EP0718556B1 - Method for determining the position of a linear-driven drive system - Google Patents

Method for determining the position of a linear-driven drive system Download PDF

Info

Publication number
EP0718556B1
EP0718556B1 EP95117559A EP95117559A EP0718556B1 EP 0718556 B1 EP0718556 B1 EP 0718556B1 EP 95117559 A EP95117559 A EP 95117559A EP 95117559 A EP95117559 A EP 95117559A EP 0718556 B1 EP0718556 B1 EP 0718556B1
Authority
EP
European Patent Office
Prior art keywords
drive system
reference value
running time
value
angular position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95117559A
Other languages
German (de)
French (fr)
Other versions
EP0718556A1 (en
Inventor
Klaus Bott
Eckhard Schwendemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrowatt Technology Innovation AG
Original Assignee
Landis and Gyr Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Technology Innovation AG filed Critical Landis and Gyr Technology Innovation AG
Publication of EP0718556A1 publication Critical patent/EP0718556A1/en
Application granted granted Critical
Publication of EP0718556B1 publication Critical patent/EP0718556B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors

Definitions

  • the invention relates to a method for position detection of a linearly driven Drive system according to the preamble of claim 1.
  • the method according to the invention is preferably used in burner flap drives Heating systems used. It can also be used advantageously in frequency converters.
  • the invention has for its object to improve the known methods so that the Reliability of the drive systems is increased and the costs of the latter are reduced.
  • a damper actuator and a frequency converter are used for safety reasons and / or several limit switches for calibration reasons in burner applications.
  • the damper actuator in a burner application which is preferably an air damper actuator, at least four limit switches 1, 2, 3 and 4 functioning as mechanical limit switches (see Fig. 1) whose positions are adjustable.
  • the frequency converter the are adjustable Limit switch z.
  • a first limit switch 1 is, for. B. in one Angular position ⁇ 1, a second limit switch 2 in an angular position ⁇ 2, a third Limit switch 3 in an angular position ⁇ 3 and a fourth limit switch 4 in one Angular position ⁇ 4 arranged (see Fig. 1 and Fig. 2).
  • the angular position ⁇ 1 is e.g. B. a closed position of the flap drive, ie the angular position in which the air flap is closed, which corresponds to an opening of the air flap of 0%.
  • the angular position ⁇ 2 is z. B. a low-load position of the burner and corresponds to an opening of the air flap of x%.
  • the angular position ⁇ 3 is z. B. an ignition load position of the burner and corresponds to an opening of the air flap of y%.
  • the angular position ⁇ 4 is z. B. an open position of the flap drive, in which the air flap is fully open, which corresponds to an opening of the air flap of 100%.
  • the limit switches 1 to 4 are in the inventive method, except from safety-related reasons, only for the purpose of verification and / or re-verification used. However, they are not used during normal operation of the drive system. There are also no other sensors and no additional limit switches, e.g. B. in Intermediate angular positions used. Since additional limit switches or sensors in the As a rule, they are expensive and prone to malfunctions, and costs are saved by not using them Operational reliability increased.
  • the angular position change ⁇ that is to say the change in an angular path to be covered, is proportional to a respective travel time ⁇ t required for the angular position change ⁇ .
  • the value of the angular velocity W of the drive system is determined with the aid of the two limit switches 1 and 4 and then stored for later use in each case when a setpoint value ⁇ t S belonging to a desired setpoint angle position ⁇ S is determined
  • the time difference t 4 - t 1 is thus a measured transit time ⁇ t of the drive system in order to reach the angular position ⁇ 4 starting from the angular position ⁇ 1.
  • FIG. 1 shows a possible course of the angular positions ⁇ of the drive system as a function of the time t.
  • a possible time profile of the drive system during start-up is shown on the left by means of straight characteristic parts, while a possible time profile during normal operation of the drive system is shown on the right.
  • the angular position ⁇ of the drive system fluctuates after commissioning z. B. between the angular positions ⁇ 4 and ⁇ 2. 1, the assumption applies that ⁇ 2 is smaller than ⁇ 3, but this is not always the case.
  • the drive system has e.g. B.
  • the angular position changes ⁇ of the drive system are, as already mentioned, proportional to its running time ⁇ t.
  • a desired value ⁇ t S of the running time ⁇ t of the drive system associated with a desired setpoint angle position ⁇ S is determined and the drive system is then started and its running time ⁇ t is measured without sensors.
  • the drive system is stopped, whose angular position ⁇ is then equal to the target value angular position ⁇ S , since the target value ⁇ t S is the running time ⁇ t of the drive system, which is the latter is required to reach the desired target angular position ⁇ S starting from an angular reference position.
  • the angular reference position is e.g. B. the closed position ⁇ 1 of the flap actuator.
  • it can also be any other arbitrary angular position ⁇ B of the flap drive in which it is currently located and from which it starts in order to achieve the desired setpoint angular position ⁇ S (see FIG. 3).
  • the angular reference position ⁇ B is the position of the damper actuator before the last travel command.
  • a microcomputer present in the drive system can be calculated using a table stored in it or using equation (2), whereupon the microcomputer after a subsequent start of movement of the drive system only has to measure the running time ⁇ t in order to achieve ⁇ t after reaching the running time setpoint S stop the drive system. The latter is then in the desired setpoint angle position ⁇ S without a sensor being required to detect that the position ⁇ S in question has been reached.
  • the relevant values of ⁇ S and ⁇ t S are stored in the microcomputer and can be used as new start values for the sequence movement with the next sequence command.
  • the drive system is cyclically started up at one of the four limit switches, e.g. B.
  • a previously valid angular velocity W of the drive system is also multiplied by a correction factor k, which is a function f [D] of the setpoint / actual value difference D in order to obtain an angular velocity W E that is valid after the re-calibration, which is then subsequently used in the process, until the next re-calibration, in each case to determine the target value ⁇ t S of the running time ⁇ t.
  • the microcomputer measures e.g. B. the actual value .DELTA.t E of the running time .DELTA.t, which the drive system needs to reach the angular position ⁇ 3 of the limit switch 3 from its current angular position ⁇ A.
  • the difference D must be zero since both values should be the same. If not, not only the difference D is different from zero, but also the correction factor k is different from one.
  • the selection of the limit switch to be cycled for re-calibration is preferably process-dependent.
  • the cyclical limit switch that is selected is the one that can be approached the fastest by the drive system from the current position ⁇ A , ie that can be reached the fastest.
  • the angular positions ⁇ of the drive system in the method according to the invention are preferably expressed in step numbers n.
  • the angular positions ⁇ preferably correspond to speeds N.
  • At is also proportional to AN.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position Or Direction (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Postionserfassung eines linear getriebenen Antriebssystems gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a method for position detection of a linearly driven Drive system according to the preamble of claim 1.

