EP0712673A1 - Calibration of Assel rolls - Google Patents

Calibration of Assel rolls Download PDF

Info

Publication number
EP0712673A1
EP0712673A1 EP95250214A EP95250214A EP0712673A1 EP 0712673 A1 EP0712673 A1 EP 0712673A1 EP 95250214 A EP95250214 A EP 95250214A EP 95250214 A EP95250214 A EP 95250214A EP 0712673 A1 EP0712673 A1 EP 0712673A1
Authority
EP
European Patent Office
Prior art keywords
angle
rolling
roller
transport
assel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95250214A
Other languages
German (de)
French (fr)
Other versions
EP0712673B1 (en
Inventor
Gheorghe Arnautu
Karl Heinz Häusler
Jürgen Pietsch
Gunther Voswinkel
Karl-Helmut Wengenroth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Priority to CN95117963A priority Critical patent/CN1065784C/en
Priority to CZ953001A priority patent/CZ300195A3/en
Priority to US08/560,107 priority patent/US5649440A/en
Publication of EP0712673A1 publication Critical patent/EP0712673A1/en
Application granted granted Critical
Publication of EP0712673B1 publication Critical patent/EP0712673B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills

Definitions

  • the invention relates to the calibration of the rolls of a wood mill for rolling thin-walled tubes made of pre-perforated hollow bodies over a mandrel with at least three staggered by 120 ° to each other, inclined by the spreading angle ⁇ with respect to the rolling axis and arranged pivoted by the transport angle ⁇ to the rolling axis, each with an inlet cone , a working part (shoulder) and a smoothing part, which is followed by a round cone.
  • the Assel rolling process developed by Walter Assel around 60 years ago for the production of rolling bearing and thick-walled turned part tubes with a diameter / wall thickness ratio of approximately 16: 1 has been further developed into a powerful stretching process through permanent improvements. It is used in the production of pipes with medium and thick wall thicknesses and in particular those which should have flawless surfaces and close tolerances, as is the case, for example, for the manufacture of bearing steel pipes.
  • the Assel rolling mill works on the principle of cross-rolling over mandrel bars, whereby three conical rolls are in engagement, which are mounted at an angle of 120 ° to the rolling stock axis. In addition, the rolls are adjustable perpendicular to the roll axis, so that a large number of pipe diameters can be produced on an Assel mill
  • the rolls of the Assel mill consist essentially of an inlet part, a working part (shoulder), a smoothing part and an outlet and rounding part.
  • the main forming work takes place in the working section on the shoulders.
  • the Assel process has advantages, such as better rolling stock management due to the use of at least three rollers and the lack of necessity, To have to use guide washers.
  • a particular advantage is that Assel rolling mills require a much smaller roll diameter, which means that these plants can generally be built smaller than corresponding Diescher rolling mills.
  • helix-shaped wall thickness inequalities can also occur on the hollow block or tube in the Assel rolling process, the so-called coils.
  • these act as eccentricity, i.e. Deviation of the center points of the inner and outer circle from each other and in longitudinal section as a periodically running and alternating thickening and thinning of the wall.
  • the main reason for the helix formation in the Assel process is inadequate calibration of the rollers. For this reason, narrow wall thickness tolerances of ⁇ 4% to ⁇ 7% can be achieved with conventional woodloom methods, i.e. with relatively thick walls, but the tolerances with thin walls still leave something to be desired.
  • Another disadvantage of the Assel rolling process compared to other cross rolling processes is the relatively low possible rolling speed, which limits the capacity of the plant.
  • the limits for the rolling speed are the max. possible speed of the rolling stock itself and the max. possible transport angles. Too high a speed of the rolling stock can lead to damage on the rolled pipe, a too large transport angle leads to a large helix formation in conventional roll calibrations, ie to poorer pipe tolerances. Since the rolling stock speed could no longer be increased noticeably and the transport angle ⁇ was limited to around 7 ° for tolerance reasons, there seemed to be no further possibilities for increasing the rolling stock speed. It was not taken into account at all that the pitch of the bead running helically around the tube depends not only on the transport angle of the rolls, but also on the tube diameter.
  • the woodlouse procedure could also only be used for a limited application, namely for a max. D / s ratio, i.e. Diameter-wall thickness ratio, from 12 ... 16: 1, i.e. for thick-walled roller bearing and turned part pipes and the like. If larger D / s ratios were selected, the triangulation of the rear pipe end caused the plugs to exit when leaving the rolls, which could only be prevented by timely lifting of the rolls at the end of the roll.
  • D / s ratio i.e. Diameter-wall thickness ratio
  • the field of application of this process could be expanded, for example to oilfield pipes, boiler pipes and line pipes.
  • the advantages of the Assel process could be exploited, for example compared to the Diescher rolling process, which are there, good rolling stock through at least three rolls, good wall thickness tolerances for the pipes, low investment costs overall and - because of the lower stress on the pipes in the roll gap - better pipe quality than diescher rolling.
  • the solution to the problem according to the invention includes several considerations which, in combination, lead to the desired success.
  • Experience has shown that a large feed angle ⁇ favors the widening of the tube in the roll gap. This effect is deliberately used to create larger pipe diameters with the same wall thickness, i.e. a large D / s ratio.
  • the claimed transport angle ⁇ from 7 ° to 17 ° is also the setting range of the system.
  • D pipe diameter in the smoothing part.
  • a divergent roller position with a large spreading angle ⁇ is provided, which is between 7 ° and 30 °.
  • a short, rapidly opening round cone of the roller is provided.
  • an opening angle ⁇ of at least 4 ° improves the rounding of the tube emerging from the smoothing part and prevents the risk of the tube forming a sack between the rollers and thus the triangulation of the rear tube end.
  • the angle range found for the opening angle is between 4 ° and 15 °.
  • the roller 1 consists of the inlet cone 2, the working part (shoulder) 3, the smoothing part 4 and the round cone 5.
  • the hollow block 6 is gripped, set in rotation and drawn into the roller 1.
  • the outer and inner diameters of the hollow block 6 are reduced to such an extent that the hollow block touches the mandrel rod 8 with its inner surface lying under the roller.
  • the wall thickness reduction takes place essentially only under the shoulder 3, the smoothing part 4 serves to even out the wall thickness of the tube 7 rolled from the hollow block 6.
  • the tube is expanded and takes on a triangular cross section with three rollers because the wall bulges into the spaces between the rollers.
  • the polygonal tube 7 is rounded.
  • roller 1 is pivoted by the spreading angle ⁇ to the longitudinal axis Y-Y, the roller axis Z-Z meeting the longitudinal axis Y-Y at point A.
  • the opening angle ⁇ is formed between the extended surface line of the smoothing part and the opposite surface line of the short round cone 5 and is also shown in FIG. 1.
  • the transport angle ⁇ is created by pivoting the roller 1 to the longitudinal axis Y-Y.
  • the transport angle ⁇ serves to move the rolling stock in a spiral and directly influences the roll speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

