EP0718556B1 - Method for determining the position of a linear-driven drive system - Google Patents
Method for determining the position of a linear-driven drive system Download PDFInfo
- Publication number
- EP0718556B1 EP0718556B1 EP95117559A EP95117559A EP0718556B1 EP 0718556 B1 EP0718556 B1 EP 0718556B1 EP 95117559 A EP95117559 A EP 95117559A EP 95117559 A EP95117559 A EP 95117559A EP 0718556 B1 EP0718556 B1 EP 0718556B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drive system
- reference value
- running time
- value
- angular position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000012937 correction Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/08—Regulating air supply or draught by power-assisted systems
- F23N3/082—Regulating air supply or draught by power-assisted systems using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
- F23N2235/06—Air or combustion gas valves or dampers at the air intake
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/02—Air or combustion gas valves or dampers
- F23N2235/10—Air or combustion gas valves or dampers power assisted, e.g. using electric motors
Definitions
- the invention relates to a method for position detection of a linearly driven Drive system according to the preamble of claim 1.
- the method according to the invention is preferably used in burner flap drives Heating systems used. It can also be used advantageously in frequency converters.
- the invention has for its object to improve the known methods so that the Reliability of the drive systems is increased and the costs of the latter are reduced.
- a damper actuator and a frequency converter are used for safety reasons and / or several limit switches for calibration reasons in burner applications.
- the damper actuator in a burner application which is preferably an air damper actuator, at least four limit switches 1, 2, 3 and 4 functioning as mechanical limit switches (see Fig. 1) whose positions are adjustable.
- the frequency converter the are adjustable Limit switch z.
- a first limit switch 1 is, for. B. in one Angular position ⁇ 1, a second limit switch 2 in an angular position ⁇ 2, a third Limit switch 3 in an angular position ⁇ 3 and a fourth limit switch 4 in one Angular position ⁇ 4 arranged (see Fig. 1 and Fig. 2).
- the angular position ⁇ 1 is e.g. B. a closed position of the flap drive, ie the angular position in which the air flap is closed, which corresponds to an opening of the air flap of 0%.
- the angular position ⁇ 2 is z. B. a low-load position of the burner and corresponds to an opening of the air flap of x%.
- the angular position ⁇ 3 is z. B. an ignition load position of the burner and corresponds to an opening of the air flap of y%.
- the angular position ⁇ 4 is z. B. an open position of the flap drive, in which the air flap is fully open, which corresponds to an opening of the air flap of 100%.
- the limit switches 1 to 4 are in the inventive method, except from safety-related reasons, only for the purpose of verification and / or re-verification used. However, they are not used during normal operation of the drive system. There are also no other sensors and no additional limit switches, e.g. B. in Intermediate angular positions used. Since additional limit switches or sensors in the As a rule, they are expensive and prone to malfunctions, and costs are saved by not using them Operational reliability increased.
- the angular position change ⁇ that is to say the change in an angular path to be covered, is proportional to a respective travel time ⁇ t required for the angular position change ⁇ .
- the value of the angular velocity W of the drive system is determined with the aid of the two limit switches 1 and 4 and then stored for later use in each case when a setpoint value ⁇ t S belonging to a desired setpoint angle position ⁇ S is determined
- the time difference t 4 - t 1 is thus a measured transit time ⁇ t of the drive system in order to reach the angular position ⁇ 4 starting from the angular position ⁇ 1.
- FIG. 1 shows a possible course of the angular positions ⁇ of the drive system as a function of the time t.
- a possible time profile of the drive system during start-up is shown on the left by means of straight characteristic parts, while a possible time profile during normal operation of the drive system is shown on the right.
- the angular position ⁇ of the drive system fluctuates after commissioning z. B. between the angular positions ⁇ 4 and ⁇ 2. 1, the assumption applies that ⁇ 2 is smaller than ⁇ 3, but this is not always the case.
- the drive system has e.g. B.
