EP0708473A1 - Manufacturing method for micropoint electron source - Google Patents

Manufacturing method for micropoint electron source Download PDF

Info

Publication number
EP0708473A1
EP0708473A1 EP95402312A EP95402312A EP0708473A1 EP 0708473 A1 EP0708473 A1 EP 0708473A1 EP 95402312 A EP95402312 A EP 95402312A EP 95402312 A EP95402312 A EP 95402312A EP 0708473 A1 EP0708473 A1 EP 0708473A1
Authority
EP
European Patent Office
Prior art keywords
layer
sacrificial layer
grid
deposition
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402312A
Other languages
German (de)
French (fr)
Other versions
EP0708473B1 (en
Inventor
Robert Meyer
Michel Borel
Marie-Dominique Bruni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0708473A1 publication Critical patent/EP0708473A1/en
Application granted granted Critical
Publication of EP0708473B1 publication Critical patent/EP0708473B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • the present invention relates to a method for manufacturing a microtip electron source ("microtips").
  • the invention applies to any field where it is likely to use such a source of microtip electrons, in particular the field of flat display devices also called "flat screens".
  • the invention makes it possible, for example, to manufacture large micropoint flat screens, the surface area of which can be of the order of 1000 cm and can even go up to around 1 m.
  • document (1) describes a source of microtip electrons with a matrix structure and a method of manufacturing this source.
  • Documents (2) to (4) relate to improvements to the source described in document (1).
  • the microtips are produced by a vacuum evaporation method.
  • This method involves two steps.
  • a first step is to evaporate, under grazing incidence, a sacrificial layer ("lift off layer” in articles in English), for example nickel.
  • holes 10 are formed through the grid layer 8 and the electrically insulating layer 6, at the level of each cathode conductor 4.
  • FIG. 1 shows the sacrificial layer which bears the reference 12 and which is formed on the grid layer 8.
  • this layer 12 under grazing incidence makes it possible to selectively deposit the nickel on the grid layer 8 without putting holes at the bottom.
  • a second step consists in depositing on the entire structure thus obtained a layer 14 of an electron-emitting material such as, for example, molybdenum.
  • This deposit is made by evaporation of the molybdenum under an almost normal incidence.
  • microtip 16 made of molybdenum which rests on the cathode conductor corresponding to this hole.
  • the grazing incidence makes it necessary to place on a crown, in the evaporation device, the structures on which it is desired to form the nickel layer.
  • the treatment time is long, in particular because of the evaporation of the nickel which must be done at low speed to avoid splashes.
  • the material leading to the microtips is evaporated at an angle of incidence of less than 10 ° (almost normal incidence).
  • the present invention aims to remedy the above drawbacks, by replacing evaporation under grazing incidence by a wet chemical deposit.
  • the invention makes it possible in particular to simplify the evaporation device mentioned above and to increase its production capacity, as will be seen more clearly below.
  • the present invention makes it possible to deposit microtips on large surfaces.
  • the following methods can be used as wet chemical deposition methods: electrolytic deposition or chemical deposition in solution.
  • the wet chemical deposition is an electrolytic deposition.
  • the grid layer is used as a cathode for this electrolytic deposition.
  • the sacrificial layer is removed by electrolysis.
  • This sacrificial layer can be made of a material chosen from the group comprising the metals Cr, Fe, Ni, Co, Cd, Cu, Au, Ag and the alloys of these metals.
  • this sacrificial layer is made of an alloy of iron and nickel.
  • FIG. 2 schematically illustrates a structure which has been discussed in the description of FIG. 1 and which comprises, on the surface, the grid layer 8, this structure not including the layers 12 and 14.
  • FIG. 2 has been coated with a sacrificial layer 18 in accordance with the invention, by electrolytic deposition.
  • the technique used in the present invention leads to a selective deposition on the grid layer 8, as allowed by evaporation under grazing incidence.
  • This electrolysis deposition technique which can be used in the present invention, has the advantage of being rapid and inexpensive since it requires only electrolysis equipment.
  • FIG. 3 shows a vacuum evaporation device allowing, in accordance with the prior art, the deposition of a sacrificial layer under grazing incidence and the deposition of a layer of electron-emitting material under almost normal incidence.
  • FIG. 3 There is shown very diagrammatically in FIG. 3 a vacuum enclosure 20 and, in this, substrates 22 on which it is wished to first evaporate the sacrificial layer under grazing incidence and then deposit the layer of material electron emitter under almost normal incidence.
  • a dotted ring 24 is also seen on which the substrates 22 are positioned for deposition under grazing incidence.
  • Tipping means 26 which are shown diagrammatically by arrows in FIG. 3, are provided for passing from deposition under grazing incidence to almost normal incidence deposition from a source 28 of electron-emitting material.
  • Figure 4 shows an evaporation device usable in the present invention.
  • This device is much simpler than that of FIG. 3 since, in a process according to the invention, only the evaporation of an electron emitting material remains, under an almost normal incidence, to form the microtips.
  • FIG. 4 also shows the enclosure 20 in which the substrates 22 and the source of electron-emitting material 28 are located.
  • the production capacity of this device is improved, compared to that of the device of FIG. 3, thanks to a shorter processing time and the possibility of putting more substrates in the enclosure 20 than in the case of the FIG. 3.
  • the deposition of the sacrificial layer can be easily carried out over large areas.
  • FIG. 5 shows a structure 29 comprising a glass substrate 30 on which a layer of silica 32 is formed.
  • Cathodic conductors made of niobium 34 are formed on the silica layer 32.
  • cathode conductors 34 have a thickness of 0.2 ⁇ m and have a lattice structure with for example square meshes whose pitch is 25 ⁇ m.
  • niobium cathode conductors 34 constitute the columns of the source of electrons to be formed.
  • a resistive layer 36 of amorphous silicon doped with phosphorus is deposited on the cathode conductors.
  • This layer 36 is of the order of 1 ⁇ m.
  • An insulating layer 38 of silica is deposited on this resistive layer 36.
  • the thickness of the silica layer 38 is also of the order of 1 ⁇ m.
  • a metallic layer 40 made of niobium is deposited on the silica layer 38.
  • This layer 40 constitutes a grid layer.
  • This grid layer 40 is of the order of 0.4 ⁇ m.
  • Holes 42 of 1.4 ⁇ m in diameter are etched in the grid layer 40 and in the insulating layer 38.
  • These holes 42 are placed in the central area of the mesh of the mesh and open onto the resistive layer 36.
  • a sacrificial layer 44 made of an alloy of iron and nickel is deposited on the grid layer 40 by electrolysis.
  • the structure 29 is placed in an appropriate electrolytic bath 46 and also placed in this electrolytic bath an electrode 48 constituting the anode during the electrolysis.
  • the gate layer 40 serves as a cathode.
  • An appropriate electrical voltage is applied, thanks to a voltage source 50, between the grid layer 40 and the electrode 48.
  • This deposition is carried out by evaporation under almost normal incidence.
  • Microtips 54 are thus formed in the holes 42.
  • microtips 42 rest on the resistive layer 36.
  • the sacrificial layer 44 is dissolved by electrolysis.
  • the structure 53 obtained after the deposition of the molybdenum layer 54, is placed in an appropriate electrolytic bath 56.
  • an appropriate electrical voltage source 58 By means of an appropriate electrical voltage source 58, an electrical voltage is established between the sacrificial layer 44 and an appropriate electrode 60 placed in the electrolytic bath 52.
  • the sacrificial layer 44 serves as an anode and the electrode 60 serves as a cathode during the electrolysis.
  • the voltage applied by the source 58 between the layer 44 and the electrode 60 is approximately 2V.
  • the time necessary for the dissolution of the sacrificial layer 44 generally varies between 30 min and 60 min.
  • the grids are then formed, perpendicular to the cathode conductors, by etching of the grid layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

