EP0719378B1 - Process for operating a thermal power station with condensers connected in series on the coolimg water side - Google Patents

Process for operating a thermal power station with condensers connected in series on the coolimg water side Download PDF

Info

Publication number
EP0719378B1
EP0719378B1 EP95925677A EP95925677A EP0719378B1 EP 0719378 B1 EP0719378 B1 EP 0719378B1 EP 95925677 A EP95925677 A EP 95925677A EP 95925677 A EP95925677 A EP 95925677A EP 0719378 B1 EP0719378 B1 EP 0719378B1
Authority
EP
European Patent Office
Prior art keywords
cooling water
condenser
flow
condensers
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95925677A
Other languages
German (de)
French (fr)
Other versions
EP0719378A1 (en
Inventor
Uwe JOHÄNNTGEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steag Power Saar GmbH
Original Assignee
Saarbergwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saarbergwerke AG filed Critical Saarbergwerke AG
Publication of EP0719378A1 publication Critical patent/EP0719378A1/en
Application granted granted Critical
Publication of EP0719378B1 publication Critical patent/EP0719378B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Definitions

  • the invention relates to a method for operating thermal power plants with condensers connected in series on the cooling water side.
  • the possibility is used to increase the efficiency of the LP turbines or Sub-turbines downstream of the condensers on the cooling water side to connect in series, with all capacitors in sequence of the entire cooling water flow.
  • the cooling water cooled down by the cooling process in the cooling tower flows through the capacitors one after the other, absorbs heat and then becomes part of the system dissipated and the cooling tower as hot water for renewed Recooling fed back.
  • the evaporator condenses the condensers at one Pressure, in particular from the respective cooling water outlet temperature of the capacitor in question. In The direction of flow of the cooling water flow increases the cooling water outlet temperatures on the individual capacitors inevitably.
  • the invention has for its object in a system of the type described at the beginning when the cooling water inlet temperatures are too low emerging disadvantage of To prevent loss of efficiency.
  • the object is achieved in that when the cooling water flow falls below a predetermined limit temperature, the cooling water flow is divided before entering the first condenser, so that only part of the cooling water flow flows through the condenser while the remaining part flow bypasses the condenser, and both part flows immediately behind the condenser, before entering the following condenser.
  • the partial flow diverted via the bypass is set or regulated particularly economically, for example, with the aid of a control device depending on the cooling water outlet temperature of the bypassed condenser.
  • the advantage of the method is based in particular on the fact that the bypass circuit prevents the flow profile in the turbine or sub-turbine assigned to the bypassed condenser from being blocked, without having any appreciable influence on the cooling water outlet temperatures of the condensers, which subsequently increase again are flowed through a total cooling water flow merged partial flows.
  • the expansion ratios in each condenser that is not bypassed by a bypass partial flow and thus in the turbines or partial turbines assigned to them are not deteriorated according to the invention.
  • a general reduction in the cooling water flow for all condensers connected in series or a warming up of the cooling water before entering the first condenser would result in an increase in the evaporation pressure in the first condenser, but also in all subsequent condensers.
  • the blocking effect in the turbine or partial turbine assigned to the first condenser would be prevented, but at the same time the conditions in all subsequent condensers would also have deteriorated.
  • Another advantage of the method according to the invention results from the temporary widening of the flow cross section in the bypass mode of operation, which leads to a noticeable reduction in throttle losses.
  • the procedure is for a series connection of more than two Capacitors also provided the option of the second and optionally further capacitors with a bypass partial flow to bypass, the bypass substream each immediately in front of the condenser to be bypassed by the total cooling water flow is branched off and the substreams behind the condenser are brought together again.
  • a bypass sequence extending over several condensers ensures for each individual bypassed condenser that a blocking of the flow profile in the turbine or sub-turbine assigned to it is omitted without worsening the expansion conditions in the condensers still to be flowed through.
  • the two partial condensers 1a and 1b which are assigned to the two low-pressure turbine parts 2a and 2b, are connected in series on the cooling water side in order to increase the efficiency.
  • the cooling water is conveyed from the cooling tower cup via the cooling water pump 3 and the cooling water line 4 into the first partial condenser 1 a.
  • the already partially warmed up cooling water reaches the second partial condenser 1b via the overflow line 5 and is returned via line 6 to the cooling tower as hot water.
  • the exhaust steam which is introduced via line 7 from the low-pressure turbine section 2b into the partial condenser 1b, condenses at a pressure which is dependent in particular on the water temperature in line 6.
  • the exhaust steam which is introduced via line 8 from the LP sub-turbine 2a into the partial condenser la, condenses at a pressure which is dependent in particular on the water temperature in line 5. Since the temperature in line 5 is lower than in line 6, the evaporation pressure in line 8 has a lower level than in line 7.
  • the partial turbine 2a thus has a greater pressure drop than is the case when the partial condensers 1a and 1b are connected in parallel on the cooling water side would. This results in an improvement in efficiency.
  • the condensate formed from the exhaust steam passes via line 9 from partial condenser 1b into line 10 and via condensate pump 11 to the LP preheaters and thus into the water-steam cycle of the power plant.
  • a lowering of the cooling water inlet temperature results in a reduction in the evaporation pressure, which increases the flow velocity of the steam and thus the outlet losses.
  • there is still an efficiency advantage as long as the flow profile is not blocked. Only when the cooling water inlet temperature drops to a level that causes critical or subcritical conditions does the effect of blocking the flow profile first occur in the partial turbine 2a. Because of the low condensate temperature, additional tap steam is required for preheating the feed water, which reduces the overall efficiency.
  • a reduction in the cooling water flow for example by moving the blades on the cooling water pump 3, would have an increase in the evaporation pressure in the partial condenser 1a and thus prevent the blocking effect, but at the same time the conditions on the partial condenser 1b would also deteriorate.
  • the blocking of the flow profile becomes too deep as a result
  • the bypass partial flow through a control valve 13 can be set or regulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Greenhouses (AREA)
  • Discharge Heating (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

