EP0719378B1 - Process for operating a thermal power station with condensers connected in series on the coolimg water side - Google Patents
Process for operating a thermal power station with condensers connected in series on the coolimg water side Download PDFInfo
- Publication number
- EP0719378B1 EP0719378B1 EP95925677A EP95925677A EP0719378B1 EP 0719378 B1 EP0719378 B1 EP 0719378B1 EP 95925677 A EP95925677 A EP 95925677A EP 95925677 A EP95925677 A EP 95925677A EP 0719378 B1 EP0719378 B1 EP 0719378B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling water
- condenser
- flow
- condensers
- partial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
- F01K9/003—Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
Definitions
- the invention relates to a method for operating thermal power plants with condensers connected in series on the cooling water side.
- the possibility is used to increase the efficiency of the LP turbines or Sub-turbines downstream of the condensers on the cooling water side to connect in series, with all capacitors in sequence of the entire cooling water flow.
- the cooling water cooled down by the cooling process in the cooling tower flows through the capacitors one after the other, absorbs heat and then becomes part of the system dissipated and the cooling tower as hot water for renewed Recooling fed back.
- the evaporator condenses the condensers at one Pressure, in particular from the respective cooling water outlet temperature of the capacitor in question. In The direction of flow of the cooling water flow increases the cooling water outlet temperatures on the individual capacitors inevitably.
- the invention has for its object in a system of the type described at the beginning when the cooling water inlet temperatures are too low emerging disadvantage of To prevent loss of efficiency.
- the object is achieved in that when the cooling water flow falls below a predetermined limit temperature, the cooling water flow is divided before entering the first condenser, so that only part of the cooling water flow flows through the condenser while the remaining part flow bypasses the condenser, and both part flows immediately behind the condenser, before entering the following condenser.
- the partial flow diverted via the bypass is set or regulated particularly economically, for example, with the aid of a control device depending on the cooling water outlet temperature of the bypassed condenser.
- the advantage of the method is based in particular on the fact that the bypass circuit prevents the flow profile in the turbine or sub-turbine assigned to the bypassed condenser from being blocked, without having any appreciable influence on the cooling water outlet temperatures of the condensers, which subsequently increase again are flowed through a total cooling water flow merged partial flows.
- the expansion ratios in each condenser that is not bypassed by a bypass partial flow and thus in the turbines or partial turbines assigned to them are not deteriorated according to the invention.
- a general reduction in the cooling water flow for all condensers connected in series or a warming up of the cooling water before entering the first condenser would result in an increase in the evaporation pressure in the first condenser, but also in all subsequent condensers.
- the blocking effect in the turbine or partial turbine assigned to the first condenser would be prevented, but at the same time the conditions in all subsequent condensers would also have deteriorated.
- Another advantage of the method according to the invention results from the temporary widening of the flow cross section in the bypass mode of operation, which leads to a noticeable reduction in throttle losses.
- the procedure is for a series connection of more than two Capacitors also provided the option of the second and optionally further capacitors with a bypass partial flow to bypass, the bypass substream each immediately in front of the condenser to be bypassed by the total cooling water flow is branched off and the substreams behind the condenser are brought together again.
- a bypass sequence extending over several condensers ensures for each individual bypassed condenser that a blocking of the flow profile in the turbine or sub-turbine assigned to it is omitted without worsening the expansion conditions in the condensers still to be flowed through.
- the two partial condensers 1a and 1b which are assigned to the two low-pressure turbine parts 2a and 2b, are connected in series on the cooling water side in order to increase the efficiency.
- the cooling water is conveyed from the cooling tower cup via the cooling water pump 3 and the cooling water line 4 into the first partial condenser 1 a.
- the already partially warmed up cooling water reaches the second partial condenser 1b via the overflow line 5 and is returned via line 6 to the cooling tower as hot water.
- the exhaust steam which is introduced via line 7 from the low-pressure turbine section 2b into the partial condenser 1b, condenses at a pressure which is dependent in particular on the water temperature in line 6.
- the exhaust steam which is introduced via line 8 from the LP sub-turbine 2a into the partial condenser la, condenses at a pressure which is dependent in particular on the water temperature in line 5. Since the temperature in line 5 is lower than in line 6, the evaporation pressure in line 8 has a lower level than in line 7.