The electron source mfg. procedure involves creating an insulating substrate (32) on which there is at least one cathodic conductor (34). This is covered by an amorphous doped silicon layer (36), an insulating layer (38) and a grid layer (40). A set of holes is formed through the grid layer and the insulating layer. A sacrificial layer (44) is formed on the grid layer by a method of chemical vapour deposition to form an electrolytic deposit. An electron emitting layer (52) is then formed on the assembly and the sacrificial layer is then eliminated by electrolysis, leaving micro-point electron sources (54). The sacrificial layer is chosen from the group of metals including Cr, Fe, Ni, Co, Cd, Cu, Au, Ag and may for example be an alloy of nickel and iron.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne un procédé de fabrication d'une source d'électrons à micropointes ("microtips").The present invention relates to a method for manufacturing a microtip electron source ("microtips").

L'invention s'applique à tout domaine où l'on est susceptible d'utiliser une telle source d'électrons à micropointes, en particulier le domaine des dispositifs de visualisation plat encore appelés "écrans plats".The invention applies to any field where it is likely to use such a source of microtip electrons, in particular the field of flat display devices also called "flat screens".

L'invention permet par exemple de fabriquer des écrans plats à micropointes de grande taille, dont la superficie peut être de l'ordre de 1000 cm et peut même aller jusqu'à environ 1 m.The invention makes it possible, for example, to manufacture large micropoint flat screens, the surface area of which can be of the order of 1000 cm and can even go up to around 1 m.

ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART

Des sources d'électrons à cathodes émissives à micropointes et leurs procédés de fabrication sont décrits dans les documents suivants auxquels on se rapportera :

(1)
FR-A-2 593 953 correspondant à EP-A-0 234 989 et à US-A-4 857 161
(2)
FR-A-2 623 013 correspondant à EP-A-0 316 214 et à US-A-4 940 916
(3)
FR-A-2 663 462 correspondant à EP-A-0 461 990 et à US-A-5 194 780
(4)
FR-A-2 687 839 correspondant à EP-A-0 558 393 et à la demande de brevet américain du 26 février 1993, numéro de série 08/022,935 (Leroux et al.).
Sources of electrons with microtip emissive cathodes and their manufacturing methods are described in the following documents to which reference will be made:
(1)
FR-A-2 593 953 corresponding to EP-A-0 234 989 and to US-A-4 857 161
(2)
FR-A-2 623 013 corresponding to EP-A-0 316 214 and to US-A-4 940 916
(3)
FR-A-2 663 462 corresponding to EP-A-0 461 990 and to US-A-5 194 780
(4)
FR-A-2 687 839 corresponding to EP-A-0 558 393 and to the American patent application of February 26, 1993, serial number 08 / 022,935 (Leroux et al.).

En particulier, le document (1) décrit une source d'électrons à micropointes à structure matricielle et un procédé de fabrication de cette source.In particular, document (1) describes a source of microtip electrons with a matrix structure and a method of manufacturing this source.

Les documents (2) à (4) concernent des améliorations de la source décrite dans le document (1).Documents (2) to (4) relate to improvements to the source described in document (1).

Dans tous les cas considérés dans ces documents, les micropointes sont réalisées par une méthode d'évaporation sous vide.In all the cases considered in these documents, the microtips are produced by a vacuum evaporation method.

Cette méthode comprend deux étapes.This method involves two steps.

Ces étapes sont décrites ci-après en faisant référence à la figure 1 des dessins annexés.These steps are described below with reference to Figure 1 of the accompanying drawings.

Une première étape consiste à évaporer, sous incidence rasante, une couche sacrificielle ("lift off layer" dans les articles en langue anglaise), par exemple en nickel.A first step is to evaporate, under grazing incidence, a sacrificial layer ("lift off layer" in articles in English), for example nickel.

