961A1
Authority
EP
European Patent Office
Prior art keywords
transistor
transistors
current generator
reference current
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96400595A
Other languages
German (de)
French (fr)
Other versions
EP0733961B1 (en
Inventor
Henri Oguey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of EP0733961A1 publication Critical patent/EP0733961A1/en
Application granted granted Critical
Publication of EP0733961B1 publication Critical patent/EP0733961B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/247Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the supply voltage

Definitions

  • the present invention relates to reference current generators produced in CMOS technology.
  • FIG. 1 of the accompanying drawings shows an example of such a reference current generator produced according to the prior art.
  • a description can be found in an article by E. Vittoz and J. Felrath, published in the journal IEEE, Journal of Solid State Circuits, Vol. SC-12, pp. 224-231, June 1977, and entitled "CMOS analog integrated circuits based on weak inversion operation” (CMOS analog integrated circuits based on weak inversion operation).
  • This known generator comprises two P channel transistors, MPA and MPB forming a current mirror, two MNA and MNB transistors which are regulation transistors and a resistor R which forms the element on which the current reference is based.
  • the whole of this assembly is connected between the supply voltages V DD and V SS , the reference current being able to be taken from the supply terminal V DD , for example.
  • the regulation transistors operate at low inversion, which means that their gate voltage Vg is less than their threshold voltage V T and that the drain current I D decreases exponentially with the source voltage V S , according to the formula: where I DO is a parameter which depends on the grid-substrate voltage, W and L are respectively the length and the width of the channel and U T is a voltage proportional to the absolute temperature, being worth approximately 26 mV at ambient temperature.
  • I DO is a parameter which depends on the grid-substrate voltage
  • W and L are respectively the length and the width of the channel
  • U T is a voltage proportional to the absolute temperature, being worth approximately 26 mV at ambient temperature.
  • CMOS circuits being generally to create components having a size and a consumption as low as possible, the presence of a resistance in a circuit is often considered as an important disadvantage. Indeed, especially if the current to be supplied is low, a resistance of high value is required, which requires an excessive silicon surface, if the resistivity (resistance per square) of the layer serving as resistance is low.
  • the object of the invention is to propose a reference current generator free of resistance.
  • the subject of the invention is therefore a reference current generator produced in CMOS technology comprising a first current mirror which forms two circuit branches intended to be connected between supply terminals of opposite polarities and each comprising a group of connected transistors in series and of opposite conductivity types, a first of said branches comprising, put in series with its transistors, stabilization means for impose on the transistor connected to it in this first branch a predetermined fixed source voltage, this reference current generator being characterized in that it also comprises a second current mirror for generating an image of the current flowing in said first branch, said stabilization means comprising an active component forming a variable conductance mounted in series in said first branch and controlled in such a way that its value varies non-linearly with said current image, this conductance thus being traversed by a current whose intensity depends solely on the technological characteristics of said active component.
  • the generator according to the invention is formed exclusively of active components which can be easily integrated with good reproducibility and which only take on the integrated circuit chip not a lot of place.
  • Figure 2 shows a block diagram of the preferred embodiment of the invention.
  • the sources of two channel P transistors, respectively MP1 and MP2 are connected to a supply line V DD and their gates are connected to each other to form a node 1.
  • the drains of these transistors are respectively connected to the drains of two N channel transistors, MN1 and MN2.
  • the connection between the drain of transistor MP1 and the transistor MN1 is also connected to node 1.
  • the gates of the transistors MN1 and MN2 are also connected together and form a node 2 to which the drain of the transistor MN2 is also connected.
  • MN3 and MN4 are connected by their sources to a supply line V SS , their gates being connected to each other to form a node 3 to which the drain of transistor MN3 is also connected.
  • the transistor MN4 is an active component operating as a controlled conductance.
  • the source of transistor MN1 is connected to the drain of transistor MN4 thus forming a node 4, and that of transistor MN2 is connected to the supply line V SS .
  • the drain of transistor MN3 is connected to the drain of a channel P transistor, MP3, the source of which is connected to the supply line V DD and the gate of which is connected to node 1.
  • the transistors MN1 and MN2 of this circuit operate at low inversion, which means that their gate voltage is lower than their threshold voltage V T and that the drain current I D is a decreasing exponential function of the source voltage V S , according to formula (1). Furthermore, the transistors MN3 and MN4 work in strong inversion, in other words their gate voltage is higher than their threshold voltage V T. Finally, the voltage V DD is chosen to be high enough so that, except for the transistor MN4, all the transistors are in saturation.
  • K 1 S p 2 S not 1 S p 1 S not 2
  • U T kT / q is the thermodynamic tension, proportional to the absolute temperature T, and is worth approximately 26 mV at room temperature.
  • Vg n3 2 i 3 ⁇ not 3 + V Tn
  • FIG. 6 shows the shape of this current i ' 1 , the graph showing on the abscissa the current i 1 imposed by the current mirror and on the ordinate the theoretical currents determined according to the above equations.
  • the current i R is a stable parameter of the circuit so that it constitutes a current reference. It will be noted that this current is only determined by the dimensioning of the transistors, in other words by the topography of the circuit which can be reproduced with precision from one circuit to another.
  • the current reference can be taken from the supply terminal V DD , the current serving as a reference then being formed by the sum of the currents i 1 (i R ), i 2 and i 3 .
  • FIG. 3 shows how the reference current generator can produce several other reference currents.
  • the circuit of Figure 3 uses the diagram of Figure 2 so that there are the same transistors connected in the same way. It shows three other ways to generate a reference current.
  • the first consists in using an additional channel transistor P, MP4, the gate of which is connected to node 1. Its source is connected to the terminal VDD, while the reference current i 4 can be taken from the drain of this transistor.
  • the second possibility consists in using an N channel transistor, MN5, the gate of which is connected to the drain of transistor MN3, the source of which is connected to terminal V SS of the circuit and the drain of which will receive the reference current i 5 .
  • the third possibility consists in also using an N channel transistor, MN6, the gate of which is connected to node 2 and which, moreover, is connected in the same way as the transistor MN5. It will be supplied with the reference current i 6 .
  • the transistors MP4, MN5 and MN6 To provide currents close to the desired reference currents, they must be in saturation, that is to say that their drain-source voltage must, in absolute value, be greater than a limit Vd sat .
  • auxiliary transistors MP4, MN5 and MN6 do not charge the nodes to which they are connected, we can multiply the number and thus provide reference currents at many points of a larger circuit including the current generator can be part.
  • FIG. 4 shows more particularly an example of a starting circuit for the reference current generator according to the invention. Indeed, such a circuit is necessary to avoid that the generator remains initially blocked.
  • the starting circuit comprises an N channel transistor, MN7, the source of which is connected to the terminal V ss and the drain of which is connected to node 1.
  • the circuit further comprises a second N channel transistor, MN8 of which the gate is connected to node 2, the source of which is connected to the terminal V SS and the drain of which is connected both to the gate of the transistor MN7 and to a capacitor C which is also connected to the terminal V DD .
  • the capacitor C is discharged at startup which causes the transistor MN7 to flow and an initial current to flow in the transistors MP1 to MP3.
  • the transistor MN8 charges the capacitor C, which blocks the transistor MN7. The generator then operates at its normal speed.
  • FIG. 5 schematically shows an advantageous way of producing the generator according to the invention. This diagram includes both the transistors to generate a reference current and those used to start the circuit.
  • the transistors preferably belong to a first group MP all the P channel transistors with strong inversion, to a second group MNA the transistors N channel with low inversion, while a third group includes the N channel transistors with strong inversion.
  • the transistor MN1 in FIG. 2 can actually be formed by six unitary transistors arranged in parallel
  • i 1 20nA
  • i 2 20nA
  • i 3 60nA
  • i 4 40nA
  • i 5 120nA.
  • the generator according to the invention is well suited to supply reference currents of less than 1 ⁇ A. Its size is reduced, while its own consumption can be of the order of 5i 1 only.
  • FIGS 7, 8 and 9 show three variants of the reference current generator according to the invention.
  • the saturation transistors may, for a given gate voltage and especially if the length of their channel is small, present a slight variation. drain current depending on the drain voltage.
  • the reference current can be subject to a certain dependence on the supply voltage (a few% per Volt). In the circuit shown, it is mainly the transistors MN1 and MN2 which are responsible for this effect.
  • auxiliary transistors MNl1 and MN12 are respectively inserted in series with the transistors MN1 and MN2.
  • the gates of these transistors are connected in common to the junction between the transistor MN12 and the transistor MP2. It follows that the drain voltages of the transistors MN1 and MN2 are substantially equal and independent of variations in the voltage V DD .
  • FIG. 8 shows a variant offering the possibility of adjusting the reference current from outside the circuit.
  • the MP3 transistor is broken down into several unitary transistors MP3a, MP3b, MP3c .... which are respectively connected in series with as many switching transistors P channel Sa, Sb, Sc
  • the gate of the first transistor Sa is directly connected to terminal V SS . He is therefore a driver at all times.
  • the gates of the other transistors Sb Sc .... are connected to a logic control circuit CL making it possible to make these transistors selectively conductive.
  • the effective width of the MP3 transistor can be adjusted from the outside, that is to say its parameter K 2 (equation 15).
  • K eff equation 16
  • the current i 1 equation 20
  • FIG. 9 shows a third variant of the generator according to the invention in which, all things also equal when considering FIG. 2, the source of transistor MN3 is connected to the drain of a transistor MN4 'and to the source of transistor MN1.
  • the transistor MN4 ' is therefore traversed by the sum of the currents i 1 and i 3 .
  • the transistor MN4 'so that it has the same drain voltage as the transistor MN4, but for a current i 1 + i 3 instead of i 1 , therefore K 2 +1 times greater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