- the partial turbine 2a thus has a greater pressure drop than is the case when the partial condensers 1a and 1b are connected in parallel on the cooling water side would. This results in an improvement in efficiency.
- the condensate formed from the exhaust steam passes via line 9 from partial condenser 1b into line 10 and via condensate pump 11 to the LP preheaters and thus into the water-steam cycle of the power plant.
- a lowering of the cooling water inlet temperature results in a reduction in the evaporation pressure, which increases the flow velocity of the steam and thus the outlet losses.
- there is still an efficiency advantage as long as the flow profile is not blocked. Only when the cooling water inlet temperature drops to a level that causes critical or subcritical conditions does the effect of blocking the flow profile first occur in the partial turbine 2a. Because of the low condensate temperature, additional tap steam is required for preheating the feed water, which reduces the overall efficiency.
- a reduction in the cooling water flow for example by moving the blades on the cooling water pump 3, would have an increase in the evaporation pressure in the partial condenser 1a and thus prevent the blocking effect, but at the same time the conditions on the partial condenser 1b would also deteriorate.
- the blocking of the flow profile becomes too deep as a result
- the bypass partial flow through a control valve 13 can be set or regulated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Greenhouses (AREA)
- Discharge Heating (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betrieb von Wärmekraftwerken mit kühlwasserseitig in Reihe geschalteten Kondensatoren.The invention relates to a method for operating thermal power plants with condensers connected in series on the cooling water side.
Bei Wärmekraftwerken, insbesondere solchen mit Rückkühlung des Kühlwassers über den Kühlturm, wird die Möglichkeit genutzt, zur Wirkungsgradsteigerung die den ND-Turbinen bzw. ND-Teilturbinen nachgeschalteten Kondensatoren kühlwasserseitig in Reihe zu schalten, wobei alle Kondensatoren nacheinander vom gesamten Kühlwasserstrom durchflossen werden. Das durch den Kühlprozeß im Kühlturm heruntergekühlte Kühlwasser durchströmt dabei nacheinander die Kondensatoren, nimmt Wärme auf und wird anschließend aus diesem Anlagenteil abgeführt und dem Kühlturm als Warmwasser zur erneuten Rückkühlung wieder zugeleitet. In den in Reihe geschalteten Kondensatoren kondensiert der Abdampf dabei bei einem Druck, der insbesondere von der jeweiligen Kühlwasseraustrittstemperatur des betreffenden Kondensators abhängt. In Flußrichtung des Kühlwasserstromes steigen die Kühlwasseraustrittstemperaturen an den einzelnen Kondensatoren zwangsläufig an. Das dem Abdampf zur Verfügung stehende Druckgefälle, das als Enthalpiedifferenz zur Steigerung der Strömungsgeschwindigkeit in Geschwindigkeitsenergie umgesetzt wird, wird - wegen der erhöhten Wärmeabfuhr infolge des größeren Kühlwasserstromes - bei den zuerst durchströmten Kondensatoren größer, als es bei kühlwasserseitiger Parallelschaltung der Kondensatoren der Fall wäre. Dies bewirkt einen besseren Gesamtwirkungsgrad, da die auf der wärmeren Seite des Kühlwassers gelegenen Kondensatoren dennoch mit Druckgefällen arbeiten, die in etwa denen der Parallelschaltung entsprechen.In thermal power plants, especially those with recooling of the cooling water via the cooling tower, the possibility is used to increase the efficiency of the LP turbines or Sub-turbines downstream of the condensers on the cooling water side to connect in series, with all capacitors in sequence of the entire cooling water flow. The cooling water cooled down by the cooling process in the cooling tower flows through the capacitors one after the other, absorbs heat and then becomes part of the system dissipated and the cooling tower as hot water for renewed Recooling fed back. In the series The evaporator condenses the condensers at one Pressure, in particular from the respective cooling water outlet temperature of the capacitor in question. In The direction of flow of the cooling water flow increases the cooling water outlet temperatures on the individual capacitors inevitably. The steam available Pressure drop, used as an enthalpy difference to increase the Flow velocity converted into velocity energy will - due to the increased heat dissipation of the larger cooling water flow - with the first flow Capacitors larger than that of the cooling water side Parallel connection of the capacitors would be the case. this causes a better overall efficiency because the on the condenser located on the warmer side of the cooling water work with pressure drops that roughly match those of the parallel connection correspond.
