EP0728306A1 - Nachweismaterial auf glukose für teststreifen - Google Patents

Nachweismaterial auf glukose für teststreifen

Info

Publication number
EP0728306A1
EP0728306A1 EP95902651A EP95902651A EP0728306A1 EP 0728306 A1 EP0728306 A1 EP 0728306A1 EP 95902651 A EP95902651 A EP 95902651A EP 95902651 A EP95902651 A EP 95902651A EP 0728306 A1 EP0728306 A1 EP 0728306A1
Authority
EP
European Patent Office
Prior art keywords
glucose
control reagent
clay mineral
control
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95902651A
Other languages
English (en)
French (fr)
Inventor
Myron Rapkin
Diana Storhoff
Walter Jernigan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics Corp
Original Assignee
Boehringer Mannheim Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Corp filed Critical Boehringer Mannheim Corp
Publication of EP0728306A1 publication Critical patent/EP0728306A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/96Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood or serum control standard

Definitions

  • the present invention relates to control material useful in validating testing devices such as test strips and dipsticks. More particularly, the present invention relates to a non-serum based, aqueous glucose control material and to a method for making said control material.
  • the field of clinical chemistry and clinical analysis is concerned, inter alia , with the determination and quantification of various substances in body fluids. Many examples of the substances which are determined can be given, and these include cholesterol, urea, cations, and glucose. These examples of analytes, as well as others, are assayed in diverse body fluids such as urine and blood.
  • the monitoring of the level of glucose in blood is important to the management of diabetes.
  • the level of glucose in the blood is controlled by the amount of carbohydrate ingested and by insulin. Too much insulin lowers the glucose level, and too little will result in an abnormally high level of glucose. Both circumstances lead to serious health problems for the diabetic.
  • Most of the glucose testing done outside of the hospital laboratory is done in non-laboratory settings such as nurses 1 stations, physicians' offices and at home. Testing is frequently done by measuring the amount of glucose in urine. As the level of glucose rises in the blood, it exceeds the ability of the kidney to reabsorb it, and glucose is excreted into the urine. Although measurement of glucose in urine is useful, measurement of glucose in blood provides a more accurate reflection of the condition of the subject. Urine glucose does not accurately reflect the level of glucose in the blood since the level of glucose in urine is determined by the level of glucose in the blood and the ability of the kidney to reabsorb the glucose. Therefore, the urine sample cannot tell the diabetic how low his glucose level is.
  • Dry reagent test strips sometimes referred to as dipsticks, are widely used for detecting glucose in urine and blood. These devices are characterized by their simplicity of use.
  • test strips comprise plastic strips provided at one end thereof with an absorbent paper portion which has been impregnated with reagents such as an enzyme system and a color indicator compound which produces or changes color to form a detectable signal when the test strip is contacted with the analyte being determined.
  • reagents such as an enzyme system
  • a color indicator compound which produces or changes color to form a detectable signal when the test strip is contacted with the analyte being determined.
  • This change in color can be measured by comparing the color formed on the strip with a standard color chart calibrated to various glucose concentrations.
  • instruments More recently, however, to more accurately control the level of glucose in blood, instruments have been developed which measure the color change in a reflectance photometer and thereby produce quantitative results.
  • oxidative reactions such as the glucose oxidase/peroxidase method
  • reductive reactions such as the glucose oxidase/ferricyanide method.
  • Instruments have also been developed which determine glucose by means of electrochemical methods in which a change in current is measured.
  • control material as "a specimen, or solution, which is analyzed solely for quality control purposes and is not used for calibration purposes.”
  • This standard reference work goes on to describe some of the requisites of control materials as follows: “They need to be stable materials, available in aliquots or vials, that can be analyzed periodically over a long time. There should be little vial-to-vial variation so that differences between repeated measurements can be attributed to the analytical method alone.”
  • the above-cited reference, at page 433 discusses how the matrix of the control material should be the same as the material being analyzed. To that end, modified human serum is discussed as one type of control material.
  • control serum as referring to control material based upon serum.
  • control reagent refers to a control material which is not based upon, and which does not contain, serum of any type.
  • stability one of the criteria which control materials have to satisfy is stability.