In the current generator circuit a first current mirror (MP1,MP2) is formed with two circuit branches intended to be connected between two supply terminals (VDD,VSS). Ends of the branches comprise transistors (MP1,MN1;MP2,MN2) of opposite conductivity types connected in series. The second current mirror (MP1,MP3) generates an image (13) of the current (11) flowing in one of the branches. An active component (MN4) forming a variable conductance is mounted in series with the branch and is controlled in such a way that its value varies linearly with the current image (13). This conductance thus carries a current whose strength depends solely on the technological characteristics of the active component.

Description

La présente invention concerne les générateurs de courant de référence réalisés en technologie CMOS.The present invention relates to reference current generators produced in CMOS technology.

La figure 1 des dessins annexés représente un exemple d'un tel générateur de courant de référence réalisé selon la technique antérieure. On peut en trouver une description dans un article de E. Vittoz et J. Felrath, paru dans la revue IEEE, Journal of Solid State Circuits, Vol. SC-12, pp. 224-231, Juin 1977, et intitulé "CMOS analog integrated circuits based on weak inversion operation" (Circuits CMOS intégrés analogiques basés sur un fonctionnement en faible inversion).Figure 1 of the accompanying drawings shows an example of such a reference current generator produced according to the prior art. A description can be found in an article by E. Vittoz and J. Felrath, published in the journal IEEE, Journal of Solid State Circuits, Vol. SC-12, pp. 224-231, June 1977, and entitled "CMOS analog integrated circuits based on weak inversion operation" (CMOS analog integrated circuits based on weak inversion operation).

Ce générateur connu comporte deux transistors canal P, MPA et MPB formant miroir de courant, deux transistors MNA et MNB qui sont des transistors de régulation et une résistance R qui forme l'élément sur lequel la référence de courant est basée. L'ensemble de ce montage est raccordé entre les tensions d'alimentation VDD et VSS, le courant de référence pouvant être prélevé sur la borne d'alimentation VDD, par exemple. Les transistors de régulation fonctionnent en faible inversion, ce qui signifie que leur tension de grille Vg est inférieure à leur tension de seuil VT et que le courant de drain ID décroît exponentiellement avec la tension de source VS, selon la formule:

Figure imgb0001
   où IDO est un paramètre qui dépend de la tension grille - substrat, W et L sont respectivement la longueur et la largeur du canal et UT est une tension proportionnelle à la température absolue, valant environ 26 mV à la température ambiante. Pour les transistors MNA et MNB de la figure 1, ayant même tension de grille et même longueur de canal, le rapport des courants est donné par:
Figure imgb0002
This known generator comprises two P channel transistors, MPA and MPB forming a current mirror, two MNA and MNB transistors which are regulation transistors and a resistor R which forms the element on which the current reference is based. The whole of this assembly is connected between the supply voltages V DD and V SS , the reference current being able to be taken from the supply terminal V DD , for example. The regulation transistors operate at low inversion, which means that their gate voltage Vg is less than their threshold voltage V T and that the drain current I D decreases exponentially with the source voltage V S , according to the formula:
Figure imgb0001
where I DO is a parameter which depends on the grid-substrate voltage, W and L are respectively the length and the width of the channel and U T is a voltage proportional to the absolute temperature, being worth approximately 26 mV at ambient temperature. For the MNA and MNB transistors of FIG. 1, having the same gate voltage and the same channel length, the current ratio is given by:
Figure imgb0002

Ce rapport étant fixé par le miroir de courant MPA-MPB, cette relation entraîne une valeur bien définie de la tension de source VS1 du transistor MNA:

Figure imgb0003
This ratio being fixed by the current mirror MPA-MPB, this relationship results in a well-defined value of the source voltage V S1 of the transistor MNA:
Figure imgb0003

La résistance R et la tension VS1 étant fixées, le courant i1 prend une valeur bien définie: i 1 = V s 1 R

Figure imgb0004
The resistance R and the voltage V S1 being fixed, the current i 1 takes a well defined value: i 1 = V s 1 R
Figure imgb0004

L'objectif des concepteurs des circuits CMOS étant en général de créer des composants présentant une taille et une consommation aussi faibles que possible, la présence d'une résistance dans un circuit est souvent considérée comme un inconvénient important. En effet, surtout si le courant à fournir est faible, il faut une résistance de valeur élevée, ce qui nécessite une surface de silicium excessive , si la résistivité (résistance par carré) de la couche servant de résistance est faible.The objective of the designers of CMOS circuits being generally to create components having a size and a consumption as low as possible, the presence of a resistance in a circuit is often considered as an important disadvantage. Indeed, especially if the current to be supplied is low, a resistance of high value is required, which requires an excessive silicon surface, if the resistivity (resistance per square) of the layer serving as resistance is low.

De plus, la reproductibilité de la résistance est souvent médiocre dans une technologie CMOS standard, ce qui est incompatible avec la précision que l'on demande en général à un générateur de courant de référence.In addition, the reproducibility of the resistance is often poor in standard CMOS technology, which is incompatible with the precision that is generally required of a reference current generator.

L'invention a pour but de proposer un générateur de courant de référence exempt de résistance.The object of the invention is to propose a reference current generator free of resistance.

L'invention a donc pour objet un générateur de courant de référence réalisé en technologie CMOS comprenant un premier miroir de courant qui forme deux branches de circuit destinées à être connectées entre des bornes d'alimentation de polarités opposées et comportant chacune un groupe de transistors connectés en série et de types de conductivité opposés, une première desdites branches comprenant, mis en série avec ses transistors, des moyens de stabilisation pour imposer au transistor qui lui est connecté dans cette première branche une tension de source fixe prédéterminée, ce générateur de courant de référence étant caractérisé en ce que il comprend également un second miroir de courant pour générer une image du courant circulant dans ladite première branche, lesdits moyens de stabilisation comprenant un composant actif formant une conductance variable montée en série dans ladite première branche et commandée de telle manière que sa valeur varie non linéairement avec ladite image de courant, cette conductance étant ainsi parcourue par un courant dont l'intensité dépend uniquement des caractéristiques technologiques dudit composant actif.The subject of the invention is therefore a reference current generator produced in CMOS technology comprising a first current mirror which forms two circuit branches intended to be connected between supply terminals of opposite polarities and each comprising a group of connected transistors in series and of opposite conductivity types, a first of said branches comprising, put in series with its transistors, stabilization means for impose on the transistor connected to it in this first branch a predetermined fixed source voltage, this reference current generator being characterized in that it also comprises a second current mirror for generating an image of the current flowing in said first branch, said stabilization means comprising an active component forming a variable conductance mounted in series in said first branch and controlled in such a way that its value varies non-linearly with said current image, this conductance thus being traversed by a current whose intensity depends solely on the technological characteristics of said active component.

