EP0722136A2 - Thermoschüttler - Google Patents

Thermoschüttler Download PDF

Info

Publication number
EP0722136A2
EP0722136A2 EP96100107A EP96100107A EP0722136A2 EP 0722136 A2 EP0722136 A2 EP 0722136A2 EP 96100107 A EP96100107 A EP 96100107A EP 96100107 A EP96100107 A EP 96100107A EP 0722136 A2 EP0722136 A2 EP 0722136A2
Authority
EP
European Patent Office
Prior art keywords
metal block
shaker
block thermostat
sample
thermostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96100107A
Other languages
English (en)
French (fr)
Other versions
EP0722136A3 (de
Inventor
Joachim Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19512835A external-priority patent/DE19512835C2/de
Application filed by Individual filed Critical Individual
Publication of EP0722136A2 publication Critical patent/EP0722136A2/de
Publication of EP0722136A3 publication Critical patent/EP0722136A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • B01F31/27Mixing the contents of independent containers, e.g. test tubes the vibrations being caused by electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • B01F31/275Mixing the contents of independent containers, e.g. test tubes with means for transporting test tubes to and from the stirring device

Definitions

  • the invention relates to a metal block thermostat combination with a shaker for use in laboratories for biochemical, biotechnological and medical research as well as for diagnosis and also for quality assurance of biotechnological productions, e.g. in the manufacture of pharmaceutical products.
  • the invention is used in the analysis of very small quantities, often in solution of volumes in the microliter range, such as in the implementation of enzymatically catalyzed synthesis and cleavage reactions of high molecular weight substances, e.g. DNA and proteins that require high temperature precision and gentle mixing of the reaction components, whereby damage to the sensitive enzyme molecules by shear forces must also be avoided.
  • high molecular weight substances e.g. DNA and proteins that require high temperature precision and gentle mixing of the reaction components, whereby damage to the sensitive enzyme molecules by shear forces must also be avoided.
  • the invention can also be used to carry out lengthy solution processes and reactions of salts and high-molecular organic substances and to carry out extractions in the microliter range, where slow, continuous mixing of solutions with different phase formation is important in order to achieve an increase in the yield.
  • the molecular forces in the sample vessel can be overcome from a certain limit, but the stronger, periodically successive movement impulses prevent defined, reproducible control of the undesired shear effect in the sample.
  • the problem of the invention is to create a shaker with a heated metal block for temperature control and for holding sample vessels, which enables gentle, gentle and effective mixing of sensitive high-molecular biochemical substances and, in particular, the creation of harmful shear forces on the molecules of the sample vessels Avoids substances.
  • a shaker metal block thermostat is designed as an electromechanically drivable linear shaker, the stroke and frequency and intensity of which are infinitely adjustable, as well as in time intervals, in single shock pulses and in the intensity of the single shock pulses by means of a known per se
  • the program circuit can be controlled manually or automatically and the sample container holder on or above the metal block thermostat with the sample containers is mechanically guided independently of the shaking mobility of the metal block thermostat and can be raised manually or by means of a program control known per se and locked in any stroke position.
  • the lifting height and also the temporal lifting sequence and the duration of the locking can be regulated.
  • the horizontal, linear single shock pulses can also be exerted on the metal block thermostats which are at a standstill and the sample vessel carrier is raised.
  • the bores for the sample vessels in the metal block thermostat of the linear shaker can be chamfered, rounded or bordered with an elastic plastic on their upper edge.
  • the metal block thermostat assumes a defined central position with respect to the raised sample vessel carrier, which can be elastically locked by at least one resilient element.
  • the electromechanical drive of the linear shaker can be a tapping mechanism, in particular for generating individual pulses that are infinitely adjustable in their intensity or their impact energy, the tapping mechanism of which hits the linearly movable and linearly sprung metal block thermostats or the sample vessel carrier with the lifting mechanism extended, in the same direction.
  • the advantages of the solution according to the invention are that gentle, gentle reaction impulses can be transferred to the sensitive high-molecular biochemical substances in the sample vessels by means of individual impulses which can be precisely defined in their impact energy.