  • Control materials based upon serum are inherently unstable due to the various components contained therein. Further, sera will vary from source to source, so uniformity from lot to lot cannot be guaranteed. Thus, it is sometimes desirable to have a control material based upon a non-serum or serum-free medium.
  • control reagent as used herein, is described in U.S.
  • the Ryan '959 patent points to a problem with aqueous control reagents at column 1, lines 50-55. Briefly, erythrocytes impart a degree of viscosity to blood which is absent in water based systems. This problem was also recognized in U.S. Pat. No. 3,920,580 issued to Mast. This patent teaches that aqueous solutions had not been consistent, and that a lack of reproducibility was observed when dry reagent strips were used with such materials. Mast teaches that suitable reagents could be prepared by using an antidiffusing agent in combination with glucose and water. The antidiffusing agents taught by Mast include polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, dextran, and bovine serum albumin.
  • Beneficial amounts are taught to be between about 3 and 35 percent of antidiffusing agent.
  • the control solution may also include adjuvants to obtain a particular color or physical appearance, which include colored latex particles and water-insoluble lake dyes.
  • Terashi a in European Appl. No. 266,216, discloses control or calibration solutions containing a water- insoluble dispersed phase, which can be a solid polymer or copolymer having a molecular weight of 10 5 to 10 6 , a liquid phase, or an emulsion of natural polymers such as sodium alginate.
  • Particle sizes taught are about 0.01 ⁇ m to about 10 ⁇ m, and amounts taught are 1 to 50 percent by weight, preferably 10 to 50 percent by weight.
  • Louderback, in U.S. Pat. No. 3,977,995, teaches a calibrating fluid for automated instruments for blood cell counting and hemoglobin determination comprising a solution of hemoglobin which contains latex particles.
  • the latex particles have a particle size of from about 5 to 20 microns, approximately the size of leukocytes, and are employed in the calibrating fluid at a concentration of 8,000 to 22,000 particles per microliter.
  • Kennamer et al . in U.S. Pat. No. 5,028,542, the content of which is herein incorporated by reference, describe a non-serum based, glucose measurement control reagent in which the viscosity agent polystyrene sulfonate is used.
  • a suitable glucose control reagent can be formed without using any of the organic, polymeric materials referred to in Mast and others in the art as required ingredients. Rather, by combining an inorganic, non-polymeric clay mineral with a predetermined amount of glucose and water, along with additional optional materials, a suitable glucose control reagent can be made.
  • the present invention is a non-serum based glucose control reagent which comprises a predetermined, known amount of glucose, water, and an inorganic clay mineral.
  • Preferred clay minerals are selected from the smectite group of clays, and an especially preferred clay is hectorite.
  • the preferred concentration for the clay mineral is between about 0.1 and 1 percent by weight.
  • composition of the present invention is useful in validating testing devices such as test strips for the measurement of glucose.
  • control reagent of the invention is useful with a variety of types of glucose testing devices, including those devices employing oxidative glucose measurement methods, devices employing reductive glucose measurement methods, and also with devices utilizing electrochemical methods for determining glucose. Additional materials such as a buffer, a preservative, or a surfactant, either alone or in various additive combinations, may be mixed with the three required components.
  • Another aspect of the present invention is a method for making the control reagent by mixing the glucose, water, and the clay mineral together.
  • a preferred clay mineral used in the invention is selected from the smectite, or montmorillonite, group of clays, which includes montmorillonite, beidellite, nontronite, hectorite, saponite and sauconite. Less common smectite clays include volkhonskoite, med onite and pimelite. An especially preferred clay mineral is hectorite. Smectites are crystalline clay minerals that carry a lattice charge and characteristically expand when solvated with water and alcohols.
  • Hectorite is preferably and conveniently used in the form of a rheological additive, a specially processed hectorite clay gellant with a fine particle size which makes it readily dispersible in aqueous systems using conventional high speed dispersers.
  • Wet particles should be fine enough to pass through a No. 200 sieve and thus less than about 75 ⁇ m in size.
  • Clay minerals from other groups such as kaolinite and attapulgite clays are also within the scope and spirit of the present invention. In general, the clay chosen must be in a purified form free from grit, very fine-grained, and dispersible in liquid.
  • Essential to the invention are a predetermined amount of glucose, water, and the recited clay mineral.
  • the water is used, of course, to create a reagent solution in which the clay particles are suspended.