Das erfindungsgemässe Verfahren wird vorzugsweise bei Klappen-Antrieben von Brennern in Heizungsanlagen verwendet. Es ist auch in vorteilhafter Weise in Frequenzumrichtem venvendbar.The method according to the invention is preferably used in burner flap drives Heating systems used. It can also be used advantageously in frequency converters.

Bekannt sind Verfahren der eingangs genannten Art, die zur Positionserfassung von Antriebssystemen analoge oder digitale Sensoren verwenden, welche den Bewegungsachsen der Antriebssysteme aufgekoppelt sind, was relativ teuer ist, spezielle Antriebe erfordert und aufgrund der zusätzlich vorhandenen Sensoren relativ störanfällig ist.Methods of the type mentioned at the outset are known which are used for position detection of Drive systems use analog or digital sensors, which the movement axes of the Drive systems are coupled, which is relatively expensive, requires special drives and due the additional sensors present are relatively susceptible to faults.

Der Erfindung liegt die Aufgabe zugrunde, die bekannten Verfahren so zu verbessern, dass die Zuverlässigkeit der Antriebssysteme erhöht und die Kosten der letzteren reduziert werden.The invention has for its object to improve the known methods so that the Reliability of the drive systems is increased and the costs of the latter are reduced.

Die genannte Aufgabe wird erfindungsgemäss durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.According to the invention, this object is achieved by the characterizing part of claim 1 specified features solved. Advantageous embodiments of the invention result from the dependent claims.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben.
Es zeigen

Fig. 1
ein Zeitdiagramm eines Messablaufs bei einem Klappen-Antrieb eines in einer Heizungsanlage vorhandenen Brenners,
Fig. 2
eine schematische Darstellung der Winkelpositionen von vier Grenzwertschaltern eines Antriebssystems,
Fig. 3
eine schematische Darstellung von Winkelpositionen beim erfindungsgemässen Verfahren und
Fig. 4
eine schematische Darstellung von Winkelpositionen bei einer Nachcichung.
An embodiment of the invention is shown in the drawing and will be described in more detail below.
Show it
Fig. 1
1 shows a time diagram of a measurement sequence for a flap drive of a burner present in a heating system,
Fig. 2
1 shows a schematic representation of the angular positions of four limit switches of a drive system,
Fig. 3
a schematic representation of angular positions in the inventive method and
Fig. 4
a schematic representation of angular positions in a Nachcichung.