- the angular position changes ⁇ of the drive system are, as already mentioned, proportional to its running time ⁇ t.
- a desired value ⁇ t S of the running time ⁇ t of the drive system associated with a desired setpoint angle position ⁇ S is determined and the drive system is then started and its running time ⁇ t is measured without sensors.
- the drive system is stopped, whose angular position ⁇ is then equal to the target value angular position ⁇ S , since the target value ⁇ t S is the running time ⁇ t of the drive system, which is the latter is required to reach the desired target angular position ⁇ S starting from an angular reference position.
- the angular reference position is e.g. B. the closed position ⁇ 1 of the flap actuator.
- it can also be any other arbitrary angular position ⁇ B of the flap drive in which it is currently located and from which it starts in order to achieve the desired setpoint angular position ⁇ S (see FIG. 3).
- the angular reference position ⁇ B is the position of the damper actuator before the last travel command.
- a microcomputer present in the drive system can be calculated using a table stored in it or using equation (2), whereupon the microcomputer after a subsequent start of movement of the drive system only has to measure the running time ⁇ t in order to achieve ⁇ t after reaching the running time setpoint S stop the drive system. The latter is then in the desired setpoint angle position ⁇ S without a sensor being required to detect that the position ⁇ S in question has been reached.
- the relevant values of ⁇ S and ⁇ t S are stored in the microcomputer and can be used as new start values for the sequence movement with the next sequence command.
- the drive system is cyclically started up at one of the four limit switches, e.g. B.
- a previously valid angular velocity W of the drive system is also multiplied by a correction factor k, which is a function f [D] of the setpoint / actual value difference D in order to obtain an angular velocity W E that is valid after the re-calibration, which is then subsequently used in the process, until the next re-calibration, in each case to determine the target value ⁇ t S of the running time ⁇ t.
- the microcomputer measures e.g. B. the actual value .DELTA.t E of the running time .DELTA.t, which the drive system needs to reach the angular position ⁇ 3 of the limit switch 3 from its current angular position ⁇ A.
- the difference D must be zero since both values should be the same. If not, not only the difference D is different from zero, but also the correction factor k is different from one.
- the selection of the limit switch to be cycled for re-calibration is preferably process-dependent.
- the cyclical limit switch that is selected is the one that can be approached the fastest by the drive system from the current position ⁇ A , ie that can be reached the fastest.
- the angular positions ⁇ of the drive system in the method according to the invention are preferably expressed in step numbers n.
- the angular positions ⁇ preferably correspond to speeds N.
- At is also proportional to AN.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Position Or Direction (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren zur Postionserfassung eines linear getriebenen
Antriebssystems gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a method for position detection of a linearly driven
Drive system according to the preamble of
Das erfindungsgemässe Verfahren wird vorzugsweise bei Klappen-Antrieben von Brennern in Heizungsanlagen verwendet. Es ist auch in vorteilhafter Weise in Frequenzumrichtem venvendbar.The method according to the invention is preferably used in burner flap drives Heating systems used. It can also be used advantageously in frequency converters.
Bekannt sind Verfahren der eingangs genannten Art, die zur Positionserfassung von Antriebssystemen analoge oder digitale Sensoren verwenden, welche den Bewegungsachsen der Antriebssysteme aufgekoppelt sind, was relativ teuer ist, spezielle Antriebe erfordert und aufgrund der zusätzlich vorhandenen Sensoren relativ störanfällig ist.Methods of the type mentioned at the outset are known which are used for position detection of Drive systems use analog or digital sensors, which the movement axes of the Drive systems are coupled, which is relatively expensive, requires special drives and due the additional sensors present are relatively susceptible to faults.
Der Erfindung liegt die Aufgabe zugrunde, die bekannten Verfahren so zu verbessern, dass die Zuverlässigkeit der Antriebssysteme erhöht und die Kosten der letzteren reduziert werden.The invention has for its object to improve the known methods so that the Reliability of the drive systems is increased and the costs of the latter are reduced.
