EP0733159B1 - Leitschaufelverstellung mit rückkopplung - Google Patents

Leitschaufelverstellung mit rückkopplung Download PDF

Info

Publication number
EP0733159B1
EP0733159B1 EP95902701A EP95902701A EP0733159B1 EP 0733159 B1 EP0733159 B1 EP 0733159B1 EP 95902701 A EP95902701 A EP 95902701A EP 95902701 A EP95902701 A EP 95902701A EP 0733159 B1 EP0733159 B1 EP 0733159B1
Authority
EP
European Patent Office
Prior art keywords
signal
compressor
control
engine
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95902701A
Other languages
English (en)
French (fr)
Other versions
EP0733159A1 (de
Inventor
Herbert C. Zickwolf, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP0733159A1 publication Critical patent/EP0733159A1/de
Application granted granted Critical
Publication of EP0733159B1 publication Critical patent/EP0733159B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes

Definitions

  • This invention relates to gas turbine engines, in particular, aircraft gas turbine engines having stator vanes and related controls.
  • Stator vanes are commonly used in gas turbine engines to control the aerodynamic characteristics of the compressor blades and, as a result, compressor flow and compressor stage pressure drop.
  • a major use for stator vanes is in controlling compressor stall.
  • a typical stator vane control is mainly a mechanical system with linkages and arms to change the orientation of stator vanes in the airflow path to the compressor blades.
  • U.S. patent 4,995,786 is representative of a stator control in use on gas turbine engines.
  • An unavoidable limitation with these systems is imprecision in controlling stator vane angle or deflection (SVA) resulting from manufacturing tolerances, hysteresis and other inaccuracies in the stator control path. This has an impact on engine design, particularly high performance aircraft engines. Those losses produce "slop" in the control path between the stator vane control input and the stator vanes.
  • the compressor does not necessarily operate with optimum flow at a particular compressor speed; the flow may surge with small shifts in vane deflection caused by those control path losses.
  • the compressor can be designed with extra surge margin for a worse case condition, just in case the SVA is not what it should be when peak power is suddenly demanded. But, this over-design limits peak performance, especially during rapid acceleration and deceleration.
  • An object of the present invention is to provide a gas turbine engine with superior compressor capability by minimizing the need to compensate for errors in SVA due to mechanical errors.
  • WO 90/10148 discloses a gas turbine engine comprising stators and a stator control and an engine control having a signal processor responsive to the engine operating parameters for controlling the engine, the signal processor comprising means for providing a first signal manifesting compressor speed and means for applying a control signal to the stator control
  • the present invention is characterised over this disclosure in that the signal processor further comprises:
  • N2C corrected value for compressor speed
  • HPC/PR compressor pressure
  • N2C corrected value for compressor speed
  • a value for N2C is computed.
  • Actual N2 is sensed and preferably adjusted for temperature to provide a corrected value that is compared with the computed value, producing an error.
  • the error is processed to provide a value or parameter which is employed to command SVA.
  • the parameter is integrated, the output being the commanded SVA that is supplied to the stator vane control.
  • the corrected value of N2 is supplied to a lead/lag filter, producing an output that is summed with the computed value for N2C.
  • the error produced from the summing process is applied to a multiplier to produce a signal that is then integrated to command SVA.
  • the present invention provides improved compressor operation during rapid accelerations and that the compressor operates much closer to its most efficient operating points at all compressor speeds, reducing the need to design the compressor on the assumption that air flow may vary dramatically (surge) because of uncertain stator vane deflection due to mechanical hysteresis and feedback and linkage inaccuracies.
  • a turbofan fan aircraft engine 10 is shown.
  • a so called “full authority digital engine control” or FADEC contains a microprocessor ⁇ (signal processor) capable of being programmed to carry out the routines that embrace the present invention and also store appropriate data in a temporary memory (e.g. RAM), which being well known is not shown.
  • the invention resides in the manner in which information on instantaneous engine operating conditions are received and processed in the FADEC to control fuel flow to the engine and also the operation of a stator control 12, which regulates the angle of stator vanes SV, one vane being shown in front of one of a plurality of compressor blades 14.
  • the FADEC receives an engine power command from a throttle lever that is advanced through different magnitudes of power lever advance PLA.
  • the FADEC using the microprocessor engine, provides more or less fuel to the engine in response to PLA, which is provided over the input line 16.1.
  • Signals are received from the engine by the FADEC on data lines 11.1, among them signals indicating the speed N1 of a turbofan 18 section (fan not shown), compressor speed N2, pressure PT 2.5 (at location 2.5 according to conventional engine location nomenclature) and compressor temperature TEMP.
  • Pressure PT 2.5 is the pressure near the beginning of the compressor stage (shown generally by numeral 20), which is immediately aft of the fan 18.
  • the pressure PT 3 (compressor exit) is read at step 1.
  • the pressure PT 2.5 is read.
  • the value of PT 3 /PT 2.5 is computed as a value PR (pressure across the compressor) in step S3.
  • the value of N2C for PR is computed at step S4 based on a stored table for the compressor that indicates what the value of N2C should be for PR.
  • the value for N2 (high speed rotor speed) or actual N2 is read.
  • Step S6 reads the temperature value at location 2.5, which is used in step S7 to compute a value T n using the fixed correct of 273 degrees C, as shown.
  • T 2.5c is computed as the square root of Tn.
  • the high speed rotor speed at location 2.5, but corrected for temperature, is computed at step S9, producing the N2C 2.5 .
  • the value N2C 2.5 is applied to a filter (lead/lag or L/L) to provide a phase shift, producing a value NH, which is summed with N2C at step S11 to producing an error value NE.
  • the value NE is multiplied by a gain factor K in step S12 and then integrated at step S13, producing the value for SVA (stator vane angle) which is applied, in step S14, to the stator control 12, causing a change in stator vane angle or deflection in relation to the magnitude of the integral of the SVA value produced at step S13.
  • SVA stator vane angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (4)