Grâce à ces caractéristiques et en particulier aux moyens de stabilisation tels que définis ci-dessus, le générateur selon l'invention est formé exclusivement de composants actifs qui peuvent être intégrés facilement avec une bonne reproductibilité et qui ne prennent sur la puce de circuit intégré que peu de place.Thanks to these characteristics and in particular to the stabilization means as defined above, the generator according to the invention is formed exclusively of active components which can be easily integrated with good reproducibility and which only take on the integrated circuit chip not a lot of place.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels:

  • la figure 1 est un schéma d'un générateur de courant de référence selon la technique antérieure;
  • la figure 2 est un schéma de principe d'un générateur de courant de référence selon l'invention;
  • la figure 3 représente un schéma d'un générateur de courant de référence permettant de fournir un courant de référence à plusieurs utilisateurs;
  • la figure 4 montre un exemple d'un circuit de démarrage pour le générateur selon l'invention;
  • la figure 5 représente un schéma d'une réalisation pratique du générateur selon l'invention;
  • la figure 6 est un graphique illustrant le fonctionnement du générateur selon l'invention;
  • les figures 7, 8 et 9 montrent des variantes de réalisation du générateur selon l'invention.
Other characteristics and advantages of the invention will appear during the description which follows, given solely by way of example and made with reference to the appended drawings in which:
  • Figure 1 is a diagram of a reference current generator according to the prior art;
  • Figure 2 is a block diagram of a reference current generator according to the invention;
  • FIG. 3 represents a diagram of a reference current generator making it possible to supply a reference current to several users;
  • FIG. 4 shows an example of a starting circuit for the generator according to the invention;
  • FIG. 5 represents a diagram of a practical embodiment of the generator according to the invention;
  • Figure 6 is a graph illustrating the operation of the generator according to the invention;
  • Figures 7, 8 and 9 show alternative embodiments of the generator according to the invention.

On va se référer tout d'abord à la figure 2 qui représente un schéma de principe du mode de réalisation préféré de l'invention.We will first refer to Figure 2 which shows a block diagram of the preferred embodiment of the invention.

Les sources de deux transistors canal P, respectivement MP1 et MP2 sont reliées à une ligne d'alimentation VDD et leurs grilles sont connectées l'une à l'autre pour former un noeud 1. Les drains de ces transistors sont respectivement reliés aux drains de deux transistors canal N, MN1 et MN2. La connexion entre le drain du transistor MP1 et le transistor MN1 est également reliée au noeud 1.The sources of two channel P transistors, respectively MP1 and MP2 are connected to a supply line V DD and their gates are connected to each other to form a node 1. The drains of these transistors are respectively connected to the drains of two N channel transistors, MN1 and MN2. The connection between the drain of transistor MP1 and the transistor MN1 is also connected to node 1.

Les grilles des transistors MN1 et MN2 sont également connectées ensemble et forment un noeud 2 auquel est relié également le drain du transistor MN2.The gates of the transistors MN1 and MN2 are also connected together and form a node 2 to which the drain of the transistor MN2 is also connected.

Deux transistors canal N, MN3 et MN4 sont connectés par leurs sources à une ligne d'alimentation VSS, leurs grilles étant reliées l'une à l'autre pour former un noeud 3 auquel est également connecté le drain du transistor MN3. Comme il apparaîtra par la suite, le transistor MN4 est un composant actif fonctionnant en tant que conductance commandée.Two N channel transistors, MN3 and MN4 are connected by their sources to a supply line V SS , their gates being connected to each other to form a node 3 to which the drain of transistor MN3 is also connected. As will appear later, the transistor MN4 is an active component operating as a controlled conductance.

La source du transistor MN1 est reliée au drain du transistor MN4 formant ainsi un noeud 4, et celle du transistor MN2 est reliée à la ligne d'alimentation VSS.The source of transistor MN1 is connected to the drain of transistor MN4 thus forming a node 4, and that of transistor MN2 is connected to the supply line V SS .

Le drain du transistor MN3 est connecté au drain d'un transistor canal P, MP3 dont la source est reliée à la ligne d'alimentation VDD et dont la grille est connectée au noeud 1.The drain of transistor MN3 is connected to the drain of a channel P transistor, MP3, the source of which is connected to the supply line V DD and the gate of which is connected to node 1.

Les transistors MN1 et MN2 de ce circuit fonctionnent en faible inversion, ce qui signifie que leur tension de grille est inférieure à leur tension de seuil VT et que le courant de drain ID est une fonction exponentielle décroissante de la tension de source VS, selon la formule (1). Par ailleurs, les transistors MN3 et MN4 travaillent en forte inversion, autrement dit leur tension de grille est supérieure à leur tension de seuil VT. Enfin, la tension VDD est choisie suffisamment forte pour qu'à l'exception du transistor MN4, tous les transistors soient en saturation.The transistors MN1 and MN2 of this circuit operate at low inversion, which means that their gate voltage is lower than their threshold voltage V T and that the drain current I D is a decreasing exponential function of the source voltage V S , according to formula (1). Furthermore, the transistors MN3 and MN4 work in strong inversion, in other words their gate voltage is higher than their threshold voltage V T. Finally, the voltage V DD is chosen to be high enough so that, except for the transistor MN4, all the transistors are in saturation.

On admet que les trois branches du circuit, formées par MP1-MN1-MN4, MP2-MN2 et MP3-MN3, sont parcourues respectivement par les courants i1, i2 et i3.It is assumed that the three branches of the circuit, formed by MP1-MN1-MN4, MP2-MN2 and MP3-MN3, are traversed respectively by the currents i 1 , i 2 and i 3 .

Si, par ailleurs, on définit pour chaque transistor de la figure 2 un rapport dimensionnel S=W/L, on appellera Sn1, Sn2, Sn3, Sn4, Sp1, Sp2 et Sp3 ces rapports pour les sept transistors du circuit. Comme déjà indiqué ci-dessus, les transistors canal P sont en saturation de sorte qu'ils définissent des rapports de courant fixes comme suit: i 2 i 1 = S p 2 S p 1 et i 3 i 1 = S p 3 S p 1

Figure imgb0005
If, on the other hand, a dimensional ratio S = W / L is defined for each transistor in FIG. 2, we will call S n1 , S n2 , S n3 , S n4 , S p1 , S p2 and S p3 these ratios for the seven circuit transistors. As already indicated above, the P channel transistors are in saturation so that they define fixed current ratios as follows: i 2 i 1 = S p 2 S p 1 and i 3 i 1 = S p 3 S p 1
Figure imgb0005

La tension de source Vsn1 du transistor MN1, qui est aussi la tension de drain Vdn4 du transistor MN4, se stabilise à une valeur bien définie si, comme déjà indiqué ci-dessus, les transistors MN1 et MN2 sont en faible inversion, ce qui entraîne, par application de la relation (3), comme dans le circuit de l'art antérieur: VS n 1 = Vd n 4 = U T *1 n ( K 1)

Figure imgb0006
   avec: K 1 = S p 2 S n 1 S p 1 S n 2
Figure imgb0007
The source voltage Vs n1 of the transistor MN1, which is also the drain voltage Vd n4 of the transistor MN4, stabilizes at a well defined value if, as already indicated above, the transistors MN1 and MN2 are in weak inversion, this which involves, by application of the relation (3), as in the circuit of the prior art: VS not 1 = Vd not 4 = U T * 1 not (( K 1)
Figure imgb0006
with: K 1 = S p 2 S not 1 S p 1 S not 2
Figure imgb0007

Par ailleurs, U T =kT/q est la tension thermodynamique, proportionnelle à la température absolue T, et vaut environ 26 mV à la température ambiante.In addition, U T = kT / q is the thermodynamic tension, proportional to the absolute temperature T, and is worth approximately 26 mV at room temperature.

Pour faciliter la compréhension du fonctionnement du générateur représenté sur la figure 2, on suppose qu'un courant i1 est envoyé dans la source du transistor MN1. Par l'effet du miroir de courant que constituent les transistors MP1 et MP2, un courant identique i2 est envoyé dans le transistor MN2 dont la tension de grille Vgn2 s'ajuste pour faire passer ce courant. Cette tension de grille est appliquée aussi sur la grille du transistor MN1. Pour que ce transistor MN1 fournisse le courant i1, sa tension de source Vsn1 doit prendre une valeur positive, vu que ce transistor est plus large que le transistor MN2. Si, comme déjà indiqué, les transistors MN1 et MN2 sont en faible inversion, donc si i1 est petit, cette tension de source Vsn1 est indépendante du courant i1 et prend la valeur donnée par l'équation (2).To facilitate understanding of the operation of the generator shown in FIG. 2, it is assumed that a current i 1 is sent to the source of transistor MN1. By the effect of the current mirror that constitute the transistors MP1 and MP2, an identical current i 2 is sent into the transistor MN2 whose gate voltage Vg n2 adjusts to pass this current. This gate voltage is also applied to the gate of transistor MN1. In order for this transistor MN1 to supply the current i 1 , its source voltage Vs n1 must take a positive value, since this transistor is wider than the transistor MN2. If, as already indicated, the transistors MN1 and MN2 are in weak inversion, therefore if i 1 is small, this source voltage Vs n1 is independent of the current i 1 and takes the value given by equation (2).