  • the thermal shaker according to the invention thus makes it possible to mechanize or automate a manual flicking of each sample vessel with the fingers and also to make the impact energy reproducible at any time in a precisely defined manner. It is also advantageous that the mechanization of this flipping process means that the sample vessels are only raised for a very short time and only a very short distance, and not even completely out of the holes in the metal block thermostat with the sample vessel carrier.
  • the thermal shaker according to the invention is of compact design and is equipped with a control panel.
  • the compact design makes it easy to change the location of the device, e.g. into a laminar box for operation under sterile conditions.
  • the invention is explained in more detail below using an exemplary embodiment.
  • the metal block thermostat with sample vessel support and sample vessels of a thermal shaker is shown schematically with FIG. 1.
  • FIG. 2 shows in the drawing the metal block thermostat of a thermal shaker with a raised sample vessel carrier and sample vessels.
  • the metal block thermostat 3 is arranged shake-proof on the electromechanically driven guide plate 4 of the thermal shaker. In the metal block thermostat 3 there are bores conforming to the sample vessels 1, here for conical Eppendorf tups.
  • the metal block thermostat 3 assumes a certain central position fixed by the resilient elements 8, in which the holes in the metal block thermostat 3 are aligned with the openings for the sample vessels 1 in the sample vessel carrier 2.
  • the sample vessel carrier 2 Independently of the linearly horizontally movable guide plate 4 with the metal block thermostat 3 located thereon, the sample vessel carrier 2, which can be moved up and down by means of the sample vessel carrier lifting mechanism 7, is arranged above it.
  • the lifting mechanism 7 is designed such that the sample vessel carrier 2 rests on the metal block thermostat 3 in the fully lowered working state and is positively connected to it, the lifting mechanism 7 being uncoupled from the sample vessel carrier.
  • the lifting movements of the lifting mechanism 7 take place when the shaking mechanism 6 is at a standstill.
  • All movement sequences can be preselected by means of program switching and can be controlled automatically.
  • sample vessels 1 in the form of conical Eppendorf tubes are first introduced into the sample vessel carrier 2.
  • the sample vessel carrier 2 can be located outside the thermal shaker or can already be placed in the sample vessel carrier lifting mechanism 7 on or above the metal block thermostat 3.
  • the operating parameters such as temperature control, stroke, frequency and time intervals for the shaking process can now be selected by means of a program connection, and the shaking process can then be carried out.
  • the program sequence can also be selected such that the sample vessel carrier 2 with the sample vessels 1 is not completely lifted out of the metal block thermostat 3 and remains in such a position when the shaking mechanism 6 is in the middle position by means of the sample vessel lifting mechanism 7 / or is locked so that an annular gap 5 is formed between them and the bore in the metal block thermostat as a result of the conically shaped sample vessels 1.
  • a defined single shock pulse is then triggered on the metal block thermostat 3 directly or on the guide plate 4 via the shaking stroke mechanism 6 against the resilient element 8 so that the upper edge of the bore in the metal block thermostat 3 briefly touches or carries along the conical wall of the sample vessel 1 and thus realized a snap-on effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Die Erfindung betrifft eine Metallblockthermostat-Kombination mit einem Schüttler zur Verwendung in Laboratorien für die biochemische, biotechnische und medizinische Forschung sowie bei der Diagnose und auch bei der Qualitätssicherung biotechnischer Produktion, z.B. bei der Herstellung pharmazeutischer Erzeugnisse.
Die Erfindung wird angewandt bei der Analyse kleinster Stoffmengen, oft in Lösung von Volumina im Mikroliterbereich, wie bei der Durchführung von enzymatisch katalysierten Synthese- und Spaltungsreaktionen von hochmolekularen Stoffen, z.B. DNA und Eiweiße, die eine hohe Temperaturpräzision und eine sanfte Durchmischung der Reaktionskomponenten erfordern, wobei auch eine Schädigung der empfindlichen Enzymmoleküle durch Scherkräfte zu vermeiden ist.
Erfindungsgemäß wird ein linearantrieb Metallblock-Thermostat- Schüttler mit einer Hubmechanik für den Probengefäßeträger so kombiniert, daß damit und mittels einer Programmsteuerung der übliche Anschnippeffekt zur Reaktionsauslösung mechanisch nachahmbar und automatisierbar ist.
Damit ist eine schonende Behandlung d.h. Durchmischung der Proben und Auslösung von Reaktionen rationell möglich.
Durch ein nur kurzzeitiges Herausheben der Probengefäße aus dem Metallblock-Thermostaten auf kurzem Weg wird eine hohe Temperaturkonstanz der Proben gewährleistet.

