EP0711969A2 - Process for liquefying natural gas - Google Patents

Process for liquefying natural gas Download PDF

Info

Publication number
EP0711969A2
EP0711969A2 EP95117286A EP95117286A EP0711969A2 EP 0711969 A2 EP0711969 A2 EP 0711969A2 EP 95117286 A EP95117286 A EP 95117286A EP 95117286 A EP95117286 A EP 95117286A EP 0711969 A2 EP0711969 A2 EP 0711969A2
Authority
EP
European Patent Office
Prior art keywords
natural gas
gas stream
regeneration
stream
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95117286A
Other languages
German (de)
French (fr)
Other versions
EP0711969A3 (en
Inventor
Hans Dr.-Ing. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0711969A2 publication Critical patent/EP0711969A2/en
Publication of EP0711969A3 publication Critical patent/EP0711969A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system

Definitions

  • the invention relates to a method for liquefying a pressurized natural gas stream, in which the natural gas stream is first cleaned by means of an adsorptive separation device of CO2 and H2O and the pre-cleaned natural gas stream is then brought into heat exchange with at least one refrigerant conducted in a refrigeration cycle and liquefied and in which adsorptive separation device by means of a regeneration gas, consisting of a partial stream of the pre-cleaned natural gas stream and optionally further residual gas streams, such as a flash gas stream, is regenerated.
  • a regeneration gas consisting of a partial stream of the pre-cleaned natural gas stream and optionally further residual gas streams, such as a flash gas stream
  • a method for liquefying a pressurized natural gas stream is known for example from DE-OS 28 20 212.
  • the pressurized natural gas stream is brought into heat exchange with two refrigerants which are conducted in a closed circuit and are each compressed, at least partially liquefied and expanded, the coolant of the first circuit for precooling the natural gas and the coolant of the second circuit and the coolant of the second circuit is used to liquefy the pre-cooled natural gas.
  • the liquefied natural gas is then expanded and, after precooling, divided into two partial streams, one of which is liquefied by heat exchange with the coolant of the second circuit and the other by heat exchange with the flash gas formed during the expansion of the liquefied natural gas.
  • Natural gas generally consists essentially of methane, small amounts of ethane, propane and higher-boiling hydrocarbons as well as small amounts of nitrogen, carbon dioxide and water.
  • Natural gas Before cooling and liquefaction, all those components that freeze out during the cooling or liquefaction process and could therefore lead to laying in pipes and valves must be separated from the natural gas. It makes sense to do this by means of an adsorptive separation device. In this, carbon dioxide and water can be separated apart from very small residual contents, so that there is no longer any danger of these components freezing out in the low-temperature section.
  • the adsorbent used preferably a molecular sieve
  • the adsorbent used must be regenerated cyclically.
  • a partial stream of the flash gas can be used for this purpose, which makes the provision of a special regeneration gas unnecessary.
  • the regeneration gas drawn off from a regenerated adsorber can then be burned due to its composition, for example to drive a gas turbine.
  • Part of the natural gas stream emerging from the adsorptive separation device is also frequently used as the regeneration gas.
  • the aim and object of the present invention is to provide a method for liquefying a pressurized natural gas stream which has an improved energy balance compared to the known methods.
  • the natural gas stream consisting of 1.0 mol% N2, 94.0 mol% methane, 2.0 mol% ethane, 1.22 mol% C3+ hydrocarbons, 1.75 mol% is Carbon dioxide and 0.03 mol% of water at a temperature of 18 ° C and a pressure of 42 bar fed to the adsorption device A.
  • This consists of at least two adsorbers arranged parallel to one another, which cyclically run through adsorption and regeneration phases.
  • the pre-cleaned natural gas stream with 50 ppm CO2 and ⁇ 1 ppm H2O leaves the adsorption device A at a temperature of 38 ° C and a pressure of 40 bar and is passed through line 2 through the heat exchangers E1 and E2.
  • the natural gas stream now cooled to -73 ° C. is fed to the separator D.
  • aromatics and heavy hydrocarbons preferably C3+ hydrocarbons
  • This separation of aromatics and heavy hydrocarbons is necessary, since they would otherwise freeze out during expansion or during further cooling.
  • the aromatic and heavy hydrocarbon fraction is withdrawn from the separator D via line 4, expanded to provide cold in valve V2 and then passed through the heat exchangers E2 and E1 in indirect heat exchange with the natural gas stream to be cooled in line 2 by means of line 4 '.
  • This fraction led in line 4 ' consists essentially of 61.0 mol% methane, 12.0 mol% ethane, 10.0 mol% propane and 17.0 mol% C4+ hydrocarbons and has at the outlet of the Heat exchanger E1 a temperature of 36 ° C and a pressure of 9 bar. It is now added to line 7 ', which will be discussed later.
  • the natural gas fraction freed from aromatics and heavy hydrocarbons consisting essentially of 1.0 mol% nitrogen, 97.0 mol% methane, 1.8 mol% ethane and 0.2 mol% C3+ hydrocarbons, is piped 3 withdrawn from the head of the separator D and further cooled, liquefied and supercooled in the heat exchangers E2 and E3.
  • this fraction has a temperature of -133 ° C at a pressure of 39.6 bar.
  • the valve V1 is now depressurized before the natural gas fraction is fed to the storage tank T at line pressure 3 'at atmospheric pressure and a temperature of -161 ° C. Liquefied natural gas can be withdrawn from this via line 6.
  • the flash gas generated within the storage tank T is discharged from this via line 7 and passed through the heat exchangers E3, E2 and E1 in counterflow to the natural gas stream to be cooled.
  • the compressor V increases the pressure to the necessary regeneration gas pressure.
  • the flash gas compressed in this way is then fed via line 7 'to the adsorber (s) to be regenerated in the adsorption device A.
  • this compressed flash gas is admixed with the aromatic and / or heavy hydrocarbon fraction guided through line 4 'through the heat exchangers E2 and E1.
  • the two fractions introduced via line 4 'and 7' cannot fully meet the regeneration gas requirement. For this reason it is necessary to use part of the pre-cleaned natural gas flow for regeneration gas purposes.
  • the partial flow of the natural gas flow required for this is drawn off between the two heat exchangers E2 and E3.
  • the extraction point should be chosen with regard to the temperature so that the efficiency of the cold use is maximized by the expansion of the natural gas partial flow to the necessary regeneration gas pressure.
  • This amount is removed via line 5, relaxed in the valve V3 using the Joule-Thompson effect, and then led by line 5 'in counterflow to the natural gas stream to be cooled through the heat exchangers E2 and E1.
  • the partial natural gas stream branched off via line 5 upstream of the expansion valve V3 has a temperature of -126 ° C. at a pressure of 39.7 bar
  • the expansion valve V3 is expanded to 9.3 bar.
  • this partial flow in line 5 ' has a temperature of 36 ° C.
  • the separator D is usually designed for a temperature level which also allows the separation of a larger amount of aromatics and higher hydrocarbons.
  • the pressure drop between natural gas pressure and regeneration gas pressure can now be used as a cold source.
  • the energy required for the refrigeration cycle can be reduced, so that the specific energy consumption in the liquefaction of natural gas is reduced.
  • the specific energy requirement is the determining factor for such processes. Since the Joule-Thompson effect causes a greater temperature difference than in the case of known methods which already use part of the natural gas flow for regeneration purposes directly behind the pressure swing adsorption device A subtract, the case is, the required heat exchange surface becomes smaller despite a slightly increased heat conversion. This also reduces the costs for the heat exchangers in the cold part of the process.
  • the method according to the invention leads to a reduction in specific energy consumption without additional investment.
  • the energy consumption is directly proportional to the amount of partial electricity that is relaxed using the Joule-Thompson effect.