Nachteilig erweist sich jedoch bei der Reihenschaltung, daß
sich bei tiefen Kühlwassereintrittstemperaturen, bedingt
durch die damit auch verringerten Kühlwasseraustrittstemperaturen,
in den einzelnen Kondensatoren weiter verminderte
Abdampfdrücke einstellen. Sie führen zu höheren abbaubaren
Druckgefällen, dementsprechend zu höheren Strömungsgeschwindigkeiten
des Dampfes und damit zu ansteigenden Auslaßverlusten,
die den Wirkungsgradzuwachs verringern.
Nähern sich bei abnehmender Kühlwassereintrittstemperatur
die Druckverhältnisse dem kritischen Druckverhältnis, so
erreicht die Strömungsgeschwindigkeit in etwa Schallgeschwindigkeit
und es tritt das sogenannte Sperren des Strömungsprofiles
ein. Jede weitere Vergrößerung des Druckgefälles
über das kritische Druckgefälle hinaus, hervorgerufen
durch eine weitere Absenkung der Kühlwassereintrittstemperatur,
wirkt sich nicht mehr als Geschwindigkeitssteigerung
beim Dampf aus.
Eine Wirkungsgradsteigerung, zurückzuführen auf den Abbau
vergrößerter Enthalpiedifferenzen, kommt so nicht mehr zustande
und aufgrund der niedrigen Kondensattemperaturen
wird sogar eine intensivere Beheizung der Speisewasservorwärmung
mit Anzapfdampf erforderlich. Die Folge ist eine
Verschlechterung des Gesamtwirkungsgrades ursächlich eingeleitet
durch zu tiefe - d.h. unterkritische Verhältnisse
schaffende - Kühlwassereintrittstemperaturen.
Da bei Reihenschaltung der Kondensatoren und gleichem
Gesamt-Kühlwasserstrom das Sperren des Strömungsprofiles ,
wegen des bezogen auf den einzelnen Kondensator erhöhten
Kühlwasserdurchflusses, bereits bei höheren Kühlwassereintrittstemperaturen
eintritt als bei Parallelschaltung der
Kondensatoren, kann bei zu tiefen Kühlwassereintrittstemperaturen
der Vorteil der Reihenschaltung nicht mehr voll erhalten
werden.However, it turns out to be disadvantageous with the series connection that at low cooling water inlet temperatures, due to the cooling water outlet temperatures also reduced, further reduced evaporation pressures occur in the individual condensers. They lead to higher degradable pressure drops, correspondingly to higher flow velocities of the steam and thus to increasing outlet losses, which reduce the increase in efficiency.
If the pressure ratios approach the critical pressure ratio as the cooling water inlet temperature decreases, the flow velocity approximately reaches the speed of sound and the so-called blocking of the flow profile occurs. Any further increase in the pressure drop beyond the critical pressure drop, caused by a further drop in the cooling water inlet temperature, no longer has an effect on the steam speed increase.
An increase in efficiency, due to the reduction of larger enthalpy differences, no longer occurs and, due to the low condensate temperatures, even more intensive heating of the feed water preheating with bleed steam is required. The result is a deterioration in the overall efficiency caused by excessively low - ie creating subcritical conditions - cooling water inlet temperatures.
Since, when the condensers are connected in series and the total cooling water flow is the same, the blocking of the flow profile, due to the increased cooling water flow in relation to the individual condenser, already occurs at higher cooling water inlet temperatures than when the condensers are connected in parallel, the advantage of the series connection can no longer be fully obtained if the cooling water inlet temperatures are too low .
Der Erfindung liegt die Aufgabe zugrunde, bei einer Anlage der eingangs beschriebenen Art den bei zu tiefen Kühlwassereintrittstemperaturen sich einstellenden Nachteil der Wirkungsgradeinbuße zu verhindern.The invention has for its object in a system of the type described at the beginning when the cooling water inlet temperatures are too low emerging disadvantage of To prevent loss of efficiency.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß bei
Unterschreiten einer vorgegebenen Grenztemperatur des Kühlwassers
der Kühlwasserstrom vor Eintritt in den ersten Kondensator
geteilt wird, so daß nur ein Teil des Kühlwasserstromes
den Kondensator durchströmt während der verbleibende
Teilstrom über einen Bypass den Kondensator umfährt, und
beide Teilströme unmittelbar hinter dem Kondensator, vor
Eintritt in den folgenden Kondensator, wieder zusammengeführt
werden.
