EP0728989B1 - Verbrennungsgerät für Gasturbinenmotor - Google Patents

Verbrennungsgerät für Gasturbinenmotor Download PDF

Info

Publication number
EP0728989B1
EP0728989B1 EP19960300281 EP96300281A EP0728989B1 EP 0728989 B1 EP0728989 B1 EP 0728989B1 EP 19960300281 EP19960300281 EP 19960300281 EP 96300281 A EP96300281 A EP 96300281A EP 0728989 B1 EP0728989 B1 EP 0728989B1
Authority
EP
European Patent Office
Prior art keywords
fuel
air
pilot
burner
lean burn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960300281
Other languages
English (en)
French (fr)
Other versions
EP0728989A2 (de
EP0728989A3 (de
Inventor
Eric Roy Norster
Simon Mario De Pietro
Mahmoud Kowkabi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Power UK Holdings Ltd
Original Assignee
Alstom Power UK Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9500627A external-priority patent/GB2297151B/en
Priority claimed from GBGB9519826.3A external-priority patent/GB9519826D0/en
Application filed by Alstom Power UK Holdings Ltd filed Critical Alstom Power UK Holdings Ltd
Publication of EP0728989A2 publication Critical patent/EP0728989A2/de
Publication of EP0728989A3 publication Critical patent/EP0728989A3/de
Application granted granted Critical
Publication of EP0728989B1 publication Critical patent/EP0728989B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2204/00Burners adapted for simultaneous or alternative combustion having more than one fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2206/00Burners for specific applications
    • F23D2206/10Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00016Preventing or reducing deposit build-up on burner parts, e.g. from carbon