Die genannte Aufgabe wird erfindungsgemäss durch die im Kennzeichen des Anspruchs 1
angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den
abhängigen Ansprüchen.According to the invention, this object is achieved by the characterizing part of
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher
beschrieben.
Es zeigen
- Fig. 1
- ein Zeitdiagramm eines Messablaufs bei einem Klappen-Antrieb eines in einer Heizungsanlage vorhandenen Brenners,
- Fig. 2
- eine schematische Darstellung der Winkelpositionen von vier Grenzwertschaltern eines Antriebssystems,
- Fig. 3
- eine schematische Darstellung von Winkelpositionen beim erfindungsgemässen Verfahren und
- Fig. 4
- eine schematische Darstellung von Winkelpositionen bei einer Nachcichung.
Show it
- Fig. 1
- 1 shows a time diagram of a measurement sequence for a flap drive of a burner present in a heating system,
- Fig. 2
- 1 shows a schematic representation of the angular positions of four limit switches of a drive system,
- Fig. 3
- a schematic representation of angular positions in the inventive method and
- Fig. 4
- a schematic representation of angular positions in a Nachcichung.
Ein Klappen-Antrieb und ein Frequenzumrichter besitzen aus sicherheitstechnischen Gründen
und/oder aus Eichungs-Gründen in Brenneranwendungen mehrere Grenzwertschalter. Z. B. besitzt
der Klappen-Antrieb in einer Brenneranwendung, der vorzugsweise ein Luftklappen-Antrieb ist,
mindestens vier als mechanische Endschalter funktionierende Grenzwertschalter 1, 2, 3 und 4 (siehe
Fig. 1), deren Positionen einstellbar sind. Im Fall des Frequenzumrichters sind die einstellbaren
Grenzwertschalter z. B. Luftdruckschalter. Ein erster Grenzwertschalter 1 ist z. B. in einer
Winkelposition α1, ein zweiter Grenzwertschalter 2 in einer Winkelposition α2, ein dritter
Grenzwertschalter 3 in einer Winkelposition α3 und ein vierter Grenzwertschalter 4 in einer
Winkelposition α4 angeordnet (siehe Fig. 1 und Fig. 2).A damper actuator and a frequency converter are used for safety reasons
and / or several limit switches for calibration reasons in burner applications. For example
the damper actuator in a burner application, which is preferably an air damper actuator,
at least four
Die Winkelposition α1 ist z. B. eine Zu-Position des Klappen-Antriebs, d. h. die Winkelposition, in der die Luftklappe geschlossen ist, was einer Öffnung der Luftklappe von 0% entspricht. Die Winkelposition α2 ist z. B. eine Kleinlast-Position des Brenners und entspricht einer Öffnung der Luftklappe von x%. Die Winkelposition α3 ist z. B. eine Zündlast-Position des Brenners und entspricht einer Öffnung der Luftklappe von y%. Die Winkelposition α4 ist z. B. eine Auf-Position des Klappen-Antriebs, in der die Luftklappe vollständig geöffnet ist, was einer Öffnung der Luftklappe von 100% entspricht.The angular position α1 is e.g. B. a closed position of the flap drive, ie the angular position in which the air flap is closed, which corresponds to an opening of the air flap of 0%. The angular position α 2 is z. B. a low-load position of the burner and corresponds to an opening of the air flap of x%. The angular position α 3 is z. B. an ignition load position of the burner and corresponds to an opening of the air flap of y%. The angular position α 4 is z. B. an open position of the flap drive, in which the air flap is fully open, which corresponds to an opening of the air flap of 100%.
Die Grenzwertschalter 1 bis 4 werden im erfindungsgemässen Verfahren, ausser aus
sicherheitstechnischen Gründen, nur noch zum Zweck von Eichungen und/oder Nacheichungen
verwendet. Während eines normalen Betriebs des Antriebssystems werden sie dagegen nicht benutzt.