Description

  • Die Erfindung betrifft eine Metallblockthermostat-Kombination mit einem Schüttler zur Verwendung in Laboratorien für die biochemische, biotechnologische und medizinische Forschung sowie bei der Diagnose und auch bei der Qualitätssicherung biotechnologischer Produktionen, z.B. bei der Herstellung pharmazeutischer Erzeugnisse.
  • Die Erfindung wird angewandt bei der Analyse kleinster Stoffmengen, oft in Lösung von Volumina im Mikroliterbereich, wie bei der Durchführung von enzymatisch katalysierten Synthese- und Spaltungsreaktionen von hochmolekularen Stoffen, z.B. DNA und Eiweiße, die eine hohe Temperaturpräzision und eine sanfte Durchmischung der Reaktionskomponenten erfordern, wobei auch eine Schädigung der empfindlichen Enzymmoleküle durch Scherkräfte zu vermeiden ist.
  • Anwendbar ist die Erfindung auch zur Durchführung langwieriger Lösungsvorgänge und Reaktionen von Salzen und hochmolekularen organischen Substanzen sowie zur Durchführung von Extraktionen im Mikroliterbereich, wo es auf eine langsame kontinuierliche Vermischung von Lösungen mit unterschiedlicher Phasenbildung ankommt, um auch eine Steigerung der Ausbeute zu erreichen.
  • Bekannt sind Geräte , die Laborprobengefäße mit Inhalt sowohl temperieren als auch schütteln können.
  • Diese Geräte arbeiten alle nach dem Prinzip eines Kreisschüttlers, womit jedoch im vorgenannten Anwendungsbereich der Erfindung, nämlich im Mikroliterbereich, nur sehr unbefriedigende Durchmischungen von Reaktionskomponenten im Probegefäß realisierbar sind.
       Begründet ist dies damit, daß im Mikroliterbereich die Oberflächenspannung der Probenflüssigkeit zu einer Tropfenbildung im Probengefäß führt und sich durch die kontinuierlich kreisende Bewegung ein eingeschwungener, stationärer Zustand einstellt, wodurch der Tropfen, angetrieben von der Zentrifugalkraft, an die Wandung des Probengefäßes gedrückt wird und dort verbleibt. Dabei findet im Inneren der Probenflüssigkeit keine Durchmischung statt.
  • Mit einer Erhöhung der Schüttelfrequenz lassen sich zwar ab einer gewissen Grenze die Molekularkräfte im Probengefäß überwinden, womit aber die kräftigeren, periodisch aufeinanderfolgenden Bewegungsimpulse eine definierte, reproduzierbare Beherrschung des unerwünschten Schereffektes in der Probe verhindern.
  • Bekannt und üblich ist es in biochemischen und biotechnologischen Laboratorien, die Probengefäße aus dem Metallblockthermostat herauszunehmen und mit den Fingern anzuschnippen, um damit besonders schonend eine Durchmischung der Proben zu bewirken und um damit eine Reaktion auszulösen.
  • Diese manuelle Methode ist sehr arbeitsaufwendig und deshalb insbesondere bei umfangreichen Versuchsreihen nicht effektiv realisierbar.
  • Sie führt auch zu einer unzulässig hohen Temperaturdestabilisierung des Probenmaterials.
       Problem der Erfindung ist es, einen Schüttler mit beheizbarem Metallblock zur Temperierung und zur Aufnahme von Probengefäßen zu schaffen, der eine sanfte, schonende und wirkungsvolle Durchmischung von empfindlichen hochmolekularen biochemischen Substanzen ermöglicht und insbesondere das Entstehen von schädlichen Abscherkräften an den Molekülen der in den Probegefäßen befindlichen Substanzen vermeidet.