Definitions

  • This invention relates to combustors for gas turbine engines, including the associated fuel burner and igniter components. It particularly, but not exclusively, relates to combustors suitable for sustaining lean bum combustion processes.
  • Gas turbines operate over a wide range of engine speed and load conditions, varying from initial start-up conditions, through various engine speed/load combinations up to a maximum.
  • gas turbine combustor systems must include elements having the functions of fuel injection, ignition and subsequent sustaining of at least a pilot flame. This invention aims to improve combustor systems in respect of such elements.
  • the pilot burner is used not only to initiate combustion, but also to sustain lean burn combustion during start-up and part-load engine conditions, there being a gradual transfer of fuelling from the pilot to the main burner as combustion stability increases.
  • use of such a pilot burner leads to unwanted pollutants being produced at part load conditions of the gas turbine engine, due to the rich mixture.
  • FIG. 1 An example of a lean-burn combustor arrangement for a gas turbine is shown in Published patent specification no. GB 2287312 A, see particularly Figures 1 to 4.
  • This shows a series staged combustor with multiple stages, in which the first stage comprises a small diameter combustion chamber with a pilot burner located on its longitudinal centreline.
  • a premixing main burner is disposed downstream and radially outwards of the pilot burner for injecting a premixed swirling fuel/air mixture radiallly into the chamber.
  • fuel is sprayed from a central part of the pilot burner for ignition by an igniter located centrally of the pilot burner.
  • some of the pilot fuel is also mixed with air within the pilot burner and ejected as a premixed swirling fuel/air mixture from a peripheral part of the pilot burner, for ignition by igniters located near the combustor wall.
  • the aim of this arrangement is that during ignition, the fuel spray and the premixed fuel/air mixture should mix together within the small combustion chamber to establish a stable, fuel-rich, diffusion-type flame.
  • the fuel flow to the pilot nozzle is transferred to the main burner, beginning with the fuel flow to the central part of the pilot nozzle, so that a completely lean-burn combustion mode is begun as soon as possible.
  • Patent specification GB 1465689 discloses a combustion chamber for a boiler or the like in which a cylindrical flame tube is provided with a burner in which combustion air is fed tangentially into the flame tube from a circumferential region at the upstream end of the tube. This causes a flow of air having swirling tangential and axial components along the inside surface of the flame tube towards its downstream end, with a counterflow of air back to its upstream end, where fuel is injected.
  • the combustor has no provision for a separate pilot fuel supply as well as the main fuel supply, nor is the fuel supply premixed with the swirled air before it is injected into the chamber.
  • this prior art cannot be utilised for lean-burn low NOx combustion in a gas turbine engine.
  • a lean burn combustor for a gas turbine engine is of generally circular cross-section and comprises in combustion flow sequence a combustor head incorporating a burner arrangement, a combustion pre-chamber and a main combustion chamber, the pre-chamber being of substantially smaller cross-sectional area than the main chamber, the burner arrangement comprising air flow swirler means and main fuel injection means disposed to inject fuel into said swirler means thereby to produce a fuel-lean fuel/air mixture in the swirler means, the swirler means forming a periphery of an upstream part of the pre-chamber and being disposed to inject the fuel/air mixture into the pre-chamber with a radially inward swirling motion, the burner arrangement further comprising a fuel body portion having fuel supply passages therein for supplying fuel to the main fuel injection means, the swirler means being attached to a substantially planar downstream-facing surface of the fuel body portion, the burner arrangement further comprising a pilot burner arranged on the axial centreline of the combustor to support
  • an ignition source may be housed in the pilot burner for ignition of the combustion process.
  • the pilot burner further incorporates air injecting means, the pilot fuel injecting means surrounding the air injecting means and being substantially concentric therewith, the pilot fuel injecting means being configured to inject the fuel towards the air injecting means for producing a fuel-rich fuel/air mixture within the pre-chamber externally of the pilot burner.
  • the air injecting means is configured to eject a divergent swirling column of air away from the pilot burner into the pre-chamber, the column of air being annular in cross section.
  • the relative amounts of air, pilot fuel and main fuel injected into the combustion chamber should be varied with respect to each other such that at start-up and part-load engine conditions the fuel/air mixture in the sheltered combustion zone is sufficiently fuel-rich to sustain stable combustion for the overall combustion process, i.e. for the combustion process within the combustor considered as a whole.