Plus précisément, on a représenté de façon schématique et partielle sur la figure 1 une structure comprenant :

  • un substrat électriquement isolant 2, par exemple en verre,
  • des conducteurs cathodiques 4 sur ce substrat,
  • une couche électriquement isolante 6 qui recouvre chaque conducteur cathodique, et
  • une couche de grille 8 électriquement conductrice qui recouvre cette couche électriquement isolante.
More specifically, there is shown schematically and partially in FIG. 1 a structure comprising:
  • an electrically insulating substrate 2, for example made of glass,
  • cathode conductors 4 on this substrate,
  • an electrically insulating layer 6 which covers each cathode conductor, and
  • an electrically conductive grid layer 8 which covers this electrically insulating layer.

Après avoir fabriqué cette structure, on forme des trous 10 à travers la couche de grille 8 et la couche électriquement isolante 6, au niveau de chaque conducteur cathodique 4.After having made this structure, holes 10 are formed through the grid layer 8 and the electrically insulating layer 6, at the level of each cathode conductor 4.

On voit sur la figure 1 la couche sacrificielle qui porte la référence 12 et qui est formée sur la couche de grille 8.FIG. 1 shows the sacrificial layer which bears the reference 12 and which is formed on the grid layer 8.

Le dépôt de cette couche 12 sous incidence rasante permet de déposer sélectivement le nickel sur la couche de grille 8 sans en mettre au fond des trous.The deposition of this layer 12 under grazing incidence makes it possible to selectively deposit the nickel on the grid layer 8 without putting holes at the bottom.

Une deuxième étape consiste à déposer sur l'ensemble de la structure ainsi obtenue une couche 14 d'un matériau émetteur d'électrons comme par exemple le molybdène.A second step consists in depositing on the entire structure thus obtained a layer 14 of an electron-emitting material such as, for example, molybdenum.

Ce dépôt est fait par évaporation du molybdène sous une incidence quasiment normale.This deposit is made by evaporation of the molybdenum under an almost normal incidence.

Dans ces conditions, dans chaque trou se forme une micropointe 16 en molybdène qui repose sur le conducteur cathodique correspondant à ce trou.Under these conditions, in each hole is formed a microtip 16 made of molybdenum which rests on the cathode conductor corresponding to this hole.

Ensuite, on élimine la couche sacrificielle 12 ce qui entraîne l'élimination de la couche de molybdène 14.Next, the sacrificial layer 12 is eliminated, which results in the elimination of the molybdenum layer 14.

L'inconvénient majeur de la technique que l'on vient de rappeler réside essentiellement dans l'évaporation de la couche sacrificielle sous incidence rasante.The major drawback of the technique which has just been mentioned essentially resides in the evaporation of the sacrificial layer under grazing incidence.

Une telle étape complique considérablement l'équipement d'évaporation et limite la capacité de celui-ci.Such a step considerably complicates the evaporation equipment and limits the capacity thereof.

En particulier, l'incidence rasante oblige à placer sur une couronne, dans le dispositif d'évaporation, les structures sur lesquelles on veut former la couche de nickel.In particular, the grazing incidence makes it necessary to place on a crown, in the evaporation device, the structures on which it is desired to form the nickel layer.

Ceci limite le taux de remplissage de ce dispositif.This limits the filling rate of this device.

De plus, un système de basculement est nécessaire pour passer de l'incidence rasante à l'incidence quasiment normale.In addition, a tilting system is necessary to switch from grazing to almost normal incidence.

Le temps de traitement est long, en particulier du fait de l'évaporation du nickel qui doit être faite à faible vitesse pour éviter des projections.The treatment time is long, in particular because of the evaporation of the nickel which must be done at low speed to avoid splashes.

L'évaporation du matériau conduisant aux micropointes se fait sous un angle d'incidence inférieur à 10° (incidence quasiment normale).The material leading to the microtips is evaporated at an angle of incidence of less than 10 ° (almost normal incidence).

De ce fait, il est seulement possible de traiter, dans le dispositif d'évaporation, des substrats dont la taille (diagonale dans le cas de substrats rectangulaires) ne dépasse pas 14 pouces (environ 35 cm).Therefore, it is only possible to process, in the evaporation device, substrates whose size (diagonal in the case of rectangular substrates) does not exceed 14 inches (about 35 cm).

Il est en effet difficile d'utiliser une distance d'évaporation supérieure à 1 m dans le dispositif.It is indeed difficult to use an evaporation distance greater than 1 m in the device.

Au-delà de cette distance de 1 m, il n'est pas facile d'obtenir la vitesse d'évaporation suffisante et les risques de pollution des couches évaporées sont accrues.Beyond this distance of 1 m, it is not easy to obtain the sufficient evaporation rate and the risks of pollution of the evaporated layers are increased.

EXPOSE DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention a pour but de remédier aux inconvénients précédents, en remplaçant l'évaporation sous incidence rasante par un dépôt chimique humide.The present invention aims to remedy the above drawbacks, by replacing evaporation under grazing incidence by a wet chemical deposit.