In a process in thermal power stations in which condensers (1a, 1b) are connected in series on the cooling water side to improve efficiency, it is proposed that, with excessively low cooling water inlet temperatures, when the improved efficiency is lost through sub-critical pressure ratios, part of the flow of cooling water adjustable, e.g. using a regulating device (13), be diverted before entering the first condenser (1a) via a by-pass line (12), by-pass said condenser (12) and be remixed with the partial cooling water flow before entering the condenser (1b) through which it has yet to pass. The process of the invention can also be extended to other condensers in order to ensure that there is no obstruction in the flow profile in the allocated turbines or partial turbines owing to the pressure ratios arising in the by-passed and subsequent condensers. The advantage of the improved efficiency is thus retained even with excessively low cooling water inlet temperatures and the pressure ratios in the un-by-passed condensers remain virtually unaffected. The ratio between by-pass partial flow and cooling water partial flow is adequately adjusted or controlled depending on the actual cooling water outlet temperature.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb von Wärmekraftwerken mit kühlwasserseitig in Reihe geschalteten Kondensatoren.The invention relates to a method for operating thermal power plants with condensers connected in series on the cooling water side.

Bei Wärmekraftwerken, insbesondere solchen mit Rückkühlung des Kühlwassers über den Kühlturm, wird die Möglichkeit genutzt, zur Wirkungsgradsteigerung die den ND-Turbinen bzw. ND-Teilturbinen nachgeschalteten Kondensatoren kühlwasserseitig in Reihe zu schalten, wobei alle Kondensatoren nacheinander vom gesamten Kühlwasserstrom durchflossen werden. Das durch den Kühlprozeß im Kühlturm heruntergekühlte Kühlwasser durchströmt dabei nacheinander die Kondensatoren, nimmt Wärme auf und wird anschließend aus diesem Anlagenteil abgeführt und dem Kühlturm als Warmwasser zur erneuten Rückkühlung wieder zugeleitet. In den in Reihe geschalteten Kondensatoren kondensiert der Abdampf dabei bei einem Druck, der insbesondere von der jeweiligen Kühlwasseraustrittstemperatur des betreffenden Kondensators abhängt. In Flußrichtung des Kühlwasserstromes steigen die Kühlwasseraustrittstemperaturen an den einzelnen Kondensatoren zwangsläufig an. Das dem Abdampf zur Verfügung stehende Druckgefälle, das als Enthalpiedifferenz zur Steigerung der Strömungsgeschwindigkeit in Geschwindigkeitsenergie umgesetzt wird, wird - wegen der erhöhten Wärmeabfuhr infolge des größeren Kühlwasserstromes - bei den zuerst durchströmten Kondensatoren größer, als es bei kühlwasserseitiger Parallelschaltung der Kondensatoren der Fall wäre. Dies bewirkt einen besseren Gesamtwirkungsgrad, da die auf der wärmeren Seite des Kühlwassers gelegenen Kondensatoren dennoch mit Druckgefällen arbeiten, die in etwa denen der Parallelschaltung entsprechen.In thermal power plants, especially those with recooling of the cooling water via the cooling tower, the possibility is used to increase the efficiency of the LP turbines or Sub-turbines downstream of the condensers on the cooling water side to connect in series, with all capacitors in sequence of the entire cooling water flow. The cooling water cooled down by the cooling process in the cooling tower flows through the capacitors one after the other, absorbs heat and then becomes part of the system dissipated and the cooling tower as hot water for renewed Recooling fed back. In the series The evaporator condenses the condensers at one Pressure, in particular from the respective cooling water outlet temperature of the capacitor in question. In The direction of flow of the cooling water flow increases the cooling water outlet temperatures on the individual capacitors inevitably. The steam available Pressure drop, used as an enthalpy difference to increase the Flow velocity converted into velocity energy will - due to the increased heat dissipation of the larger cooling water flow - with the first flow Capacitors larger than that of the cooling water side Parallel connection of the capacitors would be the case. this causes a better overall efficiency because the on the condenser located on the warmer side of the cooling water work with pressure drops that roughly match those of the parallel connection correspond.