To calibrate iso-pod rollers, for rolling thin-walled tubes from perforated hollow bodies, on a diverging roller, the transport angle of each iso-pod roller (1) is set at 7-17 degrees , according to the dia. and smoothed roller section length, where the transport angle is smaller with an increasing tube diameter. The spread angle (alpha) is set at 7-30 degrees . The opening angle (beta) of the round cone (5) is 4-15 degrees , formed between the extended mantle line of the smooth section (4) and the opposing mantle line of the short round cone.

Description

Die Erfindung betrifft die Kalibrierung der Walzen eines Asselwalzwerkes zum Walzen dünnwandiger Rohre aus vorgelochten Hohlkörpern über einen Dorn mit mindestens drei um 120° gegeneinander versetzten, um den Spreizwinkel α gegenüber der Walzachse geneigt und um den Transportwinkel γ zur Walzachse geschwenkt angeordneten Walzen mit jeweils einem Einlaufkonus, einem Arbeitsteil (Schulter) und einem Glätteil, an den sich ein Rundekonus anschließt.The invention relates to the calibration of the rolls of a wood mill for rolling thin-walled tubes made of pre-perforated hollow bodies over a mandrel with at least three staggered by 120 ° to each other, inclined by the spreading angle α with respect to the rolling axis and arranged pivoted by the transport angle γ to the rolling axis, each with an inlet cone , a working part (shoulder) and a smoothing part, which is followed by a round cone.

Das vor etwa 60 Jahren von Walter Assel entwickelte Asselwalzverfahren zur Herstellung von Wälzlager- und dickwandigen Drehteilrohren mit einem Durchmesser/Wanddickenverhältnis von etwa 16:1 wurde durch permanente Verbesserungen zu einem leistungsfähigen Streckverfahren weiterentwickelt. Es findet Anwendung bei der Herstellung von Rohren mit mittleren und starken Wanddicken und insbesonderen solchen, die einwandfreie Oberflächen und enge Toleranzen haben sollen, wie das beispielsweise für das Herstellen von Wälzlagerstahlrohren der Fall ist. Das Asselwalzwerk arbeitet nach dem Prinzip des Schrägwalzens über Dornstangen, wobei drei konische Walzen im Eingriff sind, die um jeweils 120 ° gegeneinander versetzt gegenüber der Walzgutachse schräg gelagert sind. Darüber hinaus sind die Walzen senkrecht zur Walzenachse verstellbar, so daß eine Vielzahl von Rohrdurchmessern auf einem Asselwalzwerk herstellbar istThe Assel rolling process developed by Walter Assel around 60 years ago for the production of rolling bearing and thick-walled turned part tubes with a diameter / wall thickness ratio of approximately 16: 1 has been further developed into a powerful stretching process through permanent improvements. It is used in the production of pipes with medium and thick wall thicknesses and in particular those which should have flawless surfaces and close tolerances, as is the case, for example, for the manufacture of bearing steel pipes. The Assel rolling mill works on the principle of cross-rolling over mandrel bars, whereby three conical rolls are in engagement, which are mounted at an angle of 120 ° to the rolling stock axis. In addition, the rolls are adjustable perpendicular to the roll axis, so that a large number of pipe diameters can be produced on an Assel mill

