EP0707739B1 - Cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets and process for the preparation thereof - Google Patents

Cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets and process for the preparation thereof Download PDF

Info

Publication number
EP0707739B1
EP0707739B1 EP94921696A EP94921696A EP0707739B1 EP 0707739 B1 EP0707739 B1 EP 0707739B1 EP 94921696 A EP94921696 A EP 94921696A EP 94921696 A EP94921696 A EP 94921696A EP 0707739 B1 EP0707739 B1 EP 0707739B1
Authority
EP
European Patent Office
Prior art keywords
ppm
fluorine
rare earth
cobalt
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94921696A
Other languages
German (de)
French (fr)
Other versions
EP0707739A1 (en
Inventor
Armand Gabriel
Henri Lemaire
Fernand Vial
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugimag SA
Original Assignee
Ugimag SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugimag SA filed Critical Ugimag SA
Publication of EP0707739A1 publication Critical patent/EP0707739A1/en
Application granted granted Critical
Publication of EP0707739B1 publication Critical patent/EP0707739B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Abstract

This invention pertains to the addition of fluorine to magnetic powders and to sintered permanent magnets of the Sm - Co family in order to enhance their atmospheric corrosion and oxydation resistance. These powders and magnets contain from 600 to 3000 ppm of fluorine, which is introduced in gaseous form during grinding, and/or homogenizing of said powders following grinding.

Description

Cette invention concerne une méthode de protection des poudres magnétiques et des aimants permanents de type métal de transition - métal de terre rare contre l'oxydation et la corrosion atmosphérique par introduction de fluor gazeux lors du traitement des poudres. Elle s'applique plus particulièrement aux poudres et aimants de la famille métal de transition - terre rare, où le métal est essentiellement du cobalt, et la terre rare essentiellement du samarium et/ou du néodyme et/ou du praséodyme et/ou du cérium.The present invention relates to a method of protecting magnetic powders and permanent magnets of the transition metal - rare earth metal type against oxidation and atmospheric corrosion by the introduction of gaseous fluorine during the treatment of powders. It applies more particularly to powders and magnets of the transition metal - rare earth family, where the metal is essentially cobalt, and the rare earth essentially of samarium and / or neodymium and / or praseodymium and / or cerium. .

Il est connu par le brevet FR 2003246, un procédé pour traiter les poudres à magnétisme permanent contenant des terres rares et des métaux de transition afin d'en augmenter la force coercitive; ce procédé consiste à traiter lesdites poudres par un liquide de mordançage à base d'une solution aqueuse d'acide chlorhydrique, sulfurique ou fluorhydrique.It is known from patent FR 2003246, a process for treating powders with permanent magnetism containing rare earths and transition metals in order to increase their coercive force; this method consists in treating said powders with an etching liquid based on an aqueous solution of hydrochloric, sulfuric or hydrofluoric acid.

Par ailleurs, l'état de l'art sur ces poudres et aimants a été récemment décrit de manière exhaustive par K.J. STRNAT "Rare Earth-Cobalt Permanent Magnets" dans "Ferromagnetic Materials", p.131 à p.209 Vol.4, Editeur E.P. WOHLFARTH et K.H. BUSCHOW, North-Holland Amsterdam 1988.Furthermore, the state of the art on these powders and magnets has been recently described in an exhaustive manner by KJ STRNAT "Rare Earth-Cobalt Permanent Magnets" in "Ferromagnetic Materials", p.131 to p.209 Vol.4, Publisher EP WOHLFARTH and KH BUSCHOW, North-Holland Amsterdam 1988.

On distingue essentiellement deux familles selon la quantité de terre rare contenue :

  • la famille de formule moléculaire SmCo5 (contenant 33,8% en poids de terre rare) ne tolérant que peu de substitution du cobalt par un autre métal de transition comme le fer, mais où le samarium peut être remplacé en partie ou en totalité par le praséodyme, en partie par d'autres terres rares dont les préférées sont le néodyme, le cérium, le mish-metal, le gadolinium selon la propriété technique ou économique recherchée
  • la famille de formule moléculaire Sm2Co17 (contenant 23,1% en poids de terre rare) où, de plus, le cobalt peut être substitué plus largement par d'autres métaux comme le fer, le cuivre, le vanadium, le zirconium, le niobium, le titane, le manganèse, le chrome. La substitution du Co par le fer permet en particulier d'accroître la densité d'aimantation spécifique.
There are essentially two families depending on the amount of rare earth contained:
  • the family of molecular formula SmCo 5 (containing 33.8% by weight of rare earth) which tolerates little substitution of cobalt by another transition metal such as iron, but where the samarium can be replaced in part or in whole by praseodymium, in part by other rare earths, the preferred of which are neodymium, cerium, mish-metal, gadolinium depending on the technical or economic property sought
  • the family of molecular formula Sm 2 Co 17 (containing 23.1% by weight of rare earth) where, in addition, cobalt can be more widely substituted by other metals such as iron, copper, vanadium, zirconium , niobium, titanium, manganese, chromium. The substitution of Co by iron makes it possible in particular to increase the specific magnetization density.