Abstract

In a process to liquefy a flow of pressurised natural gas, water and carbon dioxide are removed by an absorptive sepN. process before the residual pre-cleaned natural gas is passed into a heat exchanger, one half of which is supplied by a coolant, and the natural gas liquefied. The absorptive separator assembly is regenerated by a gas, consisting of a mixt. of a flow of pre-cleaned natural gas and flash gas. The novelty is that during the cooling and liquefying process, the natural gas required for regeneration of the absorption assembly is removed at a temp. at which the efficiency of the cooling process is maximised by throttling the regeneration gas pressure.

Description

Die Erfindung betrifft ein Verfahren zum Verflüssigen eines unter Druck stehenden Erdgasstromes, bei dem der Erdgasstrom zunächst mittels einer adsorptiven Abtrennvorrichtung von CO₂ und H₂O gereinigt und der vorgereinigte Erdgasstrom anschließend in Wärmetausch mit wenigstens einem in einem Kältekreislauf geführten Kältemittel gebracht und verflüssigt wird und bei dem die adsorptive Abtrennvorrichtung mittels eines Regeneriergases, bestehend aus einem Teilstrom des vorgereinigten Erdgasstromes und gegebenenfalls weiterer Restgasströme, wie z.B. einem Flashgasstrom, regeneriert wird.The invention relates to a method for liquefying a pressurized natural gas stream, in which the natural gas stream is first cleaned by means of an adsorptive separation device of CO₂ and H₂O and the pre-cleaned natural gas stream is then brought into heat exchange with at least one refrigerant conducted in a refrigeration cycle and liquefied and in which adsorptive separation device by means of a regeneration gas, consisting of a partial stream of the pre-cleaned natural gas stream and optionally further residual gas streams, such as a flash gas stream, is regenerated.