Es werden auch keine anderen Sensoren und auch keine zusätzlichen Grenzwertschalter, z. B. in
Winkel-Zwischenpositionen, verwendet. Da zusätzliche Grenzwertschalter bzw. Sensoren in der
Regel teuer und störanfällig sind, werden durch ihre Nichtverwendung Kosten gespart und die
Betriebszuverlässigkeit erhöht.The
Eine Winkelposition α eines linear getriebenen Antriebssystems ist propotional einer Zeit t, die das
Antriebssystem benötigt, um ausgehend von einem Bezugspunkt, z. B. α = 0, die Winkelposition α
zu erreichen.
Es gelten somit:
Desgleichen können zwei weitere Messungen mit je einer zugehörigen Berechnung die Werte von x%
und y% ergeben, da:
In der Fig. 1 ist ein möglicher Verlauf der Winkelpositionen α des Antriebssystems in Funktion der Zeit t dargestellt. In der Darstellung der Fig. 1 ist links mittels gerader Kennlinienteile ein möglicher zeitlicher Verlauf des Antriebssystems anlässlich einer Inbetriebnahme wiedergegeben, während rechts ein möglicher zeitlicher Verlauf anlässlich eines normalen Betriebs des Antriebssystems dargestellt ist. Im letzteren Fall schwankt die Winkelposition α des Antriebssystems nach der Inbetriebnahme z. B. zwischen den Winkelpositionen α4 und α2. In der Fig. 1 gilt die Annahme, dass α2 kleiner als α3 ist, was jedoch nicht immer der Fall ist. Zu Beginn der Inbetriebnahme besitzt das Antriebssystem z. B. die Winkelposition α1 bis zum Zeitpunkt tA = t1 (siehe Punkt A des Zeitdiagramms), um anschliessend mit der konstanten Geschwindigkeit W zur Winkelposition α4 hochzufahren, die es im Zeitpunkt tB = t4 erreicht (siehe Punkt B des Zeitdiagramms). Das Hochfahren ist in der Fig. 1 durch eine Gerade AB dargestellt, deren Neigung W ist. Nach Erreichen der Winkelposition α4 verbleibt z. B. das Antriebssystem in dieser Position bis zum Zeitpunkt tC (siehe Punkt C des Zeitdiagramms), um anschliessend mit konstanter Geschwindigkeit W zur Winkelposition α3 herunterzulaufen, die es im Zeitpunkt tD erreicht (siehe Punkt D des Zeitdiagramms) und aus der es für den nachfolgenden normalen Betrieb startet. Das Herunterlaufen ist durch eine Gerade CD dargestellt, deren Neigung -W ist. 1 shows a possible course of the angular positions α of the drive system as a function of the time t. In the illustration in FIG. 1, a possible time profile of the drive system during start-up is shown on the left by means of straight characteristic parts, while a possible time profile during normal operation of the drive system is shown on the right. In the latter case, the angular position α of the drive system fluctuates after commissioning z. B. between the angular positions α4 and α2. 1, the assumption applies that α2 is smaller than α3, but this is not always the case. At the start of commissioning, the drive system has e.g. B. the angular position α1 up to the point in time t A = t1 (see point A of the time diagram) in order to then drive up at a constant speed W to the angular position α4 which it reaches at the point in time t B = t4 (see point B of the time diagram). The start-up is shown in FIG. 1 by a straight line AB, the inclination of which is W. After reaching the angular position α4 z. B. the drive system in this position up to time t C (see point C of the time diagram), then to run down at a constant speed W to the angular position α3, which it reaches at time t D (see point D of the time diagram) and from which it is used the subsequent normal operation starts. The downward movement is represented by a straight CD, the inclination of which is -W.