Die Walzen des Asselwalzwerkes bestehen im wesentlichen aus einem Einlaufteil, einem Arbeitsteil (Schulter), aus einem Glätteil und einem Auslauf- und Rundungsteil. Die Hauptumformarbeit findet im Arbeitsteil an den Schultern statt. Gegenüber dem Diescher-Verfahren, bei dem bekanntlich zwei sogenannte Tonnenwalzen eingesetzt werden, hat das Asselverfahren Vorteile, wie einmal die bessere Walzgutführung durch den Einsatz von mindestens drei Walzen und die fehlende Notwendigkeit, Führungsscheiben einsetzen zu müssen. Ein besonderer Vorteil besteht darin, daß Asselwalzanlagen einen wesentlich kleineren Walzendurchmesser benötigen, was dazu führt, daß diese Anlagen in der Regel kleiner gebaut werden können als entsprechende Diescher-Walzanlagen.The rolls of the Assel mill consist essentially of an inlet part, a working part (shoulder), a smoothing part and an outlet and rounding part. The main forming work takes place in the working section on the shoulders. Compared to the Diescher process, in which two so-called barrel rollers are known to be used, the Assel process has advantages, such as better rolling stock management due to the use of at least three rollers and the lack of necessity, To have to use guide washers. A particular advantage is that Assel rolling mills require a much smaller roll diameter, which means that these plants can generally be built smaller than corresponding Diescher rolling mills.

Wie bei anderen Schrägwalzverfahren bekannt, können auch beim Asselwalzverfahren schraubenlinienförmig verlaufende Wanddickenungleichheiten am Hohlblock bzw. Rohr auftreten, die sogenannten Wendel. Diese wirken sich im Querschnitt des Hohlkörpers als Exzentrizität, d.h. Abweichung der Mittelpunkte von Innen- und Außenkreis zueinander und im Längsschnitt als periodisch verlaufende und sich miteinander abwechselnde Verdickung und Verdünnung der Wand aus. Die Ursache für die Wendelbildung liegt beim Asselverfahren in der Hauptsache in einer unzureichenden Kalibrierung der Walzen. Aus diesem Grund können bei herkömmlichen Asselverfahren, also bei relativ dicken Wänden, zwar enge Wanddickentoleranzen von ± 4 % bis ± 7% erreicht werden, die Toleranzen bei dünnen Wänden lassen aber noch zu wünschen übrig.As is known in the case of other cross-rolling processes, helix-shaped wall thickness inequalities can also occur on the hollow block or tube in the Assel rolling process, the so-called coils. In the cross section of the hollow body, these act as eccentricity, i.e. Deviation of the center points of the inner and outer circle from each other and in longitudinal section as a periodically running and alternating thickening and thinning of the wall. The main reason for the helix formation in the Assel process is inadequate calibration of the rollers. For this reason, narrow wall thickness tolerances of ± 4% to ± 7% can be achieved with conventional woodloom methods, i.e. with relatively thick walls, but the tolerances with thin walls still leave something to be desired.

Ein anderer Nachteil des Asselwalzverfahrens gegenüber anderen Schrägwalzverfahren ist die relativ niedrige mögliche Walzgeschwindigkeit, durch die die Kapazität der Anlage eingeschränkt ist. Die Grenzen für die Walzgeschwindigkeit sind einmal die max. mögliche Drehzahl des Walzgutes selbst sowie der max. mögliche Transportwinkel. Eine zu hohe Walzgutdrehzahl kann zu Schäden auf dem gewalzten Rohr führen, ein zu großer Transportwinkel führt bei den herkömmlichen Walzenkalibrierungen zu großer Wendelbildung, d.h. zu schlechteren Rohrtoleranzen. Da die Walzgutdrehzahl nicht mehr merkbar gesteigert werden konnte und kann und der Transportwinkel γ aus Toleranzgründen auf etwa 7° beschränkt wurde, schien es bei der Walzgutgeschwindigkeit keine Steigerungsmöglichkeiten mehr zu geben. Dabei wurde überhaupt nicht berücksichtigt, daß die Steigungshöhe des wendelförmig um das Rohr verlaufenden Wulstes nicht nur vom Transportwinkel der Walzen, sondern auch vom Rohrdurchmesser abhängig ist. Je größer der Rohrdurchmesser bei gleichem Transportwinkel ist, desto größer wird die Steigungshöhe des Wendels und desto größer der Unterschied zwischen dünnster und dickster Wand. Das bedeutet im Prinzip aber auch, daß bei kleinen Rohrdurchmessern durchaus mit größeren Transportwinkel als bisher üblich gewalzt werden kann, wenn man z.B. die Steigungshöhe als konstanten Wert annimmt.Another disadvantage of the Assel rolling process compared to other cross rolling processes is the relatively low possible rolling speed, which limits the capacity of the plant. The limits for the rolling speed are the max. possible speed of the rolling stock itself and the max. possible transport angles. Too high a speed of the rolling stock can lead to damage on the rolled pipe, a too large transport angle leads to a large helix formation in conventional roll calibrations, ie to poorer pipe tolerances. Since the rolling stock speed could no longer be increased noticeably and the transport angle γ was limited to around 7 ° for tolerance reasons, there seemed to be no further possibilities for increasing the rolling stock speed. It was not taken into account at all that the pitch of the bead running helically around the tube depends not only on the transport angle of the rolls, but also on the tube diameter. The larger the pipe diameter with the same transport angle, the greater the pitch of the helix and the greater the difference between the thinnest and thickest wall. In principle, however, this also means that small pipe diameters can be rolled with a larger transport angle than previously customary if, for example, the pitch height is assumed to be a constant value.