Par l'effet du miroir de courant formé par les transistors MP1 et MP3, un courant i3 est envoyé dans le transistor MN3 et ce courant prend la forme: i 3 = i 1 S p 3 S p 1

Figure imgb0008
By the effect of the current mirror formed by the transistors MP1 and MP3, a current i 3 is sent to the transistor MN3 and this current takes the form: i 3 = i 1 S p 3 S p 1
Figure imgb0008

Par ailleurs, les transistors MN3 et MN4 sont en forte inversion et le transistor MN3 est en saturation d'où: i 3 = 1 2 β n 3 ( Vg n 3 - V Tn ) 2

Figure imgb0009
In addition, the transistors MN3 and MN4 are in strong inversion and the transistor MN3 is in saturation from where: i 3 = 1 2 β not 3 (( Vg not 3 - V Tn ) 2
Figure imgb0009

Ce courant produit une tension Vgn3 sur la grille du transistor MN3 de la forme (βn3 étant le facteur de gain du transistor): Vg n 3 = 2 i 3 β n 3 + V Tn

Figure imgb0010
This current produces a voltage Vg n3 on the gate of transistor MN3 of the form (β n3 being the gain factor of the transistor): Vg not 3 = 2 i 3 β not 3 + V Tn
Figure imgb0010

Le transistor MN4 a la même tension de grille, mais sa tension de drain Vdn4 = Vsn1 est inférieure à sa tension de saturation, donc (βn4 étant le facteur de gain de ce transistor):

Figure imgb0011
The transistor MN4 has the same gate voltage, but its drain voltage Vd n4 = Vs n1 is less than its saturation voltage, therefore (β n4 being the gain factor of this transistor):
Figure imgb0011

En combinant les équations (8), (10) et (11), on trouve le courant i1' qui circule dans le transistor MN4:

Figure imgb0012
By combining equations (8), (10) and (11), we find the current i 1 'which flows in the transistor MN4:
Figure imgb0012

On obtient la même expression si on exprime l'effet du transistor MN4 par sa résistance équivalente:

Figure imgb0013
We obtain the same expression if we express the effect of transistor MN4 by its equivalent resistance:
Figure imgb0013

Le courant i1, exprimé à l'aide de cette relation (13) et de la relation (4) dépend encore de Vgn3. En éliminant Vgn3 et i3 grâce aux équations (8) et (10), on retrouve l'expression (12).The current i 1 , expressed using this relation (13) and the relation (4) still depends on Vg n3 . By eliminating Vg n3 and i 3 using equations (8) and (10), we find expression (12).

La figure 6 montre l'allure de ce courant i'1, le graphe montrant en abscisses le courant i1 imposé par le miroir de courant et en ordonnées les courants théoriques déterminés selon les équations ci-dessus.FIG. 6 shows the shape of this current i ' 1 , the graph showing on the abscissa the current i 1 imposed by the current mirror and on the ordinate the theoretical currents determined according to the above equations.

On voit donc que le courant qui s'établit correspond à l'égalité (point d'intersection des courbes) entre le courant i1 envoyé dans la source du transistor MN1 et le courant i1' produit dans le transistor MN4. Or, l'équation (12) montre que ce courant est une fonction parabolique de i1, car le transistor MN3 est saturé, cependant que le transistor MN4 fonctionne en régime non saturé en raison de sa faible tension de drain.It is therefore seen that the current which is established corresponds to the equality (point of intersection of the curves) between the current i 1 sent in the source of the transistor MN1 and the current i 1 'produced in the transistor MN4. Now, equation (12) shows that this current is a parabolic function of i 1 , because the transistor MN3 is saturated, while the transistor MN4 operates in unsaturated regime due to its low drain voltage.

En réalité, il n'y a qu'une condition qui peut s'établir dans le circuit, c'est lorsque i1'=i1 Par conséquent, on trouve pour le courant réel i1 dans la branche du circuit comprenant les transistors MN1 et MN4:

Figure imgb0014
   avec: K 2 = S p 3 S n 4 S p 1 S n 3
Figure imgb0015
In reality, there is only one condition which can be established in the circuit, it is when i 1 '= i 1 Consequently, we find for the real current i 1 in the branch of the circuit comprising the transistors MN1 and MN4:
Figure imgb0014
with: K 2 = S p 3 S not 4 S p 1 S not 3
Figure imgb0015

En substituant Vsn1 (équation 6) dans l'équation (14), on trouve: i R = K eff β n 4 U T 2

Figure imgb0016
   dans laquelle:
Figure imgb0017
By substituting Vs n1 (equation 6) in equation (14), we find: i R = K eff β not 4 U T 2
Figure imgb0016
in which:
Figure imgb0017

Les équations (10 et (11) montrent que:

  • a) le courant iR est proportionnel au produit du facteur de gain β4 du transistor MN4 et du carré de la tension thermodynamique UT;
  • b) le facteur de proportionnalité Keff dépend uniquement des rapports dimensionnels des transistors; et
  • c) le courant iR est indépendant des tensions de seuil VT des transistors utilisés.
Equations (10 and (11) show that:
  • a) the current i R is proportional to the product of the gain factor β 4 of the transistor MN4 and the square of the thermodynamic voltage U T ;
  • b) the proportionality factor K eff depends only on the dimensional ratios of the transistors; and
  • c) the current i R is independent of the threshold voltages V T of the transistors used.

Il en résulte donc que le courant iR est un paramètre stable du circuit de sorte qu'il constitue une référence de courant. On notera que ce courant n'est déterminé que par le dimensionnement des transistors, autrement dit par la topographie du circuit qui peut être reproduite avec précision d'un circuit à l'autre.It therefore follows that the current i R is a stable parameter of the circuit so that it constitutes a current reference. It will be noted that this current is only determined by the dimensioning of the transistors, in other words by the topography of the circuit which can be reproduced with precision from one circuit to another.

Par ailleurs, on sait que le facteur de gain d'un transistor dépend de la température absolue de la même manière que la mobilité, selon la loi (appliquée au transistor MN4): β n 4 = β n 40 T 0 T m = β n 40 U T 0 U T m

Figure imgb0018
   où βn40 et UT0 se rapportent à une température de référence T0 (température ambiante), et m est un exposant voisin de 2. En combinant les équations (16) et (18), le courant iR devient: i 1 = K eff β n 40 U T 0 2 T T 0 2- m
Figure imgb0019
Furthermore, we know that the gain factor of a transistor depends on the absolute temperature in the same way as mobility, according to the law (applied to transistor MN4): β not 4 = β not 40 T 0 T m = β not 40 U T 0 U T m
Figure imgb0018
where β n40 and U T0 relate to a reference temperature T 0 (room temperature), and m is an exponent close to 2. By combining equations (16) and (18), the current i R becomes: i 1 = K eff β not 40 U T 0 2 T T 0 2- m
Figure imgb0019

Les trois premiers termes de cette équation étant définis à une température fixe et si m est voisin de 2, on voit que le courant varie peu avec la température, ce qui constitue un autre avantage du circuit de l'invention.The first three terms of this equation being defined at a fixed temperature and if m is close to 2, it can be seen that the current varies little with temperature, which constitutes another advantage of the circuit of the invention.

La référence de courant peut être prélevée sur la borne d'alimentation VDD, le courant servant de référence étant alors formé par la somme des courants i1 (iR), i2 et i3.The current reference can be taken from the supply terminal V DD , the current serving as a reference then being formed by the sum of the currents i 1 (i R ), i 2 and i 3 .

On va maintenant se référer à la figure 3 qui montre comment le générateur de courant de référence peut produire plusieurs autres courants de référence.We will now refer to FIG. 3 which shows how the reference current generator can produce several other reference currents.

Le circuit de la figure 3 reprend le schéma de la figure 2 de sorte que l'on y trouve les mêmes transistors connectés de la même façon. Elle montre trois autres façons d'engendrer un courant de référence.The circuit of Figure 3 uses the diagram of Figure 2 so that there are the same transistors connected in the same way. It shows three other ways to generate a reference current.

La première consiste à utiliser un transistor canal P, MP4 supplémentaire dont la grille est connectée au noeud 1. Sa source est connectée à la borne VDD, tandis que le courant de référence i4 peut être prélevé sur le drain de ce transistor.The first consists in using an additional channel transistor P, MP4, the gate of which is connected to node 1. Its source is connected to the terminal VDD, while the reference current i 4 can be taken from the drain of this transistor.