  • Erfindungsgemäß wird das Problem dadurch gelöst, daß ein Schüttler- Metallblock-Thermostat als elektromechanisch antreibbarer Linearschüttler ausgebildet ist, dessen Hub und dessen Frequenz und dessen Intensität stufenlos einstellbar sind, sowie in Zeitintervallen, in Einzelstoßimpulsen und in der Intensität der Einzelstoßimpulse mittels einer an sich bekannten Programmschaltung manuell oder automatisch steuerbar ist und dessen auf oder über dem Metallblock-Thermostat befindlicher Probengefäßeträger mit den Probengefäßen unabhängig von der Schüttelbeweglichkeit des Metallblock-Thermostaten mechanisch geführt und manuell oder mittels an sich bekannter Programmsteuerung elektrisch anhebbar und in jeder Hubstellung arretierbar ist.
       Mittels der Programmsteuerung ist die Hubhöhe und auch die zeitliche Hubfolge sowie die Dauer der Arretierung regelbar. Die horizontalen, linearen Einzelstoßimpulse können bei im Stillstand befindlichem Metallblock-Thermostaten und angehobenen Probengefäßeträger auch auf diesen ausübbar sein.
  • Die Bohrungen für die Probengefäße im Metallblock-Thermostat des Linearschüttlers können an ihrer Oberkante angefast, gerundet oder mit einem elastischen Kunststoff umrandet sein. Im Stillstand der Schüttelmechanik nimmt der Metallblock-Thermostat eine definierte Mittelstellung zum angehobenen Probengefäßträger ein, die durch mindestens ein federndes Element elastisch arretierbar sein kann.
  • Der elektromechanische Antrieb des Linearschüttlers kann insbesondere zur Erzeugung von in ihrer Intensität bzw. ihrer Stoßenergie stufenlos einstellbaren Einzelimpulsen, ein Klopfwerk sein, dessen Klopfer auf den linear beweglichen und linear gefederten Metallblock-Thermostaten oder auf den Probengefäßeträger bei ausgefahrener Hubwerkmechanik linear gleichgerichtet auftrifft.
       Die Vorzüge der erfindungsgemäßen Lösung bestehen darin, daß sich mittels in ihrer Stoßenergie genau definierbarer Einzelimpulse sanfte, schonende Reaktionsanstöße auf die empfindlichen hochmolekularen biochemischen Stoffe in den Probengefäßen übertragen lassen.
  • Der erfindungsgemäße Thermoschüttler erlaubt damit, ein manuelles, mit den Fingern ausgeübtes Anschnippen eines jeden Probengefäßes zu mechanisieren bzw. zu automatisieren und auch die Stoßenergie genau definiert jederzeit reproduzierbar zu machen.
       Von Vorteil ist dabei auch, daß durch die Mechanisierung dieses Anschnippvorganges die Probengefäße nur sehr kurzzeitig und auch nur ein sehr kurzes Wegstück sowie nicht einmal vollständig aus den Bohrungen im Metallblock-Thermostaten mit dem Probengefäßträger angehoben werden.
  • Auf diese Weise wird auch eine Temperaturkonstanz der Proben in den Probengefäßen besser als auf herkömmliche Weise gewährleistet.
       Dies bedeutet auch eine höhere Sicherheit bei der Versuchsdurchführung im Labor und eine wesentliche Verbesserung der Effektivität der Forschungsarbeit.
       Der erfindungsgemäße Thermoschüttler ist von kompakter Bauart und ist mit einem Bedienpult ausgestattet.
  • Er erlaubt bei Verwendung einer Prozessorsteuerung für Temperatur, Zeit und Schüttlermechanik sowie für die Probengefäßeträgerhubmechanik eine hohe Genauigkeit bei der Reproduzierbarkeit der Betriebsparameter und eine einfache Bedienung.
  • Die kompakte Bauweise ermöglicht einen leichten Standortwechsel des Gerätes z.B. auch in eine Laminarbox zum Betrieb unter Sterilbedingungen.
       Nachstehend wird die Erfindung an einem Ausführungsbeispiel näher erläutert.
       In der Zeichnung ist mit Fig. 1 der Metallblock-Thermostat mit Probengefäßeträger und Probengefäßen eines Thermoschüttlers schematisch dargestellt.
  • Mit Fig. 2 ist in der Zeichnung der Metallblock-Thermostat eines Thermoschüttlers mit angehobenem Probengefäßeträger und Probengefäßen dargestellt.
  • Auf der elektromechanisch angetriebenen Führungsplatte 4 des Thermoschüttlers ist der Metallblock-Thermostat 3 schüttelfest angeordnet. In dem Metallblock-Thermostat 3 befinden sich mit den Probengefäßen 1 gefäßkonforme Bohrungen, hier für konische Eppendorf-Tups.