Ein Verfahren zum Verflüssigen eines unter Druck stehenden Erdgasstromes ist z.B. aus der DE-OS 28 20 212 bekannt. Bei diesem bekannten Verfahren wird der unter Druck stehende Erdgasstrom in Wärmetausch mit zwei im geschlossenen Kreisläufen geführten Kältemitteln, die jeweils verdichtet, mindestens teilweise verflüssigt und entspannt werden, gebracht, wobei das Kühlmittel des ersten Kreislaufes zur Vorkühlung des Erdgases sowie des Kühlmittels des zweiten Kreislaufs und das Kühlmittel des zweiten Kreislaufs zur Verflüssigung des vorgekühlten Erdgases verwendet wird. Das verflüssigte Erdgas wird anschließend entspannt und nach der Vorkühlung in zwei Teilströme aufgeteilt, von denen der eine durch Wärmetausch mit dem Kühlmittel des zweiten Kreislaufs und der andere durch Wärmetausch mit dem bei der Entspannung des verflüssigten Erdgases gebildeten Flashgases verflüssigt wird. Das Flashgas wird nach dem Wärmetausch mit dem vorgekühlten Erdgas verdichtet, mindestens teilweise in Wärmetausch mit den Kühlmitteln des ersten und des zweiten Kreislaufs verflüssigt und anschließend wieder entspannt. Erdgas besteht in der Regel im wesentlichen aus Methan, geringen Anteilen an Ethan, Propan und höhersiedenden Kohlenwasserstoffen sowie geringe Mengen Stickstoff, Kohlendioxid und Wasser. Vor der Abkühlung und Verflüssigung sind all diejenigen Komponenten, die während des Abkühl- bzw. Verflüssigungsprozesses ausfrieren und damit zu Verlegungen in Leitungen und Ventilen führen könnten, aus dem Erdgas abzutrennen. Dies geschieht sinnvollerweise mittels einer adsorptiven Abtrennvorrichtung. In dieser können Kohlendioxid und Wasser bis auf sehr kleine Restgehalte abgetrennt werden, so daß die Gefahr des Ausfrierens dieser Komponenten im Tieftemperaturteil nicht mehr besteht. Das verwendete Adsorptionsmittel, vorzugsweise ein Molsieb, ist jedoch zyklisch zu regenerieren. Dazu kann, wie in der DE-OS 28 20 212 vorgeschlagen, ein Teilstrom des Flashgases verwendet werden, wodurch sich die Bereitstellung eines besonderen Regeneriergases erübrigt. Das aus einem regenerierten Adsorber abgezogene Regeneriergas kann aufgrund seiner Zusammensetzung anschließend z.B. zum Antreiben einer Gasturbine verbrannt werden. Häufig wird als Regeneriergas auch ein Teil des aus der adsorptiven Abtrennvorrichtung austretenden Erdgasstromes verwendet.A method for liquefying a pressurized natural gas stream is known for example from DE-OS 28 20 212. In this known method, the pressurized natural gas stream is brought into heat exchange with two refrigerants which are conducted in a closed circuit and are each compressed, at least partially liquefied and expanded, the coolant of the first circuit for precooling the natural gas and the coolant of the second circuit and the coolant of the second circuit is used to liquefy the pre-cooled natural gas. The liquefied natural gas is then expanded and, after precooling, divided into two partial streams, one of which is liquefied by heat exchange with the coolant of the second circuit and the other by heat exchange with the flash gas formed during the expansion of the liquefied natural gas. After the heat exchange, the flash gas is compressed with the pre-cooled natural gas, at least partially liquefied in heat exchange with the coolants of the first and second circuits and then expanded again. Natural gas generally consists essentially of methane, small amounts of ethane, propane and higher-boiling hydrocarbons as well as small amounts of nitrogen, carbon dioxide and water. Before cooling and liquefaction, all those components that freeze out during the cooling or liquefaction process and could therefore lead to laying in pipes and valves must be separated from the natural gas. It makes sense to do this by means of an adsorptive separation device. In this, carbon dioxide and water can be separated apart from very small residual contents, so that there is no longer any danger of these components freezing out in the low-temperature section. However, the adsorbent used, preferably a molecular sieve, must be regenerated cyclically. As suggested in DE-OS 28 20 212, a partial stream of the flash gas can be used for this purpose, which makes the provision of a special regeneration gas unnecessary. The regeneration gas drawn off from a regenerated adsorber can then be burned due to its composition, for example to drive a gas turbine. Part of the natural gas stream emerging from the adsorptive separation device is also frequently used as the regeneration gas.

Ziel und Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Verflüssigen eines unter Druck stehenden Erdgasstromes anzugeben, das gegenüber den bekannten Verfahren eine verbesserte Energiebilanz aufweist.The aim and object of the present invention is to provide a method for liquefying a pressurized natural gas stream which has an improved energy balance compared to the known methods.

Dies wird erfindungsgemäß dadurch erreicht, daß während des Abkühl- und Verflüssigungsprozesses des Erdgasstromes wenigstens der zur Regenerierung der adsorptiven Abtrennvorrichtung benötigte Erdgasteilstrom bei Erreichen derjenigen Temperatur abgetrennt wird, bei der der Wirkungsgrad der Kältenutzung durch die Drosselung auf den Regeneriergasdruck maximal ist.This is achieved according to the invention in that during the cooling and liquefaction process of the natural gas flow, at least the natural gas partial flow required for regeneration of the adsorptive separation device is separated off when the temperature is reached at which the efficiency of the cold use by throttling to the regeneration gas pressure is at a maximum.