Nachteilig erweist sich jedoch bei der Reihenschaltung, daß sich bei tiefen Kühlwassereintrittstemperaturen, bedingt durch die damit auch verringerten Kühlwasseraustrittstemperaturen, in den einzelnen Kondensatoren weiter verminderte Abdampfdrücke einstellen. Sie führen zu höheren abbaubaren Druckgefällen, dementsprechend zu höheren Strömungsgeschwindigkeiten des Dampfes und damit zu ansteigenden Auslaßverlusten, die den Wirkungsgradzuwachs verringern.
Nähern sich bei abnehmender Kühlwassereintrittstemperatur die Druckverhältnisse dem kritischen Druckverhältnis, so erreicht die Strömungsgeschwindigkeit in etwa Schallgeschwindigkeit und es tritt das sogenannte Sperren des Strömungsprofiles ein. Jede weitere Vergrößerung des Druckgefälles über das kritische Druckgefälle hinaus, hervorgerufen durch eine weitere Absenkung der Kühlwassereintrittstemperatur, wirkt sich nicht mehr als Geschwindigkeitssteigerung beim Dampf aus.
Eine Wirkungsgradsteigerung, zurückzuführen auf den Abbau vergrößerter Enthalpiedifferenzen, kommt so nicht mehr zustande und aufgrund der niedrigen Kondensattemperaturen wird sogar eine intensivere Beheizung der Speisewasservorwärmung mit Anzapfdampf erforderlich. Die Folge ist eine Verschlechterung des Gesamtwirkungsgrades ursächlich eingeleitet durch zu tiefe - d.h. unterkritische Verhältnisse schaffende - Kühlwassereintrittstemperaturen.
Da bei Reihenschaltung der Kondensatoren und gleichem Gesamt-Kühlwasserstrom das Sperren des Strömungsprofiles , wegen des bezogen auf den einzelnen Kondensator erhöhten Kühlwasserdurchflusses, bereits bei höheren Kühlwassereintrittstemperaturen eintritt als bei Parallelschaltung der Kondensatoren, kann bei zu tiefen Kühlwassereintrittstemperaturen der Vorteil der Reihenschaltung nicht mehr voll erhalten werden.
However, it turns out to be disadvantageous with the series connection that at low cooling water inlet temperatures, due to the cooling water outlet temperatures also reduced, further reduced evaporation pressures occur in the individual condensers. They lead to higher degradable pressure drops, correspondingly to higher flow velocities of the steam and thus to increasing outlet losses, which reduce the increase in efficiency.
If the pressure ratios approach the critical pressure ratio as the cooling water inlet temperature decreases, the flow velocity approximately reaches the speed of sound and the so-called blocking of the flow profile occurs. Any further increase in the pressure drop beyond the critical pressure drop, caused by a further drop in the cooling water inlet temperature, no longer has an effect on the steam speed increase.
An increase in efficiency, due to the reduction of larger enthalpy differences, no longer occurs and, due to the low condensate temperatures, even more intensive heating of the feed water preheating with bleed steam is required. The result is a deterioration in the overall efficiency caused by excessively low - ie creating subcritical conditions - cooling water inlet temperatures.
Since, when the condensers are connected in series and the total cooling water flow is the same, the blocking of the flow profile, due to the increased cooling water flow in relation to the individual condenser, already occurs at higher cooling water inlet temperatures than when the condensers are connected in parallel, the advantage of the series connection can no longer be fully obtained if the cooling water inlet temperatures are too low .