Ein Klappen-Antrieb und ein Frequenzumrichter besitzen aus sicherheitstechnischen Gründen und/oder aus Eichungs-Gründen in Brenneranwendungen mehrere Grenzwertschalter. Z. B. besitzt der Klappen-Antrieb in einer Brenneranwendung, der vorzugsweise ein Luftklappen-Antrieb ist, mindestens vier als mechanische Endschalter funktionierende Grenzwertschalter 1, 2, 3 und 4 (siehe Fig. 1), deren Positionen einstellbar sind. Im Fall des Frequenzumrichters sind die einstellbaren Grenzwertschalter z. B. Luftdruckschalter. Ein erster Grenzwertschalter 1 ist z. B. in einer Winkelposition α1, ein zweiter Grenzwertschalter 2 in einer Winkelposition α2, ein dritter Grenzwertschalter 3 in einer Winkelposition α3 und ein vierter Grenzwertschalter 4 in einer Winkelposition α4 angeordnet (siehe Fig. 1 und Fig. 2).A damper actuator and a frequency converter are used for safety reasons and / or several limit switches for calibration reasons in burner applications. For example the damper actuator in a burner application, which is preferably an air damper actuator, at least four limit switches 1, 2, 3 and 4 functioning as mechanical limit switches (see Fig. 1) whose positions are adjustable. In the case of the frequency converter, the are adjustable Limit switch z. B. Air pressure switch. A first limit switch 1 is, for. B. in one Angular position α1, a second limit switch 2 in an angular position α2, a third Limit switch 3 in an angular position α3 and a fourth limit switch 4 in one Angular position α4 arranged (see Fig. 1 and Fig. 2).

Die Winkelposition α1 ist z. B. eine Zu-Position des Klappen-Antriebs, d. h. die Winkelposition, in der die Luftklappe geschlossen ist, was einer Öffnung der Luftklappe von 0% entspricht. Die Winkelposition α2 ist z. B. eine Kleinlast-Position des Brenners und entspricht einer Öffnung der Luftklappe von x%. Die Winkelposition α3 ist z. B. eine Zündlast-Position des Brenners und entspricht einer Öffnung der Luftklappe von y%. Die Winkelposition α4 ist z. B. eine Auf-Position des Klappen-Antriebs, in der die Luftklappe vollständig geöffnet ist, was einer Öffnung der Luftklappe von 100% entspricht.The angular position α1 is e.g. B. a closed position of the flap drive, ie the angular position in which the air flap is closed, which corresponds to an opening of the air flap of 0%. The angular position α 2 is z. B. a low-load position of the burner and corresponds to an opening of the air flap of x%. The angular position α 3 is z. B. an ignition load position of the burner and corresponds to an opening of the air flap of y%. The angular position α 4 is z. B. an open position of the flap drive, in which the air flap is fully open, which corresponds to an opening of the air flap of 100%.

Die Grenzwertschalter 1 bis 4 werden im erfindungsgemässen Verfahren, ausser aus sicherheitstechnischen Gründen, nur noch zum Zweck von Eichungen und/oder Nacheichungen verwendet. Während eines normalen Betriebs des Antriebssystems werden sie dagegen nicht benutzt. Es werden auch keine anderen Sensoren und auch keine zusätzlichen Grenzwertschalter, z. B. in Winkel-Zwischenpositionen, verwendet. Da zusätzliche Grenzwertschalter bzw. Sensoren in der Regel teuer und störanfällig sind, werden durch ihre Nichtverwendung Kosten gespart und die Betriebszuverlässigkeit erhöht.The limit switches 1 to 4 are in the inventive method, except from safety-related reasons, only for the purpose of verification and / or re-verification used. However, they are not used during normal operation of the drive system. There are also no other sensors and no additional limit switches, e.g. B. in Intermediate angular positions used. Since additional limit switches or sensors in the As a rule, they are expensive and prone to malfunctions, and costs are saved by not using them Operational reliability increased.