Die Winkelpositions-Änderungen Δα des Antriebssystems sind, wie bereits erwähnt, proportional seiner Laufzeit Δt. Im erfindungsgemässen Verfahren zur Positionserfassung des linear getriebenen Antriebssystems wird ein zu einer gewünschten Sollwert-Winkelposition αS gehöriger Sollwert ΔtS der Laufzeit Δt des Antriebssystems ermittelt und das Antriebssystem anschliesend gestartet sowie seine Laufzeit Δt sensorlos gemessen. Wenn ein gemessener Wert der Laufzeit Δt gleich dem ermittelten Sollwert ΔtS der Laufzeit Δt ist, wird das Antriebssystem gestoppt, dessen Winkelposition α dann gleich der Sollwert-Winkelposition αS ist, da der Sollwert ΔtS die Laufzeit Δt des Antriebssystems ist, die das letztere benötigt, um, von einer Winkelbezugs-Postion ausgehend, die gewünschte Soll-Winkelposition αS zu erreichen.The angular position changes Δα of the drive system are, as already mentioned, proportional to its running time Δt. In the method according to the invention for detecting the position of the linearly driven drive system, a desired value Δt S of the running time Δt of the drive system associated with a desired setpoint angle position α S is determined and the drive system is then started and its running time Δt is measured without sensors. If a measured value of the running time Δt is equal to the determined target value Δt S of the running time Δt, the drive system is stopped, whose angular position α is then equal to the target value angular position α S , since the target value Δt S is the running time Δt of the drive system, which is the the latter is required to reach the desired target angular position α S starting from an angular reference position.
Die Winkelbezugs-Position ist z. B. die Zu-Position α1 des Klappen-Antriebs. Sie kann aber auch
irgend eine andere beliebige Winkelposition αB des Klappen-Antriebs sein, in der dieser sich
augenblicklich befindet und aus der er startet, um die gewünschte Sollwert-Winkelpositions αS zu
erreichen (siehe Fig. 3). Die Winkelbezugs-Position αB ist in diesem Fall die Position des Klappen-Antriebs
vor dem letzten Fahrbefehl. Eine Integration der Gleichung (1) ergibt:
Die benötigte Laufzeit ΔtS, um, ausgehend aus der augenblicklichen Winkelposition αB, die gewünschte Sollwert-Winkelposition αS zu erreichen, kann somit von z. B. einem im Antriebssystem vorhandenen Mikrocomputer mittels einer in ihm abgespeicherten Tabelle oder mittels der Gleichung (2) berechnet werden, worauf der Mikrocomputer nach einem nachfolgend erfolgten Bewegungsstart des Antriebssystems nur mehr die Laufzeit Δt messen muss, um nach dem Erreichen des Laufzeit-Sollwertes ΔtS das Antriebssystem zu stoppen. Das letztere befindet sich dann in der gewünschten Sollwert-Winkelposition αS, ohne dass dort ein Sensor zur Detektion eines Erreichens der betreffenden Position αS erforderlich ist. Die betreffenden Werte von αS und ΔtS werden im Mikrocomputer gespeichert und können beim nächsten Ablaufbefehl als neue Startwerte der Ablaufbewegung dienen.To reach the required running time .DELTA.t S in order, starting from the α instantaneous angular position B, the desired setpoint angular position α S, thus by z. B. a microcomputer present in the drive system can be calculated using a table stored in it or using equation (2), whereupon the microcomputer after a subsequent start of movement of the drive system only has to measure the running time Δt in order to achieve Δt after reaching the running time setpoint S stop the drive system. The latter is then in the desired setpoint angle position α S without a sensor being required to detect that the position α S in question has been reached. The relevant values of α S and Δt S are stored in the microcomputer and can be used as new start values for the sequence movement with the next sequence command.