Der Erfindung liegt die Aufgabe zugrunde, bei einer Anlage der eingangs beschriebenen Art den bei zu tiefen Kühlwassereintrittstemperaturen sich einstellenden Nachteil der Wirkungsgradeinbuße zu verhindern.The invention has for its object in a system of the type described at the beginning when the cooling water inlet temperatures are too low emerging disadvantage of To prevent loss of efficiency.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß bei Unterschreiten einer vorgegebenen Grenztemperatur des Kühlwassers der Kühlwasserstrom vor Eintritt in den ersten Kondensator geteilt wird, so daß nur ein Teil des Kühlwasserstromes den Kondensator durchströmt während der verbleibende Teilstrom über einen Bypass den Kondensator umfährt, und beide Teilströme unmittelbar hinter dem Kondensator, vor Eintritt in den folgenden Kondensator, wieder zusammengeführt werden.
Der über den Bypass umgeleitete Teilstrom wird dabei z.B. besonders wirtschaftlich mit Hilfe einer Regeleinrichtung in Abhängigkeit der Kühlwasseraustrittstemperatur des umfahrenen Kondensators eingestellt bzw. geregelt.
Der Vorteil des Verfahrens beruht insbesondere darauf, daß durch die Bypass-Schaltung das Sperren des Strömungsprofiles in der dem umfahrenen Kondensator zugeordneten Turbine bzw. Teilturbine verhindert wird, und zwar ohne nennenswerten Einfluß zu nehmen auf die Kühlwasseraustrittstemperaturen der Kondensatoren, die nachfolgend von den wieder zu einem Gesamt-Kühlwasserstrom zusammengeführten Teilströmen durchströmt werden. Die Expansionsverhältnisse in jedem nicht von einem Bypass-Teilstrom umfahrenen Kondensator und damit in den ihnen zugeordneten Turbinen bzw. Teilturbinen werden dabei erfindungsgemäß nicht verschlechtert.
Eine generelle Verringerung des Kühlwasserstromes für alle in Reihe geschalteten Kondensatoren oder eine Aufwärmung des Kühlwassers vor Eintritt in den ersten Kondensator hätte eine Erhöhung des Abdampfdruckes im ersten Kondensator, aber auch in allen folgenden Kondensatoren zur Folge. Die Sperrwirkung in der dem ersten Kondensator zugeordneten Turbine bzw. Teilturbine wäre zwar verhindert, gleichzeitig hätten sich aber auch die Verhältnisse in allen nachfolgenden Kondensatoren verschlechtert.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ergibt sich durch die vorübergehende Erweiterung des Strömungsquerschnittes bei Bypass-Fahrweise, die zu einer merklichen Verringerung der Drosselverluste führt.
The object is achieved in that when the cooling water flow falls below a predetermined limit temperature, the cooling water flow is divided before entering the first condenser, so that only part of the cooling water flow flows through the condenser while the remaining part flow bypasses the condenser, and both part flows immediately behind the condenser, before entering the following condenser.
The partial flow diverted via the bypass is set or regulated particularly economically, for example, with the aid of a control device depending on the cooling water outlet temperature of the bypassed condenser.
The advantage of the method is based in particular on the fact that the bypass circuit prevents the flow profile in the turbine or sub-turbine assigned to the bypassed condenser from being blocked, without having any appreciable influence on the cooling water outlet temperatures of the condensers, which subsequently increase again are flowed through a total cooling water flow merged partial flows. The expansion ratios in each condenser that is not bypassed by a bypass partial flow and thus in the turbines or partial turbines assigned to them are not deteriorated according to the invention.
A general reduction in the cooling water flow for all condensers connected in series or a warming up of the cooling water before entering the first condenser would result in an increase in the evaporation pressure in the first condenser, but also in all subsequent condensers. The blocking effect in the turbine or partial turbine assigned to the first condenser would be prevented, but at the same time the conditions in all subsequent condensers would also have deteriorated.
Another advantage of the method according to the invention results from the temporary widening of the flow cross section in the bypass mode of operation, which leads to a noticeable reduction in throttle losses.

Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens ist bei einer Reihenschaltung von mehr als zwei Kondensatoren die Möglichkeit vorgesehen, auch den zweiten und gegebenenfalls weitere Kondensatoren mit einem Bypass-Teilstrom zu umfahren, wobei der Bypass-Teilstrom jeweils unmittelbar vor dem zu umfahrenden Kondensator vom Gesamt-Kühlwasserstrom abgezweigt wird und die Teilströme hinter dem Kondensator wieder zusammengeführt werden. Dadurch wird erreicht, daß bei sehr niedriger Temperatur des vom Kühlturm zugeführten Kühlwassers und einer möglicherweise nicht ausreichenden Temperaturerhöhung durch die Wärmeaufnahme im ersten Kondensator , es nicht zu einem Sperren des Strömungsprofiles in der dem nachfolgenden Kondensator zugeordneten Turbine bzw. Teilturbine kommt. According to a further embodiment of the invention The procedure is for a series connection of more than two Capacitors also provided the option of the second and optionally further capacitors with a bypass partial flow to bypass, the bypass substream each immediately in front of the condenser to be bypassed by the total cooling water flow is branched off and the substreams behind the condenser are brought together again. This will achieved that at a very low temperature from the cooling tower supplied cooling water and one may not sufficient temperature increase due to the heat absorption in the first condenser, it does not block the airfoil in the associated capacitor Turbine or partial turbine comes.

Ein über mehrere Kondensatoren sich erstreckende Bypass-Folge, wobei für jeden umfahrenen Kondensator das Verhältnis von Bypass-Teilstrom zu Kühlwasser-Teilstrom in Abhängigkeit der Kühlwasseraustrittstemperatur des jeweiligen Kondensators bestimmt ist, stellt für jeden einzelnen umfahrenen Kondensator sicher, daß ein Sperren des Strömungsprofiles in der ihm zugeordneten Turbine bzw. Teilturbine unterbleibt, ohne die Expansionsverhältnisse in den noch zu durchströmenden Kondensatoren zu verschlechtern.
Das erfindungsgemäße Verfahren wird anhand der in den Figuren 1 bis 3 schematisch dargestellten Ausführungsbeispiele weiter erläutert.
A bypass sequence extending over several condensers, the ratio of bypass partial flow to cooling water partial flow depending on the cooling water outlet temperature of the respective condenser being determined for each bypassed condenser, ensures for each individual bypassed condenser that a blocking of the flow profile in the turbine or sub-turbine assigned to it is omitted without worsening the expansion conditions in the condensers still to be flowed through.
The method according to the invention is further explained on the basis of the exemplary embodiments shown schematically in FIGS. 1 to 3.

Gemäß der bekannten Schaltung nach Figur 1 sind zur Wirkungsgradsteigerung die beiden Teilkondensatoren 1a und 1b, die den beiden ND-Teilturbinen 2a und 2b zugeordnet sind, kühlwasserseitig in Reihe geschaltet. Das Kühlwasser wird dabei aus der Kühlturmtasse über die Kühlwasserpumpe 3 und die Kühlwasserleitung 4 in den ersten Teilkondensator la gefördert. Über die Überströmleitung 5 gelangt das bereits teilweise aufgewärmte Kühlwasser in den zweiten Teilkondensator 1b und wird über die Leitung 6 als Warmwasser zum Kühlturm zurückgeführt. Der Abdampf, der über die Leitung 7 aus der ND-Teilturbine 2b in den Teilkondensator 1b eingleitet wird, kondensiert bei einem Druck, der insbesondere von der Wassertemperatur in Leitung 6 abhängig ist. Der Abdampf, der über die Leitung 8 aus der ND-Teilturbine 2a in den Teilkondensator la eingeleitet wird, kondensiert bei einem Druck, der insbesondere von der Wassertemperatur in Leitung 5 abhängig ist. Da die Temperatur in Leitung 5 niedriger ist als in Leitung 6, hat der Abdampfdruck in Leitung 8 ein niedrigeres Niveau als in Leitung 7. Die Teilturbine 2a hat also ein größeres Druckgefälle zur Verfügung, als es bei kühlwasserseitiger Parallelschaltung der Teilkondensatoren 1a und 1b der Fall wäre. Daraus resultiert eine Wirkungsgradverbesserung. Das aus dem Abdampf entstandene Kondensat gelangt über die Leitung 9 vom Teilkondensator 1b in die Leitung 10 und über die Kondensatpumpe 11 zu den ND-Vorwärmern und damit in den Wasser-Dampf-Kreislauf des Kraftwerkes.
Eine Absenkung der Kühlwassereintrittstemperatur hat eine Reduzierung des Abdampfdruckes zur Folge, wodurch die Strömungsgeschwindigkeit des Dampfes und damit auch die Auslaßverluste ansteigen. Dennoch verbleibt ein Wirkungsgradvorteil, solange kein Sperren des Strömungsprofiles eintritt. Erst bei einem Absinken der Kühlwassereintrittstemperatur auf ein Niveau, das kritische bzw. unterkritische Verhältnisse bewirkt tritt zunächst bei der Teilturbine 2a der Effekt des Sperrens des Strömungsprofiles ein. Wegen der sich einstellenden niedrigen Kondensattemperatur wird sogar zusätzlicher Anzapfdampf für die Speisewasservorwärmung benötigt, der den Gesamtwirkungsgrad reduziert.
Eine Reduktion des Kühlwasserstromes z.B. durch Laufschaufelverstellung an der Kühlwasserpumpe 3 hätte zwar eine Erhöhung des Abdampfdruckes im Teilkondensator 1a und damit das Verhindern der Sperrwirkung zur Folge, gleichzeitig würden dadurch aber auch die Verhältnisse am Teilkondensator 1b verschlechtert.
According to the known circuit according to FIG. 1, the two partial condensers 1a and 1b, which are assigned to the two low-pressure turbine parts 2a and 2b, are connected in series on the cooling water side in order to increase the efficiency. The cooling water is conveyed from the cooling tower cup via the cooling water pump 3 and the cooling water line 4 into the first partial condenser 1 a. The already partially warmed up cooling water reaches the second partial condenser 1b via the overflow line 5 and is returned via line 6 to the cooling tower as hot water. The exhaust steam, which is introduced via line 7 from the low-pressure turbine section 2b into the partial condenser 1b, condenses at a pressure which is dependent in particular on the water temperature in line 6. The exhaust steam, which is introduced via line 8 from the LP sub-turbine 2a into the partial condenser la, condenses at a pressure which is dependent in particular on the water temperature in line 5. Since the temperature in line 5 is lower than in line 6, the evaporation pressure in line 8 has a lower level than in line 7. The partial turbine 2a thus has a greater pressure drop than is the case when the partial condensers 1a and 1b are connected in parallel on the cooling water side would. This results in an improvement in efficiency. The condensate formed from the exhaust steam passes via line 9 from partial condenser 1b into line 10 and via condensate pump 11 to the LP preheaters and thus into the water-steam cycle of the power plant.
A lowering of the cooling water inlet temperature results in a reduction in the evaporation pressure, which increases the flow velocity of the steam and thus the outlet losses. However, there is still an efficiency advantage as long as the flow profile is not blocked. Only when the cooling water inlet temperature drops to a level that causes critical or subcritical conditions does the effect of blocking the flow profile first occur in the partial turbine 2a. Because of the low condensate temperature, additional tap steam is required for preheating the feed water, which reduces the overall efficiency.
A reduction in the cooling water flow, for example by moving the blades on the cooling water pump 3, would have an increase in the evaporation pressure in the partial condenser 1a and thus prevent the blocking effect, but at the same time the conditions on the partial condenser 1b would also deteriorate.