  • Bei Stillstand der Schüttelmechanik 6 nimmt der Metallblock-Thermostat 3 eine bestimmte, vom federnden Elementen 8 fixierte Mittelstellung ein , in welcher die Bohrungen im Metallblock-Thermostaten 3 mit den Öffnungen für die Probengefäße 1 im Probengefäßeträger 2 fluchten.
  • Unabhängig von der linear horizontal beweglichen Führungsplatte 4 mit dem darauf befindlichen Metallblock-Thermostat 3 ist über demselben der mittels Probengefäßeträgerhubmechanik 7 auf-und abbewegliche Probengefäßeträger 2 angeordnet.
  • Die Hubmechanik 7 ist so gestaltet, daß der Probengefäßeträger 2 im völlig abgesenktem Arbeitszustand auf dem Metallblock-Thermostaten 3 aufliegt und mit diesem formschlüssig verbunden ist wobei die Hubmechanik 7 vom Probengefäßeträger abgekuppelt ist.
  • Im angehobenen Arbeitszustand des Probengefäßeträgers 2 ist dieser formschlüssig mit der Hubmechanik 7 verbunden und vom Formschluß mit dem Metallblock-Thermostaten 3 gelöst.
  • Die Hubbewegungen der Hubmechanik 7 erfolgen bei Stillstand der Schüttelmechanik 6 .
  • Alle Bewegungsabläufe sind mittels Programmschaltung vorwählbar und automatisch steuerbar.
  • Zur Inbetriebnahme des Thermoschüttlers werden zunächst Probengefäße 1 in Form von konischen Eppendorf-Tubs in den Probengefäßeträger 2 eingebracht.
  • Der Probengefäßeträger 2 kann sich dabei außerhalb des Thermoschüttlers befinden oder bereits in der Probengefäßeträger hubmechanik 7 auf oder über dem Metallblock-Thermostat 3 plaziert sein.
  • Sobald der Probengefäßträger 2 auf dem Metallblock-Thermostaten 3 aufliegt, ist dieser gegenüber der Probengefäßeträgerhubmechanik 7 frei beweglich und mit dem Metallblock-Thermostaten formschlüssig verbunden.
  • Er führt die Schüttelbewegungen des auf der Führungsplatte 4 befindlichen Metallblock-Thermostaten 3 mit aus.
  • Mittels einer Programmanschaltung lassen sich jetzt die Betriebsparameter, wie Temperierung, Hub, Frequenz und Zeitintervalle für den Schüttelvorgang vorwählen, und der Schüttelvorgang läßt sich danach ausführen.
  • Neben diesem Schüttelprogramm bzw. innerhalb dieses Schüttelprogrammes kann der Programmablauf auch so gewählt werden, daß der Probengefäßeträger 2 mit den Probengefäßen 1 bei Stillstand der Schüttelmechanik 6 in Mittelstellung mittels Probengefäßehubmechanik 7 nicht vollständig aus dem Metallblock-Thermostaten 3 herausgehoben wird und in solcher Stellung verbleibt und/oder arretiert wird, so daß sich infolge der konisch geformten Probengefäße 1 zwischen diesen und der Bohrung im Metallblock-Thermostaten ein Ringspalt 5 ausbildet.
  • Sodann wird ein definierter Einzelstoßimpuls auf den Metallblock-Thermostaten 3 direkt oder auf die Führungsplatte 4 über die Schüttelhubmechanik 6 gegen das federnde Element 8 so ausgelöst, daß die Oberkante der Bohrung im Metallblock-Thermostat 3 die konische Wandung des Probengefäßes 1 kurzzeitig berührt bzw. mitführt und damit einen Anschnippeffekt realisiert.
  • Mittels dieses Anschnippeffektes wird das manuelle Anschnippen des Probengefäßes 1 mit den Fingern nachgeahmt und damit dieser häufig unverzichtbare Arbeitsgang für eine schonende Reaktionsauslösung bei hochmolekularen, biochemischen Verbindungen mechanisiert und so ausgeführt, daß der Temperaturenabfall in der Probe auf ein Minimum reduziert ist. Durch das kurzfristige Herausheben der Probengefäße aus dem Metallblockthermostaten auf kurzem Weg wird der daraus resultierende Temperaturabfall der Proben minimiert.