  • the overall combustion process should vary between fuel-rich and fuel-lean, the amount of pilot fuel injected as a proportion of total fuel injected being varied from substantially less than 50% at start-up to a major proportion at full speed with minimum load to about 0% at full speed with at full load.
  • the provision of the sheltered combustion zone facilitates earlier transition of the overall combustion process from fuel rich to lean burn.
  • Combustor 100 comprises a combustor can 102, being one of several such cans arranged around the circumference of a gas turbine engine.
  • Each can 102 has a main combustion chamber 103 having a relatively large internal diameter D over most of its axial length as measured along the can's longitudinal axis or centreline CL, but near the combustor's upstream or head end, the main chamber 103 narrows quite abruptly to a smaller internal diameter d, forming a so-called "pre-chamber" 141 of the can 102.
  • pre-chamber 141
  • Each can 102 is provided with a gas fuel injector assembly 104 which comprises the head of the combustor and part of the pre-chamber 141.
  • a central cylindrical igniter 110 is located in a central bore 112 of a pilot burner 114 on the centreline CL of the can 102.
  • the pilot burner 114 is located or nested inside a central bore 116 of a main burner 118.
  • the main burner 118 comprises a fuel body 120, and swirl passages 122 machined in a swirler 123 which is secured to a rear face 124 of the fuel body 120.
  • the swirl passages 122 extend obliquely to the circumference of the pre-chamber 141 so that the flow exiting therefrom has both radial and tangential components of velocity relative to the pre-chamber.
  • the swirler 123 is disposed radially outwards of the pilot burner 114, but concentric with it and immediately downstream (rearward) of it, so that it forms or defines the periphery of the most upstream part of the prechamber 141.
  • our patent application no. GB9500627.6 should be consulted.
  • the fuel/air mixture from the burners is burnt in a combustion zone 106, whose extent is approximately indicated by a straight dashed line, the longitudinal axis of the zone 106 approximating to the can's centreline CL.
  • dashed line 106 approximates to the location of a flame front within the can 102, the true configuration of the flame front probably being bell-shaped, as indicated by dashed line 106', with the most flared part of the bell shape extending downstream from the exit of the prechamber 141.
  • a base region or sub-zone 107 of the combustion zone 106 is located in the pre-chamber 141 near to the pilot burner 114 within the injector assembly 104 and is shown crosshatched.
  • the overall combustion process in combustor can 102 is initiated and sustained at start-up and low engine loadings by combustion of a fuel-rich fuel/air mixture in region 107, as explained later, the mixture as burnt in region 107 being rich at these engine loadings to ensure stable combustion.
  • the overall combustion process is lean-burn and mostly takes place in the main combustion chamber 103 in a major region 108 of the combustion zone.
  • pilot and main burners 114, 118 are pilot and main fuel supply passages 126, 128, respectively, together with pilot air supply passages for the pilot burner.
  • pilot and main fuel supply passages 126, 128, respectively are pilot and main fuel supply passages 126, 128, respectively, together with pilot air supply passages for the pilot burner.
  • the details of the fuel and air passages for the pilot burner 114 and its operation are not shown in Figure 1, but will be described later with respect to Figures 2 and 3.
  • the main gas fuel inlet passage 128 in the fuel body 120 feeds a first gallery 130, which in turn is connected through drillings 131 to a second gallery 132.
  • drillings 134 take the fuel to be injected either directly from the rear face 124 of the fuel body 120 into the inlets of the flow passages in the swirler 122, or from injector bars 136.
  • the gas fuel thereby readily mixes with compressed air 138 as the air flows inwards towards the centreline CL of the can 102 from the swirl passages 122.
  • the amount of air relative to the fuel is such as to achieve a lean mixture.
  • the swirl passages 122 impart a rotating or swirling motion to the fuel/air mixture 139 as it passes through them, the motion becoming vortical as the mixture leaves the swirl passages and flows around the can's centreline CL axially and radially inwards towards the combustion zone 106.
  • Air 138 for the main burner 118 is taken from the area 140 surrounding the combustor can 102 and is supplied in the usual way from the gas turbine compressor (not shown).
  • the combustor can has a narrow pre-chamber portion 141 of diameter d, and for lean burn combustion occurring downstream of it in region 108, the length L of the narrow portion provides the additional time needed for full mixing.
  • the narrow pre-chamber portion 141 of the can prevents this by ensuring (in the manner of a venturi) that the downstream flow velocity of the mixture after exit from the swirl passages is greater than the upstream propagation velocity of the combustion process. Furthermore, the high swirling velocity of the fuel-lean mixture in the pre-chamber 141 keeps the combustion process in region 107 away from the wall of the pre-chamber.
  • Support for the combustor can 102 in its location within the engine is conveniently provided at its rear, i.e. downstream, end (not shown) by attachment in known ways through a combustor exit nozzle to suitable static structure of the engine, such as nozzle guide vanes at the entry to a high pressure turbine.