Die Erfindung sowie weitere Ausgestaltungen davon seien anhand der Figur erläutert.The invention and further embodiments thereof are explained with the aid of the figure.

Über Leitung 1 wird der Erdgasstrom, bestehend aus 1,0 Mol-% N₂, 94,0 Mol-% Methan, 2,0 Mol-% Ethan, 1,22 Mol-% C₃₊-Kohlenwasserstoffen, 1,75 Mol-% Kohlendioxid und 0,03 Mol-% Wasser bei einer Temperatur von 18°C und einem Druck von 42 bar der Adsorptionsvorrichtung A zugeführt. Diese besteht aus wenigstens zwei, parallel zueinander angeordneten Adsorbern, die zyklisch Adsorptions- und Regenerierphasen durchlaufen. Der vorgereinigte Erdgasstrom mit 50 ppm CO₂ und < 1 ppm H₂O verläßt mit einer Temperatur von 38°C und einem Druck von 40 bar die Adsorptionsvorrichtung A und wird über Leitung 2 durch die Wärmetauscher E1 und E2 geführt. Der nunmehr auf -73°C abgekühlte Erdgasstrom wird dem Abscheider D zugeführt. In diesem Abscheider D erfolgt eine Abtrennung von Aromaten und schweren Kohlenwasserstoffen, vorzugsweise C₃₊-Kohlenwasserstoffen, aus dem vorgereinigten Erdgasstrom. Diese Abtrennung von Aromaten und schweren Kohlenwasserstoffen ist notwendig, da diese ansonsten bei der Entspannung bzw. bei der weiteren Abkühlung ausfrieren würden. Die Aromaten- und schwere Kohlenwasserstoff-Fraktion wird über Leitung 4 aus dem Abscheider D abgezogen, im Ventil V2 kälteleistend entspannt und anschließend im indirekten Wärmetausch mit dem abzukühlenden Erdgasstrom in Leitung 2 mittels Leitung 4' durch die Wärmetauscher E2 und E1 geführt. Diese in Leitung 4' geführte Fraktion besteht im wesentlichen aus 61,0 Mol-% Methan, 12,0 Mol-% Ethan, 10,0 Mol-% Propan und 17,0 Mol-% C₄₊-Kohlenwasserstoffe und weist am Austritt des Wärmetauschers E1 eine Temperatur von 36°C und einen Druck von 9 bar auf. Sie wird nun der Leitung 7', auf die später noch eingegangen wird, beigemischt. Die von Aromaten und schweren Kohlenwasserstoffen befreite Erdgasfraktion, bestehend im wesentlichen aus 1,0 Mol-% Stickstoff, 97,0 Mol-% Methan, 1,8 Mol-% Ethan und 0,2 Mol-% C₃₊-Kohlenwasserstoffen wird über Leitung 3 vom Kopf des Abscheiders D abgezogen und in den Wärmetauschern E2 und E3 weiter abgekühlt, verflüssigt und unterkühlt. Am Ausgang des Wärmetauschers E3 weist diese Fraktion bei einem Druck von 39,6 bar eine Temperatur von -133°C auf. Es erfolgt nun eine Entspannung im Ventil V1, bevor die Erdgasfraktion bei Atmosphärendruck und einer Temperatur von -161°C mittels Leitung 3' dem Speichertank T zugeführt wird. Aus diesem kann über Leitung 6 verflüssigtes Erdgas abgezogen werden. Das innerhalb des Speichertanks T anfallende Flashgas wird über Leitung 7 aus diesem abgeführt und im Gegenstrom zu dem abzukühlenden Erdgasstrom durch die Wärmetauscher E3, E2 und E1 geführt. Am Austritt des Wärmetauschers E1 erfolgt mittels des Verdichters V eine Druckerhöhung auf den notwendigen Regeneriergasdruck. Das so verdichtete Flashgas wird nun über Leitung 7' dem bzw. den zu regenerierenden Adsorbern der Adsorptionsvorrichtung A zugeführt. Diesem verdichteten Flashgas wird, wie bereits beschrieben, die mittels Leitung 4' durch die Wärmetauscher E2 und E1 geführte Aromaten- und/oder schwere Kohlenwasserstoff-Fraktion beigemischt. Die beiden, über Leitung 4' und 7' herangeführten Fraktionen können den Regeneriergasbedarf jedoch nicht vollständig decken. Aus diesem Grund ist es notwendig, einen Teil des vorgereinigten Erdgasstromes zu Regeneriergaszwecken zu verwenden. Beim erfindungsgemäßen Verfahren wird der dafür benötigte Teilstrom des Erdgasstromes zwischen den beiden Wärmetauschern E2 und E3 abgezogen. Die Abzugsstelle ist bezüglich der Temperatur so zu wählen, daß der Wirkungsgrad der Kältenutzung durch die Entspannung des Erdgasteilstromes auf den notwendigen Regeneriergasdruck maximal ist. Diese Menge wird über Leitung 5 abgeführt, im Ventil V3 unter Ausnutzung des Joule-Thompson-Effekts kälteleistend entspannt und anschließend mittels Leitung 5' im Gegenstrom zu dem abzukühlenden Erdgasstrom durch die Wärmetauscher E2 und E1 geführt. Während der über Leitung 5 abgezweigte Erdgasteilstrom vor dem Entspannungsventil V3 eine Temperatur von -126°C bei einem Druck von 39,7 bar aufweist, erfolgt im Entspannungsventil V3 eine Entspannung auf 9,3 bar. Am Ausgang des Wärmetauschers E1 schließlich weist dieser Teilstrom in Leitung 5' eine Temperatur von 36°C auf und wird über Leitung 7' der Adsorptionsvorrichtung A als Regeneriergas zugeführt. Nach erfolgter Regenerierung wird das Regeneriergas über Leitung 8 aus der Adsorptionsvorrichtung A abgezogen. Die Deckung des für die Abkühlung und Verflüssigung des Erdgasstromes benötigten Kältebedarfs erfolgt mittels eines zusätzlichen Kältekreislaufes. Dieser Kältekreislauf sei hier nur schematisch dargestellt, wobei über Leitung 9 und 10 das Kältemittel bzw. Kältemittelgemisch zur Abkühlung und teilweisen Verflüssigung durch die Wärmetauscher E1, E2 und E3 bzw. durch den Wärmetauscher E1 geführt wird, in den Entspannungsventilen V4 und V5 kälteleistend entspannt und anschließend mittels Leitung 9' im Gegenstrom zu dem abzukühlenden Erdgasstrom durch die Wärmetauscher E3, E2 und E1 geleitet wird. Als