Claims (6)

  1. Thermoschüttler, bestehend aus einer Kombination von Schüttler und Metallblock- Thermostat (3) zum Vermischen und Temperieren von Proben in Probengefäßen (1), insbesondere für biochemische Laboratorien, dadurch gekennzeichnet, daß ein Thermoschüttler als elektromechanisch, auch in Einzelimpulsen, antreibbarer Linearschüttler ausgebildet ist, dessenHub, dessen Schüttelfrequenz und dessen Intensität von Einzelstoßimpulsen stufenlos einstellbar sind, sowie in Zeitintervallen, in Einzelstoßimpulsen und in der Intensität der Einzelstoßimpulse mittels einer an sich bekannten Programmschaltung manuell oder automatisch steuerbar ist und dessen, auf oder über dem Metallblock-Thermostat (3) befindlicher, Probengefäßeträger (2) mit dem Probengefäßen(1) unabhängig von der Schüttelbeweglichkeit des Metallblock-Thermostaten (3) mechanisch geführt und manuell oder mittels an sich bekannter Programmsteuerung elektromechanischer anhebbar und absenkbar ist und in jeder Hubstellung arretierbar ist.
  2. Thermoschüttler nach Anspruch 1, dadurch gekennzeichnet, daß die horizontalen linearen Einzelstoßimpulse bei im Stillstand befindlichen Metallblock-Thermostaten (3) und aus dem Metallblock-Thermostaten (3) angehobenen Probengefäßen (1) mittels einer Stoßmechanik auf den Probengefäßeträger ausübbar sein können.
  3. Thermoschüttler nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Hubhöhe des Probengefäßeträgers (2), die zeitliche Hubfolge desselben sowie die Dauer dessen Arretierung mittels Programmsteuerung regelbar ist.
  4. Thermoschüttler nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß der Metallblock-Thermostat (3) bei Stillstand der Schüttelmechanik (6) eine definierte, vorzugsweise Mittelstellung einnimmt, in welcher der Metallblock-Thermostat (3) beweglich mittels mindestens einem federnden Element (8) arretierbar ist.
  5. Thermoschüttler nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die Bohrungen für die Probengefäße (1) im Metallblock-Thermostat (3) des Linearschüttlers an ihrer Oberkannte angefaßt, gerundet oder mit einem elastischen Kunststoff umrandet sind.
  6. Thermoschüttler nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die auf den Metallblock-Thermostaten (3) einwirkenden Einzelstoßimpulse von einem in der Schüttlermechanik (6) integrierten Klopfwerk oder elektromagnetisch erzeugt werden.
EP96100107A 1995-01-12 1996-01-05 Thermoschüttler Withdrawn EP0722136A2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19500654 1995-01-12
DE19500654 1995-01-12
DE19512835A DE19512835C2 (de) 1995-01-12 1995-04-06 Thermoschüttler
DE19512635 1995-04-06