Das Asselverfahren konnte außerdem nur für einen eingeschränkten Anwendungszweck eingesetzt werden, nämlich für ein max. D/s-Verhältnis, d.h. Durchmesser-Wanddickenverhältnis, von 12 ... 16:1, also für dickwandige Wälzläger- und Drehteilrohre und dergleichen. Wurden größere D/s-Verhältnisse gewählt, so trat durch die Triangulation des hinteren Rohrendes beim Verlassen der Walzen Stecker auf, die erst durch das rechtzeitige Lüften der Walzen bei Walzenende verhindert werden konnten.The woodlouse procedure could also only be used for a limited application, namely for a max. D / s ratio, i.e. Diameter-wall thickness ratio, from 12 ... 16: 1, i.e. for thick-walled roller bearing and turned part pipes and the like. If larger D / s ratios were selected, the triangulation of the rear pipe end caused the plugs to exit when leaving the rolls, which could only be prevented by timely lifting of the rolls at the end of the roll.

Gelänge es, auch dünnwandige Rohre nach dem Asselwalzverfahren toleranzhaltig und mit guten Oberflächenqualitäten zu walzen, so würde sich das Einsatzgebiet dieses Verfahrens erweitern lassen, beispielsweise auf Ölfeldrohre, Kesselrohre und Leitungsrohre. Immerhin ließen sich dann die Vorteile des Asselverfahrens, beispielsweise gegenüber dem Diescher-Walzverfahren ausnutzen, die da sind, gute Walzgutführung durch mindestens drei Walzen, gute Wanddickentoleranzen der Rohre, niedrige Investitionskosten insgesamt und -wegen der geringeren Beanspruchung der Rohre im Walzspalt- bessere Rohrqualität als beim Diescher-Walzen.If it were also possible to roll thin-walled pipes with the Assel rolling process with tolerances and good surface qualities, the field of application of this process could be expanded, for example to oilfield pipes, boiler pipes and line pipes. After all, the advantages of the Assel process could be exploited, for example compared to the Diescher rolling process, which are there, good rolling stock through at least three rolls, good wall thickness tolerances for the pipes, low investment costs overall and - because of the lower stress on the pipes in the roll gap - better pipe quality than diescher rolling.

Ausgehend von den vorstehend geschilderten Problemen und Nachteilen beim Stand der Technik ist es Ziel der vorliegenden Erfindung, die Kapazität von Asselwalzanlagen zum Walzen von dünnwandigen Rohren ohne Verschlechterung der Rohrqualität zu erhöhen, indem eine entsprechende Kalibrierung der Asselwalzen vorgesehen wird.Based on the above-described problems and disadvantages in the prior art, it is an object of the present invention to increase the capacity of woodloom mills for rolling thin-walled tubes without deteriorating the tube quality by providing an appropriate calibration of woodlead rollers.

Zur Lösung der Aufgabe werden folgende Maßnahmen in Kombination vorgeschlagen:

  • a) bei divergenter Walzenstellung beträgt der Transportwinkel (γ) jeder Asselwalze in Abhängigkeit vom jeweiligen Rohrdurchmesser und der Glätteillänge der Asselwalze zwischen 7°und 17°, wobei der Transportwinkel (γ) mit steigendem Rohrdurchmesser kleiner wird
  • b) der Spreizwinkel (α) wird zwischen 7°und 30° eingestellt,
  • c) der Öffnungswinkel (β) des Rundekonus, gebildet zwischen der verlängerten Mantellinie des Glätteils und der gegenüberliegenden Mantellinie des kurzen Rundekonuses, beträgt zwischen 4° und 15°.
The following measures are proposed in combination to solve the task:
  • a) with a divergent roll position, the transport angle (γ) of each woodlayer is between 7 ° and 17 °, depending on the respective pipe diameter and the smooth length of the woodlice, the transport angle (γ) becoming smaller with increasing pipe diameter
  • b) the spreading angle (α) is set between 7 ° and 30 °,
  • c) the opening angle (β) of the round cone, formed between the extended surface line of the smoothing part and the opposite surface line of the short round cone, is between 4 ° and 15 °.