Kältemittel haben sich Gemische aus Stickstoff und Methan oder Gemische aus Stickstoff, Methan sowie C₂- bis C₅-Kohlenwasserstoffen bewährt. Derartige Kältekreisläufe gehören jedoch zum Stand der Technik, so daß auf sie nicht näher eingegangen werden muß.The natural gas stream consisting of 1.0 mol% N₂, 94.0 mol% methane, 2.0 mol% ethane, 1.22 mol% C₃₊ hydrocarbons, 1.75 mol% is Carbon dioxide and 0.03 mol% of water at a temperature of 18 ° C and a pressure of 42 bar fed to the adsorption device A. This consists of at least two adsorbers arranged parallel to one another, which cyclically run through adsorption and regeneration phases. The pre-cleaned natural gas stream with 50 ppm CO₂ and <1 ppm H₂O leaves the adsorption device A at a temperature of 38 ° C and a pressure of 40 bar and is passed through line 2 through the heat exchangers E1 and E2. The natural gas stream now cooled to -73 ° C. is fed to the separator D. In this separator D, aromatics and heavy hydrocarbons, preferably C₃₊ hydrocarbons, are separated from the pre-cleaned natural gas stream. This separation of aromatics and heavy hydrocarbons is necessary, since they would otherwise freeze out during expansion or during further cooling. The aromatic and heavy hydrocarbon fraction is withdrawn from the separator D via line 4, expanded to provide cold in valve V2 and then passed through the heat exchangers E2 and E1 in indirect heat exchange with the natural gas stream to be cooled in line 2 by means of line 4 '. This fraction led in line 4 'consists essentially of 61.0 mol% methane, 12.0 mol% ethane, 10.0 mol% propane and 17.0 mol% C₄₊ hydrocarbons and has at the outlet of the Heat exchanger E1 a temperature of 36 ° C and a pressure of 9 bar. It is now added to line 7 ', which will be discussed later. The natural gas fraction freed from aromatics and heavy hydrocarbons, consisting essentially of 1.0 mol% nitrogen, 97.0 mol% methane, 1.8 mol% ethane and 0.2 mol% C₃₊ hydrocarbons, is piped 3 withdrawn from the head of the separator D and further cooled, liquefied and supercooled in the heat exchangers E2 and E3. At the outlet of the heat exchanger E3, this fraction has a temperature of -133 ° C at a pressure of 39.6 bar. The valve V1 is now depressurized before the natural gas fraction is fed to the storage tank T at line pressure 3 'at atmospheric pressure and a temperature of -161 ° C. Liquefied natural gas can be withdrawn from this via line 6. The flash gas generated within the storage tank T is discharged from this via line 7 and passed through the heat exchangers E3, E2 and E1 in counterflow to the natural gas stream to be cooled. At the outlet of the heat exchanger E1, the compressor V increases the pressure to the necessary regeneration gas pressure. The flash gas compressed in this way is then fed via line 7 'to the adsorber (s) to be regenerated in the adsorption device A. As already described, this compressed flash gas is admixed with the aromatic and / or heavy hydrocarbon fraction guided through line 4 'through the heat exchangers E2 and E1. However, the two fractions introduced via line 4 'and 7' cannot fully meet the regeneration gas requirement. For this reason it is necessary to use part of the pre-cleaned natural gas flow for regeneration gas purposes. In the method according to the invention, the partial flow of the natural gas flow required for this is drawn off between the two heat exchangers E2 and E3. The extraction point should be chosen with regard to the temperature so that the efficiency of the cold use is maximized by the expansion of the natural gas partial flow to the necessary regeneration gas pressure. This amount is removed via line 5, relaxed in the valve V3 using the Joule-Thompson effect, and then led by line 5 'in counterflow to the natural gas stream to be cooled through the heat exchangers E2 and E1. While the partial natural gas stream branched off via line 5 upstream of the expansion valve V3 has a temperature of -126 ° C. at a pressure of 39.7 bar, the expansion valve V3 is expanded to 9.3 bar. Finally, at the outlet of the heat exchanger E1, this partial flow in line 5 'has a temperature of 36 ° C. and is fed via line 7' to the adsorption device A as regeneration gas. After regeneration has taken place, the regeneration gas is withdrawn from the adsorption device A via line 8. The cooling requirement required for cooling and liquefying the natural gas flow is covered by an additional cooling circuit. This refrigeration cycle is only shown here schematically, with the refrigerant or refrigerant mixture for cooling and partial liquefaction being passed through the heat exchangers E1, E2 and E3 or through the heat exchanger E1, relaxed in the expansion valves V4 and V5, and subsequently by means of lines 9 and 10 Line 9 'in countercurrent to the natural gas stream to be cooled is passed through the heat exchangers E3, E2 and E1. Mixtures of nitrogen and methane or mixtures of nitrogen, methane and C₂ to C₅ hydrocarbons have proven themselves as refrigerants. However, such refrigeration circuits are part of the prior art, so that they need not be discussed in more detail.