De façon précise, la présente invention a pour objet un procédé de fabrication d'une source d'électrons à micropointes, procédé selon lequel :

  • on fabrique une structure comprenant un substrat électriquement isolant, au moins un conducteur cathodique sur ce substrat, une couche électriquement isolante qui recouvre chaque conducteur cathodique, une couche de grille électriquement conductrice qui recouvre cette couche électriquement isolante,
  • on forme des trous à travers la couche de grille et la couche électriquement isolante au niveau de chaque conducteur cathodique,
  • on forme sur la couche de grille une couche sacrificielle,
  • on dépose sur l'ensemble de la structure ainsi obtenue une couche d'un matériau émetteur d'électrons, d'où la formation, dans chaque trou, d'une micropointe, et
  • on élimine la couche sacrificielle, ce qui entraîne l'élimination du matériau émetteur d'électrons placé au-dessus de cette couche sacrificielle,
ce procédé étant caractérisé en ce que la couche sacrificielle est formée par une méthode de dépôt chimique humide.Specifically, the subject of the present invention is a method for manufacturing a microtip electron source, method according to which:
  • a structure is made up comprising an electrically insulating substrate, at least one cathode conductor on this substrate, an electrically insulating layer which covers each cathode conductor, an electrically conductive grid layer which covers this electrically insulating layer,
  • holes are formed through the grid layer and the electrically insulating layer at the level of each cathode conductor,
  • a sacrificial layer is formed on the grid layer,
  • a layer of an electron-emitting material is deposited over the entire structure thus obtained, hence the formation, in each hole, of a microtip, and
  • the sacrificial layer is eliminated, which results in the elimination of the electron-emitting material placed above this sacrificial layer,
this process being characterized in that the sacrificial layer is formed by a wet chemical deposition method.

L'invention permet en particulier de simplifier le dispositif d'évaporation dont il a été question plus haut et d'accroître la capacité de production de celui-ci, comme on le verra mieux par la suite.The invention makes it possible in particular to simplify the evaporation device mentioned above and to increase its production capacity, as will be seen more clearly below.

De plus, la présente invention permet de déposer des micropointes sur de grandes surfaces.In addition, the present invention makes it possible to deposit microtips on large surfaces.

On peut utiliser les méthodes suivantes en tant que méthodes de dépôt chimique humide : dépôt électrolytique ou dépôt chimique en solution.The following methods can be used as wet chemical deposition methods: electrolytic deposition or chemical deposition in solution.

Cependant, selon un mode de mise en oeuvre préféré du procédé objet de la présente invention, le dépôt chimique humide est un dépôt électrolytique.However, according to a preferred embodiment of the process which is the subject of the present invention, the wet chemical deposition is an electrolytic deposition.

Dans ce cas, on utilise la couche de grille comme cathode pour ce dépôt électrolytique.In this case, the grid layer is used as a cathode for this electrolytic deposition.

De préférence, la couche sacrificielle est éliminée par électrolyse.Preferably, the sacrificial layer is removed by electrolysis.

Cette couche sacrificielle peut être faite d'un matériau choisi dans le groupe comprenant les métaux Cr, Fe, Ni, Co, Cd, Cu, Au, Ag et les alliages de ces métaux.This sacrificial layer can be made of a material chosen from the group comprising the metals Cr, Fe, Ni, Co, Cd, Cu, Au, Ag and the alloys of these metals.

Selon un mode de mise en oeuvre préféré de la présente invention, cette couche sacrificielle est faite d'un alliage de fer et de nickel.According to a preferred embodiment of the present invention, this sacrificial layer is made of an alloy of iron and nickel.

L'élimination d'une telle couche de fer-nickel, après le dépôt de la couche de matériau émetteur d'électrons, est particulièrement aisée.The removal of such an iron-nickel layer, after the deposition of the layer of electron-emitting material, is particularly easy.

BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :

  • la figure 1, déjà décrite, illustre schématiquement des étapes de fabrication d'une source d'électrons à micropointes selon un procédé connu,
  • la figure 2 illustre schématiquement une étape de fabrication d'une telle source selon un procédé conforme à l'invention,
  • la figure 3 est une vue schématique et partielle d'un dispositif d'évaporation permettant une évaporation sous incidence rasante d'une couche sacrificielle selon une technique antérieure,
  • la figure 4 est une vue schématique et partielle d'un dispositif d'évaporation utilisable pour la mise en oeuvre de la présente invention, et
  • les figures 5 et 6 illustrent schématiquement des étapes d'un mode de mise en oeuvre particulier du procédé objet de l'invention.
The present invention will be better understood on reading the description of exemplary embodiments given below, by way of purely indicative and in no way limiting, with reference to the appended drawings in which:
  • FIG. 1, already described, schematically illustrates steps for manufacturing a microtip electron source according to a known method,
  • FIG. 2 schematically illustrates a step of manufacturing such a source according to a method according to the invention,
  • FIG. 3 is a diagrammatic and partial view of an evaporation device allowing evaporation under grazing incidence of a sacrificial layer according to a prior technique,
  • FIG. 4 is a schematic and partial view of an evaporation device usable for the implementation of the present invention, and
  • Figures 5 and 6 schematically illustrate steps of a particular embodiment of the method of the invention.

EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

La figure 2 illustre de façon schématique une structure dont il a été question dans la description de la figure 1 et qui comprend, en surface, la couche de grille 8, cette structure ne comprenant pas les couches 12 et 14.FIG. 2 schematically illustrates a structure which has been discussed in the description of FIG. 1 and which comprises, on the surface, the grid layer 8, this structure not including the layers 12 and 14.

La structure de la figure 2 a été revêtue d'une couche sacrificielle 18 conformément à l'invention, par un dépôt électrolytique.The structure of FIG. 2 has been coated with a sacrificial layer 18 in accordance with the invention, by electrolytic deposition.

Comme on le voit sur la figure 2, la technique utilisée dans la présente invention conduit à un dépôt sélectif sur la couche de grille 8, comme le permettait l'évaporation sous incidence rasante.As can be seen in FIG. 2, the technique used in the present invention leads to a selective deposition on the grid layer 8, as allowed by evaporation under grazing incidence.

Il suffit de polariser la couche de grille 8 pour qu'elle constitue une cathode au cours de l'électrolyse.It suffices to polarize the gate layer 8 so that it constitutes a cathode during the electrolysis.

Cette technique de dépôt par électrolyse, qui est utilisable dans la présente invention, a l'avantage d'être rapide et peu coûteuse puisqu'elle ne nécessite qu'un équipement d'électrolyse.This electrolysis deposition technique, which can be used in the present invention, has the advantage of being rapid and inexpensive since it requires only electrolysis equipment.