Ces deux famille sont couramment utilisées par l'industrie électrotechnique car leur haute température de Curie permet leur usage à des températures de fonctionnement élevées. La pratique la plus souple pour leur préparation est la Métallurgie des Poudres où l'on broie finement des alliages, on aligne les grains en présence d'un champ magnétique, on comprime à la forme requise, on fritte à haute température en appliquant ensuite un traitement thermique durcissant, on usine selon les spécifications requises.These two families are commonly used by the electrotechnical industry because their high Curie temperature allows their use at high operating temperatures. The most flexible practice for their preparation is Powder Metallurgy where alloys are finely ground, the grains are aligned in the presence of a magnetic field, they are compressed to the required shape, they are sintered at high temperature then applying a hardening heat treatment, factory according to required specifications.

La revue citée plus haut souligne un sérieux problème (p. 158), de stabilité des poudres et des aimants due à l'affinité particulière de la terre rare pour l'oxygène de l'air, surtout en présence d'humidité. L'évolution naturelle est vers la formation de l'oxyde, par exemple Sm2 O3 et/ou de l'hydroxyde qui sont des composés non magnétiques entraînant une diminution de la densité d'aimantation et pouvant gêner la densification; de plus, leur formation consomme du samarium, décale donc la stoechiométrie d'origine pour faire évoluer la formule vers une composition qui peut être défavorable aux propriétés.The review cited above highlights a serious problem (p. 158) of the stability of powders and magnets due to the particular affinity of rare earth for oxygen in the air, especially in the presence of moisture. The natural evolution is towards the formation of the oxide, for example Sm 2 O 3 and / or of the hydroxide which are non-magnetic compounds causing a reduction in the density of magnetization and being able to interfere with densification; moreover, their training consumes samarium, therefore shifts the original stoichiometry to make the formula evolve towards a composition which may be unfavorable for the properties.

Par exemple, un schéma théorique comme: 100 Sm Co 5 + 21 4 O 2 → 83 Sm Co 5 + 5 Sm 2 Co 17 + 7 2 Sm 2 O 3

Figure imgb0001
génère dans le matériau fritté une fine dispersion de Sm2 Co17 qui conduit immédiatement à un effondrement de la coercitivité (résistance à la désaimantation).For example, a theoretical scheme like: 100 Sm Co 5 + 21 4 O 2 → 83 Sm Co 5 + 5 Sm 2 Co 17 + 7 2 Sm 2 O 3
Figure imgb0001
generates in the sintered material a fine dispersion of Sm 2 Co 17 which immediately leads to a collapse of the coercivity (resistance to demagnetization).

Aussi les plus grandes précautions sont-elles prises lors de l'élaboration de ces produits, quand ils sont à l'état de poudres très fines (quelques microns en mesure Fischer), pour les produire, les stocker, les manipuler à l'abri de l'air et de l'humidité, ou quand, mis en forme à la presse, ils doivent être activés thermiquement pour se densifier par frittage, dans l'emploi de fours discontinus ou continus placés sous vide ou sous gaz inerte.The greatest precautions are therefore taken during the development of these products, when they are in the form of very fine powders (a few microns in Fischer measurement), to produce them, store them, and handle them under cover. of air and humidity, or when, shaped in the press, they must be thermally activated to densify by sintering, in the use of discontinuous or continuous ovens placed under vacuum or under inert gas.

Pour les Sm Co5 , le record a été obtenu, et seulement au laboratoire, par Narasimham (5th International Workshop on Rare Earth-Cobalt Permanent Magnets and their Applications, June 1981, Ed. University of Dayton, Ohio, USA, p.629 et suiv.) qui, procédant au maximum à l'abri de l'air, a réussi à n'avoir que 1000 ppm en poids d'oxygène, ce qui consomme quand même 0,6% en poids de samarium et génère 0,7% en poids de Sm2 O3. Il a pu obtenir, dans de bonnes conditions d'alignement magnétique, une densité d'aimantation Br = 1060 mT, une énergie spécifique de (BH)max = 220 kJ/m3.For Sm Co 5 , the record was obtained, and only in the laboratory, by Narasimham (5th International Workshop on Rare Earth-Cobalt Permanent Magnets and their Applications, June 1981, Ed. University of Dayton, Ohio, USA, p.629 et seq.) which, proceeding as far as possible from the air, managed to have only 1000 ppm by weight of oxygen, which nevertheless consumes 0.6% by weight of samarium and generates 0, 7% by weight of Sm 2 O 3 . He could obtain, under good magnetic alignment conditions, a magnetization density Br = 1060 mT, a specific energy of (BH) max = 220 kJ / m3.