  • Support at the can's head end is conveniently provided by securing the injector assembly 104 to a portion of combustor casing 142. The latter has an aperture within which is secured the main burner fuel body 120.
  • Connection of the can 102 to the casing 142 is completed by fixing an upstream flange 144 of the can to the rear face of a ring 145 attached to the swirler 123. Fixing of the various parts of the injector assembly 104 to each other and to the casing 142 is conventionally achieved by setscrews, bolts, or the like, unless otherwise noted.
  • Figure 2 shows a section through the igniter 110, pilot burner 114 and part of the main burner 118, indicating by arrows the route followed by the fuel 200 through the pilot burner 114.
  • Figure 3 shows the fuel and air flow pattern issuing from the pilot burner 114.
  • electrical power is fed to the igniter 110 through an internally threaded coaxial cable socket 146 provided at the forward end of the igniter.
  • the socket 146 When screwed home into a threaded part 148 of the central bore 112 of the pilot burner 114, the socket 146 also serves to crimp a compression collar 150 onto the end of the igniter 110 so preventing relative movement between the igniter and the pilot burner.
  • the igniter 110 comprises a rigid central electrode wire 202, an inner insulating ceramic layer 204 surrounding the central electrode, a rigid metallic sheath 206 surrounding the inner insulating layer, and an outer insulating ceramic layer 208 surrounding the sheath 206 and in contact with the bore 112 of the pilot burner 114.
  • the sheath is provided with a small electrode 210, which in conjunction with the adjacent end of the central electrode 202, defines a spark gap.
  • a fuel and air mixture is circulated over the spark gap as explained below and is of course ignited when sparks are caused to jump across the gap.
  • the pilot burner 114 with main burner 118, comprise synergistically interacting features as illustrated in Figures 2 and 3, which co-operate to achieve even fuelling and good flame stability in the combustion region 107 and adequate cooling of the igniter 110 when it is heated by the combustion process.
  • fuel 200 flows through supply passage 126 to an annular gallery 211 and then through passages 212 to a further gallery 213.
  • the fuel 200 is emitted from the head, i.e., the rearward face 214 of the pilot burner 114, through a circular array of apertures 215 near its outer circumference and is then immediately deflected across the burner face by a deflector lip 216 provided on a sleeve 218, which is brazed onto the end of the pilot burner 114.
  • the fuel 200 meets a curtain or annular column of high pressure air 300 emitted rearwardly and divergently from a circular groove or slot 302 in the burner face.
  • the air 300 firstly carries the fuel away from the pilot burner and establishes a hollow (i.e., of annular cross section) divergent columnar shear layer 303 ( Figure 3) about centreline CL in the combustion can 102.
  • a hollow (i.e., of annular cross section) divergent columnar shear layer 303 Figure 3
  • the pilot fuel 200 is injected substantially uniformly into the circumference of the column of air 300 which forms the base portion of the shear layer 303.
  • the establishment of the shear layer 303 which may be identified as defining the boundary of the combustion zone 106 ( Figure 1) and the flame front in the combustion chamber, is important in achieving the object of sustaining a lean burn combustion process in the combustor over a range of engine load conditions. It should be noted that the fuel-lean main fuel/air mixture (139) is injected substantially uniformly towards the shear layer 303 from the swirl passages 122 surrounding the shear layer, and some mixing of the main fuel/air mixture with the pilot fuel/air mixture occurs in the shear layer 303.
  • the next part of the process is recirculation, as shown by arrows 304, of some the fuel/air mixture from all parts of the shear layer 303 back towards the igniter 110. This occurs because the air emission from the slot 302 creates an area of somewhat lower pressure adjacent the igniter.
  • the recirculated fuel/air mixture is fuel-rich and after ignition it burns with a stable flame in region 107, the flame seemingly being "anchored" to the slot 302 and being surrounded by the air column/shear layer 300/303.
  • the slot 302 acts to stabilise the combustion process in the recirculated fuel/air mixture.
  • the air column/shear layer 300/303 surrounds and shelters the region 107 near its base, the region 107 having substantially lower fluid velocities than neighbouring regions in and beyond the shear layer. It is found that by establishing stable combustion in this sheltered combustion region 107, the whole of the combustion process in the combustor 102, including the lean burn combustion in region 108, is stabilised at part load and full load conditions of the gas turbine engine.
  • the air 300 emitted from slot 302 in the pilot burner head possesses a swirl (rotational) component which is counter in swirl direction to the swirl component of the fuel/air mixture produced by the swirl passages 122 of the main burner 118.