  • predetermined is meant that, prior to formulation of the actual reagent, a concentration of glucose has been selected. This concentration may vary, as those skilled in the art will recognize. As has been mentioned above, the art recognized, e.g., a range of from 40 to 500 mg/dl, but one may envision lower ranges to, e.g., about 20 mg/dl. Some typical ranges would be from about 60 to about 240 mg/dl, or from about 60 to about 300 mg/dl.
  • the essential features of the invention when the reagent is in the form of a dispersion or solution, are the solvent (water) , the predetermined amount of glucose, and the clay mineral.
  • the clay mineral may be present in, e.g., a range of about 0.1 to about 1 percent by weight of the reagent. The weight percent of the clay mineral will be determined by the final reagent viscosity desired and the desired diffusion or permeability characteristics of the control material with the particular testing device with which it is to be used.
  • Such characteristics will vary according to the particular clay chosen and its specific properties, which include the predominant content of the clay mineral, which is typically a hydrated silicate of aluminum, iron, or magnesium, the fineness of individual clay particles, which may be of colloidal size in at least one dimension, rheological properties, and the property of thixotropy in various degrees of complexity.
  • the particular clay selected should also be one whose reactivity does not adversely interfere with the determination of glucose. It is not necessary that the control material have the same viscosity as whole blood; however, it is desirable that the permeability of the material, i.e., the diffusion rate of the analyte, through the reagent matrix of the test strip approximate that of whole blood.
  • control material optionally includes typical additives such as buffers, preservatives, and surfactants.
  • typical additives such as buffers, preservatives, and surfactants.
  • a colored or colorable substance in the reagent mixture. This can be desirable because body fluid -samples frequently possess a particular color as one of their properties. As the control reagent is being used to calibrate per a body fluid sample, it can be useful to calibrate against conditions as similar to the tested fluid as possible, including color.
  • Fig. 1 is a graph showing the percent reflectance of the control material of the present invention at varying levels of glucose.
  • DESCRIPTION OF PREFERRED EMBODIMENTS EXAMPLE 1 Preparation of Control Reagent A preferred formulation of the control reagent of the present invention was prepared as follows: A 1 percent by weight aqueous dispersion of BENTONE ® EW (Rheox, Inc., Hightstown, NJ) hectorite clay particles was prepared. It has been found that best results are obtained if the dispersion is made under high shear (minimum 3000 rpm) for at least 15 minutes using tepid water between pH 7 and 8.
  • EXAMPLE 2 Efficacy of Control Reagent with Reductive Method
  • the control reagent described in Example 1 was then tested for its efficacy.
  • one of the most important features of a control reagent is its consistency, meaning that values obtained using it should be fairly uniform from run to run.
  • Example 1 the control reagent of Example 1 was applied to 5 different lots of test strips containing the glucose determination system described in U.S. Pat. No. 4,929,545. Briefly, this publication describes the determination of glucose using a reagent containing a glucose oxidase/ferricyanide/ferric compound system.
  • the hexokinase-measured glucose level was 23 mg/dl for the 1% Bentone control and 19 mg/dl for the Reference E control material.
  • control reagent comprising a 1 percent aqueous dispersion of VAN GEL ® ES (R.T. Vanderbilt Company, Inc., Norwalk, CT) clay particles was prepared using the following: 2.0 g Van Gel ES, 200.0 g deionized water, and 0.20 g PLURONIC ® L-35 (polyoxyalkylene ether from BASF Corp.). To this was added 0.5 M MES/CAPS buffer to make 50 mM. The mixture was homogenized for 15 minutes. Eleven aliquots of this dispersion then had glucose added to them in predetermined amounts ranging from 26.0 to 429.0 mg/dl as measured using a hexokinase reference method.
  • EXAMPLE 4 Efficacy of Control Reagent with Electrochemical Method A 0.55 percent by weight aqueous dispersion of Bentone EW clay particles was prepared as described in Example 1. Several biocides were also added, 0.30% by weight 2-phenoxyethanol, 0.30% by weight Germall 115, and 0.15% by weight methylparaben. Thirteen aliquots of this dispersion then had glucose added to them in predetermined amounts ranging from 21.0 to 661.0 mg/dl as measured using a hexokinase reference method. One aliquot had no glucose added. Using the electrochemical, amperometric biosensor method described in PCT Application No.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Diabetes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
EP95902651A 1993-11-12 1994-11-14 Nachweismaterial auf glukose für teststreifen Withdrawn EP0728306A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15384293A 1993-11-12 1993-11-12
US153842 1993-11-12
PCT/US1994/013445 WO1995013536A1 (en) 1993-11-12 1994-11-14 Glucose control material for test strips