Der über den Bypass umgeleitete Teilstrom wird dabei z.B.
besonders wirtschaftlich mit Hilfe einer Regeleinrichtung
in Abhängigkeit der Kühlwasseraustrittstemperatur des umfahrenen
Kondensators eingestellt bzw. geregelt.
Der Vorteil des Verfahrens beruht insbesondere darauf, daß
durch die Bypass-Schaltung das Sperren des Strömungsprofiles
in der dem umfahrenen Kondensator zugeordneten Turbine
bzw. Teilturbine verhindert wird, und zwar ohne nennenswerten
Einfluß zu nehmen auf die Kühlwasseraustrittstemperaturen
der Kondensatoren, die nachfolgend von den wieder
zu einem Gesamt-Kühlwasserstrom zusammengeführten Teilströmen
durchströmt werden. Die Expansionsverhältnisse in jedem
nicht von einem Bypass-Teilstrom umfahrenen Kondensator und
damit in den ihnen zugeordneten Turbinen bzw. Teilturbinen
werden dabei erfindungsgemäß nicht verschlechtert.
Eine generelle Verringerung des Kühlwasserstromes für alle
in Reihe geschalteten Kondensatoren oder eine Aufwärmung
des Kühlwassers vor Eintritt in den ersten Kondensator hätte
eine Erhöhung des Abdampfdruckes im ersten Kondensator,
aber auch in allen folgenden Kondensatoren zur Folge. Die
Sperrwirkung in der dem ersten Kondensator zugeordneten
Turbine bzw. Teilturbine wäre zwar verhindert, gleichzeitig
hätten sich aber auch die Verhältnisse in allen nachfolgenden
Kondensatoren verschlechtert.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ergibt
sich durch die vorübergehende Erweiterung des Strömungsquerschnittes
bei Bypass-Fahrweise, die zu einer merklichen
Verringerung der Drosselverluste führt.The object is achieved in that when the cooling water flow falls below a predetermined limit temperature, the cooling water flow is divided before entering the first condenser, so that only part of the cooling water flow flows through the condenser while the remaining part flow bypasses the condenser, and both part flows immediately behind the condenser, before entering the following condenser.
The partial flow diverted via the bypass is set or regulated particularly economically, for example, with the aid of a control device depending on the cooling water outlet temperature of the bypassed condenser.
The advantage of the method is based in particular on the fact that the bypass circuit prevents the flow profile in the turbine or sub-turbine assigned to the bypassed condenser from being blocked, without having any appreciable influence on the cooling water outlet temperatures of the condensers, which subsequently increase again are flowed through a total cooling water flow merged partial flows. The expansion ratios in each condenser that is not bypassed by a bypass partial flow and thus in the turbines or partial turbines assigned to them are not deteriorated according to the invention.
A general reduction in the cooling water flow for all condensers connected in series or a warming up of the cooling water before entering the first condenser would result in an increase in the evaporation pressure in the first condenser, but also in all subsequent condensers. The blocking effect in the turbine or partial turbine assigned to the first condenser would be prevented, but at the same time the conditions in all subsequent condensers would also have deteriorated.
Another advantage of the method according to the invention results from the temporary widening of the flow cross section in the bypass mode of operation, which leads to a noticeable reduction in throttle losses.
Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens ist bei einer Reihenschaltung von mehr als zwei Kondensatoren die Möglichkeit vorgesehen, auch den zweiten und gegebenenfalls weitere Kondensatoren mit einem Bypass-Teilstrom zu umfahren, wobei der Bypass-Teilstrom jeweils unmittelbar vor dem zu umfahrenden Kondensator vom Gesamt-Kühlwasserstrom abgezweigt wird und die Teilströme hinter dem Kondensator wieder zusammengeführt werden. Dadurch wird erreicht, daß bei sehr niedriger Temperatur des vom Kühlturm zugeführten Kühlwassers und einer möglicherweise nicht ausreichenden Temperaturerhöhung durch die Wärmeaufnahme im ersten Kondensator , es nicht zu einem Sperren des Strömungsprofiles in der dem nachfolgenden Kondensator zugeordneten Turbine bzw. Teilturbine kommt. According to a further embodiment of the invention The procedure is for a series connection of more than two Capacitors also provided the option of the second and optionally further capacitors with a bypass partial flow to bypass, the bypass substream each immediately in front of the condenser to be bypassed by the total cooling water flow is branched off and the substreams behind the condenser are brought together again. This will achieved that at a very low temperature from the cooling tower supplied cooling water and one may not sufficient temperature increase due to the heat absorption in the first condenser, it does not block the airfoil in the associated capacitor Turbine or partial turbine comes.
Ein über mehrere Kondensatoren sich erstreckende Bypass-Folge,
wobei für jeden umfahrenen Kondensator das Verhältnis
von Bypass-Teilstrom zu Kühlwasser-Teilstrom in Abhängigkeit
der Kühlwasseraustrittstemperatur des jeweiligen
Kondensators bestimmt ist, stellt für jeden einzelnen umfahrenen
Kondensator sicher, daß ein Sperren des Strömungsprofiles
in der ihm zugeordneten Turbine bzw. Teilturbine
unterbleibt, ohne die Expansionsverhältnisse in den noch zu
durchströmenden Kondensatoren zu verschlechtern.
Das erfindungsgemäße Verfahren wird anhand der in den Figuren
1 bis 3 schematisch dargestellten Ausführungsbeispiele
weiter erläutert.A bypass sequence extending over several condensers, the ratio of bypass partial flow to cooling water partial flow depending on the cooling water outlet temperature of the respective condenser being determined for each bypassed condenser, ensures for each individual bypassed condenser that a blocking of the flow profile in the turbine or sub-turbine assigned to it is omitted without worsening the expansion conditions in the condensers still to be flowed through.
The method according to the invention is further explained on the basis of the exemplary embodiments shown schematically in FIGS. 1 to 3.
Gemäß der bekannten Schaltung nach Figur 1 sind zur Wirkungsgradsteigerung
die beiden Teilkondensatoren 1a und 1b,
die den beiden ND-Teilturbinen 2a und 2b zugeordnet sind,
kühlwasserseitig in Reihe geschaltet. Das Kühlwasser wird
dabei aus der Kühlturmtasse über die Kühlwasserpumpe 3 und
die Kühlwasserleitung 4 in den ersten Teilkondensator la
gefördert. Über die Überströmleitung 5 gelangt das bereits
teilweise aufgewärmte Kühlwasser in den zweiten Teilkondensator
1b und wird über die Leitung 6 als Warmwasser zum
Kühlturm zurückgeführt. Der Abdampf, der über die Leitung 7
aus der ND-Teilturbine 2b in den Teilkondensator 1b eingleitet
wird, kondensiert bei einem Druck, der insbesondere
von der Wassertemperatur in Leitung 6 abhängig ist. Der Abdampf,
der über die Leitung 8 aus der ND-Teilturbine 2a in
den Teilkondensator la eingeleitet wird, kondensiert bei
einem Druck, der insbesondere von der Wassertemperatur in
Leitung 5 abhängig ist. Da die Temperatur in Leitung 5
niedriger ist als in Leitung 6, hat der Abdampfdruck in
Leitung 8 ein niedrigeres Niveau als in Leitung 7. Die
Teilturbine 2a hat also ein größeres Druckgefälle zur Verfügung,
als es bei kühlwasserseitiger Parallelschaltung der
Teilkondensatoren 1a und 1b der Fall wäre. Daraus resultiert
eine Wirkungsgradverbesserung. Das aus dem Abdampf
entstandene Kondensat gelangt über die Leitung 9 vom Teilkondensator
1b in die Leitung 10 und über die Kondensatpumpe
11 zu den ND-Vorwärmern und damit in den Wasser-Dampf-Kreislauf
des Kraftwerkes.
Eine Absenkung der Kühlwassereintrittstemperatur hat eine
Reduzierung des Abdampfdruckes zur Folge, wodurch die Strömungsgeschwindigkeit
des Dampfes und damit auch die Auslaßverluste
ansteigen. Dennoch verbleibt ein Wirkungsgradvorteil,
solange kein Sperren des Strömungsprofiles eintritt.