Die Lösung der erfindungsgemäßen Aufgabe beinhaltet mehrere Überlegungen, die in Kombination zu dem gewünschten Erfolg führen. Erfahrungsgemäß begünstigt ein großer Vorschubwinkel γ die Aufweitung des Rohres im Walzspalt. Dieser Effekt wird bewußt benutzt, um größere Rohrdurchmesser bei gleichbleibender Wanddicke zu erzeugen, also ein großes D/s-Verhältnis. Der beanspruchte Transportwinkel γ von 7° bis 17° ist gleichzeitig der Einstellbereich der Anlage.The solution to the problem according to the invention includes several considerations which, in combination, lead to the desired success. Experience has shown that a large feed angle γ favors the widening of the tube in the roll gap. This effect is deliberately used to create larger pipe diameters with the same wall thickness, i.e. a large D / s ratio. The claimed transport angle γ from 7 ° to 17 ° is also the setting range of the system.

Der mögliche Transportwinkel γ ist abhängig vom Rohrdurchmesser und der Glätt eillänge der Asselwalzen. Bei einem Rohrdurchmesser von 250 mm, einem Transportwinkel γ = 15° und drei Walzen ist die Steigungshöhe am Rohr bezogen auf eine Walze etwa 70 mm (bei einem Vorschubwirkungsgrad von η = 1,0). Dies würde aber bedeuten, daß der Glätteil der Walze zu lang ist. Dieser lange Glätteil ist ungünstig, weil er die Streckung des Rohres in Längsrichtung behindert. Es wird deshalb eine Regel aufgestellt, daß der Transportwinkel γ mit steigendem Rohrdurchmesser kleiner wird. Man kann sagen: Die Länge des Glätteils der Walze beträgt bei drei Walzen L = Z x 10,7 x f x η

Figure imgb0001
Dabei bedeuten:

Z =
Anzahl der Walzen
f =
Faktor für die Glätteillänge = 1,15 bis 1,50 = Überdeckungsfaktor.
η =
Vorschubwirkungsgrad.
10,7 =
Konstante
Aus dieser Formel läßt sich am Beispiel der Faktoren f = 1,15 und η = 0,9 folgende Glätteillänge bei drei Walzen errechnet: L = 3 x 10,7 x 1,15 x 0,9 = 33,22 mm.
Figure imgb0002
Für den Rohrdurchmesser D = 100mm ergibt sich als Beispiel tan γ = Z · L D ·π·η· f = 99,66 324,99 = 0,3067
Figure imgb0003
entsprechend einem Transportwinkel von γ = 17°
und für den Rohrdurchmesser D = 250mm tan γ = Z · L D ·π·η· f = 99,66 250·π·0,9·1,15 = 0,1222
Figure imgb0004
entsprechend einem Transportwinkel von γ = 7°.The possible transport angle γ depends on the pipe diameter and the smoothing length of the woodlice. With a tube diameter of 250 mm, a transport angle γ = 15 ° and three rollers, the pitch on the tube is about 70 mm in relation to one roller (with a feed efficiency of η = 1.0). However, this would mean that the smoothing part of the roller is too long. This long smoothing part is unfavorable because it hinders the elongation of the tube in the longitudinal direction. A rule is therefore established that the transport angle γ becomes smaller as the pipe diameter increases. One can say: The length of the smoothing part of the roller is three rollers L = Z x 10.7 xfx η
Figure imgb0001
Here mean:
Z =
Number of rolls
f =
Smoothness length factor = 1.15 to 1.50 = coverage factor.
η =
Feed efficiency.
10.7 =
constant
Using the example of factors f = 1.15 and η = 0.9, this formula can be used to calculate the following smooth length for three rolls: L = 3 x 10.7 x 1.15 x 0.9 = 33.22 mm.
Figure imgb0002
For the pipe diameter D = 100mm, this is an example tan γ = Z. · L D · Π · η · f = 99.66 324.99 = 0.3067
Figure imgb0003
corresponding to a transport angle of γ = 17 °
and for the tube diameter D = 250mm tan γ = Z. · L D · Π · η · f = 99.66 250 · π · 0.9 · 1.15 = 0.1222
Figure imgb0004
corresponding to a transport angle of γ = 7 °.

Darin bedeutet: D = Rohrdurchmesser im Glätteil.Therein means: D = pipe diameter in the smoothing part.

Ändert sich die Anzahl der Walzen in z.B. vier, bilden wie bisher der Transportwinkel γ = 7°die untere und γ = 17° die obere Einstellgrenze für das Walzwerk.If the number of rollers changes in e.g. four, as before, the transport angle γ = 7 ° forms the lower and γ = 17 ° the upper setting limit for the rolling mill.