La deuxième possibilité consiste à utiliser un transistor canal N, MN5 dont la grille est connectée au drain du transistor MN3, dont la source est connectée à la borne VSS du montage et dont le drain va recevoir le courant de référence i5.The second possibility consists in using an N channel transistor, MN5, the gate of which is connected to the drain of transistor MN3, the source of which is connected to terminal V SS of the circuit and the drain of which will receive the reference current i 5 .

La troisième possibilité consiste à utiliser également un transistor canal N, MN6 dont la grille est connectée au noeud 2 et qui, par ailleurs, est relié de la même façon que le transistor MN5. Il sera alimenté avec le courant de référence i6.The third possibility consists in also using an N channel transistor, MN6, the gate of which is connected to node 2 and which, moreover, is connected in the same way as the transistor MN5. It will be supplied with the reference current i 6 .

Pour que les transistors MP4, MN5 et MN6 fournissent des courants proches des courants de référence désirés, ils doivent être en saturation, c'est-à-dire que leur tension drain-source doit, en valeur absolue, être supérieure à une limite Vdsat. Cela implique que le circuit alimenté par le transistor MP4 soit connecté à un potentiel plus bas que la tension VDD, par exemple la tension VSS et que les circuits alimentés par les transistors MN5 et MN6 soient connectés à un potentiel plus élevé que la tension VSS, par exemple VDD.For the transistors MP4, MN5 and MN6 to provide currents close to the desired reference currents, they must be in saturation, that is to say that their drain-source voltage must, in absolute value, be greater than a limit Vd sat . This implies that the circuit supplied by the transistor MP4 is connected to a lower potential than the voltage V DD , for example the voltage V SS and that the circuits supplied by the transistors MN5 and MN6 are connected to a higher potential than the voltage V SS , for example V DD .

Comme les grilles de ces transistors auxiliaires MP4, MN5 et MN6 ne chargent pas les noeuds auxquels elles sont connectées, on peut en multiplier le nombre et ainsi fournir des courants de référence en de nombreux points d'un circuit plus important dont le générateur de courant peut faire partie.As the gates of these auxiliary transistors MP4, MN5 and MN6 do not charge the nodes to which they are connected, we can multiply the number and thus provide reference currents at many points of a larger circuit including the current generator can be part.

La figure 4 montre plus particulièrement un exemple de circuit de démarrage pour le générateur de courant de référence suivant l'invention. En effet, un tel circuit est nécessaire pour éviter que le générateur reste initialement bloqué. Dans l'exemple représenté, le circuit de démarrage comprend un transistor canal N, MN7 dont la source est connectée à la borne Vss et dont le drain est relié au noeud 1. Le circuit comprend en outre un deuxième transistor canal N, MN8 dont la grille est connectée au noeud 2, dont la source est connectée à la borne VSS et dont le drain est connecté à la fois à la grille du transistor MN7 et à un condensateur C qui est relié par ailleurs à la borne VDD.FIG. 4 shows more particularly an example of a starting circuit for the reference current generator according to the invention. Indeed, such a circuit is necessary to avoid that the generator remains initially blocked. In the example shown, the starting circuit comprises an N channel transistor, MN7, the source of which is connected to the terminal V ss and the drain of which is connected to node 1. The circuit further comprises a second N channel transistor, MN8 of which the gate is connected to node 2, the source of which is connected to the terminal V SS and the drain of which is connected both to the gate of the transistor MN7 and to a capacitor C which is also connected to the terminal V DD .

Le condensateur C est déchargé au démarrage ce qui fait conduire le transistor MN7 et circuler un courant initial dans les transistors MP1 à MP3. Lorsque le circuit est parcouru par un courant suffisant, le transistor MN8 charge le condensateur C, ce qui bloque le transistor MN7. Le générateur fonctionne alors à son régime normal.The capacitor C is discharged at startup which causes the transistor MN7 to flow and an initial current to flow in the transistors MP1 to MP3. When the circuit is traversed by a sufficient current, the transistor MN8 charges the capacitor C, which blocks the transistor MN7. The generator then operates at its normal speed.

La figure 5 montre schématiquement une façon avantageuse de réaliser le générateur suivant l'invention. Ce schéma comprend à la fois les transistors pour engendrer un courant de référence et ceux permettant de démarrer le circuit.FIG. 5 schematically shows an advantageous way of producing the generator according to the invention. This diagram includes both the transistors to generate a reference current and those used to start the circuit.

Pour réaliser la topographie du générateur, il est avantageux de répartir les transistors selon la nature de leurs conditions de fonctionnement. Ainsi, appartiennent de préférence à un premier groupe MP tous les transistors canal P à forte inversion, à un second groupe MNA les transistors canal N à faible inversion, tandis qu'un troisième groupe comprend les transistors canal N à forte inversion.To achieve the topography of the generator, it is advantageous to distribute the transistors according to the nature of their operating conditions. Thus, preferably belong to a first group MP all the P channel transistors with strong inversion, to a second group MNA the transistors N channel with low inversion, while a third group includes the N channel transistors with strong inversion.

Pour obtenir un appariement précis, il est avantageux de définir dans chaque groupe un transistor unitaire et de réaliser les diverses fonctionnalités des transistors en mettant en série ou en parallèle le nombre de transistors unitaires souhaité pour un bon rapport dimensionnel. Par exemple, le transistor MN1 de la figure 2 peut en réalité être formé de six transistors unitaires disposés en parallèleTo obtain a precise pairing, it is advantageous to define in each group a unitary transistor and to realize the various functionalities of the transistors by putting in series or in parallel the number of unitary transistors desired for a good dimensional ratio. For example, the transistor MN1 in FIG. 2 can actually be formed by six unitary transistors arranged in parallel

Pour obtenir une forte inversion, il est souhaitable de respecter la relation suivante: i β >5·10 -3 V 2

Figure imgb0020
To obtain a strong inversion, it is desirable to respect the following relation: i β > 5 · 10 -3 V 2
Figure imgb0020

Pour réaliser une faible inversion la relation suivante sera de préférence respectée: i β <0.5 U T 2 ≅ 3·10 -4 V 2

Figure imgb0021
To achieve a small inversion the following relation will preferably be respected: i β <0.5 U T 2 ≅ 3 · 10 -4 V 2
Figure imgb0021

Si les courants de référence sont imposés, les relations (19) et (20) définissent les conditions à satisfaire sur les facteurs de gain β.If the reference currents are imposed, the relations (19) and (20) define the conditions to be satisfied on the gain factors β.

En se reportant à l'exemple de la figure 5, on peut utiliser les rapports dimensionnels suivants (sans que cela ne soit en aucune manière limitatif pour l'invention) : K 1 = β n 1 β n 2 = W n 1 W n 2

Figure imgb0022
et K 2 = β p 3 β p 1 = W p 3 W p 1
Figure imgb0023
Referring to the example of FIG. 5, the following dimensional ratios can be used (without this being in any way limiting for the invention): K 1 = β not 1 β not 2 = W not 1 W not 2
Figure imgb0022
and K 2 = β p 3 β p 1 = W p 3 W p 1
Figure imgb0023

Dans l'exemple qui suit, on a choisi K1=6 et K2=3.Cet exemple donne quelques précisions sur une conception pratique du générateur de courant de référence selon l'invention, réalisé à l'aide d'une technologie CMOS actuelle, dont les paramètres principaux ont les valeurs typiques suivantes: Type de transistor canal N canal P VT* 0,6 -0,6 β pour W=L** 65 24 * en Volts; ** en µA/V 2 In the following example, we have chosen K 1 = 6 and K 2 = 3. This example gives some details on a practical design of the reference current generator according to the invention, produced using CMOS technology. current, whose main parameters have the following typical values: Transistor type channel N channel P V T * 0.6 -0.6 β for W = L ** 65 24 * in Volts; ** in µA / V 2

Les valeurs des courants peuvent être choisies comme suit: i 1 =20nA, i 2 =20nA, i 3 =60nA, i 4 =40nA et i 5 =120nA.