Erst bei einem Absinken der Kühlwassereintrittstemperatur
auf ein Niveau, das kritische bzw. unterkritische Verhältnisse
bewirkt tritt zunächst bei der Teilturbine 2a der Effekt
des Sperrens des Strömungsprofiles ein. Wegen der sich
einstellenden niedrigen Kondensattemperatur wird sogar zusätzlicher
Anzapfdampf für die Speisewasservorwärmung benötigt,
der den Gesamtwirkungsgrad reduziert.
Eine Reduktion des Kühlwasserstromes z.B. durch Laufschaufelverstellung
an der Kühlwasserpumpe 3 hätte zwar eine Erhöhung
des Abdampfdruckes im Teilkondensator 1a und damit
das Verhindern der Sperrwirkung zur Folge, gleichzeitig
würden dadurch aber auch die Verhältnisse am Teilkondensator
1b verschlechtert.According to the known circuit according to FIG. 1, the two
A lowering of the cooling water inlet temperature results in a reduction in the evaporation pressure, which increases the flow velocity of the steam and thus the outlet losses. However, there is still an efficiency advantage as long as the flow profile is not blocked. Only when the cooling water inlet temperature drops to a level that causes critical or subcritical conditions does the effect of blocking the flow profile first occur in the
A reduction in the cooling water flow, for example by moving the blades on the cooling water pump 3, would have an increase in the evaporation pressure in the
Nach dem in Figur 2 dargestellten erfindungsgemäßen Verfahren
wird das Sperren des Strömungsprofiles infolge zu tiefer
Eintrittstemperatur des Kühlwassers verhindert, in dem
durch eine Bypass-Leitung 12 ein Teilstrom des Kühlwasserstromes
an dem ersten Teilkondensator 1a vorbeigeleitet
wird, wobei der Bypass-Teilstrom durch eine Regelarmatur 13
eingestellt bzw. geregelt werden kann. According to the inventive method shown in Figure 2
the blocking of the flow profile becomes too deep as a result
Prevents entry temperature of the cooling water in the
a partial flow of the cooling water flow through a
Durch den über Leitung 12 abgezweigten Bypass-Teilstrom erhöht
sich die Kühlwasseraustrittstemperatur in Leitung 5a
hinter dem Teilkondensator la. Dadurch kann erfindungsgemäß
auch bei zu tiefen Kühlwassereintrittstemperaturen in Leitung
4 das Sperren des Strömungsprofiles in Teilturbine 2a
verhindert werden. Die vorteilhafte Wirkung einer Wirkungsgradverbesserung
bedingt durch die kühlwasserseitige Reihenschaltung
der Kondensatoren 1a und 1b bleibt jedoch erhalten,
da der Wirkungsgradabfall infolge zu tiefer Kühlwassertemperatur
verhindert wird, der Wirkungsgradbeitrag
des Teilkondensators 1b jedoch durch die fast unbeeinflußte
Expansion in der Teilturbine 2b nicht verschlechtert wird.Increased by the bypass partial flow branched off via
Wie in Figur 3 gezeigt ist, kann es bei einer Reihenschaltung
von mehr als zwei Kondensatoren 1a, 1b, 1i erforderlich
sein, auch vor dem zweiten Teilkondensator 1b und ggf.
weiteren nachgeschalteten Teilkondensatoren, von dem
Gesamt-Kühlwasserstrom einen - eingestellt bzw. geregelt
wieder in Abhängigkeit der Kühlwasseraustrittstemperatur
des jeweiligen Kondensators - Bypass-Teilstrom abzuzweigen
und hinter dem Kondensator wieder dem austretenden
Kühlwasser-Teilstrom zuzumischen. Das kann erforderlich
sein, wenn die Temperaturerhöhung im Gesamt-Kühlwasserstrom
nach dem Durchströmen des ersten Kondensators nicht ausreicht,
um ein Sperren des Strömungsprofiles in der dem
nachfolgenden Kondensator zugeordneten Teilturbine sicher
zu verhindern.As shown in Figure 3, it can with a series connection
of more than two
Claims (3)
- Method for operating thermal power stations with condensers connected in series on the cooling water side, whereby if the cooling water drops below a predetermined limit temperature, the stream of cooling water is divided before entering the first condenser so that only a part of the stream of cooling water flows through the condenser while the remaining part stream bypasses the condenser through a bypass and both part streams are brought together again directly after the condenser, prior to entering the following condenser.