  • a swirl (rotational) component which is counter in swirl direction to the swirl component of the fuel/air mixture produced by the swirl passages 122 of the main burner 118.
  • it is supplied to the bottom of the slot 302 through an array of drillings 306 which connect through sleeve 218 to a gallery 308, the orientation of the drillings 306 being oblique to the sides of the slot so as to be approaching tangential to the circumference of the slot 302, though for convenience of illustration, this is not indicated in Figure 3.
  • the gallery 308 is supplied from a number of passages 310, which may either take air from the swirl passages, as shown, or take air ducted from openings on the outer circumference of the swirler 123, to take advantage of possible higher stagnation pressures found there and/or to avoid contamination by fuel from the swirler passages.
  • the gallery 308 providing air to the circular slot 302 also provides further air for directly cooling and shielding the igniter 110, as indicated in Figure 3.
  • Air from the gallery 308 is conveyed through drillings 310 to an annular feeder slot 312 cut into the bore 112 of the pilot burner. This air is emitted from the ends of a series of short, axially extending air channels or grooves 314 cut or otherwise formed in the bore of the pilot burner and equally spaced around it to conduct the air from the feeder slot 312 along the side of the hot end of the igniter 110 as shown, so removing heat therefrom.
  • the channels 314 extend slightly beyond the electrode end of the igniter 110 and hence the cooling air exhausts from the ends of the channels across the end of the igniter, so cooling it and shielding it from the heating effect of the base of the pilot flame.
  • the igniter cooling air may have a diluting effect on the fuel/air mixture in the region 107 and this should be taken into account in calculating optimum fuel/air ratios for different engine speeds and loadings.
  • the foregoing igniter air-cooling arrangement is only one of a number of alternative arrangements which can be envisaged for effecting such air cooling.
  • the end of the igniter 110 could advantageously be held within a small sleeve having an external flange at each end and brazed into a widened portion of the bore 112, the feeder slot being replaced by an annular space defined between the bore 112 and the flanges of the sleeve, and the channels being replaced by holes drilled through the flange at the end of the sleeve nearest the pilot flame.
  • a suitable lip would be provided in the pilot burner face directly above the holes in the flange to deflect the air across the igniter tip.
  • the combustor is divided into a downstream main chamber and an upstream pre-chamber; the premixing swirler of the main burner is utilised to define the most upstream part of the prechamber periphery; the swirler receives its fuel supply from a fuel body forming part of the combustor head, to which the swirler is attached; the pilot burner is nested within the fuel body of the main burner in the combustor head; and the igniter 110 is positioned within the pilot burner 114, rather than elsewhere in the combustion system.
  • the pilot and main burners can be operated in a complementary manner to maintain lean burn combustion over a wider range of engine operating powers and speeds than has hitherto been achievable in combustors of this type.
  • the following table illustrates, in purely exemplary manner, how the total fuel supply may be shared between pilot and main burners over the entire operating range of an engine used for power generation.
  • the relative amounts of air, pilot fuel and main fuel injected into the can 102 are varied with respect to each other such that at start-up and part-load engine conditions the fuel/air mixture in the sheltered combustion region 107 is sufficiently fuel-rich to sustain stable combustion for the whole of the combustion process, much of which, even at part load conditions, is occurring in region 108 in a lean burn mode.
  • engine conditions vary from start-up through part load to full load, the combustion process within the combustor considered as a whole varies between fuel-rich and fuel-lean. It will be seen that when the engine is at full speed, the amount of pilot fuel injected as a proportion of total fuel injected varies from a major proportion (70%) at minimum load and full speed, to about 0% at full speed and load.
  • the pilot air supply slot 302 is a continuous circular slot of approximately rectangular section set in the face 214 of the pilot burner 114, but this is only one possible configuration.
  • alternative sections e.g. divergent or convergent towards the burner face, could be used instead.
  • the single continuous slot could be replaced by two or more concentric continuous slots, or continuous slots could be replaced by a number of equally spaced discrete apertures arranged in a circle around the face of the pilot burner.
  • the slot or its equivalent apertures could be formed in or adjacent to a ridge or fence feature projecting from the surface of the pilot burner and acting to anchor and stabilise the combustion process.
  • the igniter 110 is shown located centrally of the pilot burner 114, this is exemplary only, and the burner could be advantageously located off the centreline CL of the pilot burner, e.g., at the same diameter as the slot 302 or an equivalent ring of apertures. This could reduce the heat input to the igniter from the flame in region 107.