Zum Angleichen der Winkelgeschwindigkeit des jeweiligen Punktes des Rundekonus der Walze und dem diesen Punkt gegenüberliegenden Teil des Rohres ist eine divergente Walzenstellung mit großem Spreizwinkel α vorgesehen, der zwischen 7° und 30° liegt. Gleichzeitig wird ein kurzer sich schnell öffnender Rundekonus der Walze vorgesehen. Bekannt ist ein Öffnungswinkel von etwa β = 2 bis 3° bezogen auf eine Walze nach Figur 1. Der Öffnungswinkel wird zwischen der Mantellinie des Rundekonus und der gegenüberliegenden verlängerten Mantellinie des Glätteiles gebildet; er nimmt mit größer werdendem Transportwinkel γ zu. Es hat sich gezeigt, daß ein Öffnungswinkel β von mindestens 4° das Runden des aus dem Glätteil austretenden Rohres verbessert und die Gefahr einer Sackbildung des Rohres zwischen den Walzen und damit die Triangulation des hinteren Rohrendes verhindert. Der gefundene Winkelbereich für den Öffnungswinkel liegt zwischen 4° und 15°.To adjust the angular velocity of the respective point of the round cone of the roller and the part of the tube opposite this point, a divergent roller position with a large spreading angle α is provided, which is between 7 ° and 30 °. At the same time, a short, rapidly opening round cone of the roller is provided. An opening angle of approximately β = 2 to 3 ° in relation to a roller according to FIG. 1 is known. The opening angle is formed between the surface line of the round cone and the opposite, extended surface line of the smoothing part; it increases with increasing transport angle γ. It has been shown that an opening angle β of at least 4 ° improves the rounding of the tube emerging from the smoothing part and prevents the risk of the tube forming a sack between the rollers and thus the triangulation of the rear tube end. The angle range found for the opening angle is between 4 ° and 15 °.

Mit einer Kalibrierung der vorgeschlagenen Art lassen sich überraschend gut dünnwandige Rohre bei relativ hohen Walzgeschwindigkeiten herstellen, so daß nicht nur die Kapazität beim Walzen von dünnwandigen Rohren nach dem Asselwalzverfahren erhöht wird, sondern auch die Toleranzwerte den geforderten Werten entsprechen.With a calibration of the proposed type, surprisingly well thin-walled tubes can be produced at relatively high rolling speeds, so that not only is the capacity increased when rolling thin-walled tubes according to the Assel rolling method, but also the tolerance values correspond to the required values.

Zur Erläuterung der einzelnen Walzenwinkel sind zwei Zeichnungsfiguren beigefügt und nachfolgend beschrieben. Es zeigt:

Figur 1
eine der drei Asselwalzen in der Längsmittelebene des Rohres und
Figur 2
eine Draufsicht auf die um den Transportwinkel γ verschwenkte Walze.
To explain the individual roller angles, two drawing figures are attached and described below. It shows:
Figure 1
one of the three woodlice in the longitudinal median plane of the pipe and
Figure 2
a plan view of the roller pivoted about the transport angle γ.

Die Walze 1 besteht nach Figur 1 aus dem Einlaufkonus 2, dem Arbeitsteil (Schulter) 3, dem Glätteil 4 und dem Rundekonus 5. Im Einlaufkonus 2 wird der Hohlblock 6 gefaßt, in Drehung versetzt und in die Walze 1 eingezogen. Dabei werden Außen- und Innendurchmesser des Hohlblockes 6 soweit verkleinert, daß der Hohlblock mit seiner unter der Walze liegenden Innenoberfläche die Dornstange 8 berührt. Die Wanddickenreduktion findet wesentlich erst unter der Schulter 3 statt, der Glätteil 4 dient zur Vergleichmäßigung der Wanddicke des aus dem Hohlblock 6 gewalzten Rohres 7. Beim Walzen unter der Schulter 3 und im Glätteil 4 wird das Rohr aufgeweitet und nimmt einen bei drei Walzen dreieckigen Querschnitt an, da sich die Wand in die zwischen den Walzen liegenden Räumen hineinwölbt. Im anschließenden Rundekonus 5 wird das vieleckige Rohr 7 gerundet.According to FIG. 1, the roller 1 consists of the inlet cone 2, the working part (shoulder) 3, the smoothing part 4 and the round cone 5. In the inlet cone 2, the hollow block 6 is gripped, set in rotation and drawn into the roller 1. The outer and inner diameters of the hollow block 6 are reduced to such an extent that the hollow block touches the mandrel rod 8 with its inner surface lying under the roller. The wall thickness reduction takes place essentially only under the shoulder 3, the smoothing part 4 serves to even out the wall thickness of the tube 7 rolled from the hollow block 6. When rolling under the shoulder 3 and in the smoothing part 4, the tube is expanded and takes on a triangular cross section with three rollers because the wall bulges into the spaces between the rollers. In the subsequent round cone 5, the polygonal tube 7 is rounded.