Publications (2)

Publication Number Publication Date
EP0722136A2 true EP0722136A2 (de) 1996-07-17
EP0722136A3 EP0722136A3 (de) 1996-08-28

Family

ID=26011541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100107A Withdrawn EP0722136A2 (de) 1995-01-12 1996-01-05 Thermoschüttler

Country Status (1)

Country Link
EP (1) EP0722136A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243209A1 (de) * 2002-03-22 2003-10-02 Endress & Hauser Wetzer Gmbh Vorrichtung zur Kühlung eines Probennehmers
WO2004053446A1 (en) * 2002-12-06 2004-06-24 Thermogenic Imaging High throughput microcalorimeter systems and methods
US7276351B2 (en) 2003-09-10 2007-10-02 Seahorse Bioscience Method and device for measuring multiple physiological properties of cells
US8202702B2 (en) 2008-10-14 2012-06-19 Seahorse Bioscience Method and device for measuring extracellular acidification and oxygen consumption rate with higher precision
US8658349B2 (en) 2006-07-13 2014-02-25 Seahorse Bioscience Cell analysis apparatus and method
US10118177B2 (en) 2014-06-02 2018-11-06 Seahorse Bioscience Single column microplate system and carrier for analysis of biological samples
CN109621799A (zh) * 2018-12-18 2019-04-16 安徽国泰众信检测技术有限公司 一种用于旋涡振荡器的辅助装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494577B2 (en) 2012-11-13 2016-11-15 Seahorse Biosciences Apparatus and methods for three-dimensional tissue measurements based on controlled media flow

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1486210A (en) * 1973-11-14 1977-09-21 Suovaniemi Osmo Antero Cuvette assembly for use in automatic reading and recording of reaction results
US3944188A (en) * 1974-05-20 1976-03-16 Buchler Instruments Div. Of Searle Analytic Inc. Concentrating vortex shaker
US5112134A (en) * 1984-03-01 1992-05-12 Molecular Devices Corporation Single source multi-site photometric measurement system
US5229074A (en) * 1988-07-25 1993-07-20 Precision Systems, Inc. Automatic multiple-sample multiple-reagent chemical analyzer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243209A1 (de) * 2002-03-22 2003-10-02 Endress & Hauser Wetzer Gmbh Vorrichtung zur Kühlung eines Probennehmers
WO2004053446A1 (en) * 2002-12-06 2004-06-24 Thermogenic Imaging High throughput microcalorimeter systems and methods
US7276351B2 (en) 2003-09-10 2007-10-02 Seahorse Bioscience Method and device for measuring multiple physiological properties of cells
US7638321B2 (en) 2003-09-10 2009-12-29 Seahorse Bioscience, Inc. Method and device for measuring multiple physiological properties of cells
US7851201B2 (en) 2003-09-10 2010-12-14 Seahorse Bioscience, Inc. Method and device for measuring multiple physiological properties of cells
US8697431B2 (en) 2003-09-10 2014-04-15 Seahorse Bioscience, Inc. Method and device for measuring multiple physiological properties of cells
US8658349B2 (en) 2006-07-13 2014-02-25 Seahorse Bioscience Cell analysis apparatus and method
US10359418B2 (en) 2006-07-13 2019-07-23 Seahorse Bioscience Cell analysis apparatus and method
US8202702B2 (en) 2008-10-14 2012-06-19 Seahorse Bioscience Method and device for measuring extracellular acidification and oxygen consumption rate with higher precision
US10118177B2 (en) 2014-06-02 2018-11-06 Seahorse Bioscience Single column microplate system and carrier for analysis of biological samples
CN109621799A (zh) * 2018-12-18 2019-04-16 安徽国泰众信检测技术有限公司 一种用于旋涡振荡器的辅助装置