Eine Winkelposition α eines linear getriebenen Antriebssystems ist propotional einer Zeit t, die das Antriebssystem benötigt, um ausgehend von einem Bezugspunkt, z. B. α = 0, die Winkelposition α zu erreichen. Es gelten somit: α = W.t und Δα = W.Δt wobei W eine konstante Winkelgeschwindigkeit des Antriebssystems ist. Die Winkelpositions-Änderung Δα, also die Änderung eines zurückzulegenden Winkelweges, ist proportional einer jeweiligen für die Winkelpositions-Änderung Δα benötigten Laufzeit Δt. Aus der Laufzeit Δt des Antriebssystems kann somit aufeine bestimmte Weg- bzw. Winkelpositions-Änderung Δα des Antriebssystems rückgeschlossen werden, wenn der konstante Wert der Winkelgeschwindigkeit W bekannt ist. Dieser Wert wird entweder als Parameter vorgegeben oder er kann vom Antriebssystem, z. B. anlässlich der Inbetriebsetzung, mit Hilfe zweier Grenzwertschalter, z. B. der beiden Grenzwertschalter 1 und 4 ermittelt werden. Im letzteren Fall wird vor einer ersten Inbetriebnahme des Antriebssystems der Wert der Winkelgeschwindigkeit W des Antriebssystems mit Hilfe der beiden Grenzwertschalter 1 und 4 ermittelt und anschliessend gespeichert zwecks späterer Verwendung bei einer jeweiligen Ermittlung eines zu einer gewünschten Sollwert-Winkelposition αS gehörigen Sollwertes ΔtS der Laufzeit Δt des Antriebssystems. Dabei gilt: W = (α4 - α1)/(t4 - t1), wobei t4 und t1 jeweils die Zeiten sind, die das Antriebssystem benötigt, um ausgehend von einer Winkelbezugs-Position, z. B α = 0, die Winkelposition α4 bzw. α1 zu erreichen. Die Zeitdifferenz t4 - t1 ist somit eine gemessene Laufzeit Δt des Antriebssystems um, ausgehend von der Winkelposition α1, die Winkelposition α4 zu erreichen.An angular position α of a linearly driven drive system is proportional to a time t that the drive system needs to start from a reference point, e.g. B. α = 0 to reach the angular position α. The following therefore apply: α = Wt and Δα = W.Δt where W is a constant angular velocity of the drive system. The angular position change Δα, that is to say the change in an angular path to be covered, is proportional to a respective travel time Δt required for the angular position change Δα. From the running time .DELTA.t of the drive system, it is thus possible to draw conclusions about a specific change in path or angular position .DELTA.α of the drive system if the constant value of the angular velocity W is known. This value is either specified as a parameter or it can be used by the drive system, e.g. B. on the occasion of commissioning, using two limit switches, e.g. B. the two limit switches 1 and 4 can be determined. In the latter case, before the drive system is started up for the first time, the value of the angular velocity W of the drive system is determined with the aid of the two limit switches 1 and 4 and then stored for later use in each case when a setpoint value Δt S belonging to a desired setpoint angle position α S is determined Running time Δt of the drive system. The following applies: W = (α4 - α1) / (t4 - t1), where t4 and t1 are the times that the drive system needs to start from an angular reference position, e.g. B α = 0 to reach the angular position α4 or α1. The time difference t 4 - t 1 is thus a measured transit time Δt of the drive system in order to reach the angular position α4 starting from the angular position α1.

Desgleichen können zwei weitere Messungen mit je einer zugehörigen Berechnung die Werte von x% und y% ergeben, da: x = W.(t2 - t1) und y = W.(t3 - t1), wobei t2 und t3 jeweils die Zeiten sind, die das Antriebssystem benötigt, um ausgehend von der Winkelbezugs-Position die Winkelposition α2 bzw. α3 zu erreichen. Die Zeitdifferenzen t2 - t1 und t3 - t1 sind somit gemessene Laufzeiten Δt des Antriebssystems um, jeweils ausgehend von der Winkelposition α1, die Winkelposition α2 bzw. α3 zu erreichen.Likewise, two further measurements, each with an associated calculation, can give the values of x% and y%, since: x = W. (t2 - t1) and y = W. (t3 - t1), where t2 and t3 are the times that the drive system needs to reach the angular position α2 and α3 starting from the angular reference position. The time differences t2-t1 and t3-t1 are thus measured transit times Δt of the drive system in order to reach the angular position α2 and α3, respectively, starting from the angular position α1.

In der Fig. 1 ist ein möglicher Verlauf der Winkelpositionen α des Antriebssystems in Funktion der Zeit t dargestellt. In der Darstellung der Fig. 1 ist links mittels gerader Kennlinienteile ein möglicher zeitlicher Verlauf des Antriebssystems anlässlich einer Inbetriebnahme wiedergegeben, während rechts ein möglicher zeitlicher Verlauf anlässlich eines normalen Betriebs des Antriebssystems dargestellt ist. Im letzteren Fall schwankt die Winkelposition α des Antriebssystems nach der Inbetriebnahme z. B. zwischen den Winkelpositionen α4 und α2. In der Fig. 1 gilt die Annahme, dass α2 kleiner als α3 ist, was jedoch nicht immer der Fall ist. Zu Beginn der Inbetriebnahme besitzt das Antriebssystem z. B. die Winkelposition α1 bis zum Zeitpunkt tA = t1 (siehe Punkt A des Zeitdiagramms), um anschliessend mit der konstanten Geschwindigkeit W zur Winkelposition α4 hochzufahren, die es im Zeitpunkt tB = t4 erreicht (siehe Punkt B des Zeitdiagramms). Das Hochfahren ist in der Fig. 1 durch eine Gerade AB dargestellt, deren Neigung W ist. Nach Erreichen der Winkelposition α4 verbleibt z. B. das Antriebssystem in dieser Position bis zum Zeitpunkt tC (siehe Punkt C des Zeitdiagramms), um anschliessend mit konstanter Geschwindigkeit W zur Winkelposition α3 herunterzulaufen, die es im Zeitpunkt tD erreicht (siehe Punkt D des Zeitdiagramms) und aus der es für den nachfolgenden normalen Betrieb startet. Das Herunterlaufen ist durch eine Gerade CD dargestellt, deren Neigung -W ist. 1 shows a possible course of the angular positions α of the drive system as a function of the time t. In the illustration in FIG. 1, a possible time profile of the drive system during start-up is shown on the left by means of straight characteristic parts, while a possible time profile during normal operation of the drive system is shown on the right. In the latter case, the angular position α of the drive system fluctuates after commissioning z. B. between the angular positions α4 and α2. 1, the assumption applies that α2 is smaller than α3, but this is not always the case. At the start of commissioning, the drive system has e.g. B. the angular position α1 up to the point in time t A = t1 (see point A of the time diagram) in order to then drive up at a constant speed W to the angular position α4 which it reaches at the point in time t B = t4 (see point B of the time diagram). The start-up is shown in FIG. 1 by a straight line AB, the inclination of which is W. After reaching the angular position α4 z. B. the drive system in this position up to time t C (see point C of the time diagram), then to run down at a constant speed W to the angular position α3, which it reaches at time t D (see point D of the time diagram) and from which it is used the subsequent normal operation starts. The downward movement is represented by a straight CD, the inclination of which is -W.