Es wäre auch denkbar, als den für die Regenerierung der Adsorptionsvorrichtung A benötigten Erdgasteilstrom, den am Sumpf des Abscheiders D abgezogenen Aromaten- und höhere Kohlenwasserstoff-reichen Strom zu verwenden. Dies ist jedoch nur dann möglich, wenn der Gehalt an Aromaten und höheren Kohlenwasserstoffen des die Adsorptionsvorrichtung A verlassenden Erdgasstromes so niedrig ist, daß auch bei einer Abkühlung auf diejenige Temperatur, die eine Entspannung auf den Regeneriergasdruck sinnvoll macht, diese Komponenten nicht bereits vor dem Abscheider D oder nach dem Entspannungsventil V2 ausfrieren und zu Verlegungen in den Leitungen führen. In der Regel wird schon aus Sicherheitsgründen der Abscheider D auf ein Temperaturniveau ausgelegt, das auch die Abtrennung einer größeren Menge an Aromaten und höheren Kohlenwasserstoffen ermöglicht.It would also be conceivable to use, as the natural gas partial stream required for the regeneration of the adsorption device A, the aromatics-rich stream drawn off at the bottom of the separator D and higher hydrocarbon-rich stream. However, this is only possible if the content of aromatics and higher hydrocarbons in the natural gas stream leaving the adsorption device A is so low that even when it is cooled to the temperature that makes relaxation to the regeneration gas pressure useful, these components are not already in front of the separator D or freeze after the expansion valve V2 and lead to routing in the lines. For safety reasons, the separator D is usually designed for a temperature level which also allows the separation of a larger amount of aromatics and higher hydrocarbons.

Selbstverständlich ist es auch denkbar, nicht nur die zur Regenerierung der adsorptiven Abtrennvorrichtung benötigte Erdgasteilstrommenge aus dem Erdgasstrom abzutrennen, sondern die maximal an ein gegebenenfalls vorhandenes Niederdrucknetz abführbare Menge. Wie groß die aus dem Erdgasstrom abgetrennte Erdgasteilstrommenge sein wird, wird sich also immer nach den Randbedingungen, wie z.B. vorhandenes Niederdrucknetz, etc., orientieren.Of course, it is also conceivable not only to separate the partial natural gas flow required for regeneration of the adsorptive separating device from the natural gas flow, but rather the maximum amount that can be discharged to a low-pressure network which may be present. The size of the natural gas stream separated from the natural gas stream will always depend on the boundary conditions, e.g. Orient existing low pressure network, etc.