Claims (15)

  1. Verbrennungsgerät (100) zum brennstoffarmen Verbrennen für einen Gasturbinenmotor, wobei das Verbrennungsgerät einen allgemein kreisförmigen Querschnitt besitzt und in Strömungsrichtung der Verbrennung einen Kopfteil mit einer Brenneranordnung (104), eine Vorbrennkammer (141) und eine Hauptbrennkammer (103) aufweist, wobei die Vorbrennkammer einen wesentlich geringeren Querschnitt als die Hauptbrennkammer besitzt, die Brenneranordnung ein Mittel zur Luftverwirbelung (122) sowie Mittel zum Einblasen der Hauptmenge an Brennstoff (136) aufweist, welche derart angeordnet sind, daß sie Brennstoff in das Mittel zum Verwirbeln einblasen und dadurch ein brennstoffarmes Gemisch aus Brennstoff und Luft (139) in dem Mittel zum Verwirbeln erzeugen, das Mittel zum Verwirbeln die Peripherie eines stromaufwärts liegenden Teils der Vorbrennkammer (141) bildet und derart angeordnet ist, daß es das Gemisch aus Brennstoff und Luft mit einer radial einwärts gerichteten Wirbelbewegung in die Vorbrennkammer einbläst, die Brenneranordnung außerdem einen Brennstoffversorgungskörper-Abschnitt (120) aufweist, der Brennstoffversorgungsdurchlässe (128,130 usw.) zum Heranführen von Brennstoff zu dem Mittel zum Einblasen der Hauptmenge an Brennstoff (136) besitzt, das Mittel zum Verwirbeln an der im wesentlichen ebenen, stromabwärts gerichteten Oberfläche des Brennstoffversorgungskörpers befestigt ist, die Brenneranordnung (104) außerdem einen auf der Achse (CL) des Verbrennungsgerätes angeordneten Hilfsbrenner (114) aufweist, um einen Verbrennungsvorgang vom Diffusionstyp in der Vorbrennkammer (141) durch Einblasen von Brennstoff zu unterhalten, der Brennstoffversorgungskörper-Abschnitt der Brenneranordnung einen radial außen sitzenden Brennstoffversorgungskörper (120), an dem das Mittel zum Verwirbeln (122) befestigt ist, sowie einen radial innen sitzenden Brennstoffversorgungskörper (114) aufweist, der innerhalb des äußeren Brennstoffversorgungskörpers angeordnet ist, und der innere Brennstoffversorgungskörper durch Einschluß von Hilfsbrennstoff-Einblasmitteln (215,216) und Brennstoffversorgungsdurchlässen (126,212), die zu den Hilfsbrennstoff-Einblasmitteln führen, den Hilfsbrenner darstellt.
  2. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 1, wobei in dem Hilfsbrenner eine Zündquelle zum Zünden des Verbrennungsvorganges angeordnet ist.
  3. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 1 oder 2 , wobei der Hilfsbrenner ein Lufteinblasmittel enthält, die Hilfsbrennstoff-Einblasmittel das Lufteinblasmittel im wesentlichen konzentrisch umgeben, und die Hilfsbrennstoff-Einblasmittel derart gestaltet sind, daß sie den Brennstoff in Richtung auf das Lufteinblasmittel einblasen, um innerhalb der Vorbrennkammer außerhalb des Hilfsbrenners einen brennstoffreiches Gemisch aus Luft und Brennstoff zu erzeugen.
  4. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß einem der Ansprüche 1 bis 3, wobei das Lufteinblasmittel so gestaltet ist, daß es eine auseinandergehende verwirbelte Luftsäule von kreisförmigem Querschnitt vom Hilfsbrenner weg in die Vorbrennkammer ausstößt.
  5. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 1, wobei der Hilfsbrenner derart gestaltet ist, daß er Hilfsbrennstoff (200) und Luft (300) getrennt voneinander und gleichzeitig in das Verbrennungsgerät zum Vermischen einbläst, und ein Lufteinblasmittel (302) zum Einblasen von Luft in das Verbrennungsgerät in Form einer säulenförmigen Saumschicht (303) von kreisförmigem Querschnitt aufweist, die einen mittigen Verbrennungsbereich (107) angrenzend an den Hilfsbrenner umströmt, die Hilfsbrennstoff-Einblasmittel (215,216) derart angeordnet sind, daß sie den Hilfsbrennstoff in Richtung auf die säulenförmigen Saumschicht blasen, um sie mit der darin enthaltenden Luft zu vermischen, der Hauptbrenner derart gestaltet ist, daß er ein brennstoffarmes Gemisch aus Luft und Brennstoff (139) in das Verbrennungsgerät in Richtung auf die säulenförmigen Saumschicht einbläst, und die Saumschicht den mittigen Bereich (107) als abgeschirmte Verbrennungszone stabilisiert, um die Stabilität der brennstoffarmen Verbrennung im Verbrennungsgerät zu erhöhen.
  6. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 5, wobei die säulenförmige Saumschicht mit der Entfernung vom Hilfsbrenner auseinandergeht.
  7. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 5 oder 6, wobei im Hilfsbrenner das Hilfsbrennstoff-Einblasmittel das Lufteinblasmittel im wesentlichen konzentrisch umgibt.
  8. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 7, wobei das Hilfsbrenner-Lufteinblasmittel derart gestaltet ist, daß es der Luftsäule eine verwirbelnde Strömungskomponente verleiht.
  9. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 8, wobei die Richtungen der Verwirbelung, die von dem Hilfsbrenner und den Hauptbrennern erzeugt werden, einander entgegengesetzt sind.
  10. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß einem der Ansprüche 3 bis 9, wobei das Lufteinblasmittel ein Mittel um faßt, das in dem inneren Brennstoffversorgungskörper einen kreisförmigen Schlitz (302) definiert.
  11. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 10, wobei das Lufteinblasmittel außerdem eine Anzahl Zuführdurchlässe zum Heranführen von Luft an den Boden des Schlitzes (302) aufweist und die Zufuhrdurchlässe (306) in den Boden des Schlitzes schräg zu dessen Seitenwänden eintreten, wodurch der den Schlitz verlassenden Luft (300) eine Verwirbelungskomponente verliehen wird.
  12. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 11, wobei die Zufuhrdurchlässe in den Boden des Schlitzes tangential eintreten.
  13. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß einem der Ansprüche 1 bis 12, wobei das Hilfsbrennstoff-Einblasmittel Mittel (216) umfaßt, die eine sich um den Umfang erstreckende Öffnung in der Nähe der Peripherie des inneren Brennstoffversorgungskörpers (214) definieren, und der Brennstoff aus dem Hilfsbrenner durch diese Öffnung austritt.
  14. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 13, wobei das Hilfsbrennstoff-Einblasmittel eine ringförmige Lippe (216) aufweist, die im Abstand von dem äußersten peripheren Abschnitt des inneren Brennstoffversorgungskörpers (214) angeordnet ist und diesen Abschnitt bedeckt, und der Brennstoff aus dem Hilfsbrenner zwischen dem inneren Brennstoffversorgungskörper und der Lippe austritt.
  15. Verbrennungsgerät zum brennstoffarmen Verbrennen gemäß Anspruch 14, wobei das Hilfsbrennstoff-Einblasmittel außerdem eine kreisförmige Anordnung von Öffnungen (215) aufweist, die in dem inneren Brennstoffversorgungskörper unter der Lippe (216) angeordnet ist.
EP19960300281 1995-01-13 1996-01-15 Verbrennungsgerät für Gasturbinenmotor Expired - Lifetime EP0728989B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9500627A GB2297151B (en) 1995-01-13 1995-01-13 Fuel injector arrangement for gas-or liquid-fuelled turbine
GB9500627 1995-01-13
GB9519826 1995-09-29
GBGB9519826.3A GB9519826D0 (en) 1995-09-29 1995-09-29 Gas turbine engine combustor