Die Winkelpositions-Änderungen Δα des Antriebssystems sind, wie bereits erwähnt, proportional seiner Laufzeit Δt. Im erfindungsgemässen Verfahren zur Positionserfassung des linear getriebenen Antriebssystems wird ein zu einer gewünschten Sollwert-Winkelposition αS gehöriger Sollwert ΔtS der Laufzeit Δt des Antriebssystems ermittelt und das Antriebssystem anschliesend gestartet sowie seine Laufzeit Δt sensorlos gemessen. Wenn ein gemessener Wert der Laufzeit Δt gleich dem ermittelten Sollwert ΔtS der Laufzeit Δt ist, wird das Antriebssystem gestoppt, dessen Winkelposition α dann gleich der Sollwert-Winkelposition αS ist, da der Sollwert ΔtS die Laufzeit Δt des Antriebssystems ist, die das letztere benötigt, um, von einer Winkelbezugs-Postion ausgehend, die gewünschte Soll-Winkelposition αS zu erreichen.The angular position changes Δα of the drive system are, as already mentioned, proportional to its running time Δt. In the method according to the invention for detecting the position of the linearly driven drive system, a desired value Δt S of the running time Δt of the drive system associated with a desired setpoint angle position α S is determined and the drive system is then started and its running time Δt is measured without sensors. If a measured value of the running time Δt is equal to the determined target value Δt S of the running time Δt, the drive system is stopped, whose angular position α is then equal to the target value angular position α S , since the target value Δt S is the running time Δt of the drive system, which is the the latter is required to reach the desired target angular position α S starting from an angular reference position.

Die Winkelbezugs-Position ist z. B. die Zu-Position α1 des Klappen-Antriebs. Sie kann aber auch irgend eine andere beliebige Winkelposition αB des Klappen-Antriebs sein, in der dieser sich augenblicklich befindet und aus der er startet, um die gewünschte Sollwert-Winkelpositions αS zu erreichen (siehe Fig. 3). Die Winkelbezugs-Position αB ist in diesem Fall die Position des Klappen-Antriebs vor dem letzten Fahrbefehl. Eine Integration der Gleichung (1) ergibt: α = W.Δt + αB mit α = αS und Δt = ΔtS, so dass: ΔtS = (αS - αB)/W The angular reference position is e.g. B. the closed position α 1 of the flap actuator. However, it can also be any other arbitrary angular position α B of the flap drive in which it is currently located and from which it starts in order to achieve the desired setpoint angular position α S (see FIG. 3). In this case, the angular reference position α B is the position of the damper actuator before the last travel command. An integration of equation (1) results in: α = W.Δt + α B with α = α S and Δt = Δt S , so that: Δt S = (α S - α B ) / W

Die benötigte Laufzeit ΔtS, um, ausgehend aus der augenblicklichen Winkelposition αB, die gewünschte Sollwert-Winkelposition αS zu erreichen, kann somit von z. B. einem im Antriebssystem vorhandenen Mikrocomputer mittels einer in ihm abgespeicherten Tabelle oder mittels der Gleichung (2) berechnet werden, worauf der Mikrocomputer nach einem nachfolgend erfolgten Bewegungsstart des Antriebssystems nur mehr die Laufzeit Δt messen muss, um nach dem Erreichen des Laufzeit-Sollwertes ΔtS das Antriebssystem zu stoppen. Das letztere befindet sich dann in der gewünschten Sollwert-Winkelposition αS, ohne dass dort ein Sensor zur Detektion eines Erreichens der betreffenden Position αS erforderlich ist. Die betreffenden Werte von αS und ΔtS werden im Mikrocomputer gespeichert und können beim nächsten Ablaufbefehl als neue Startwerte der Ablaufbewegung dienen.To reach the required running time .DELTA.t S in order, starting from the α instantaneous angular position B, the desired setpoint angular position α S, thus by z. B. a microcomputer present in the drive system can be calculated using a table stored in it or using equation (2), whereupon the microcomputer after a subsequent start of movement of the drive system only has to measure the running time Δt in order to achieve Δt after reaching the running time setpoint S stop the drive system. The latter is then in the desired setpoint angle position α S without a sensor being required to detect that the position α S in question has been reached. The relevant values of α S and Δt S are stored in the microcomputer and can be used as new start values for the sequence movement with the next sequence command.