Mittels des erfindungsgemäßen Verfahrens kann nun das Druckgefälle zwischen Erdgasdruck und Regeneriergasdruck als Kältequelle ausgenutzt werden. Dies führt dazu, daß die für den Kältekreislauf benötigte Energie verringert werden kann, so daß sich der spezifische Energieverbrauch bei der Erdgasverflüssigung erniedrigt. Gerade der spezifische Energiebedarf ist neben den Investitionskosten der bestimmende Faktor für derartige Verfahren. Da der Joule-Thompson-Effekt eine größere Temperaturdifferenz bewirkt als dies bei bekannten Verfahren, die einen Teil des Erdgasstromes zu Regenerierzwecken bereits unmittelbar hinter der Druckwechseladsorptionsvorrichtung A abziehen, der Fall ist, wird die benötigte Wärmeaustauschfläche trotz leicht erhöhtem Wärmeumsatz geringer. Dadurch erniedrigen sich zusätzlich die Kosten für die Wärmetauscher im kalten Teil des Verfahrens. Zusammenfassend läßt sich feststellen, daß das erfindungsgemäße Verfahren ohne einen Mehraufwand an Investitionen zu einer Erniedrigung des spezifischen Energieverbrauchs führt. Der Energieverbrauch ist hierbei direkt proportional zu der Teilstrommenge, die unter Ausnutzung des Joule-Thompson-Effekts entspannt wird.By means of the method according to the invention, the pressure drop between natural gas pressure and regeneration gas pressure can now be used as a cold source. This means that the energy required for the refrigeration cycle can be reduced, so that the specific energy consumption in the liquefaction of natural gas is reduced. In addition to the investment costs, the specific energy requirement is the determining factor for such processes. Since the Joule-Thompson effect causes a greater temperature difference than in the case of known methods which already use part of the natural gas flow for regeneration purposes directly behind the pressure swing adsorption device A subtract, the case is, the required heat exchange surface becomes smaller despite a slightly increased heat conversion. This also reduces the costs for the heat exchangers in the cold part of the process. In summary, it can be stated that the method according to the invention leads to a reduction in specific energy consumption without additional investment. The energy consumption is directly proportional to the amount of partial electricity that is relaxed using the Joule-Thompson effect.

Claims (1)

Verfahren zum Verflüssigen eines unter Druck stehenden Erdgasstromes, bei dem der Erdgasstrom zunächst mittels einer adsorptiven Abtrennvorrichtung von CO₂ und H₂O gereinigt und der vorgereinigte Erdgasstrom anschließend in Wärmetausch mit wenigstens einem in einem Kältekreislauf geführten Kältemittel gebracht und verflüssigt wird und bei dem die adsorptive Abtrennvorrichtung mittels eines Regeneriergases, bestehend aus einem Teilstrom des vorgereinigten Erdgasstromes und gegebenenfalls weiterer Restgasströme, wie z.B. einem Flashgasstrom, regeneriert wird, dadurch gekennzeichnet, daß während des Abkühl- und Verflüssigungsprozesses des Erdgasstromes wenigstens der zur Regenerierung der adsorptiven Abtrennvorrichtung benötigte Erdgasteilstrom bei Erreichen derjenigen Temperatur abgetrennt wird, bei der der Wirkungsgrad der Kältenutzung durch die Drosselung auf den Regeneriergasdruck maximal ist.Process for liquefying a pressurized natural gas stream, in which the natural gas stream is first cleaned of CO₂ and H₂O by means of an adsorptive separating device and the pre-cleaned natural gas stream is then brought into heat exchange with at least one refrigerant conducted in a refrigeration cycle and liquefied and in which the adsorptive separating device is by means of a Regeneration gas, consisting of a partial stream of the pre-cleaned natural gas stream and possibly further residual gas streams, such as a flash gas stream, is regenerated, characterized in that during the cooling and liquefaction process of the natural gas stream at least the natural gas partial stream required to regenerate the adsorptive separating device is separated off when that temperature is reached, in which the efficiency of the cold use by throttling to the regeneration gas pressure is maximum.
EP95117286A 1994-11-11 1995-11-02 Process for liquefying natural gas Withdrawn EP0711969A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4440401 1994-11-11
DE4440401A DE4440401A1 (en) 1994-11-11 1994-11-11 Process for liquefying natural gas

Publications (2)

Publication Number Publication Date
EP0711969A2 true EP0711969A2 (en) 1996-05-15
EP0711969A3 EP0711969A3 (en) 1997-02-05

Family

ID=6533117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95117286A Withdrawn EP0711969A3 (en) 1994-11-11 1995-11-02 Process for liquefying natural gas

Country Status (4)

Country Link
US (1) US5551256A (en)
EP (1) EP0711969A3 (en)
AR (1) AR000098A1 (en)
DE (1) DE4440401A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410702A (en) * 2010-09-09 2012-04-11 林德股份公司 Natural gas liquefaction
FR3063540A1 (en) * 2017-03-01 2018-09-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR LIQUEFACTING NATURAL GAS USING A REFRIGERATION CIRCUIT COMPRISING ONLY ONE TURBINE
CN108709367A (en) * 2018-05-22 2018-10-26 中石化宁波工程有限公司 A kind of liquefying plant and application method of carbon dioxide