Publications (3)

Publication Number Publication Date
EP0728989A2 EP0728989A2 (de) 1996-08-28
EP0728989A3 EP0728989A3 (de) 1997-08-20
EP0728989B1 true EP0728989B1 (de) 2001-11-28

Family

ID=26306317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960300281 Expired - Lifetime EP0728989B1 (de) 1995-01-13 1996-01-15 Verbrennungsgerät für Gasturbinenmotor

Country Status (3)

Country Link
EP (1) EP0728989B1 (de)
JP (1) JPH08240129A (de)
DE (1) DE69617290T2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284378B2 (en) 2004-06-04 2007-10-23 General Electric Company Methods and apparatus for low emission gas turbine energy generation
EP2314923A2 (de) 2009-10-23 2011-04-27 MAN Diesel & Turbo SE Drallerzeuger
RU2485398C1 (ru) * 2011-10-20 2013-06-20 Общество с ограниченной ответственностью "Энерго Эстейт" Устройство для сжигания топлива и способ сжигания топлива
EP2743581A1 (de) 2012-12-11 2014-06-18 Siemens Aktiengesellschaft Luftgerichtete Kraftstoffeinspritzung
CN109804201A (zh) * 2016-09-29 2019-05-24 西门子股份公司 具有引燃空气供应的引燃器组件

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332509B (en) 1997-12-19 2002-06-19 Europ Gas Turbines Ltd Fuel/air mixing arrangement for combustion apparatus
EP0931980B1 (de) * 1998-01-23 2003-04-09 ALSTOM (Switzerland) Ltd Brenner für den Betrieb eines Wärmeerzeugers
GB2333832A (en) * 1998-01-31 1999-08-04 Europ Gas Turbines Ltd Multi-fuel gas turbine engine combustor
GB2337102A (en) * 1998-05-09 1999-11-10 Europ Gas Turbines Ltd Gas-turbine engine combustor
DE19925328A1 (de) * 1999-06-02 2000-12-07 Abb Patent Gmbh Einrichtung zum Zünden der Verbrennung in einer Brennkammer einer Gasturbine
US6374615B1 (en) * 2000-01-28 2002-04-23 Alliedsignal, Inc Low cost, low emissions natural gas combustor
DE60122415T2 (de) * 2000-04-01 2006-12-21 Alstom Technology Ltd. Einspritzdüsen für flüssigen Brennstoff
JP2003035417A (ja) 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器のパイロットノズル
GB2432655A (en) * 2005-11-26 2007-05-30 Siemens Ag Combustion apparatus
EP1835231A1 (de) * 2006-03-13 2007-09-19 Siemens Aktiengesellschaft Brenner für eine Turbinenbrennkammer und Verfahren zum Betrieb des Brenners
JP5023526B2 (ja) * 2006-03-23 2012-09-12 株式会社Ihi 燃焼器用バーナ及び燃焼方法
JP5412283B2 (ja) * 2007-08-10 2014-02-12 川崎重工業株式会社 燃焼装置
US8096132B2 (en) 2008-02-20 2012-01-17 Flexenergy Energy Systems, Inc. Air-cooled swirlerhead
DE102008019117A1 (de) * 2008-04-16 2009-10-22 Man Turbo Ag Verfahren zum Betreiben eines Vormischbrenners und ein Vormischbrenner zur Durchführung des Verfahrens
EP2400222A1 (de) * 2010-06-28 2011-12-28 Siemens Aktiengesellschaft Verbrennungsvorrichtung
EP2489939A1 (de) * 2011-02-18 2012-08-22 Siemens Aktiengesellschaft Brennkammer mit einem Wandabschnitt und einem Randelement
JP6035123B2 (ja) * 2012-11-26 2016-11-30 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
DE102017102085A1 (de) * 2017-02-02 2018-08-02 Max Weishaupt Gmbh Vormischverfahren, dieses verwendendes Verbrennungsverfahren sowie Vormischvorrichtung und damit versehener Brenner
US10947902B2 (en) 2017-06-13 2021-03-16 Haier Us Appliance Solutions, Inc. Fuel nozzle, fuel supply assembly thereof, and method of assembling a fuel nozzle
DE102017114362A1 (de) * 2017-06-28 2019-01-03 Man Diesel & Turbo Se Brennkammer einer Gasturbine, Gasturbine und Verfahren zum Betreiben derselben
DE102018125848A1 (de) * 2018-10-18 2020-04-23 Man Energy Solutions Se Brennkammer einer Gasturbine, Gasturbine und Verfahren zum Betreiben derselben
US11073114B2 (en) * 2018-12-12 2021-07-27 General Electric Company Fuel injector assembly for a heat engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930369A (en) * 1974-02-04 1976-01-06 General Motors Corporation Lean prechamber outflow combustor with two sets of primary air entrances
GB1465689A (en) * 1974-10-25 1977-02-23 Parkinson Cowan Appliances Ltd Burners for firing a combustion chamber
US4261518A (en) * 1979-06-08 1981-04-14 Union Carbide Corporation Burner cap for synthesis of hydrogen chloride by combustion
GB2100409B (en) * 1981-04-24 1984-10-03 Rolls Royce Gas turbine engine fuel burners
GB2104641B (en) * 1981-07-28 1985-02-27 Cherny Anatoly A Method and apparatus for feeding fuel into an oxidizing atmosphere during its combustion
US4609150A (en) * 1983-07-19 1986-09-02 United Technologies Corporation Fuel nozzle for gas turbine engine
EP0276696B1 (de) * 1987-01-26 1990-09-12 Siemens Aktiengesellschaft Hybridbrenner für Vormischbetrieb mit Gas und/oder Öl, insbesondere für Gasturbinenanlagen
JP3154163B2 (ja) * 1991-05-23 2001-04-09 三井造船株式会社 ガスタービン用燃焼器
NL9300934A (nl) * 1993-06-01 1995-01-02 Ingbureaugoedkoop B V Branderkop.
US5450724A (en) * 1993-08-27 1995-09-19 Northern Research & Engineering Corporation Gas turbine apparatus including fuel and air mixer
JP2950720B2 (ja) 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284378B2 (en) 2004-06-04 2007-10-23 General Electric Company Methods and apparatus for low emission gas turbine energy generation
EP2314923A2 (de) 2009-10-23 2011-04-27 MAN Diesel & Turbo SE Drallerzeuger
DE102009045950A1 (de) 2009-10-23 2011-04-28 Man Diesel & Turbo Se Drallerzeuger
RU2485398C1 (ru) * 2011-10-20 2013-06-20 Общество с ограниченной ответственностью "Энерго Эстейт" Устройство для сжигания топлива и способ сжигания топлива
EP2743581A1 (de) 2012-12-11 2014-06-18 Siemens Aktiengesellschaft Luftgerichtete Kraftstoffeinspritzung
US9835335B2 (en) 2012-12-11 2017-12-05 Siemens Aktiengesellschaft Air directed fuel injection
CN109804201A (zh) * 2016-09-29 2019-05-24 西门子股份公司 具有引燃空气供应的引燃器组件
CN109804201B (zh) * 2016-09-29 2021-06-04 西门子股份公司 具有引燃空气供应的引燃器组件