Bei parallel geführten Antriebssystemen, d. h. wenn mehrere Heizkessel gleichzeitig und die zugehörigen Brenner synchron betrieben werden, kann es durch Toleranzen der einzelnen Antriebssysteme zu einem ungewollten Driften des Gesamtsystems kommen. Daher erfolgt in einer Variante des erfindungsgemässen Verfahrens durch ein zyklisches Anfahren des Antriebssystems an einen der vier Grenzwertschalter, z. B. an den Grenzwertschalter 3, eine gezielte Nacheichung, indem jeweils einerseits eine Sollwert/Istwert-Differenz D = ΔtS,E - ΔtE eines ermittelten Sollwertes ΔtS,E und eines gemessenen Istwertes ΔtE einer Laufzeit Δt ermittelt wird, die erforderlich ist, um, ausgehend aus einer augenblicklichen Winkelposition αA des Antriebssystems, den Grenzwertschalter 3 zu erreichen (siehe Fig. 4). Anderseits wird ausserdem eine bisher geltende Winkelgeschwindigkeit W des Antriebssystems mit einem Korrekturfaktor k multipliziert, der eine Funktion f[D] der Sollwert/Istwert-Differenz D ist, um eine nach der Nacheichung geltende Winkelgeschwindigkeit WE zu erhalten, die dann nachfolgend im Verfahren, bis zur nächsten Nacheichung, jeweils zur Ermittlung des Sollwertes ΔtS der Laufzeit Δt verwendet wird.In the case of drive systems running in parallel, ie if several boilers are operated simultaneously and the associated burners are operated synchronously, tolerances of the individual drive systems can lead to an unwanted drift of the overall system. Therefore, in one variant of the method according to the invention, the drive system is cyclically started up at one of the four limit switches, e.g. B. to the limit switch 3, a targeted re-calibration by determining on the one hand a setpoint / actual value difference D = Δt S, E - Δt E of a determined setpoint Δt S, E and a measured actual value Δt E of a running time Δt, which is required is to reach the limit switch 3, starting from an instantaneous angular position α A of the drive system (see FIG. 4). On the other hand, a previously valid angular velocity W of the drive system is also multiplied by a correction factor k, which is a function f [D] of the setpoint / actual value difference D in order to obtain an angular velocity W E that is valid after the re-calibration, which is then subsequently used in the process, until the next re-calibration, in each case to determine the target value Δt S of the running time Δt.

Der Mikrocomputer misst z. B. den Istwert ΔtE der Laufzeit Δt, die das Antriebssystem benötigt, um die Winkeldposition α3 des Grenzwertschalters 3 aus seiner augenblicklichen Winkelposition αA heraus zu erreichen. Der Mikrocomputer vergleicht diesen gemessenen Istwert ΔtE mit dem von ihm ermittelten, d. h. errechneten Sollwert ΔtS,E der Laufzeit Δt, die notwendig ist, um die gleiche Strecke zurückzulegen, indem er die Sollwert/Istwert-Differenz D = ΔtS,E - ΔtE ermittelt, d. h. berechnet. Theoretisch muss die Differenz D Null sein, da beide Werte gleich sein sollten. Falls nicht, ist nicht nur die Differenz D unterschiedlich von Null, sondern auch der Korrekturfaktor k unterschiedlich von Eins.The microcomputer measures e.g. B. the actual value .DELTA.t E of the running time .DELTA.t, which the drive system needs to reach the angular position α3 of the limit switch 3 from its current angular position α A. The microcomputer compares this measured actual value .DELTA.t E with the setpoint value .DELTA.t S, E determined by it, that is , the running time .DELTA.t which is necessary to cover the same distance by the setpoint / actual value difference D = .DELTA.t S, E - Δt E determined, ie calculated. Theoretically, the difference D must be zero since both values should be the same. If not, not only the difference D is different from zero, but also the correction factor k is different from one.

Dabei gelten die Gleichungen: WE = k.W k = f[D], wobei WE und W die Winkelgeschwindigkeiten nach und vor der Nacheichung sind, während k der von D abhängige Korrektufaktor ist. Durch das zyklische Anfahren wird der Rechenwert für die Winkelgeschwindigkeit W mittels der Gleichung (3) periodisch korrigiert und der Fehler des ermittelten Positionswertes im Laufe der Zeit immer kleiner. Es wird so ein adaptives Verhalten des Antriebssystems erreicht und der verwendete Wert der Winkelgeschwindigkeit W über die Betriebsdauer hin optimiert.The equations apply: W E = kW k = f [D], where W E and W are the angular velocities after and before the re-calibration, while k is the correction factor dependent on D. Due to the cyclical approach, the calculated value for the angular velocity W is periodically corrected using equation (3) and the error in the determined position value becomes smaller and smaller over time. In this way, an adaptive behavior of the drive system is achieved and the value of the angular velocity W used is optimized over the operating period.