Nach dem in Figur 2 dargestellten erfindungsgemäßen Verfahren wird das Sperren des Strömungsprofiles infolge zu tiefer Eintrittstemperatur des Kühlwassers verhindert, in dem durch eine Bypass-Leitung 12 ein Teilstrom des Kühlwasserstromes an dem ersten Teilkondensator 1a vorbeigeleitet wird, wobei der Bypass-Teilstrom durch eine Regelarmatur 13 eingestellt bzw. geregelt werden kann. According to the inventive method shown in Figure 2 the blocking of the flow profile becomes too deep as a result Prevents entry temperature of the cooling water in the a partial flow of the cooling water flow through a bypass line 12 bypassed the first partial capacitor 1a the bypass partial flow through a control valve 13 can be set or regulated.

Durch den über Leitung 12 abgezweigten Bypass-Teilstrom erhöht sich die Kühlwasseraustrittstemperatur in Leitung 5a hinter dem Teilkondensator la. Dadurch kann erfindungsgemäß auch bei zu tiefen Kühlwassereintrittstemperaturen in Leitung 4 das Sperren des Strömungsprofiles in Teilturbine 2a verhindert werden. Die vorteilhafte Wirkung einer Wirkungsgradverbesserung bedingt durch die kühlwasserseitige Reihenschaltung der Kondensatoren 1a und 1b bleibt jedoch erhalten, da der Wirkungsgradabfall infolge zu tiefer Kühlwassertemperatur verhindert wird, der Wirkungsgradbeitrag des Teilkondensators 1b jedoch durch die fast unbeeinflußte Expansion in der Teilturbine 2b nicht verschlechtert wird.Increased by the bypass partial flow branched off via line 12 the cooling water outlet temperature in line 5a behind the partial capacitor la. This allows the invention even if the cooling water inlet temperatures in the pipe are too low 4 the blocking of the flow profile in sub-turbine 2a be prevented. The beneficial effect of an efficiency improvement due to the series connection on the cooling water side capacitors 1a and 1b are retained, since the drop in efficiency due to excessively low cooling water temperature the efficiency contribution is prevented of the partial capacitor 1b, however, by the almost unaffected Expansion in the sub-turbine 2b is not deteriorated.