In der Zeichnungsfigur 1 ist erkennbar, daß die Walze 1 um den Spreizwinkel α zur Längsachse Y-Y geschwenkt ist, wobei die Walzenachse Z-Z die Längsachse Y-Y im Punkt A trifft. Der Öffnungswinkel β wird zwischen der verlängerten Mantellinie des Glätteils und der gegenüberliegenden Mantellinie des kurzen Rundekonus 5 gebildet und ist auch in Figur 1 dargestellt.In the drawing figure 1 it can be seen that the roller 1 is pivoted by the spreading angle α to the longitudinal axis Y-Y, the roller axis Z-Z meeting the longitudinal axis Y-Y at point A. The opening angle β is formed between the extended surface line of the smoothing part and the opposite surface line of the short round cone 5 and is also shown in FIG. 1.

In der Draufsicht auf die Walze in Figur 2 wird deutlich, daß der Transportwinkel γ durch Verschwenken der Walze 1 zur Rohrlängsachse Y-Y entsteht. Der Transportwinkel γ dient dem spiralförmigen Vorwärtsbewegen des Walzgutes und beeinflußt unmittelbar die Walzengeschwindigkeit. Erst durch Abstimmung der einzelnen Winkel untereinander und Kombination lassen sich die Vorteile der vorliegenden Erfindung erreichen, nämlich das wirtschaftliche Walzen von dünnwandigen Rohren guter Qualtität nach dem Asselwalzverfahren.In the plan view of the roller in Figure 2 it is clear that the transport angle γ is created by pivoting the roller 1 to the longitudinal axis Y-Y. The transport angle γ serves to move the rolling stock in a spiral and directly influences the roll speed. The advantages of the present invention can only be achieved by coordinating the individual angles with one another and a combination, namely the economical rolling of thin-walled pipes of good quality using the Assel rolling method.

Claims (1)

Kalibrierung der Walzen eines Asselwalzwerkes zum Walzen dünnwandiger Rohren aus vorgelochten Hohlkörpern über einen Dorn mit mindestens drei um 120° gegeneinander versetzten, um den Spreizwinkel α gegenüber der Walzachse geneigt und den Transportwinkel γ zur Walzachse geschwenkt angeordneten Walzen mit jeweils einem Einlaufkonus, einem Arbeitsteil (Schulter) und einem Glätteil, an den sich ein Rundekonus anschließt, gekennzeichnet durch die Kombination folgener Maßnahmen: a) bei divergenter Walzenstellung beträgt der Transportwinkel (γ) jeder Asselwalze in Abhängigkeit vom jeweiligen Rohrdurchmesser und der Glätteillänge der Asselwalze zwischen 7° und 17°, wobei der Transportwinkel (γ) mit steigendem Rohrdurchmesser kleiner wird b) der Spreizwinkel (α) wird zwischen 7° und 30° eingestellt, c) der Öffnungswinkel (β) des Rundekonus, gebildet zwischen der verlängerten Mantellinie des Glätteils und der gegenüberliegenden Mantellinie des kurzen Rundekonuses, beträgt zwischen 4° und 15°. Calibration of the rolls of an Assel rolling mill for rolling thin-walled tubes from pre-perforated hollow bodies over a mandrel with at least three staggered by 120 ° to each other, inclined by the spreading angle α relative to the rolling axis and the transport angle γ pivoted to the rolling axis, each with an inlet cone, a working part (shoulder ) and a smoothing part, which is followed by a round cone, characterized by the combination of the following measures: a) with a divergent roll position, the transport angle (γ) of each woodlayer is between 7 ° and 17 °, depending on the respective pipe diameter and the smooth length of the woodlice, the transport angle (γ) becoming smaller with increasing pipe diameter b) the spreading angle (α) is set between 7 ° and 30 °, c) the opening angle (β) of the round cone, formed between the extended surface line of the smoothing part and the opposite surface line of the short round cone, is between 4 ° and 15 °.
EP95250214A 1994-11-17 1995-08-31 Calibration of Assel rolls Expired - Lifetime EP0712673B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN95117963A CN1065784C (en) 1994-11-17 1995-10-10 Alignment of rollers
CZ953001A CZ300195A3 (en) 1994-11-17 1995-11-14 Grooving of assel rolls
US08/560,107 US5649440A (en) 1994-11-17 1995-11-17 Method for calibration of assel rollers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4442198 1994-11-17
DE4442198 1994-11-17

Publications (2)

Publication Number Publication Date
EP0712673A1 true EP0712673A1 (en) 1996-05-22
EP0712673B1 EP0712673B1 (en) 1998-02-25

Family

ID=6534274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95250214A Expired - Lifetime EP0712673B1 (en) 1994-11-17 1995-08-31 Calibration of Assel rolls

Country Status (5)