La figure 3 montre un dispositif d'évaporation sous vide permettant, conformément à la technique antérieure, le dépôt d'une couche sacrificielle sous incidence rasante et le dépôt d'une couche de matériau émetteur d'électrons sous incidence quasiment normale.FIG. 3 shows a vacuum evaporation device allowing, in accordance with the prior art, the deposition of a sacrificial layer under grazing incidence and the deposition of a layer of electron-emitting material under almost normal incidence.

On a représenté très schématiquement sur la figure 3 une enceinte à vide 20 et, dans celle-ci, des substrats 22 sur lesquels on veut faire d'abord l'évaporation de la couche sacrificielle sous incidence rasante puis le dépôt de la couche de matériau émetteur d'électrons sous incidence quasiment normale.There is shown very diagrammatically in FIG. 3 a vacuum enclosure 20 and, in this, substrates 22 on which it is wished to first evaporate the sacrificial layer under grazing incidence and then deposit the layer of material electron emitter under almost normal incidence.

On voit également en pointillé une couronne 24 sur laquelle on positionne les substrats 22 pour le dépôt sous incidence rasante.A dotted ring 24 is also seen on which the substrates 22 are positioned for deposition under grazing incidence.

Des moyens de basculement 26, qui sont schématisés par des flèches sur la figure 3, sont prévus pour passer du dépôt sous incidence rasante au dépôt sous incidence quasiment normale à partir d'une source 28 de matériau émetteur d'électrons.Tipping means 26, which are shown diagrammatically by arrows in FIG. 3, are provided for passing from deposition under grazing incidence to almost normal incidence deposition from a source 28 of electron-emitting material.

La figure 4 montre un dispositif d'évaporation utilisable dans la présente invention.Figure 4 shows an evaporation device usable in the present invention.

Ce dispositif est beaucoup plus simple que celui de la figure 3 puisque, dans un procédé conforme à l'invention, seule subsiste l'évaporation d'un matériau émetteur d'électrons, sous une incidence quasiment normale, pour former les micropointes.This device is much simpler than that of FIG. 3 since, in a process according to the invention, only the evaporation of an electron emitting material remains, under an almost normal incidence, to form the microtips.

On voit encore sur la figure 4 l'enceinte 20 dans laquelle se trouvent les substrats 22 et la source de matériau émetteur d'électrons 28.FIG. 4 also shows the enclosure 20 in which the substrates 22 and the source of electron-emitting material 28 are located.

La capacité de production de ce dispositif est améliorée, par rapport à celle du dispositif de la figure 3, grâce à un temps de traitement plus court et à la possibilité de mettre davantage de substrats dans l'enceinte 20 que dans le cas de la figure 3.The production capacity of this device is improved, compared to that of the device of FIG. 3, thanks to a shorter processing time and the possibility of putting more substrates in the enclosure 20 than in the case of the FIG. 3.

En effet, dans le dispositif de la figure 4, on n'est plus obligé de se limiter à la disposition des substrats sur une couronne.In fact, in the device of FIG. 4, one is no longer obliged to limit oneself to the arrangement of the substrates on a ring.

De plus, grâce à la méthode de dépôt par électrolyse utilisable dans l'invention, le dépôt de la couche sacrificielle peut être aisément réalisé sur de grandes surfaces.In addition, thanks to the electrolysis deposition method which can be used in the invention, the deposition of the sacrificial layer can be easily carried out over large areas.

On explique ci-après un procédé conforme à l'invention, permettant d'obtenir une source d'électrons à micropointes du genre de celle qui est décrite dans le document (3) auquel on se reportera.A method according to the invention is explained below, making it possible to obtain a microtip electron source of the type described in document (3) to which reference will be made.

On voit sur la figure 5 une structure 29 comprenant un substrat en verre 30 sur lequel est formée une couche de silice 32.FIG. 5 shows a structure 29 comprising a glass substrate 30 on which a layer of silica 32 is formed.

Des conducteurs cathodiques en niobium 34 sont formés sur la couche de silice 32.Cathodic conductors made of niobium 34 are formed on the silica layer 32.

Ces conducteurs cathodiques 34 ont une épaisseur de 0,2 µm et ont une structure en treillis avec par exemple des mailles carrées dont le pas vaut 25 µm.These cathode conductors 34 have a thickness of 0.2 μm and have a lattice structure with for example square meshes whose pitch is 25 μm.

Ces conducteurs cathodiques 34 en niobium constituent les colonnes de la source d'électrons à former.These niobium cathode conductors 34 constitute the columns of the source of electrons to be formed.

Une couche résistive 36 en silicium amorphe dopé au phosphore est déposée sur les conducteurs cathodiques.A resistive layer 36 of amorphous silicon doped with phosphorus is deposited on the cathode conductors.

L'épaisseur de cette couche 36 est de l'ordre de 1 µm.The thickness of this layer 36 is of the order of 1 μm.

Une couche isolante 38 en silice est déposée sur cette couche résistive 36.An insulating layer 38 of silica is deposited on this resistive layer 36.

L'épaisseur de la couche de silice 38 est également de l'ordre de 1 µm.The thickness of the silica layer 38 is also of the order of 1 μm.

Une couche métallique 40 en niobium est déposée sur la couche de silice 38.A metallic layer 40 made of niobium is deposited on the silica layer 38.

Cette couche 40 constitue une couche de grille.This layer 40 constitutes a grid layer.

L'épaisseur de cette couche de grille 40 est de l'ordre de 0,4 µm.The thickness of this grid layer 40 is of the order of 0.4 μm.

Des trous 42 de 1,4 µm de diamètre sont gravés dans la couche de grille 40 et dans la couche isolante 38.Holes 42 of 1.4 μm in diameter are etched in the grid layer 40 and in the insulating layer 38.