Wie in Figur 3 gezeigt ist, kann es bei einer Reihenschaltung von mehr als zwei Kondensatoren 1a, 1b, 1i erforderlich sein, auch vor dem zweiten Teilkondensator 1b und ggf. weiteren nachgeschalteten Teilkondensatoren, von dem Gesamt-Kühlwasserstrom einen - eingestellt bzw. geregelt wieder in Abhängigkeit der Kühlwasseraustrittstemperatur des jeweiligen Kondensators - Bypass-Teilstrom abzuzweigen und hinter dem Kondensator wieder dem austretenden Kühlwasser-Teilstrom zuzumischen. Das kann erforderlich sein, wenn die Temperaturerhöhung im Gesamt-Kühlwasserstrom nach dem Durchströmen des ersten Kondensators nicht ausreicht, um ein Sperren des Strömungsprofiles in der dem nachfolgenden Kondensator zugeordneten Teilturbine sicher zu verhindern.As shown in Figure 3, it can with a series connection of more than two capacitors 1a, 1b, 1i required be in front of the second partial capacitor 1b and possibly further downstream partial capacitors, of which Total cooling water flow one - set or controlled again depending on the cooling water outlet temperature of the respective capacitor - branch bypass partial flow and behind the condenser again the exiting one Add cooling water partial flow. That may be necessary be when the temperature increase in the total cooling water flow is not sufficient after flowing through the first capacitor, to block the flow profile in the subsequent capacitor associated sub-turbine safely to prevent.

Claims (3)

  1. Method for operating thermal power stations with condensers connected in series on the cooling water side, whereby if the cooling water drops below a predetermined limit temperature, the stream of cooling water is divided before entering the first condenser so that only a part of the stream of cooling water flows through the condenser while the remaining part stream bypasses the condenser through a bypass and both part streams are brought together again directly after the condenser, prior to entering the following condenser.
  2. Method according to claim 1, characterised in that with more than two condensers connected in series on the cooling water side, further following condensers are bypassed by a bypass part stream.
  3. Method according to one of claims 1 and 2, characterised in that the ratio of bypass part stream to cooling water part stream is set or controlled for each bypassed condenser according to its cooling water outlet temperature.
EP95925677A 1994-07-14 1995-07-07 Process for operating a thermal power station with condensers connected in series on the coolimg water side Expired - Lifetime EP0719378B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4424870 1994-07-14
DE4424870A DE4424870A1 (en) 1994-07-14 1994-07-14 Process for improving efficiency in thermal power plants with condensers connected in series on the cooling water side
PCT/DE1995/000860 WO1996002736A1 (en) 1994-07-14 1995-07-07 Process for improving efficiency in thermal power stations with series-connected condensers on the cooling water side

Publications (2)

Publication Number Publication Date
EP0719378A1 EP0719378A1 (en) 1996-07-03
EP0719378B1 true EP0719378B1 (en) 1998-05-20

Family

ID=6523147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95925677A Expired - Lifetime EP0719378B1 (en) 1994-07-14 1995-07-07 Process for operating a thermal power station with condensers connected in series on the coolimg water side

Country Status (6)

Country Link
EP (1) EP0719378B1 (en)
AT (1) ATE166427T1 (en)
AU (1) AU2973995A (en)
DE (2) DE4424870A1 (en)
DK (1) DK0719378T3 (en)
WO (1) WO1996002736A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626372C1 (en) * 1996-07-02 1997-11-27 Saarbergwerke Ag Method and device for improving the efficiency in steam power plants
EP0895050A3 (en) 1997-07-30 2000-05-24 Siemens Aktiengesellschaft Steam turbine plant
EP2307673A2 (en) * 2008-08-04 2011-04-13 United Technologies Corporation Cascaded condenser for multi-unit geothermal orc
CN107062927B (en) * 2017-04-19 2024-02-06 北京今大禹环境技术股份有限公司 Multistage condenser reverse cooling noncondensable gas system for sea water desalination and process thereof
CN114877491B (en) * 2022-05-12 2023-12-22 珠海格力电器股份有限公司 Central air conditioner water system work control method, central air conditioner water system and control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168030A (en) * 1976-10-22 1979-09-18 Timmerman Robert W Waste heat utilization system
DE2737539A1 (en) * 1977-08-19 1979-03-01 Steag Ag Series condensing system for multistage turbine plant - has condensate from one stage injected into exhaust of next stage
DD275591A3 (en) * 1986-05-30 1990-01-31 Turboatom METHOD FOR MULTIPLE PRECIPITATION OF CIRCULATORY WATER