Country Link
US (1) US5649440A (en)
EP (1) EP0712673B1 (en)
CN (1) CN1065784C (en)
CZ (1) CZ300195A3 (en)
DE (1) DE59501490D1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6260004B1 (en) 1997-12-31 2001-07-10 Innovation Management Group, Inc. Method and apparatus for diagnosing a pump system
US7922065B2 (en) 2004-08-02 2011-04-12 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
US7966150B2 (en) * 2005-11-17 2011-06-21 Florida Power & Light Company Data analysis applications
ITMI20060562A1 (en) * 2006-03-27 2007-09-28 Misani Pierangelo SPINDLE HOLDER HEAD WITH RELEASE DEVICE
US8910409B1 (en) * 2010-02-09 2014-12-16 Ati Properties, Inc. System and method of producing autofrettage in tubular components using a flowforming process
US8869443B2 (en) 2011-03-02 2014-10-28 Ati Properties, Inc. Composite gun barrel with outer sleeve made from shape memory alloy to dampen firing vibrations
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process
CN104588436A (en) * 2014-12-24 2015-05-06 天津理工大学 Method for preparing composite pipe by expanding secondary pouring dual-metal pipe billets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1652552A1 (en) * 1968-01-16 1971-04-15 Mannesmann Meer Ag Shoulder rolling mills for reducing stretch, preferably of thick-walled pipes
GB2072558A (en) * 1980-04-01 1981-10-07 Mannesmann Ag Skew rolling mills

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2060768A (en) * 1936-08-07 1936-11-10 Timken Roller Bearing Co Tube mill
CA919958A (en) * 1969-11-05 1973-01-30 Sumitomo Metal Industries, Ltd. Piercing rolling apparatus for producing rolled material free from surface torsion
JPH04135004A (en) * 1990-09-21 1992-05-08 Sumitomo Metal Ind Ltd Skew rolling method for seamless tube
JP4135004B2 (en) * 2005-06-30 2008-08-20 ブラザー工業株式会社 Karaoke equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1652552A1 (en) * 1968-01-16 1971-04-15 Mannesmann Meer Ag Shoulder rolling mills for reducing stretch, preferably of thick-walled pipes
GB2072558A (en) * 1980-04-01 1981-10-07 Mannesmann Ag Skew rolling mills

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. VOSWINKEL: "Strecken von Hohlblöcken in einem Asselwalzwerk", STAHL UND EISEN, vol. 107, no. 7, 6 April 1987 (1987-04-06), DÜSSELDORF DE, pages 315 - 318, XP001381679 *

Also Published As

Publication number Publication date
CN1065784C (en) 2001-05-16
DE59501490D1 (en) 1998-04-02
CN1129616A (en) 1996-08-28
US5649440A (en) 1997-07-22
CZ300195A3 (en) 1996-08-14
EP0712673B1 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
EP0712673B1 (en) Calibration of Assel rolls
DE3128055C2 (en) Cross mill stand without mandrel for seamless metal pipes
DE2803365C3 (en) Method and device for the production of helical transverse ribs on a pipe by rolling
DE3406841C2 (en)
AT393805B (en) METHOD FOR THE PRODUCTION OF PIPE TUBES AND THORN OR PLUGLESS BEEPING ROLLING DEVICES FOR IMPLEMENTING THE METHOD
DE2718219A1 (en) INCLINED ROLLER FRAMEWORK
DE2805648A1 (en) FLOATING ROLLER MILL
DE3914016C1 (en)
EP0703015B1 (en) Calibration for the rolls of a skew-rolling mill
DE4213277C2 (en) Process and calibration for finish rolling wire and / or round steel
DE3710193C1 (en) Process for producing seamless pipes over 200 mm in diameter and device for carrying out the process
DE2403686C2 (en) Process for the production of metal pipes from easily deformable materials, in particular from non-ferrous metals, by means of cold pilgrimages
DE2450224C2 (en)
DE2131713A1 (en) Tube rolling mill
EP0542387B1 (en) Method of longitudinal rolling seamless pipes
EP0445899B1 (en) Method for manufacture of medium- and thinwalled seamless pipes and rolling device therefor
DE647719C (en) Roll calibration
DE2605486C2 (en) Process for the production of longitudinally welded pipes
DE4339228C1 (en) Multi-stand rolling train
DE743742C (en) Process for producing tubes on a continuous reducing mill
DE4335063C1 (en) Cold pilger rolling mill for the cold-rolling of tubes (pipes)
DE2715847C2 (en) Calibration for a piercing mill
EP0948417A1 (en) Roll calibrating process and device for a roll train for the production of round wire
DE69327045T2 (en) METHOD FOR PRODUCING WELDED TUBES AND MOLDING DEVICE THEREFOR
DE3329763A1 (en) ROLLING MILL FOR REDUCING AND MEASURING ROLLING OF TUBES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19960528

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970506

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980225

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980225

ITF It: translation for a ep patent filed
ET Fr: translation filed
REF Corresponds to:

Ref document number: 59501490

Country of ref document: DE

Date of ref document: 19980402

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000801

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030805

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831