- Method according to claim 1, characterised in that with more than two condensers connected in series on the cooling water side, further following condensers are bypassed by a bypass part stream.
- Method according to one of claims 1 and 2, characterised in that the ratio of bypass part stream to cooling water part stream is set or controlled for each bypassed condenser according to its cooling water outlet temperature.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4424870 | 1994-07-14 | ||
DE4424870A DE4424870A1 (en) | 1994-07-14 | 1994-07-14 | Process for improving efficiency in thermal power plants with condensers connected in series on the cooling water side |
PCT/DE1995/000860 WO1996002736A1 (en) | 1994-07-14 | 1995-07-07 | Process for improving efficiency in thermal power stations with series-connected condensers on the cooling water side |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0719378A1 EP0719378A1 (en) | 1996-07-03 |
EP0719378B1 true EP0719378B1 (en) | 1998-05-20 |
Family
ID=6523147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95925677A Expired - Lifetime EP0719378B1 (en) | 1994-07-14 | 1995-07-07 | Process for operating a thermal power station with condensers connected in series on the coolimg water side |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0719378B1 (en) |
AT (1) | ATE166427T1 (en) |
AU (1) | AU2973995A (en) |
DE (2) | DE4424870A1 (en) |
DK (1) | DK0719378T3 (en) |
WO (1) | WO1996002736A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19626372C1 (en) * | 1996-07-02 | 1997-11-27 | Saarbergwerke Ag | Method and device for improving the efficiency in steam power plants |
EP0895050A3 (en) | 1997-07-30 | 2000-05-24 | Siemens Aktiengesellschaft | Steam turbine plant |
EP2307673A2 (en) * | 2008-08-04 | 2011-04-13 | United Technologies Corporation | Cascaded condenser for multi-unit geothermal orc |
CN107062927B (en) * | 2017-04-19 | 2024-02-06 | 北京今大禹环境技术股份有限公司 | Multistage condenser reverse cooling noncondensable gas system for sea water desalination and process thereof |
CN114877491B (en) * | 2022-05-12 | 2023-12-22 | 珠海格力电器股份有限公司 | Central air conditioner water system work control method, central air conditioner water system and control device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4168030A (en) * | 1976-10-22 | 1979-09-18 | Timmerman Robert W | Waste heat utilization system |
DE2737539A1 (en) * | 1977-08-19 | 1979-03-01 | Steag Ag | Series condensing system for multistage turbine plant - has condensate from one stage injected into exhaust of next stage |
DD275591A3 (en) * | 1986-05-30 | 1990-01-31 | Turboatom | METHOD FOR MULTIPLE PRECIPITATION OF CIRCULATORY WATER |
-
1994
- 1994-07-14 DE DE4424870A patent/DE4424870A1/en not_active Withdrawn
-
1995
- 1995-07-07 EP EP95925677A patent/EP0719378B1/en not_active Expired - Lifetime
- 1995-07-07 DE DE59502250T patent/DE59502250D1/en not_active Expired - Lifetime
- 1995-07-07 DK DK95925677T patent/DK0719378T3/en active
- 1995-07-07 WO PCT/DE1995/000860 patent/WO1996002736A1/en active IP Right Grant
- 1995-07-07 AU AU29739/95A patent/AU2973995A/en not_active Abandoned
- 1995-07-07 AT AT95925677T patent/ATE166427T1/en active
Also Published As
Publication number | Publication date |
---|---|
DK0719378T3 (en) | 1999-01-25 |
ATE166427T1 (en) | 1998-06-15 |
DE4424870A1 (en) | 1996-01-18 |
EP0719378A1 (en) | 1996-07-03 |
WO1996002736A1 (en) | 1996-02-01 |
DE59502250D1 (en) | 1998-06-25 |
AU2973995A (en) | 1996-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1288761B1 (en) | Method for controlling a low pressure bypass system | |
DE60126721T2 (en) | Combined circulation system with gas turbine | |
DE60003832T2 (en) | AIR CIRCUIT COOLING SYSTEM WITH A LIQUID CIRCUIT SUBSYSTEM | |
DE3213837C2 (en) | Exhaust steam generator with degasser, in particular for combined gas turbine-steam power plants | |
DE69313607T2 (en) | Method for starting a cold steam turbine in a combined cycle power plant | |
DE3882794T2 (en) | Intermediate superheater type heat recovery boiler and power generation system using the same. | |
EP0591163B2 (en) | Combined gas and steam turbine plant | |
DE2828094A1 (en) | HIGH PERFORMANCE HEAT EXCHANGER | |
EP0898641B1 (en) | Gas and steam turbine plant and method of operating the same | |
EP1390606B1 (en) | Device for cooling coolant in a gas turbine and gas and steam turbine with said device | |
DE19720881A1 (en) | Combined heat and power station with conversion turbines | |