Also Published As

Publication number Publication date
DK0719378T3 (en) 1999-01-25
ATE166427T1 (en) 1998-06-15
DE4424870A1 (en) 1996-01-18
EP0719378A1 (en) 1996-07-03
WO1996002736A1 (en) 1996-02-01
DE59502250D1 (en) 1998-06-25
AU2973995A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
EP1288761B1 (en) Method for controlling a low pressure bypass system
DE60126721T2 (en) Combined circulation system with gas turbine
DE60003832T2 (en) AIR CIRCUIT COOLING SYSTEM WITH A LIQUID CIRCUIT SUBSYSTEM
DE3213837C2 (en) Exhaust steam generator with degasser, in particular for combined gas turbine-steam power plants
DE69313607T2 (en) Method for starting a cold steam turbine in a combined cycle power plant
DE3882794T2 (en) Intermediate superheater type heat recovery boiler and power generation system using the same.
EP0591163B2 (en) Combined gas and steam turbine plant
DE2828094A1 (en) HIGH PERFORMANCE HEAT EXCHANGER
EP0898641B1 (en) Gas and steam turbine plant and method of operating the same
EP1390606B1 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
DE19720881A1 (en) Combined heat and power station with conversion turbines
DE1426697B2 (en) Forced once-through steam generator with an arrangement for start-up and partial load operation
EP0847482B1 (en) Method and device for cooling the low-pressure stage of a steam turbine
EP0719378B1 (en) Process for operating a thermal power station with condensers connected in series on the coolimg water side
DE2809450A1 (en) METHOD AND DEVICE FOR AIR-CONDITIONING MOTOR VEHICLES
WO1998051952A1 (en) Method and device for heating a valve system
DE2654192C2 (en) System for the use of waste heat from a gas flow
DE19507167C1 (en) Double steam-turbine plant with condensers in common coolant circuit
DE3688631T2 (en) Steam generator starting system.
CH626426A5 (en) Internal combustion engine system with a pressure-charged, water-cooled engine
EP0019297A2 (en) Method and device for steam generation
DE3311505A1 (en) Heat pump device
DE2757721A1 (en) Temp. control system - uses heating and cooling circuits coupled by heat pump circuit
DE3501216A1 (en) CONTROL DEVICE FOR SORPTION HEAT PUMPS
DE69808727T2 (en) Cooling steam system for steam-cooled gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970916

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19980520

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980520

REF Corresponds to:

Ref document number: 166427

Country of ref document: AT

Date of ref document: 19980615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59502250

Country of ref document: DE

Date of ref document: 19980625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980804

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981211

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BECA Be: change of holder's address

Owner name: EVONIK POWER SAAR G.M.B.H.TRIERER STRASSE 4, D-661

Effective date: 20100211

BECH Be: change of holder

Owner name: EVONIK POWER SAAR G.M.B.H.

Effective date: 20100211

BECN Be: change of holder's name

Owner name: EVONIK POWER SAAR G.M.B.H.TRIERER STRASSE 4, D-661

Effective date: 20100211

Owner name: EVONIK POWER SAAR G.M.B.H.

Effective date: 20100211

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100506 AND 20100512

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: STEAG POWER SAAR GMBH, DE

Effective date: 20111108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502250

Country of ref document: DE

Representative=s name: PATENTANWAELTE DR.-ING. W. BERNHARDT DR. R. BE, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 166427

Country of ref document: AT

Kind code of ref document: T

Owner name: STEAG POWER SAAR GMBH, DE

Effective date: 20111215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502250

Country of ref document: DE

Representative=s name: PATENTANWAELTE BERNHARDT/WOLFF PARTNERSCHAFT, DE

Effective date: 20120117

Ref country code: DE

Ref legal event code: R081

Ref document number: 59502250

Country of ref document: DE

Owner name: STEAG POWER SAAR GMBH, DE

Free format text: FORMER OWNER: EVONIK POWER SAAR GMBH, 66111 SAARBRUECKEN, DE

Effective date: 20120117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502250

Country of ref document: DE

Representative=s name: PATENTANWAELTE BERNHARDT/WOLFF PARTNERSCHAFT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140721

Year of fee payment: 20

Ref country code: DE

Payment date: 20140725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140721

Year of fee payment: 20

Ref country code: GB

Payment date: 20140721

Year of fee payment: 20

Ref country code: AT

Payment date: 20140619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140722

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59502250

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150707

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150706

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 166427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150706