Also Published As

Publication number Publication date
JPH08240129A (ja) 1996-09-17
DE69617290D1 (de) 2002-01-10
EP0728989A2 (de) 1996-08-28
DE69617290T2 (de) 2002-06-13
EP0728989A3 (de) 1997-08-20

Similar Documents

Publication Publication Date Title
EP0728989B1 (de) Verbrennungsgerät für Gasturbinenmotor
JP3459449B2 (ja) ガスタービン燃焼器、及び1次運転モードから予混合運転モードへの移行中に燃焼動圧を抑制する方法
US6609376B2 (en) Device in a burner for gas turbines
US5836164A (en) Gas turbine combustor
US4271674A (en) Premix combustor assembly
US5069029A (en) Gas turbine combustor and combustion method therefor
US6951108B2 (en) Gas turbine engine combustor can with trapped vortex cavity
US5199265A (en) Two stage (premixed/diffusion) gas only secondary fuel nozzle
KR0149059B1 (ko) 가스터빈연소기
KR960003680B1 (ko) 연소기의 연료노즐 구조
CA2393863C (en) Pilot burner, premixing combustor, and gas turbine
US5259184A (en) Dry low NOx single stage dual mode combustor construction for a gas turbine
US6453660B1 (en) Combustor mixer having plasma generating nozzle
US5193346A (en) Premixed secondary fuel nozzle with integral swirler
US7426833B2 (en) Gas turbine combustor and fuel supply method for same
US20120047897A1 (en) Gas Turbine Combustor
CA2848898C (en) Can combustor for a can-annular combustor arrangement in a gas turbine
EP2873922B1 (de) Gasturbinenbrennkammer
EP0488556B1 (de) Sekundäre Vormischbrennstoffdüse mit integrierter Verwirbelungsvorrichtung
US5274993A (en) Combustion chamber of a gas turbine including pilot burners having precombustion chambers
JP3192055B2 (ja) ガスタービン燃焼器
JPH09166326A (ja) ガスタービン燃焼器
JPH0814565A (ja) ガスタービン燃焼器
US6089025A (en) Combustor baffle
CN215175236U (zh) 一种基于自激发扫掠振荡燃油喷嘴的中心分级燃烧室

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI SE

RHK1 Main classification (correction)

Ipc: F23D 14/24

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19980220

17Q First examination report despatched

Effective date: 19991012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69617290

Country of ref document: DE

Date of ref document: 20020110

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140904 AND 20140910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150114

Year of fee payment: 20

Ref country code: FR

Payment date: 20150114

Year of fee payment: 20

Ref country code: SE

Payment date: 20150112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150402

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69617290

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160114

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160114