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707476C2 (en) * 1997-02-25 1999-08-05 Linde Ag Method and device for liquefying a hydrocarbon-rich stream
DE19821242A1 (en) * 1998-05-12 1999-11-18 Linde Ag Liquefaction of pressurized hydrocarbon-enriched stream
US20070137246A1 (en) * 2001-05-04 2007-06-21 Battelle Energy Alliance, Llc Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium
US7637122B2 (en) 2001-05-04 2009-12-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of a gas and methods relating to same
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7219512B1 (en) 2001-05-04 2007-05-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7591150B2 (en) * 2001-05-04 2009-09-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US6581409B2 (en) 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
DE102006013686B3 (en) * 2006-03-22 2007-10-11 Technikum Corporation Process for the liquefaction of natural gas
TW200914115A (en) * 2007-05-14 2009-04-01 Shell Int Research Process for producing purified natural gas from natural gas comprising water and carbon dioxide
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US8555672B2 (en) 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
GB2462125B (en) * 2008-07-25 2012-04-04 Dps Bristol Holdings Ltd Production of liquefied natural gas
GB2469077A (en) 2009-03-31 2010-10-06 Dps Bristol Process for the offshore liquefaction of a natural gas feed
US20120180901A1 (en) * 2009-09-28 2012-07-19 Koninklijke Philips Electronics N.V. Sytem and method for liquefying and storing a fluid
DE102010030485A1 (en) 2010-06-24 2011-12-29 Dbi - Gastechnologisches Institut Ggmbh Freiberg Process for the separation of C2 + hydrocarbons from natural gas or associated petroleum gas using membranes
US8337593B2 (en) 2010-08-18 2012-12-25 Uop Llc Process for purifying natural gas and regenerating one or more adsorbers
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
US9273639B2 (en) 2012-09-24 2016-03-01 Elwha Llc System and method for storing and dispensing fuel and ballast fluid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2820212A1 (en) 1978-05-09 1979-11-22 Linde Ag METHOD FOR LIQUIDATING NATURAL GAS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878689A (en) * 1970-07-27 1975-04-22 Carl A Grenci Liquefaction of natural gas by liquid nitrogen in a dual-compartmented dewar
US3792590A (en) * 1970-12-21 1974-02-19 Airco Inc Liquefaction of natural gas
US4133663A (en) * 1976-03-29 1979-01-09 Air Products And Chemicals, Inc. Removing vinyl chloride from a vent gas stream
US5006138A (en) * 1990-05-09 1991-04-09 Hewitt J Paul Vapor recovery system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2820212A1 (en) 1978-05-09 1979-11-22 Linde Ag METHOD FOR LIQUIDATING NATURAL GAS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410702A (en) * 2010-09-09 2012-04-11 林德股份公司 Natural gas liquefaction
CN102410702B (en) * 2010-09-09 2016-01-20 林德股份公司 The liquefaction of natural gas
FR3063540A1 (en) * 2017-03-01 2018-09-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR LIQUEFACTING NATURAL GAS USING A REFRIGERATION CIRCUIT COMPRISING ONLY ONE TURBINE
CN108709367A (en) * 2018-05-22 2018-10-26 中石化宁波工程有限公司 A kind of liquefying plant and application method of carbon dioxide

Also Published As

Publication number Publication date
DE4440401A1 (en) 1996-05-15
AR000098A1 (en) 1997-05-21
US5551256A (en) 1996-09-03
EP0711969A3 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
EP0711969A2 (en) Process for liquefying natural gas
DE102010044646A1 (en) Process for separating nitrogen and hydrogen from natural gas
DE2543291A1 (en) PROCESS FOR PROCESSING A NATURAL GAS FLOW
DE2023614A1 (en) Process for liquefying a consumption gas stream
DE102005010055A1 (en) Process for liquefying a hydrocarbon-rich stream
DE19937623B4 (en) Process for liquefying a hydrocarbon-rich stream
DE102006039889A1 (en) Process for liquefying a hydrocarbon-rich stream
DE19612173C1 (en) Procedure for liquefaction of hydrocarbon rich process flow, especially natural gas
DE102006021620B4 (en) Pretreatment of a liquefied natural gas stream
DE102012020469A1 (en) Method for separating methane from methane-containing synthesis gas in separation unit, involves feeding capacitor with secondary portion of refrigerant of outlet temperature to intermediate temperature and cooling to lower temperature
DE4440406C1 (en) Process for liquefying a pressurized hydrocarbon-rich fraction
DE102007006370A1 (en) Process for liquefying a hydrocarbon-rich stream
EP1913319A2 (en) Method and arrangement for liquefying a stream rich in hydrocarbons
DE19517116C1 (en) Process for reducing energy consumption
DE102016000393A1 (en) Process for liquefying a hydrocarbon-rich fraction
EP2369279A1 (en) Method for cooling or liquefying a hydrocarbon-rich flow and assembly for carrying out the method
WO2016015855A1 (en) Obtaining xenon from ethane-rich liquids and gases
WO1999058917A1 (en) Method and device for liquefying a stream rich in hydrocarbon
DE102004032710A1 (en) Method for liquefying a hydrocarbon-rich stream, especially a natural gas stream, comprises separating a first coolant mixture cycle into a low boiling fraction and a higher boiling fraction
DE19707475A1 (en) Liquefaction of hydrocarbon-rich stream, esp. natural gas
DE19540142C1 (en) Method for liquefying or part-liquefying pressurised gas or gas mixtures, especially natural gas
WO2016155863A1 (en) Method for removing nitrogen from a hydrocarbon-rich fraction
WO2005090885A1 (en) Method for liquefying a hydrocarbon-rich flow
WO2005111522A1 (en) Method and device for liquefying a hydrocarbon-enriched flow
WO2008098704A2 (en) Method for liquefying a stream rich in hydrocarbons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE GB LI NL

17P Request for examination filed

Effective date: 19970117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990611