  1. Gasturbinenmaschine (10) aufweisend Statoreinrichtungen (SV) und eine Statorsteuerung (12) und eine Maschinenregelung (FADEC) mit einem Signalprozessor (µ) ansprechend auf die Maschinenbetriebsparameter zum Regeln der Maschine, wobei der Signalprozessor (µ) eine Einrichtung zum Liefern eines ersten Signals (N2), das die Verdichterdrehzahl angibt, und eine Einrichtung zum Übertragen eines Steuersignals (SVA) zu der Statorsteuerung (12) aufweist, dadurch gekennzeichnet, daß der Signalprozessor ferner aufweist:
    eine Einrichtung zum Speichern eines Verhältnisses zwischen dem Druck (PR) über den Verdichter und der Verdichterdrehzahl (N2C); eine Einrichtung zum Liefern eines zweiten Signals (N2C), das eine Verdichterdrehzahl für einen Momentandruck (PR) über den Verdichter basierend auf dem gespeicherten Verhältnis angibt;
    eine Einrichtung zum Bilden einer Summe aus dem zweiten Signal (N2C) und dem ersten Signal (N2), um ein Fehlersignal (NE) zu erzeugen, das den Unterschied zwischen der tatsächlichen Verdichterdrehzahl (N2) und der von dem zweiten Signal (N2C) angegebenen Verdichterdrehzahl angibt; und
    eine Einrichtung zum Integrieren des Fehlersignals (NE), um das Steuersignal (SVA) zu liefern, das eine Statorauslenkung angibt.
  2. Gasturbinenmaschine (10) nach Anspruch 1, wobei der Signalprozessor (µ) eine Einrichtung zum Verstärken des Fehlersignals (NE) um einen gespeicherten Verstärkungsfaktor (K) aufweist, um das Steuersignal (SVA) zu erzeugen.
  3. Gasturbinenmaschine (10) nach Anspruch 1 oder 2, wobei der Signalprozessor eine Einrichtung zum Bewirken einer Phasenkompensation (L/L) für das erste Signal (N2) vor dem Bilden einer Summe des ersten Signals (N2) und des zweiten Signals (N2C) aufweist.
  4. Gasturbinenmaschine nach einem der vorangehenden Ansprüche, wobei der Signalprozessor (µ) eine Einrichtung zum Bestimmen des Momentandrucks (PR) durch Empfangen von zwei Signalen (PT2;5, PT3), wobei jedes einen Verdichterdruck an einer anderen Verdichterstufe repräsentiert, und zum Bestimmen des Verhältnisses (PR) der Signale aufweist.
EP95902701A 1993-12-08 1994-11-28 Leitschaufelverstellung mit rückkopplung Expired - Lifetime EP0733159B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US164078 1993-12-08
US08/164,078 US5379583A (en) 1993-12-08 1993-12-08 Closed loop stator vane control
PCT/US1994/013637 WO1995016117A1 (en) 1993-12-08 1994-11-28 Closed loop stator vane control

Publications (2)

Publication Number Publication Date
EP0733159A1 EP0733159A1 (de) 1996-09-25
EP0733159B1 true EP0733159B1 (de) 1998-03-18

Family

ID=22592882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95902701A Expired - Lifetime EP0733159B1 (de) 1993-12-08 1994-11-28 Leitschaufelverstellung mit rückkopplung

Country Status (5)