Bei parallel geführten Antriebssystemen, d. h. wenn mehrere Heizkessel gleichzeitig und die
zugehörigen Brenner synchron betrieben werden, kann es durch Toleranzen der einzelnen
Antriebssysteme zu einem ungewollten Driften des Gesamtsystems kommen. Daher erfolgt in einer
Variante des erfindungsgemässen Verfahrens durch ein zyklisches Anfahren des Antriebssystems an
einen der vier Grenzwertschalter, z. B. an den Grenzwertschalter 3, eine gezielte Nacheichung, indem
jeweils einerseits eine Sollwert/Istwert-Differenz D = ΔtS,E - ΔtE eines ermittelten Sollwertes ΔtS,E
und eines gemessenen Istwertes ΔtE einer Laufzeit Δt ermittelt wird, die erforderlich ist, um,
ausgehend aus einer augenblicklichen Winkelposition αA des Antriebssystems, den
Grenzwertschalter 3 zu erreichen (siehe Fig. 4). Anderseits wird ausserdem eine bisher geltende
Winkelgeschwindigkeit W des Antriebssystems mit einem Korrekturfaktor k multipliziert, der eine
Funktion f[D] der Sollwert/Istwert-Differenz D ist, um eine nach der Nacheichung geltende
Winkelgeschwindigkeit WE zu erhalten, die dann nachfolgend im Verfahren, bis zur nächsten
Nacheichung, jeweils zur Ermittlung des Sollwertes ΔtS der Laufzeit Δt verwendet wird.In the case of drive systems running in parallel, ie if several boilers are operated simultaneously and the associated burners are operated synchronously, tolerances of the individual drive systems can lead to an unwanted drift of the overall system. Therefore, in one variant of the method according to the invention, the drive system is cyclically started up at one of the four limit switches, e.g. B. to the
Der Mikrocomputer misst z. B. den Istwert ΔtE der Laufzeit Δt, die das Antriebssystem benötigt, um
die Winkeldposition α3 des Grenzwertschalters 3 aus seiner augenblicklichen Winkelposition αA
heraus zu erreichen. Der Mikrocomputer vergleicht diesen gemessenen Istwert ΔtE mit dem von ihm
ermittelten, d. h. errechneten Sollwert ΔtS,E der Laufzeit Δt, die notwendig ist, um die gleiche
Strecke zurückzulegen, indem er die Sollwert/Istwert-Differenz D = ΔtS,E - ΔtE ermittelt, d. h.
berechnet. Theoretisch muss die Differenz D Null sein, da beide Werte gleich sein sollten. Falls
nicht, ist nicht nur die Differenz D unterschiedlich von Null, sondern auch der Korrekturfaktor k
unterschiedlich von Eins.The microcomputer measures e.g. B. the actual value .DELTA.t E of the running time .DELTA.t, which the drive system needs to reach the angular position α3 of the
Dabei gelten die Gleichungen:
Die Wahl des zur Nacheichung zyklisch anzufahrenden Grenzwertschalters erfolgt vorzugsweise prozessabhängig. In einer bevorzugten Ausführung wird als zyklisch anzufahrender Grenzwertschalter derjenige ausgewählt, der vom Antriebssystem aus der augenblicklichen Position αA heraus am schnellsten angefahren, d. h. am schnellsten erreicht werden kann.The selection of the limit switch to be cycled for re-calibration is preferably process-dependent. In a preferred embodiment, the cyclical limit switch that is selected is the one that can be approached the fastest by the drive system from the current position α A , ie that can be reached the fastest.
Wenn der Antrieb des Antriebssystems ein Schrittmotor ist, sind die Winkelpositionen α des
Antriebssystems im erfindungsgemässen Verfahren vorzugsweise in Schrittanzahlen n ausgedrückt.
Eine für die Winkelpositions-Änderung Δα erforderliche Schrittanzahl Δn ergibt sich aus der
Gleichung:
Wenn das Antriebssystem ein Teil eines Frequenzumrichters ist, entsprechen die Winkelpositionen α
vorzugsweise Drehzahlen N. Eine für die Winkelpositions-Änderung Δα erforderliche DrehzahlÄnderung
ΔN ergibt sich aus der Gleichung:
Gemäss Gleichung (1) ist At ebenfalls proportional AN.According to equation (1), At is also proportional to AN.