Die Wahl des zur Nacheichung zyklisch anzufahrenden Grenzwertschalters erfolgt vorzugsweise prozessabhängig. In einer bevorzugten Ausführung wird als zyklisch anzufahrender Grenzwertschalter derjenige ausgewählt, der vom Antriebssystem aus der augenblicklichen Position αA heraus am schnellsten angefahren, d. h. am schnellsten erreicht werden kann.The selection of the limit switch to be cycled for re-calibration is preferably process-dependent. In a preferred embodiment, the cyclical limit switch that is selected is the one that can be approached the fastest by the drive system from the current position α A , ie that can be reached the fastest.

Wenn der Antrieb des Antriebssystems ein Schrittmotor ist, sind die Winkelpositionen α des Antriebssystems im erfindungsgemässen Verfahren vorzugsweise in Schrittanzahlen n ausgedrückt. Eine für die Winkelpositions-Änderung Δα erforderliche Schrittanzahl Δn ergibt sich aus der Gleichung: Δn = Δα/SW, wobei SW eine konstante Schrittweite des Schrittmotors darstellt. Gemäss Gleichung (1) ist Δt somit ebenfalls proportional Δn.If the drive of the drive system is a stepper motor, the angular positions α of the drive system in the method according to the invention are preferably expressed in step numbers n. A step number Δn required for the angular position change Δα results from the equation: Δn = Δα / SW, where SW represents a constant step size of the stepper motor. According to equation (1), Δt is therefore also proportional to Δn.

Wenn das Antriebssystem ein Teil eines Frequenzumrichters ist, entsprechen die Winkelpositionen α vorzugsweise Drehzahlen N. Eine für die Winkelpositions-Änderung Δα erforderliche DrehzahlÄnderung ΔN ergibt sich aus der Gleichung: ΔN = Δα/2π If the drive system is part of a frequency converter, the angular positions α preferably correspond to speeds N. A speed change ΔN required for the angular position change Δα results from the equation: ΔN = Δα / 2π

Gemäss Gleichung (1) ist At ebenfalls proportional AN.According to equation (1), At is also proportional to AN.

Claims (7)

  1. A method of detecting the position of a linearly driven drive system whose change in angular position (Δα) is proportional to its respective running time (Δt), characterised in that
    a reference value (ΔtS) of the running time (Δt) of the drive system, which reference value is associated with a desired reference value angular position (αS), is ascertained,
    the drive system is then started and its running time (Δt) is sensor-lessly measured, and
    when a measured value of the running time (Δt) is equal to the ascertained reference value (ΔtS) of the running time (Δt) the drive system is stopped.
  2. A method according to claim 1 characterised in that before the drive system is first brought into operation a value of an angular speed (W) of the drive system is ascertained by means of two limit value switches (1, 4) and stored for the purposes of subsequent use in the respective operation of ascertaining the reference value (ΔtS) of the running time (Δt) of the drive system, said reference value being associated with the desired reference value angular position (αS).
  3. A method according to claim 2 characterised in that a re-calibration operation is effected by cyclically causing the drive system to go to one of a plurality of limit value switches (3), by a procedure whereby in each case on the one hand a reference value/actual value difference (D) of an ascertained reference value (ΔtS.E) and a measured actual value (ΔtE) of a running time (Δt) is ascertained, which is required to reach the limit value switch (3) starting from an instantaneous angular position (αA) of the drive system, and on the other hand a previously applicable angular speed (W) of the drive system is multiplied by a correction factor (k) which is a function (f[D]) of the reference value/actual value difference (D) in order to obtain an angular speed (WE) which applies after the re-calibration operation and which then is subsequently used in the method until the next re-calibration operation for respectively ascertaining the reference value (ΔtS) of the running time (Δt).
  4. A method according to claim 3 characterised in that the choice of the limit value switch to which the drive system is to be cyclically moved is effected in dependence on the procedure involved.
  5. A method according to claim 4 characterised in that selected as the limit value switch to which the drive system is to be cyclically moved is the switch to which the drive system can move the most quickly.
  6. A method according to one of claims 1 to 5 characterised in that a drive of the drive system is a stepping motor and the angular position (a) of the drive system is expressed in numbers of steps (n).
  7. A method according to one of claims 1 to 5 characterised in that the drive system is a part of a frequency converter and the angular positions (a) correspond to numbers of revolutions (N).
EP95117559A 1994-12-20 1995-11-08 Method for determining the position of a linear-driven drive system Expired - Lifetime EP0718556B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3830/94 1994-12-20
CH383094 1994-12-20

Publications (2)