Figure imgb0024
The values of the currents can be chosen as follows: i 1 = 20nA, i 2 = 20nA, i 3 = 60nA, i 4 = 40nA and i 5 = 120nA.
Figure imgb0024

Comme déjà indiqué, il est avantageux de concevoir le générateur à l'aide de trois groupes de transistors. Dans ces conditions, tous les transistors dans chaque groupe peuvent être identiques et avoir par exemple les dimensions suivantes: Groupe MP Groupe MNA Groupe MNB W* 6 50 6 L* 50 6 207 i/β 6,67·10-3 3,7·10-5 3·10-2 β** 2,88 542 1,88 * en µm; ** en µA/V 2 As already indicated, it is advantageous to design the generator using three groups of transistors. Under these conditions, all the transistors in each group can be identical and have for example the following dimensions: MP group MNA Group MNB Group W * 6 50 6 L * 50 6 207 i / β 6.6710 -3 3.710 -5 3.10 -2 β ** 2.88 542 1.88 * in µm; ** in µA / V 2

On voit d'après cet exemple que le générateur suivant l'invention est bien adapté pour fournir des courants de référence inférieurs à 1µA. Sa taille est réduite, tandis que sa consommation propre peut être de l'ordre de 5i1 seulement.It can be seen from this example that the generator according to the invention is well suited to supply reference currents of less than 1 μA. Its size is reduced, while its own consumption can be of the order of 5i 1 only.

Les figures 7, 8 et 9 montrent trois variantes du générateur de courant de référence suivant l'invention.Figures 7, 8 and 9 show three variants of the reference current generator according to the invention.

Dans le mode de réalisation du générateur que l'on vient de décrire (figures 3, 4 et 5), les transistors en saturation peuvent, pour une tension de grille donnée et surtout si la longueur de leur canal est petite, présenter une légère variation de courant de drain en fonction de la tension de drain. Ainsi, le courant de référence peut subir une certaine dépendance de la tension d'alimentation (quelques % par Volt). Dans le circuit représenté, ce sont surtout les transistors MN1 et MN2 qui sont responsables de cet effet.In the embodiment of the generator that has just been described (FIGS. 3, 4 and 5), the saturation transistors may, for a given gate voltage and especially if the length of their channel is small, present a slight variation. drain current depending on the drain voltage. Thus, the reference current can be subject to a certain dependence on the supply voltage (a few% per Volt). In the circuit shown, it is mainly the transistors MN1 and MN2 which are responsible for this effect.

Si la précision du courant de référence ne tolère pas cette dépendance, il est alors souhaitable d'utiliser le circuit représenté sur la figure 7.If the accuracy of the reference current does not tolerate this dependence, it is then desirable to use the circuit shown in Figure 7.

Dans ce circuit, deux transistors auxiliaires MNl1 et MN12 (dits "transistors cascodes") sont respectivement insérés en série avec les transistors MN1 et MN2. Les grilles de ces transistors sont reliées en commun à la jonction entre le transistor MN12 et le transistor MP2. Il en résulte que les tensions de drain des transistors MN1 et MN2 sont sensiblement égales et indépendantes des variations de la tension VDD.In this circuit, two auxiliary transistors MNl1 and MN12 (called "cascode transistors") are respectively inserted in series with the transistors MN1 and MN2. The gates of these transistors are connected in common to the junction between the transistor MN12 and the transistor MP2. It follows that the drain voltages of the transistors MN1 and MN2 are substantially equal and independent of variations in the voltage V DD .

La figure 8 montre une variante offrant la possibilité d'ajuster le courant de référence à partir de l'extérieur du circuit. Pour obtenir ce résultat, le transistor MP3 est décomposé en plusieurs transistors unitaires MP3a, MP3b, MP3c.... qui sont respectivement montés en série avec autant de transistors de commutation canal P Sa, Sb, Sc La grille du premier transistor Sa est directement reliée à la borne VSS. Il est donc conducteur en permanence. Les grilles des autres transistors Sb Sc.... sont raccordées à un circuit logique de commande CL permettant de rendre ces transistors sélectivement conducteurs. Ainsi, on peut régler de l'extérieur la largeur effective du transistor MP3, c'est-à-dire son paramètre K2 (équation 15). Il en résulte une variation correspondante du paramètre Keff (équation 16) et donc du courant i1 (équation 20). Ce circuit est surtout souhaitable, si au cours de la fabrication, la dispersion en courant d'un lot de circuits à l'autre est importante.FIG. 8 shows a variant offering the possibility of adjusting the reference current from outside the circuit. To obtain this result, the MP3 transistor is broken down into several unitary transistors MP3a, MP3b, MP3c .... which are respectively connected in series with as many switching transistors P channel Sa, Sb, Sc The gate of the first transistor Sa is directly connected to terminal V SS . He is therefore a driver at all times. The gates of the other transistors Sb Sc .... are connected to a logic control circuit CL making it possible to make these transistors selectively conductive. Thus, the effective width of the MP3 transistor can be adjusted from the outside, that is to say its parameter K 2 (equation 15). This results in a corresponding variation of the parameter K eff (equation 16) and therefore of the current i 1 (equation 20). This circuit is especially desirable if, during manufacture, the current dispersion from one batch of circuits to another is significant.

La figure 9 montre une troisième variante du générateur selon l'invention dans lequel, toutes choses égales par ailleurs en considérant la figure 2, la source du transistor MN3 est connectée au drain d'un transistor MN4' et à la source du transistor MN1.FIG. 9 shows a third variant of the generator according to the invention in which, all things also equal when considering FIG. 2, the source of transistor MN3 is connected to the drain of a transistor MN4 'and to the source of transistor MN1.

Dans ce cas, le transistor MN4' est donc parcouru par la somme des courants i1 et i3. On obtient alors à peu près le même fonctionnement que celui du circuit de la figure 2, en dimensionnant le transistor MN4' de telle façon qu'il présente la même tension de drain que le transistor MN4, mais pour un courant i1+i3 au lieu de i1, donc K2+1 fois plus grand.In this case, the transistor MN4 'is therefore traversed by the sum of the currents i 1 and i 3 . We then obtain roughly the same operation as that of the circuit of FIG. 2, by dimensioning the transistor MN4 'so that it has the same drain voltage as the transistor MN4, but for a current i 1 + i 3 instead of i 1 , therefore K 2 +1 times greater.

L'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits et qui ont été représentés aux dessins. Par exemple, des modes de réalisation comportant des circuits ayant les mêmes fonctionnalités, mais réalisés à l'aide de transistors de types de conductivité opposés appartiennent également à la présente invention.The invention is not limited to the embodiments which have just been described and which have been shown in the drawings. For example, embodiments comprising circuits having the same functionalities, but produced using transistors of opposite conductivity types also belong to the present invention.

Claims (14)