Claims (7)
- A method of detecting the position of a linearly driven drive system whose change in angular position (Δα) is proportional to its respective running time (Δt), characterised in thata reference value (ΔtS) of the running time (Δt) of the drive system, which reference value is associated with a desired reference value angular position (αS), is ascertained,the drive system is then started and its running time (Δt) is sensor-lessly measured, andwhen a measured value of the running time (Δt) is equal to the ascertained reference value (ΔtS) of the running time (Δt) the drive system is stopped.
- A method according to claim 1 characterised in that before the drive system is first brought into operation a value of an angular speed (W) of the drive system is ascertained by means of two limit value switches (1, 4) and stored for the purposes of subsequent use in the respective operation of ascertaining the reference value (ΔtS) of the running time (Δt) of the drive system, said reference value being associated with the desired reference value angular position (αS).
- A method according to claim 2 characterised in that a re-calibration operation is effected by cyclically causing the drive system to go to one of a plurality of limit value switches (3), by a procedure whereby in each case on the one hand a reference value/actual value difference (D) of an ascertained reference value (ΔtS.E) and a measured actual value (ΔtE) of a running time (Δt) is ascertained, which is required to reach the limit value switch (3) starting from an instantaneous angular position (αA) of the drive system, and on the other hand a previously applicable angular speed (W) of the drive system is multiplied by a correction factor (k) which is a function (f[D]) of the reference value/actual value difference (D) in order to obtain an angular speed (WE) which applies after the re-calibration operation and which then is subsequently used in the method until the next re-calibration operation for respectively ascertaining the reference value (ΔtS) of the running time (Δt).
- A method according to claim 3 characterised in that the choice of the limit value switch to which the drive system is to be cyclically moved is effected in dependence on the procedure involved.
- A method according to claim 4 characterised in that selected as the limit value switch to which the drive system is to be cyclically moved is the switch to which the drive system can move the most quickly.
- A method according to one of claims 1 to 5 characterised in that a drive of the drive system is a stepping motor and the angular position (a) of the drive system is expressed in numbers of steps (n).
- A method according to one of claims 1 to 5 characterised in that the drive system is a part of a frequency converter and the angular positions (a) correspond to numbers of revolutions (N).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3830/94 | 1994-12-20 | ||
CH383094 | 1994-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0718556A1 EP0718556A1 (en) | 1996-06-26 |
EP0718556B1 true EP0718556B1 (en) | 1998-03-25 |
Family
ID=4264386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95117559A Expired - Lifetime EP0718556B1 (en) | 1994-12-20 | 1995-11-08 | Method for determining the position of a linear-driven drive system |
Country Status (3)
Country | Link |
---|---|
US (1) | US5710725A (en) |
EP (1) | EP0718556B1 (en) |
DE (1) | DE59501700D1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2823140A1 (en) * | 1978-05-26 | 1979-11-29 | Kloeckner Humboldt Deutz Ag | METHOD AND DEVICE FOR ADJUSTING A DEFINED REST POSITION OF A ROTATING TUBE |
DE2833463A1 (en) * | 1978-07-29 | 1980-02-07 | Servo Instr | DEVICE FOR AUTOMATIC CONTROL OF THE PRESSURE IN THE COMBUSTION ROOM OF A BURNER |
DE3018528C2 (en) * | 1980-05-14 | 1986-06-05 | MTC, Meßtechnik und Optoelektronik AG, Neuenburg/Neuchâtel | Method and device for measuring the angular velocity of a rotating body |
JPS5768697A (en) * | 1980-10-16 | 1982-04-27 | Janome Sewing Mach Co Ltd | Driving device for pulse motor |
JPS59137680A (en) * | 1983-01-25 | 1984-08-07 | Ube Ind Ltd | Self-diagnosis method of control system for stepping motor driving type control valve |
CA1255186A (en) * | 1985-11-14 | 1989-06-06 | Patrick Tolley | Digital servo-valve |
US4880376A (en) * | 1989-01-27 | 1989-11-14 | Honeywell Inc. | Method and apparatus for monitoring and calibrating damper position |