Publication Number Publication Date
EP0718556A1 EP0718556A1 (en) 1996-06-26
EP0718556B1 true EP0718556B1 (en) 1998-03-25

Family

ID=4264386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95117559A Expired - Lifetime EP0718556B1 (en) 1994-12-20 1995-11-08 Method for determining the position of a linear-driven drive system

Country Status (3)

Country Link
US (1) US5710725A (en)
EP (1) EP0718556B1 (en)
DE (1) DE59501700D1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2823140A1 (en) * 1978-05-26 1979-11-29 Kloeckner Humboldt Deutz Ag METHOD AND DEVICE FOR ADJUSTING A DEFINED REST POSITION OF A ROTATING TUBE
DE2833463A1 (en) * 1978-07-29 1980-02-07 Servo Instr DEVICE FOR AUTOMATIC CONTROL OF THE PRESSURE IN THE COMBUSTION ROOM OF A BURNER
DE3018528C2 (en) * 1980-05-14 1986-06-05 MTC, Meßtechnik und Optoelektronik AG, Neuenburg/Neuchâtel Method and device for measuring the angular velocity of a rotating body
JPS5768697A (en) * 1980-10-16 1982-04-27 Janome Sewing Mach Co Ltd Driving device for pulse motor
JPS59137680A (en) * 1983-01-25 1984-08-07 Ube Ind Ltd Self-diagnosis method of control system for stepping motor driving type control valve
CA1255186A (en) * 1985-11-14 1989-06-06 Patrick Tolley Digital servo-valve
US4880376A (en) * 1989-01-27 1989-11-14 Honeywell Inc. Method and apparatus for monitoring and calibrating damper position
JPH03204561A (en) * 1989-12-28 1991-09-06 Matsushita Electric Ind Co Ltd Hot air room heater
JP2778206B2 (en) * 1990-05-16 1998-07-23 松下電器産業株式会社 Combustion air conditioner
JP2778207B2 (en) * 1990-05-16 1998-07-23 松下電器産業株式会社 Hot air heater

Also Published As

Publication number Publication date
US5710725A (en) 1998-01-20
EP0718556A1 (en) 1996-06-26
DE59501700D1 (en) 1998-04-30

Similar Documents

Publication Publication Date Title
EP0770824B1 (en) Method and circuit for controlling a gas burner
EP0438640B1 (en) Method for the sensing of motion and position of a part of an inductive electric consumer movable between a rest and an end position by means of a magnetic action
EP0284785B1 (en) Method and device for controlling the thightness of two valves successively disposed on a fluid conduit
DE3638410C2 (en)
DE19539568C1 (en) Gas burner regulation system
DE19931233A1 (en) Capacitive actuator control method for operating fuel injection valve in combustion engine
DE102012102013B3 (en) Method for controlling surface temperature of glow plug in internal combustion engine of motor car, involves changing effective voltage acting on plug based on deviation in plug temperature with respect to target temperature of plug surface
EP0419769A2 (en) Method for continuously monitoring an electrode system for potentiometric measurements
EP0718556B1 (en) Method for determining the position of a linear-driven drive system
DE4429157A1 (en) Method for monitoring the function of a control and regulating system
EP3353798A1 (en) Control unit and method for monitoring the function of an electromagnetic actuator
DE4410735B4 (en) Furnace with an automatic burner
DE19854824C1 (en) Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
DE4335239C1 (en) Method for positioning an actuator
DE10355022B4 (en) Method for monitoring a technical system
DE3643326C2 (en)
EP3734159A1 (en) Method for checking a gas mixture sensor in a combustion gas operated heater
EP0977021B1 (en) Method for measuring a fluid flow in a flow channel
DE731625C (en) Arrangement for controlling or regulating or for displaying a variable which can be changed according to a function containing a maximum or minimum
EP0552173B1 (en) Device for determining fluid throughput
DE4408425A1 (en) Method and device for adjusting the angular position of a cam shaft
DE3624328C2 (en)
DE3904986A1 (en) METHOD FOR DETECTING THE READY FOR OPERATION OF A LAMBED PROBE
EP0469189A2 (en) Method and apparatus for controlling heating elements of a cooking oven
DE3727121A1 (en) Arrangement for monitoring the rest-position of an actuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19960722

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970903

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59501700

Country of ref document: DE

Date of ref document: 19980430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980429

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LANDIS & GYR TECHNOLOGY INNOVATION AG TRANSFER- SIEMENS BUILDING TECHNOLOGIES AG C-IPR

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59501700

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: LANDIS & GYR TECHNOLOGY INNOVATION AG, ZUG, CH

Effective date: 20130507

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130704 AND 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

Ref country code: FR

Ref legal event code: CD

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141112

Year of fee payment: 20

Ref country code: GB

Payment date: 20141110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141103

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150119

Year of fee payment: 20

Ref country code: CH

Payment date: 20150209

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59501700

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20151107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20151107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151107