Also Published As

Publication number Publication date
EP0722136A3 (de) 1996-08-28

Similar Documents

Publication Publication Date Title
EP1101119B1 (de) Dosierkopf zur parallelen bearbeitung einer vielzahl von fluidproben
EP1110609B1 (de) System zur Bearbeitung von Proben in einer Mehrkammeranordnung
DE112012002014B4 (de) Probenverarbeitungsvorrichtung, Probenverarbeitungsverfahren und in dieser Vorrichtung bzw. diesem Verfahren verwendeter Reaktionsbehälter
EP1081233B1 (de) Probenkammer zur Flüssigkeitsbehandlung biologischer Proben
EP1420875B1 (de) Bewegungselement für kleine flüssigkeitsmengen
DE3872341T2 (de) Geraet zum durchfuehren einer fluessigkeitsreaktion.
EP1036336B1 (de) Vorrichtung zur elektrisch ausgelösten mikrotropfenabgabe mit einem dispensierkopf
EP1832336B1 (de) Vorrichtung zum Mischen von Laborgefäß-Inhalten
EP1032839B1 (de) Vorrichtung zum automatischen durchführen von chemischen bzw. biologischen verfahren
DE68910610T2 (de) Automatischer Wirbelmischer.
EP2030689B1 (de) Mikroplatten-Träger mit Magneten
EP1843854B1 (de) Vorrichtung und verfahren zum abtrennen von magnetischen oder magnetisierbaren partikeln aus einer flüssigkeit
DE60212614T2 (de) "Reagens-Zufuhrsystem"
WO2003044537A1 (de) Vorrichtung und verfahren zum behandeln von magnetpartikeln
EP0977037A1 (de) Magnetseparator
DE29817223U1 (de) Vorrichtung zur Aufnahme einer Zellkultur
EP0722136A2 (de) Thermoschüttler
WO2005005049A1 (de) Vorrichtung und verfahren zum abtrennen von magnetischen oder magnetisierbaren partikeln aus einer flüssigkeit
DE69810767T2 (de) Gerät zum selektiven filtern unter reduziertem druck und zum vakuum-trocknenvon probenflüssigkeiten oder von tropfen von probenflüssigkeiten, sowie anwendung dieses gerätes
DE19512835C2 (de) Thermoschüttler
DE9018084U1 (de) Vorrichtung zur Bearbeitung von Flüssigkeiten
DE29706031U1 (de) Vorrichtung zum Temperieren und Schütteln von Proben in Probengefäßen
DE4004198A1 (de) Geraet zum dosierten einfuehren einer substanz in eine anzahl von substraten
DE19852947A1 (de) Verfahren und Vorrichtung zum Sammeln von Fraktionen nach Stofftrennung
DE102011001550A1 (de) Vorrichtung zum Fördern und Mischen von Mikromengen an Reagenzien und zur Durchführung chemischer Reaktionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB LI SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB LI SE

EL Fr: translation of claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
17P Request for examination filed

Effective date: 19961017

17Q First examination report despatched

Effective date: 19961128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010410