Les techniques industrielles ne peuvent atteindre un tel niveau de précaution, et doivent se contenter, pour des coûts raisonnables, de se maintenir pour Sm Co5 vers 6000 ppm en poids d'oxygène; en particulier, il est très difficile d'éliminer par pompage les espèces gazeuses contenues dans un comprimé. Aussi les meilleurs aimants de cette famille ne dépassent-ils pas Br = 950 mT et (BH) max = 175 kJ/m3 .Industrial techniques cannot reach such a level of precaution, and must be satisfied, for reasonable costs, to maintain themselves for Sm Co 5 around 6000 ppm by weight of oxygen; in particular, it is very difficult to pump out the gaseous species contained in a tablet. The best magnets in this family therefore do not exceed Br = 950 mT and (BH) max = 175 kJ / m 3 .

Les mêmes causes produisent les mêmes effets dans la famille Sm2 Co17 où le cobalt est substitué, à un degré moindre cependant, car la teneur en samarium plus réduite entraîne une plus faible affinité pour l'oxygène. On y trouve cependant sur aimants finis des teneurs voisines de 4000 ppm en poids d'oxygène; il est suspecté que des petites variations autour de cette moyenne entraînent des variations nuisibles sur la rectangularité de la courbe J (H), car le durcissement magnétique de ces alliages résulte d'une structure polyphasée où se ségrègent préférentiellement les atomes et dont l'obtention est délicate.The same causes produce the same effects in the Sm 2 Co 17 family where cobalt is substituted, to a lesser degree, because the lower samarium content leads to a lower affinity for oxygen. However, there are on finished magnets contents close to 4000 ppm by weight of oxygen; it is suspected that small variations around this average cause harmful variations on the rectangularity of the curve J (H), because the magnetic hardening of these alloys results from a polyphase structure where the atoms preferentially segregate and whose obtaining is delicate.

Après avoir examiné différents moyens pour contrôler les prises et départs d'oxygène, et en particulier après avoir estimé les quantités chimi-sorbées définitivement et physi-sorbées temporairement dans les différentes étapes du procédé, la demanderesse a conclu qu'il fallait chercher à piéger les sites actifs par un atome plus électronégatif que l'oxygène rendant celui-ci plus labile pour son évacuation. Il s'est avéré qu'un apport de fluor pouvait être efficace, car un atome de fluor ou d'oxygène bloque respectivement un tiers d'atomes de Samarium ou deux tiers d'atomes de samarium dans les molécules Sm F3 et Sm2 O3.After having examined various means for controlling the intakes and departures of oxygen, and in particular after having estimated the quantities chemi-sorbed definitively and physi-sorbed temporarily in the various stages of the process, the applicant concluded that it was necessary to seek to trap active sites by an atom more electronegative than oxygen making it more labile for its evacuation. It turned out that an addition of fluorine could be effective, because an atom of fluorine or oxygen blocks respectively a third of atoms of Samarium or two thirds of atoms of samarium in the molecules Sm F 3 and Sm 2 O 3 .

De plus, la demanderesse a trouvé que ce simple rapport théorique pouvait être largement dépassé par un procédé particulier consistant à introduire lors d'une étape de broyage fin, quand elle est exécutée dans un broyeur à jet de gaz, un mélange d'azote et de fluor gazeux dans le courant de gaz inerte (azote, argon) par exemple habituellement employé dans ces broyeurs. Les proportions pondérales du mélange N2 + F2 et son mode d'introduction ont été déterminés expérimentalement de façon à ne pas générer des problèmes de sécurité pour les équipements et l'environnement. La teneur en fluor du gaz de broyage est généralement inférieure à 250 ppm (en volume).In addition, the Applicant has found that this simple theoretical ratio could be largely exceeded by a particular method consisting in introducing during a fine grinding step, when it is carried out in a gas jet mill, a mixture of nitrogen and fluorine gas in the inert gas stream (nitrogen, argon) for example usually used in these mills. The weight proportions of the mixture N 2 + F 2 and its method of introduction have been determined experimentally so as not to generate safety problems for equipment and the environment. The fluorine content of the grinding gas is generally less than 250 ppm (by volume).