Country Link
US (1) US5379583A (de)
EP (1) EP0733159B1 (de)
JP (1) JP3683269B2 (de)
DE (1) DE69409127T2 (de)
WO (1) WO1995016117A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289274B1 (en) 1999-08-13 2001-09-11 United Technologies Corporation Fuzzy logic based fuel flow selection system
GB0813413D0 (en) * 2008-07-23 2008-08-27 Rolls Royce Plc A compressor variable stator vane arrangement
US8290683B2 (en) * 2010-02-16 2012-10-16 Telectro-Mek, Inc. Apparatus and method for reducing aircraft fuel consumption
RU2453733C2 (ru) * 2010-04-23 2012-06-20 Закрытое акционерное общество "Научно-производственная фирма "Система-Сервис" Способ защиты компрессора от помпажа
US9109539B2 (en) * 2010-12-27 2015-08-18 Rolls-Royce North American Technologies, Inc. Turbine based combined cycle engine
GB201120664D0 (en) 2011-12-01 2012-01-11 Rolls Royce Plc Method of positioning a control surface to reduce hysteresis
US10502220B2 (en) * 2016-07-22 2019-12-10 Solar Turbines Incorporated Method for improving turbine compressor performance
US11105265B2 (en) * 2016-09-02 2021-08-31 Raytheon Technologies Corporation Supplemental cooling air for turbine exhaust components and surfaces
US11261791B2 (en) 2019-02-25 2022-03-01 Rolls-Royce Corporation Hybrid propulsion cooling system
US11047253B2 (en) 2019-05-03 2021-06-29 Raytheon Technologies Corporation Model-based rotor speed keep out zone control
US20240003300A1 (en) * 2022-07-01 2024-01-04 Rtx Corporation In-flight engine re-start

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH371857A (de) * 1959-10-20 1963-09-15 Bbc Brown Boveri & Cie Schaufelverstelleinrichtung an Turbomaschine
GB2016597B (en) * 1978-03-14 1982-11-17 Rolls Royce Controlling guide vane angle of an axial-flow compressor of a gas turbine engine
JPH03504408A (ja) * 1989-02-27 1991-09-26 ユナイテッド・テクノロジーズ・コーポレイション ガスタービンエンジンの制御装置
US5165845A (en) * 1991-11-08 1992-11-24 United Technologies Corporation Controlling stall margin in a gas turbine engine during acceleration
US5222356A (en) * 1991-12-12 1993-06-29 Allied-Signal Inc. Modulating surge prevention control for a variable geometry diffuser

Also Published As

Publication number Publication date
JPH09506407A (ja) 1997-06-24
DE69409127D1 (de) 1998-04-23
US5379583A (en) 1995-01-10
EP0733159A1 (de) 1996-09-25
WO1995016117A1 (en) 1995-06-15
DE69409127T2 (de) 1998-08-06
JP3683269B2 (ja) 2005-08-17

Similar Documents

Publication Publication Date Title
EP0412127B1 (de) Methode und system zur regelung eines kompressors mit variabler geometrie
EP1302669A2 (de) Kontrollsystem der Position einer Einlassleitschaufel
EP2292909B1 (de) Regelung des Pumpgrenzenabstands
US4338061A (en) Control means for a gas turbine engine
US5303142A (en) Control system for gas turbine helicopter engines and the like
EP0092425B1 (de) Brennstoffregler für Gasturbinentriebwerke
EP0733159B1 (de) Leitschaufelverstellung mit rückkopplung
JP3081215B2 (ja) ガスタービンエンジンの制御装置及びその方法
JPS61149531A (ja) 失速/サ−ジングの終了の確認装置
US8321104B2 (en) Control system
US5023793A (en) Apparatus and method for dynamic compensation of a propeller pitch speed control governor
US4993221A (en) Gas turbine engine control system
EP2778376B1 (de) System und Verfahren zur Motorübergangsleistungsreaktion
US5165845A (en) Controlling stall margin in a gas turbine engine during acceleration
WO1993006354A1 (en) Power management system for turbine engines
GB2194649A (en) Controlling counterrotating propulsors in aircraft
GB1575360A (en) Turbomachine bleed control systems
EP0363301B1 (de) Steuervorrichtung für Gasturbinenanlagen
US5259188A (en) Method and system to increase stall margin
JP2000179360A (ja) 過渡状態にあるガスタ―ビンエンジンの制御システム
US5274558A (en) Apparatus for decoupling a torque loop from a speed loop in a power management system for turboprop engines
US5357748A (en) Compressor vane control for gas turbine engines
EP3913201B1 (de) Geschwindigkeitsbegrenzung für leistungsturbinenregelung und -schutz in einem gasturbinentriebwerk
WO1993006353A1 (en) Propeller governor control for turboprop engines
EP0419402B1 (de) Dynamische Kompensation des Beschleunigungsprogrammes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970724

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69409127

Country of ref document: DE

Date of ref document: 19980423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081106

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121121

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121128

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69409127

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128