Ces trous 42 sont placés dans la zone centrale des mailles du treillis et débouchent sur la couche résistive 36.These holes 42 are placed in the central area of the mesh of the mesh and open onto the resistive layer 36.

Conformément à la présente invention, on dépose une couche sacrificielle 44 en alliage de fer et de nickel sur la couche de grille 40 par électrolyse.In accordance with the present invention, a sacrificial layer 44 made of an alloy of iron and nickel is deposited on the grid layer 40 by electrolysis.

Pour ce faire, on place la structure 29 dans un bain électrolytique approprié 46 et l'on place également dans ce bain électrolytique une électrode 48 constituant l'anode au cours de l'électrolyse.To do this, the structure 29 is placed in an appropriate electrolytic bath 46 and also placed in this electrolytic bath an electrode 48 constituting the anode during the electrolysis.

Au cours de cette électrolyse, la couche de grille 40 sert de cathode.During this electrolysis, the gate layer 40 serves as a cathode.

On applique une tension électrique appropriée, grâce à une source de tension 50, entre la couche de grille 40 et l'électrode 48.An appropriate electrical voltage is applied, thanks to a voltage source 50, between the grid layer 40 and the electrode 48.

A titre purement indicatif et nullement limitatif, les conditions de dépôt sont les suivantes :

  • 1) La composition du bain électrolytique est :
    • NiCl₂, 6H₂O : 50g.l⁻¹
    • NiSO₄, 6H₂O : 21,4g.l⁻¹
    • FeSO₄ : 2g.l⁻¹
    • H₃BO₃ : 25g.l⁻¹
    • Saccharinate de Na : 0,8g.l⁻¹
    • Saccharine : 0,8 g.l⁻¹
  • 2) Le pH du bain électrolytique est maintenu à 2,5 avec, éventuellement, l'addition de tétraborate de sodium.
  • 3) L'électrode 48 servant d'anode (que l'on peut appeler aussi "contre-électrode") est en nickel ou en alliage de fer et de nickel.
  • 4) La distance D entre cette électrode 48 et la couche de grille 40 vaut 3 cm.
  • 5) Le dépôt de Fe-Ni est effectué à température ambiante, avec une densité de courant voisine de 2 mA/cm.
As a purely indicative and in no way limitative, the deposit conditions are as follows:
  • 1) The composition of the electrolytic bath is:
    • NiCl₂, 6H₂O: 50g.l⁻¹
    • NiSO₄, 6H₂O: 21.4g.l⁻¹
    • FeSO₄: 2g.l⁻¹
    • H₃BO₃: 25g.l⁻¹
    • Na saccharinate: 0.8g.l⁻¹
    • Saccharin: 0.8 gl⁻¹
  • 2) The pH of the electrolytic bath is maintained at 2.5 with, optionally, the addition of sodium tetraborate.
  • 3) The electrode 48 serving as anode (which can also be called "counter-electrode") is made of nickel or an alloy of iron and nickel.
  • 4) The distance D between this electrode 48 and the grid layer 40 is 3 cm.
  • 5) The deposition of Fe-Ni is carried out at ambient temperature, with a current density close to 2 mA / cm.

On obtient ainsi, environ en 8 minutes, une couche de Fe-Ni de 200 nm d'épaisseur.There is thus obtained, approximately in 8 minutes, a layer of Fe-Ni 200 nm thick.

On dépose ensuite (figure 6), sur la couche sacrificielle 44, une couche 52 en molybdène d'épaisseur égale à environ 2 µm.Then deposited (FIG. 6), on the sacrificial layer 44, a layer 52 of molybdenum with a thickness equal to approximately 2 μm.

Ce dépôt est effectué par évaporation sous incidence quasiment normale.This deposition is carried out by evaporation under almost normal incidence.

On forme ainsi des micropointes 54 dans les trous 42.Microtips 54 are thus formed in the holes 42.

Ces micropointes 42 reposent sur la couche résistive 36.These microtips 42 rest on the resistive layer 36.

Après cette obtention des micropointes 54, la couche sacrificielle 44 est dissoute par électrolyse.After obtaining the microtips 54, the sacrificial layer 44 is dissolved by electrolysis.

Pour ce faire, on place la structure 53, obtenue après le dépôt de la couche de molybdène 54, dans un bain électrolytique approprié 56.To do this, the structure 53, obtained after the deposition of the molybdenum layer 54, is placed in an appropriate electrolytic bath 56.

Au moyen d'une source de tension électrique appropriée 58, on établit une tension électrique entre la couche sacrificielle 44 et une électrode appropriée 60 placée dans le bain électrolytique 52.By means of an appropriate electrical voltage source 58, an electrical voltage is established between the sacrificial layer 44 and an appropriate electrode 60 placed in the electrolytic bath 52.

La couche sacrificielle 44 sert d'anode et l'électrode 60 sert de cathode au cours de l'électrolyse.The sacrificial layer 44 serves as an anode and the electrode 60 serves as a cathode during the electrolysis.

A titre purement indicatif et nullement limitatif, les conditions d'enlèvement de cette couche sacrificielle 44 et de la couche de molybdène 52 sont les suivantes :

  • 1) L'électrode 60 (que l'on peut appeler "contre-électrode") est en nickel.
  • 2) La distance D1 entre cette électrode 60 et la couche sacrificielle 44 est de 3 cm environ.
  • 3) L'électrolyte est constitué d'acide chlorhydrique dilué à 10% dans l'eau.
  • 4) La dissolution anodique a lieu en maintenant la couche sacrificielle 44 à une tension de + 110 mV par rapport à une électrode de référence au calomel 62 grâce à une source de tension appropriée 64.
As a purely indicative and in no way limitative, the conditions for removing this sacrificial layer 44 and the molybdenum layer 52 are as follows:
  • 1) The electrode 60 (which can be called "counter electrode") is made of nickel.
  • 2) The distance D1 between this electrode 60 and the sacrificial layer 44 is approximately 3 cm.
  • 3) The electrolyte consists of hydrochloric acid diluted to 10% in water.
  • 4) The anodic dissolution takes place by maintaining the sacrificial layer 44 at a voltage of + 110 mV relative to a reference electrode to calomel 62 by means of an appropriate voltage source 64.