Générateur de courant de référence réalisé en technologie CMOS comprenant un premier miroir de courant qui forme deux branches de circuit destinées à être connectées entre des bornes d'alimentation (VDD, VSS) de polarités opposées et comportant chacune un groupe de transistors (MP1, MN1; MP2, MN2) connectés en série et de types de conductivité opposés, une première desdites branches comprenant, mis en série avec ses transistors, des moyens de stabilisation pour imposer au transistor (MN1) qui lui est connecté dans cette première branche une tension de source fixe prédéterminée (Vsn1), ce générateur de courant de référence étant caractérisé en ce que il comprend également un second miroir de courant (MP1, MP3) pour générer une image (i3) du courant (i1) circulant dans ladite première branche, et en ce que lesdits moyens de stabilisation comprennent un composant actif (MN4, MN4') formant une conductance variable montée en série dans ladite première branche et commandée de telle manière que sa valeur varie non linéairement avec ladite image de courant (i3), cette conductance étant ainsi parcourue par un courant dont l'intensité dépend uniquement des caractéristiques technologiques dudit composant actif.Reference current generator produced in CMOS technology comprising a first current mirror which forms two circuit branches intended to be connected between supply terminals (V DD , V SS ) of opposite polarities and each comprising a group of transistors (MP1 , MN1; MP2, MN2) connected in series and of opposite conductivity types, a first of said branches comprising, put in series with its transistors, stabilization means for imposing on the transistor (MN1) which is connected to it in this first branch predetermined fixed source voltage (Vs n1 ), this reference current generator being characterized in that it also includes a second current mirror (MP1, MP3) for generating an image (i 3 ) of the current (i 1 ) flowing in said first branch, and in that said stabilization means comprise an active component (MN4, MN4 ') forming a variable conductance connected in series in said pr first branch and controlled in such a way that its value varies non-linearly with said current image (i 3 ), this conductance thus being traversed by a current whose intensity depends solely on the technological characteristics of said active component. Générateur de courant de référence suivant la revendication 1, caractérisé en ce que ledit composant actif est un transistor (MN4, MN4') fonctionnant en régime non saturé et en forte inversion.Reference current generator according to claim 1, characterized in that said active component is a transistor (MN4, MN4 ') operating in unsaturated conditions and in strong inversion. Générateur de courant de référence suivant l'une quelconque des revendications 1 et 2, caractérisé en ce que ledit second miroir de courant constitue une troisième branche de circuit comprenant, reliés en série, deux transistors (MP3, MN3), respectivement de types de conductivité opposés et sur le noeud commun desquels est prelevée ladite tension de commande (Vgn3).Reference current generator according to any one of claims 1 and 2, characterized in that said second current mirror constitutes a third circuit branch comprising, connected in series, two transistors (MP3, MN3), respectively of types of opposite conductivity and on the common node from which said control voltage is taken (Vg n3 ). Générateur de courant de référence suivant la revendication 3, caractérisé en ce que la grille du transistor formant ledit composant actif (MN4, MN4') est connectée à un noeud qui relie l'un à l'autre lesdits transistors (MP3, MN3) connectés en série, le transistor (MN3) parmi ces transistors connectés en série ayant le même type de conductivité que celui du transistor (MN4) formant le composant actif, ayant sa grille reliée audit noeud et sa source reliée à une source de potentiel fixe.Reference current generator according to claim 3, characterized in that the gate of the transistor forming said active component (MN4, MN4 ') is connected to a node which connects said connected transistors (MP3, MN3) to each other in series, the transistor (MN3) among these transistors connected in series having the same type of conductivity as that of the transistor (MN4) forming the active component, having its gate connected to said node and its source connected to a source of fixed potential. Générateur de courant suivant la revendication 4, caractérisé en ce que ladite source de potentiel fixe est un noeud de ladite première branche, connecté audit transistor formant ledit composant actif (MN4').Current generator according to claim 4, characterized in that said fixed potential source is a node of said first branch, connected to said transistor forming said active component (MN4 '). Générateur de courant suivant la revendication 4, caractérisé en ce que ladite source de potentiel fixe est la borne (VSS) parmi lesdites bornes d'alimentation qui est commune audit transistor (MN4) formant ledit composant actif.Current generator according to claim 4, characterized in that said fixed potential source is the terminal (V SS ) among said supply terminals which is common to said transistor (MN4) forming said active component. Générateur de courant de référence suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'à l'exception dudit composant actif (MN4, MN4'), tous ses transistors fonctionnent en régime saturé.Reference current generator according to any one of the preceding claims, characterized in that, with the exception of said active component (MN4, MN4 '), all of its transistors operate in saturated state. Générateur de courant de référence suivant l'une quelconque des revendications 3 à 7, caractérisé en ce que chacune desdites branches comporte un transistor canal P (resp. MP1, MP2, MP3) et au moins un transistor canal N (resp. MN1, MN2, MN3) et en ce que ledit transistor fonctionnant en régime non saturé est un transistor canal N (MN4; MN4').Reference current generator according to any one of Claims 3 to 7, characterized in that each of said branches comprises a P channel transistor (resp. MP1, MP2, MP3) and at least one N channel transistor (resp. MN1, MN2 , MN3) and in that said transistor operating in unsaturated conditions is an N channel transistor (MN4; MN4 '). Générateur de courant de référence suivant la revendication 8, caractérisé en ce que ledit transistor fonctionnant en régime non saturé (MN4) est monté en série dans ladite première branche.Reference current generator according to claim 8, characterized in that said transistor operating in unsaturated conditions (MN4) is connected in series in said first branch. Générateur de courant de référence suivant la revendication 8, caractérisé en ce que ledit transistor fonctionnant en régime non saturé (MN4') est monté en série à la fois dans ladite première branche et ladite troisième branche.Reference current generator according to claim 8, characterized in that said transistor operating in unsaturated conditions (MN4 ') is connected in series in both said first branch and said third branch. Générateur de courant de référence suivant l'une quelconque des revendications 3 à 10, caractérisé en ce qu'il comprend au moins un transistor supplémentaire (MP4, MN5, MN6) de prélèvement d'un courant de référence (i4, i5, i6), connecté de manière à être commandé par la tension règnant sur le noeud (resp. 1, 2, 3) entre les transistors de types de conductivité opposés dans l'une respective desdites branches.Reference current generator according to any one of Claims 3 to 10, characterized in that it comprises at least one additional transistor (MP4, MN5, MN6) for drawing a reference current (i 4 , i 5 , i 6 ), connected so as to be controlled by the voltage prevailing on the node (resp. 1, 2, 3) between the transistors of opposite conductivity types in a respective one of said branches. Générateur de courant de référence suivant l'une quelconque des revendications précédentes, caractérisé en ce que lesdites première et seconde branches comportent au moins un transistor supplémentaire (MN11, MN12) en série.Reference current generator according to any one of the preceding claims, characterized in that said first and second branches comprise at least one additional transistor (MN11, MN12) in series. Générateur de courant de référence suivant l'une quelconque des revendications 3 à 12, caractérisé en ce que les transistors de même type de conductivité et/ou de même type d'inversion sont montés respectivement en des groupes distincts (MP, MNA, MNB) et en ce qu'au moins l'un des transistors dans chaque groupe est formé par un nombre prédéterminé de transistors unitaires ayant les mêmes caractéristiques dimensionnelles et formant ensemble ledit transistor.Reference current generator according to any one of Claims 3 to 12, characterized in that the transistors of the same type of conductivity and / or of the same type of inversion are mounted respectively in separate groups (MP, MNA, MNB) and in that at least one of the transistors in each group is formed by a predetermined number of unitary transistors having the same dimensional characteristics and together forming said transistor. Générateur de courant de référence suivant la revendication 13, caractérisé en ce que les transistors unitaires d'au moins l'un desdits groupes de transistors (MP) sont mis en série avec un transistor de commutation (Sa, Sb, Sc) permettant de sélectionner ledit transistor unitaire, et en ce qu'il comprend en outre un circuit logique (CL) pour permettre la commande sélective desdits transistors de commutation.Reference current generator according to claim 13, characterized in that the unitary transistors of at least one of said groups of transistors (MP) are connected in series with a switching transistor (Sa, Sb, Sc) making it possible to select said unit transistor, and in that it further comprises a logic circuit (CL) to allow the selective control of said switching transistors.
EP96400595A 1995-03-22 1996-03-21 Reference current generator in CMOS technology Expired - Lifetime EP0733961B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9503352 1995-03-22
FR9503352A FR2732129B1 (en) 1995-03-22 1995-03-22 REFERENCE CURRENT GENERATOR IN CMOS TECHNOLOGY

Publications (2)

Publication Number Publication Date
EP0733961A1 true EP0733961A1 (en) 1996-09-25
EP0733961B1 EP0733961B1 (en) 2000-07-05

Family

ID=9477302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400595A Expired - Lifetime EP0733961B1 (en) 1995-03-22 1996-03-21 Reference current generator in CMOS technology

Country Status (4)

Country Link
US (1) US5949278A (en)
EP (1) EP0733961B1 (en)
DE (1) DE69609104T2 (en)
FR (1) FR2732129B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924590A1 (en) * 1997-12-18 1999-06-23 Lucent Technologies Inc. Precision current source
EP1079294A1 (en) * 1999-08-24 2001-02-28 STMicroelectronics Limited Current reference circuit
WO2007118540A1 (en) * 2006-04-07 2007-10-25 Atmel Germany Gmbh Fast cmos current mirror