DE1426697B2 (en) | Forced once-through steam generator with an arrangement for start-up and partial load operation | |
EP0847482B1 (en) | Method and device for cooling the low-pressure stage of a steam turbine | |
EP0719378B1 (en) | Process for operating a thermal power station with condensers connected in series on the coolimg water side | |
DE2809450A1 (en) | METHOD AND DEVICE FOR AIR-CONDITIONING MOTOR VEHICLES | |
WO1998051952A1 (en) | Method and device for heating a valve system | |
DE2654192C2 (en) | System for the use of waste heat from a gas flow | |
DE19507167C1 (en) | Double steam-turbine plant with condensers in common coolant circuit | |
DE3688631T2 (en) | Steam generator starting system. | |
CH626426A5 (en) | Internal combustion engine system with a pressure-charged, water-cooled engine | |
EP0019297A2 (en) | Method and device for steam generation | |
DE3311505A1 (en) | Heat pump device | |
DE2757721A1 (en) | Temp. control system - uses heating and cooling circuits coupled by heat pump circuit | |
DE3501216A1 (en) | CONTROL DEVICE FOR SORPTION HEAT PUMPS | |
DE69808727T2 (en) | Cooling steam system for steam-cooled gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19951229 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19970916 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980520 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19980520 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980520 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980520 |
|
REF | Corresponds to: |
Ref document number: 166427 Country of ref document: AT Date of ref document: 19980615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59502250 Country of ref document: DE Date of ref document: 19980625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980820 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980820 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980804 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981211 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990131 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
BECA | Be: change of holder's address |
Owner name: EVONIK POWER SAAR G.M.B.H.TRIERER STRASSE 4, D-661 Effective date: 20100211 |
|
BECH | Be: change of holder |
Owner name: EVONIK POWER SAAR G.M.B.H. Effective date: 20100211 |
|
BECN | Be: change of holder's name |
Owner name: EVONIK POWER SAAR G.M.B.H.TRIERER STRASSE 4, D-661 Effective date: 20100211 Owner name: EVONIK POWER SAAR G.M.B.H. Effective date: 20100211 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20100506 AND 20100512 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: STEAG POWER SAAR GMBH, DE Effective date: 20111108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59502250 Country of ref document: DE Representative=s name: PATENTANWAELTE DR.-ING. W. BERNHARDT DR. R. BE, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 166427 Country of ref document: AT Kind code of ref document: T Owner name: STEAG POWER SAAR GMBH, DE Effective date: 20111215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59502250 Country of ref document: DE Representative=s name: PATENTANWAELTE BERNHARDT/WOLFF PARTNERSCHAFT, DE Effective date: 20120117 Ref country code: DE Ref legal event code: R081 Ref document number: 59502250 Country of ref document: DE Owner name: STEAG POWER SAAR GMBH, DE Free format text: FORMER OWNER: EVONIK POWER SAAR GMBH, 66111 SAARBRUECKEN, DE Effective date: 20120117 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59502250 Country of ref document: DE Representative=s name: PATENTANWAELTE BERNHARDT/WOLFF PARTNERSCHAFT, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20140721 Year of fee payment: 20 Ref country code: DE Payment date: 20140725 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140721 Year of fee payment: 20 Ref country code: GB Payment date: 20140721 Year of fee payment: 20 Ref country code: AT Payment date: 20140619 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140722 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59502250 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20150707 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150706 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 166427 Country of ref document: AT Kind code of ref document: T Effective date: 20150707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150706 |