JPH03204561A (en) * | 1989-12-28 | 1991-09-06 | Matsushita Electric Ind Co Ltd | Hot air room heater |
JP2778206B2 (en) * | 1990-05-16 | 1998-07-23 | 松下電器産業株式会社 | Combustion air conditioner |
JP2778207B2 (en) * | 1990-05-16 | 1998-07-23 | 松下電器産業株式会社 | Hot air heater |
-
1995
- 1995-11-08 DE DE59501700T patent/DE59501700D1/en not_active Expired - Lifetime
- 1995-11-08 EP EP95117559A patent/EP0718556B1/en not_active Expired - Lifetime
- 1995-12-12 US US08/571,149 patent/US5710725A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5710725A (en) | 1998-01-20 |
EP0718556A1 (en) | 1996-06-26 |
DE59501700D1 (en) | 1998-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0770824B1 (en) | Method and circuit for controlling a gas burner | |
EP0438640B1 (en) | Method for the sensing of motion and position of a part of an inductive electric consumer movable between a rest and an end position by means of a magnetic action | |
EP0284785B1 (en) | Method and device for controlling the thightness of two valves successively disposed on a fluid conduit | |
DE3638410C2 (en) | ||
DE19539568C1 (en) | Gas burner regulation system | |
DE19931233A1 (en) | Capacitive actuator control method for operating fuel injection valve in combustion engine | |
DE102012102013B3 (en) | Method for controlling surface temperature of glow plug in internal combustion engine of motor car, involves changing effective voltage acting on plug based on deviation in plug temperature with respect to target temperature of plug surface | |
EP0419769A2 (en) | Method for continuously monitoring an electrode system for potentiometric measurements | |
EP0718556B1 (en) | Method for determining the position of a linear-driven drive system | |
DE4429157A1 (en) | Method for monitoring the function of a control and regulating system | |
EP3353798A1 (en) | Control unit and method for monitoring the function of an electromagnetic actuator | |
DE4410735B4 (en) | Furnace with an automatic burner | |
DE19854824C1 (en) | Process and circuit for control of a gas burner uses a lambda sensor to control gas supply | |
DE4335239C1 (en) | Method for positioning an actuator | |
DE10355022B4 (en) | Method for monitoring a technical system | |
DE3643326C2 (en) | ||
EP3734159A1 (en) | Method for checking a gas mixture sensor in a combustion gas operated heater | |
EP0977021B1 (en) | Method for measuring a fluid flow in a flow channel | |
DE731625C (en) | Arrangement for controlling or regulating or for displaying a variable which can be changed according to a function containing a maximum or minimum | |
EP0552173B1 (en) | Device for determining fluid throughput | |
DE4408425A1 (en) | Method and device for adjusting the angular position of a cam shaft | |
DE3624328C2 (en) | ||
DE3904986A1 (en) | METHOD FOR DETECTING THE READY FOR OPERATION OF A LAMBED PROBE | |
EP0469189A2 (en) | Method and apparatus for controlling heating elements of a cooking oven | |
DE3727121A1 (en) | Arrangement for monitoring the rest-position of an actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19960722 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19970903 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59501700 Country of ref document: DE Date of ref document: 19980430 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980429 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: LANDIS & GYR TECHNOLOGY INNOVATION AG TRANSFER- SIEMENS BUILDING TECHNOLOGIES AG C-IPR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59501700 Country of ref document: DE Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: LANDIS & GYR TECHNOLOGY INNOVATION AG, ZUG, CH Effective date: 20130507 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20130704 AND 20130710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20131029 Ref country code: FR Ref legal event code: CD Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20131029 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141112 Year of fee payment: 20 Ref country code: GB Payment date: 20141110 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20141103 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20141129 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150119 Year of fee payment: 20 Ref country code: CH Payment date: 20150209 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59501700 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20151107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20151107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20151107 |