Publications (1)

Publication Number Publication Date
EP0728306A1 true EP0728306A1 (de) 1996-08-28

Family

ID=22548971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95902651A Withdrawn EP0728306A1 (de) 1993-11-12 1994-11-14 Nachweismaterial auf glukose für teststreifen

Country Status (3)

Country Link
EP (1) EP0728306A1 (de)
CA (1) CA2175907A1 (de)
WO (1) WO1995013536A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504020B2 (en) 2002-10-31 2009-03-17 Panasonic Corporation Determination method for automatically identifying analyte liquid and standard solution for biosensor
US6900058B2 (en) * 2003-03-11 2005-05-31 Bionostics, Inc. Control solution for photometric analysis
WO2005078118A1 (en) 2004-02-06 2005-08-25 Bayer Healthcare Llc Oxidizable species as an internal reference for biosensors and method of use
WO2006065899A1 (en) 2004-12-13 2006-06-22 Bayer Healthcare Llc A method of differentiating between blood and control solutions containing a common analyte
US8002965B2 (en) 2005-04-08 2011-08-23 Bayer Healthcare Llc Oxidizable species as an internal reference in control solutions for biosensors
EP1934591B1 (de) 2005-09-30 2019-01-02 Ascensia Diabetes Care Holdings AG Gesteuerte voltammetrie
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
TW201727224A (zh) * 2015-12-21 2017-08-01 希拉格國際有限公司 電化學血液模擬流體
CN109470533B (zh) * 2018-10-24 2021-09-21 北京市临床检验中心 一种用于便携式血糖仪的人源全血基质质控品的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1458522A (en) * 1973-04-19 1976-12-15 Ici Ltd Benzisothiazolin-3-one derivatives
US4237019A (en) * 1977-12-23 1980-12-02 Imperial Chemical Industries Limited 1-Thiocyanato-8-substituted naphthalene compounds and their use as biocides
SU948366A1 (ru) * 1979-02-26 1982-08-07 Симферопольский государственный университет им.М.В.Фрунзе Способ введени в растение биологически активного вещества
US4826535A (en) * 1988-04-12 1989-05-02 Rich Art Color Company, Inc. Stain-free tempera paints
US5028542A (en) * 1990-02-07 1991-07-02 Boehringer Mannheim Corporation Glucose measurement control reagent and method of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9513536A1 *

Also Published As

Publication number Publication date
WO1995013536A1 (en) 1995-05-18
CA2175907A1 (en) 1995-05-18

Similar Documents

Publication Publication Date Title
DE69535336T2 (de) Trockener prothrombin-zeittest
US5028542A (en) Glucose measurement control reagent and method of making the same
DE69332138T2 (de) Bestimmung von glykosyliertem hämoglobin durch dämpfung der fluoreszenz
AU610412B2 (en) Composition and method of assaying liquids for specific gravity
JPH0578317B2 (de)
JPH0453385B2 (de)
US5217691A (en) Nonenzymatic glucose test
US5064615A (en) Method and reagent for determining the ionic strength of specific gravity of aqueous liquids
EP0728306A1 (de) Nachweismaterial auf glukose für teststreifen
WO1995013536A9 (en) Glucose control material for test strips
EP0730735B1 (de) Glucosekalibrator und kontrollmaterial für teststreifen
DE68917273T2 (de) Testmethode und Gerät zur Bestimmung des gesamten Proteins.
WO1993021928A1 (en) Liquid glucose control solution and process of making the same
Waugh Effects of abnormal cytoskeletal structure on erythrocyte membrane mechanical properties
WO1992022806A1 (en) Test for per acids
US5116763A (en) Nonenzymatic glucose test
DE3788501T2 (de) Kontroll oder Kalibrierungslösungen für Flüssigkeitsanalyse.
EP0695423B1 (de) Polymer enthaltende kontrollreagenzien und in kontrollreagenzien brauchbare polymere
EP0681697B1 (de) Hydroxylamin enthaltendes kontrollreagenz
US5453378A (en) Diagnostic test system verification method using serum free glucose control containing quaternary ammnonium polymer
DE69421446T2 (de) Analytisches Vielschichtelement, Niacinamide enthaltend und Verfahren zur Bestimmung von Ethanol
DE10032290C2 (de) Adsorptionsmittelhaltige Kontrollflüssigkeit
KR102483323B1 (ko) 발색성이 향상된 랩온페이퍼용 비색 검출 센서
JP2522970B2 (ja) 体液中のクレアチニン定量用試験片及びその製法
CS254978B2 (en) Agent for glucose,cholesterol and haemoglobin determination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JERNIGAN, WALTER

Inventor name: STORHOFF, DIANA

Inventor name: RAPKIN, MYRON

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970531