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990714A (en) * 1996-12-26 1999-11-23 United Microelectronics Corporation Clock signal generating circuit using variable delay circuit
JP4032448B2 (en) * 1997-03-31 2008-01-16 ソニー株式会社 Data judgment circuit
KR100322527B1 (en) * 1999-01-29 2002-03-18 윤종용 Bandgap voltage reference circuit
DE19940382A1 (en) * 1999-08-25 2001-03-08 Infineon Technologies Ag Power source for low operating voltages with high output resistance
DE10021928A1 (en) * 2000-05-05 2001-11-15 Infineon Technologies Ag Current mirror has voltage-controlled current sources providing auxiliary current and additional auxiliary current summed to produce error current drawn from differential output signal
US7177610B2 (en) * 2001-01-12 2007-02-13 Silicon Laboratories Inc. Calibrated low-noise current and voltage references and associated methods
FR2829248B1 (en) 2001-09-03 2004-08-27 St Microelectronics Sa CURRENT GENERATOR FOR LOW SUPPLY VOLTAGE
FR2829844A1 (en) * 2001-09-14 2003-03-21 Commissariat Energie Atomique Monolithic integrated circuit current source with automatic starting, has current generator which produces current lower or higher than diode inverse current dependent upon operating state of another current generator
JP3905734B2 (en) * 2001-10-02 2007-04-18 浜松ホトニクス株式会社 Light emitting element drive circuit
GB0211564D0 (en) * 2002-05-21 2002-06-26 Tournaz Technology Ltd Reference circuit
US6778008B2 (en) * 2002-08-30 2004-08-17 Koninklijke Philips Electronics N.V. Process-compensated CMOS current reference
JP2004248014A (en) * 2003-02-14 2004-09-02 Matsushita Electric Ind Co Ltd Current source and amplifier
US20050237106A1 (en) * 2004-04-22 2005-10-27 Oki Electric Industry Co., Ltd. Constant-current generating circuit
KR100618863B1 (en) * 2004-09-18 2006-08-31 삼성전자주식회사 A Low Power Consumption Voltage Reference Circuit
JP2006133869A (en) * 2004-11-02 2006-05-25 Nec Electronics Corp Cmos current mirror circuit and reference current/voltage circuit
DE102006043453A1 (en) * 2005-09-30 2007-04-19 Texas Instruments Deutschland Gmbh Complementary MOS (CMOS) reference voltage source has two parallel circuit branches each having transistor series of different conductance and interconnected gates
JP5040421B2 (en) * 2007-05-07 2012-10-03 富士通セミコンダクター株式会社 Constant voltage circuit, constant voltage supply system, and constant voltage supply method
JP2010183462A (en) * 2009-02-06 2010-08-19 Panasonic Corp Solid-state imaging apparatus, and camera
US8760216B2 (en) 2009-06-09 2014-06-24 Analog Devices, Inc. Reference voltage generators for integrated circuits
FR2965130B1 (en) * 2010-09-17 2013-05-24 Thales Sa CURRENT GENERATOR, IN PARTICULAR OF THE ORDER OF NANO AMPERES AND VOLTAGE REGULATOR USING SUCH A GENERATOR
US8581569B2 (en) 2011-02-24 2013-11-12 Touchstone Semiconductor, Inc. Supply independent current reference generator in CMOS technology
CN102385411A (en) * 2011-09-22 2012-03-21 钜泉光电科技(上海)股份有限公司 Reference current generating circuit
JP5782346B2 (en) * 2011-09-27 2015-09-24 セイコーインスツル株式会社 Reference voltage circuit
CN103699167A (en) * 2012-09-28 2014-04-02 上海华虹集成电路有限责任公司 Reference voltage circuit for radiofrequency identification
US9519304B1 (en) 2014-07-10 2016-12-13 Ali Tasdighi Far Ultra-low power bias current generation and utilization in current and voltage source and regulator devices
JP2016051208A (en) * 2014-08-28 2016-04-11 株式会社東芝 Reference current setting circuit
CN109240407B (en) * 2018-09-29 2020-07-31 北京兆易创新科技股份有限公司 Reference source
US11841727B2 (en) 2020-03-13 2023-12-12 Analog Devices International Unlimited Company NMOS PTAT generator and voltage reference

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454250A1 (en) * 1990-04-27 1991-10-30 Koninklijke Philips Electronics N.V. Reference generator
US5124632A (en) * 1991-07-01 1992-06-23 Motorola, Inc. Low-voltage precision current generator
US5384740A (en) * 1992-12-24 1995-01-24 Hitachi, Ltd. Reference voltage generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8001558A (en) * 1980-03-17 1981-10-16 Philips Nv POWER STABILIZER BUILT UP WITH ENRICHMENT TYPE FIELD-EFFECT TRANSISTOR.
US4342926A (en) * 1980-11-17 1982-08-03 Motorola, Inc. Bias current reference circuit
US4450367A (en) * 1981-12-14 1984-05-22 Motorola, Inc. Delta VBE bias current reference circuit
US4495425A (en) * 1982-06-24 1985-01-22 Motorola, Inc. VBE Voltage reference circuit
US4558242A (en) * 1983-02-11 1985-12-10 Analog Devices, Incorporated Extended reference range, voltage-mode CMOS D/A converter
JPH01183913A (en) * 1988-01-18 1989-07-21 Oki Electric Ind Co Ltd Auto-resetting circuit
FR2651881B1 (en) * 1989-09-12 1994-01-07 Sgs Thomson Microelectronics Sa TEMPERATURE THRESHOLD DETECTION CIRCUIT.
CA2066929C (en) * 1991-08-09 1996-10-01 Katsuji Kimura Temperature sensor circuit and constant-current circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454250A1 (en) * 1990-04-27 1991-10-30 Koninklijke Philips Electronics N.V. Reference generator
US5124632A (en) * 1991-07-01 1992-06-23 Motorola, Inc. Low-voltage precision current generator
US5384740A (en) * 1992-12-24 1995-01-24 Hitachi, Ltd. Reference voltage generator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERIC A VITTOZ: "Analog VLSI Signal Processing: Why, Where, and How?", ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, vol. 6, no. 1, BOSTON, pages 27 - 44, XP002005004 *
ERIC A. VITTOZ: "CMOS Analog Integrated Circuits Based on Weak Inversion Operation", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 12, no. 3, NEW YORK US, pages 224 - 231, XP002005006 *
ERIC A. VITTOZ: "The design of High-Performance Analog Circuits on Digital CMOS Chips.", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 20, no. 3, NEW YORK US, pages 657 - 665, XP002005005 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924590A1 (en) * 1997-12-18 1999-06-23 Lucent Technologies Inc. Precision current source
EP1079294A1 (en) * 1999-08-24 2001-02-28 STMicroelectronics Limited Current reference circuit
US6353365B1 (en) 1999-08-24 2002-03-05 Stmicroelectronics Limited Current reference circuit
WO2007118540A1 (en) * 2006-04-07 2007-10-25 Atmel Germany Gmbh Fast cmos current mirror
US7466202B2 (en) 2006-04-07 2008-12-16 Atmel Germany Gmbh High-speed CMOS current mirror

Also Published As

Publication number Publication date
FR2732129A1 (en) 1996-09-27
EP0733961B1 (en) 2000-07-05
DE69609104T2 (en) 2001-03-15
FR2732129B1 (en) 1997-06-20
DE69609104D1 (en) 2000-08-10
US5949278A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
EP0733961B1 (en) Reference current generator in CMOS technology
CH697322B1 (en) A method of generating a substantially Independent current temperature and device for carrying out this method.
FR2975510A1 (en) DEVICE FOR GENERATING AN ADJUSTABLE PROHIBITED BAND REFERENCE VOLTAGE WITH HIGH FEED REJECTION RATES
FR2890259A1 (en) Reference current generation circuit for bias voltage generation circuit, has current compensation unit removing increment of current increasing in inverse proportion to power supply voltage for forming compensated current
EP3176669A1 (en) Circuit for generating a reference voltage
FR2912013A1 (en) Polarization current generating device, has adjustable temperature coefficient current generator for generating and delivering adjustable temperature coefficient current, where current temperature coefficient is modified by adjusting values
FR2975512A1 (en) METHOD AND DEVICE FOR GENERATING AN ADJUSTABLE REFERENCE VOLTAGE OF BAND PROHIBITED
EP0424264B1 (en) Current source with low temperature coefficient
FR2623307A1 (en) TWO-TERMINAL CURRENT SOURCE WITH TEMPERATURE COMPENSATION
EP2067090B1 (en) Voltage reference electronic circuit
FR2593981A1 (en) INVERTER CIRCUIT OF CMOS INPUT COMPATIBLE WITH TTL SIGNALS
FR2832819A1 (en) Temperature compensated current source, uses three branches in a circuit forming two current mirrors to provide reference currents and switches between resistance paths to provide compensation
CH628462A5 (en) Source reference voltage.
EP0619647B1 (en) Amplifier architecture and application for a band gap voltage generator
EP0188401B1 (en) Reference voltage source
EP3895371A1 (en) Physically unclonable function device
EP0788047A1 (en) Device for current reference in an integrated circuit
FR2825806A1 (en) Polarization circuit with functioning point which is stable with respect to supply voltage and ambient temperature variations, comprises a third branch with two transistors
EP3457566B1 (en) Device for modifying the impedance value of a reference resistor
EP0687967B1 (en) Temperature stable current source
FR2757964A1 (en) Voltage regulator for supplying power to integrated circuits
EP1164455B1 (en) Process and device for generating a temperature independent current
FR2975511A1 (en) DEVICE FOR GENERATING A REFERENCE CURRENT PROPORTIONAL TO ABSOLUTE TEMPERATURE, WITH LOW POWER SUPPLY VOLTAGE AND HIGH FEED REJECTION RATE
EP0923014A1 (en) Reference DC voltage generating apparatus
EP1315062B1 (en) Current generating circuit for high voltage applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19970212

17Q First examination report despatched

Effective date: 19980608

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69609104

Country of ref document: DE

Date of ref document: 20000810

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060329

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060330

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060904

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070321

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402