La tension appliquée par la source 58 entre la couche 44 et l'électrode 60 vaut environ 2V.The voltage applied by the source 58 between the layer 44 and the electrode 60 is approximately 2V.

Au cours de la dissolution de la couche 44, le courant électrique circulant entre la couche 44 et l'électrode 60 décroît progressivement.During the dissolution of layer 44, the electric current flowing between layer 44 and electrode 60 decreases progressively.

La dissolution est terminée quand ce courant devient nul.Dissolution is complete when this current becomes zero.

Les moyens de mesure de ce courant ne sont pas représentés sur la figure 6.The means for measuring this current are not shown in FIG. 6.

Le temps nécessaire à la dissolution de la couche sacrificielle 44 varie généralement entre 30 mn et 60 mn.The time necessary for the dissolution of the sacrificial layer 44 generally varies between 30 min and 60 min.

Pour terminer la fabrication de la source d'électrons à micropointes des figures 5 et 6, on forme ensuite les grilles, perpendiculairement aux conducteurs cathodiques, par gravure de la couche de grille.To complete the fabrication of the microtip electron source of FIGS. 5 and 6, the grids are then formed, perpendicular to the cathode conductors, by etching of the grid layer.

Claims (5)

Procédé de fabrication d'une source d'électrons à micropointes, procédé selon lequel : - on fabrique une structure comprenant un substrat électriquement isolant (2, 32), au moins un conducteur cathodique (4, 34) sur ce substrat, une couche électriquement isolante (6, 38) qui recouvre chaque conducteur cathodique, une couche de grille électriquement conductrice (8, 40) qui recouvre cette couche électriquement isolante, - on forme des trous (10, 42) à travers la couche de grille et la couche électriquement isolante au niveau de chaque conducteur cathodique, - on forme sur la couche de grille une couche sacrificielle (18, 44), - on dépose sur l'ensemble de la structure ainsi obtenue une couche (52) d'un matériau émetteur d'électrons, d'où la formation, dans chaque trou, d'une micropointe (54), et - on élimine la couche sacrificielle, ce qui entraîne l'élimination du matériau émetteur d'électrons placé au-dessus de cette couche sacrificielle, ce procédé étant caractérisé en ce que la couche sacrificielle (18, 44) est formée par une méthode de dépôt chimique humide.Method for manufacturing a microtip electron source, method according to which: - a structure is made up comprising an electrically insulating substrate (2, 32), at least one cathode conductor (4, 34) on this substrate, an electrically insulating layer (6, 38) which covers each cathode conductor, an electrically grid layer conductive (8, 40) which covers this electrically insulating layer, - holes (10, 42) are formed through the grid layer and the electrically insulating layer at the level of each cathode conductor, - a sacrificial layer (18, 44) is formed on the grid layer, a layer (52) of an electron emitting material is deposited over the entire structure thus obtained, hence the formation, in each hole, of a microtip (54), and the sacrificial layer is eliminated, which results in the elimination of the electron emitting material placed above this sacrificial layer, this process being characterized in that the sacrificial layer (18, 44) is formed by a wet chemical deposition method. Procédé selon la revendication 1, caractérisé en ce que le dépôt chimique humide est un dépôt électrolytique.Method according to claim 1, characterized in that the wet chemical deposition is an electrolytic deposition. Procédé selon la revendication 2, caractérisé en ce que la couche sacrificielle (18, 44) est éliminée par électrolyse.Method according to claim 2, characterized in that the sacrificial layer (18, 44) is removed by electrolysis. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la couche sacrificielle (18, 44) est faite d'un matériau choisi dans le groupe comprenant les métaux Cr, Fe, Ni, Co, Cd, Cu, Au, Ag et les alliages de ces métaux.Method according to any one of claims 1 to 3, characterized in that the sacrificial layer (18, 44) is made of a selected material in the group comprising the metals Cr, Fe, Ni, Co, Cd, Cu, Au, Ag and the alloys of these metals. Procédé selon la revendication 4, caractérisé en ce que la couche sacrificielle (18, 44) est faite d'un alliage de fer et de nickel.Method according to claim 4, characterized in that the sacrificial layer (18, 44) is made of an alloy of iron and nickel.
EP95402312A 1994-10-19 1995-10-17 Manufacturing method for micropoint electron source Expired - Lifetime EP0708473B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9412467 1994-10-19
FR9412467A FR2726122B1 (en) 1994-10-19 1994-10-19 METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE

Publications (2)

Publication Number Publication Date
EP0708473A1 true EP0708473A1 (en) 1996-04-24
EP0708473B1 EP0708473B1 (en) 1999-01-20

Family

ID=9467993

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402312A Expired - Lifetime EP0708473B1 (en) 1994-10-19 1995-10-17 Manufacturing method for micropoint electron source

Country Status (5)

Country Link
US (1) US5679044A (en)
EP (1) EP0708473B1 (en)
JP (1) JPH08227653A (en)
DE (1) DE69507418T2 (en)
FR (1) FR2726122B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033297A1 (en) * 1996-03-05 1997-09-12 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
US6027632A (en) * 1996-03-05 2000-02-22 Candescent Technologies Corporation Multi-step removal of excess emitter material in fabricating electron-emitting device
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944975A (en) * 1996-03-26 1999-08-31 Texas Instruments Incorporated Method of forming a lift-off layer having controlled adhesion strength
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure
JP4803998B2 (en) * 2004-12-08 2011-10-26 ソニー株式会社 Manufacturing method of field emission type electron-emitting device
TWI437615B (en) * 2011-06-07 2014-05-11 Au Optronics Corp Method for fabricating field emission display device and electrochemical system for fabricating the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340777A1 (en) * 1983-11-11 1985-05-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method of producing thin-film field-effect cathodes
FR2593953A1 (en) 1986-01-24 1987-08-07 Commissariat Energie Atomique METHOD FOR MANUFACTURING A FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE
FR2623013A1 (en) 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
EP0364964A2 (en) * 1988-10-17 1990-04-25 Matsushita Electric Industrial Co., Ltd. Field emission cathodes
US4964946A (en) * 1990-02-02 1990-10-23 The United States Of America As Represented By The Secretary Of The Navy Process for fabricating self-aligned field emitter arrays
FR2663462A1 (en) 1990-06-13 1991-12-20 Commissariat Energie Atomique SOURCE OF ELECTRON WITH EMISSIVE MICROPOINT CATHODES.
FR2687839A1 (en) 1992-02-26 1993-08-27 Commissariat Energie Atomique ELECTRON SOURCE WITH MICROPOINT EMISSIVE CATHODES AND CATHODOLUMINESCENCE VISUALIZATION DEVICE EXCITED BY FIELD EMISSION USING THE SOURCE.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458520A (en) * 1994-12-13 1995-10-17 International Business Machines Corporation Method for producing planar field emission structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340777A1 (en) * 1983-11-11 1985-05-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method of producing thin-film field-effect cathodes
FR2593953A1 (en) 1986-01-24 1987-08-07 Commissariat Energie Atomique METHOD FOR MANUFACTURING A FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE
EP0234989A1 (en) * 1986-01-24 1987-09-02 Commissariat A L'energie Atomique Method of manufacturing an imaging device using field emission cathodoluminescence
FR2623013A1 (en) 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
EP0364964A2 (en) * 1988-10-17 1990-04-25 Matsushita Electric Industrial Co., Ltd. Field emission cathodes
US4964946A (en) * 1990-02-02 1990-10-23 The United States Of America As Represented By The Secretary Of The Navy Process for fabricating self-aligned field emitter arrays
FR2663462A1 (en) 1990-06-13 1991-12-20 Commissariat Energie Atomique SOURCE OF ELECTRON WITH EMISSIVE MICROPOINT CATHODES.
FR2687839A1 (en) 1992-02-26 1993-08-27 Commissariat Energie Atomique ELECTRON SOURCE WITH MICROPOINT EMISSIVE CATHODES AND CATHODOLUMINESCENCE VISUALIZATION DEVICE EXCITED BY FIELD EMISSION USING THE SOURCE.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033297A1 (en) * 1996-03-05 1997-09-12 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
US6027632A (en) * 1996-03-05 2000-02-22 Candescent Technologies Corporation Multi-step removal of excess emitter material in fabricating electron-emitting device
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath

Also Published As

Publication number Publication date
JPH08227653A (en) 1996-09-03
FR2726122A1 (en) 1996-04-26
US5679044A (en) 1997-10-21
DE69507418D1 (en) 1999-03-04
EP0708473B1 (en) 1999-01-20
DE69507418T2 (en) 1999-07-15
FR2726122B1 (en) 1996-11-22

Similar Documents

Publication Publication Date Title
EP0461990B1 (en) Micropoint cathode electron source
EP0234989B1 (en) Method of manufacturing an imaging device using field emission cathodoluminescence
WO2007026086A2 (en) Method for making an emissive cathode
EP0712146B1 (en) Field effect electron source and method for producing same application in display devices working by cathodoluminescence
EP0708473B1 (en) Manufacturing method for micropoint electron source
EP0634769B1 (en) Manufacturing method for micropoint electron sources
EP0696045A1 (en) Cathode of a flat display screen with constant access resistance
FR2725558A1 (en) METHOD FOR FORMING HOLES IN A PHOTOSENSITIVE RESIN LAYER APPLICATION TO THE MANUFACTURE OF ELECTRON SOURCES WITH EMISSIVE CATHODES WITH MICROPOINTES AND DISPLAY FLAT SCREENS
FR2742578A1 (en) Manufacturing field emission cathode
EP0697710B1 (en) Manufacturing method for a micropoint-electron source
EP0616356B1 (en) Micropoint display device and method of fabrication
EP0943153A1 (en) Display screen comprising a source of electrons with microtips, capable of being observed through the microtip support, and method for making this source
EP0856868B1 (en) Field emission electron source and display device with such a source
FR2736203A1 (en) Horizontal field effect type electron emitting element for planar image display unit such as field emission display unit used in wall mounted type TV and HDTV
FR2716571A1 (en) A process for manufacturing a microtip fluorescent screen cathode and the product obtained by this process.
EP1029338A1 (en) Method for making an electron source with microtips
FR2719155A1 (en) Micro-tip field emitter cathode for flat screen
FR2757999A1 (en) SELF-ALIGNMENT PROCESS THAT CAN BE USED IN MICRO-ELECTRONICS AND APPLICATION TO THE REALIZATION OF A FOCUSING GRID FOR FLAT SCREEN WITH MICROPOINTS
EP0759631B1 (en) Process and apparatus for the fabrication of holes in a layer of photosensitive material, especially for the fabrication of electron sources
EP0188946A1 (en) Integrated capacitive element on an integrated-circuit chip, and method for making this capacitive element
FR2779243A1 (en) METHOD FOR REALIZING SELF-ALIGNED OPENINGS ON A STRUCTURE BY PHOTOLITHOGRAPHY, PARTICULARLY FOR MICROPOINT FLAT SCREEN
JPH04284325A (en) Electric field emission type cathode device
FR2786026A1 (en) Procedure for formation of relief formations on the surface on a substrate for use in production of flat screen displays that use micropoint electron sources

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19960927

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69507418

Country of ref document: DE

Date of ref document: 19990304

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990323

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031016

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031024

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051017