Il a été trouvé qu'un optimum se situait dans une plage allant de 600 ppm à 3000 ppm en poids de fluor dans la poudre ou retenu dans l'aimant fritté, cet optimum étant légèrement différent pour la famille Sm Co5 et la famille Sm2 Co17; la plage préférentielle s'étend de 600 à 2000 ppm et peut atteindre 600-1500 ppm pour les Sm2 Co17. Les teneurs en fluor sur poudres et sur produits frittés ont été déterminées selon la méthode consistant à mettre en solution acide le produit à analyser, à distiller le fluor de manière assistée et à le doser par électrode spécifique.It has been found that an optimum lies in a range from 600 ppm to 3000 ppm by weight of fluorine in the powder or retained in the sintered magnet, this optimum being slightly different for the Sm Co 5 family and the Sm family. 2 Co 17 ; the preferred range is from 600 to 2000 ppm and can reach 600-1500 ppm for Sm 2 Co 17 . The fluorine contents on powders and on sintered products were determined according to the method consisting in dissolving the product to be analyzed in acid solution, distilling the fluorine assisted and assaying it by specific electrode.

On utilise de préférence le gaz fluor. Avec d'autres conditions expérimentales, il peut être remplacé par d'autres donneurs comme l'acide fluorhydrique HF ou le trifluorure d'azote NF3; mais le premier est beaucoup plus agressif et difficile à maîtriser, le second est beaucoup plus cher.Fluorine gas is preferably used. With other experimental conditions, it can be replaced by other donors such as hydrofluoric acid HF or nitrogen trifluoride NF 3 ; but the former is much more aggressive and difficult to control, the latter is much more expensive.

On a constaté que :

  • en dessous de 600 ppm, il n'y a pas assez de sites actifs neutralisés quand on manipule de grosses quantités de poudres fines, le procédé est instable;
  • en dessus de 3000 ppm, il y a trop de fluor actif, qui se transforme en fluorure de samarium, déplaçant donc la composition métallurgique locale par appauvrissement en samarium.
It has been found that:
  • below 600 ppm, there are not enough neutralized active sites when handling large quantities of fine powders, the process is unstable;
  • above 3000 ppm, there is too much active fluorine, which transforms into samarium fluoride, thus displacing the local metallurgical composition by depletion in samarium.

Enfin, la demanderesse a trouvé que les résultats pouvaient encore être légèrement améliorés si l'étape d'homogénéisation au mélangeur, qui suit normalement tout broyage en broyeur à jets de gaz pour une question de réduction des ségrégations de broyage, était effectuée sous la même atmosphère de mélange azote plus fluor.Finally, the Applicant has found that the results could still be slightly improved if the blending homogenization step, which normally follows any grinding in a gas jet mill for the purpose of reducing grinding segregation, was carried out under the same procedure. atmosphere of nitrogen plus fluorine mixture.

En particulier, le stockage à l'air humide montre une évolution plus lente des reprises en oxygène.In particular, storage in humid air shows a slower evolution of oxygen recovery.

Pour étayer son invention, la demanderesse s'appuie sur les figures et les exemples suivants.To support its invention, the applicant relies on the following figures and examples.

La figure 1 montre les plages connues d'évolution de la prise d'oxygène dans la fabrication classique des aimants Sm Co5.Figure 1 shows the known ranges of oxygen uptake in the classic manufacture of Sm Co 5 magnets.

Les teneurs en oxygène sont établies sur l'appareil commercial LECO équipé du four idoine. Les étapes du procédé sont les suivantes : (1) matières premières; (2) prébroyage grossier (50 µm); (3) broyage fin (5 µm); (4) stockage intermédiaire; (5) après frittage.The oxygen contents are established on the LECO commercial device equipped with the appropriate oven. The process steps are as follows: (1) raw materials; (2) coarse pre-grinding (50 µm); (3) fine grinding (5 µm); (4) intermediate storage; (5) after sintering.

La figure 2 donne les résultats des caractéristiques magnétiques (rémanence Br, coercitivité d'induction HcB, champ de rigidité limite Hk) et la masse volumique p en fonction de la teneur en terres rares du mélange de poudres et de la température de frittage (Δ 1115°C; x : 1125°C; o : 1135°C) selon l'art antérieur.FIG. 2 gives the results of the magnetic characteristics (remanence Br, induction coercivity H cB , limiting stiffness field Hk) and the density p as a function of the rare earth content of the powder mixture and of the sintering temperature ( Δ 1115 ° C; x: 1125 ° C; o: 1135 ° C) according to the prior art.

La figure 3 schématise un exemple de réalisation technique de l'invention.Figure 3 shows schematically an example of technical embodiment of the invention.

La figure 4 illustre, par comparaison avec la figure 2, le glissement sensible obtenu selon l'invention vers des optima plus élevés se situant vers des teneurs en terres rares plus basses, en particulier en dessous de 36% pour les compositions type Sm Co5.FIG. 4 illustrates, by comparison with FIG. 2, the significant slip obtained according to the invention towards higher optima lying towards lower rare earth contents, in particular below 36% for the compositions of Sm Co 5 type. .

La figure 5 illustre un gain similaire obtenu dans la famille des Sm2 Co17, en particulier sur la rectangularité de la courbe (gain en champ de rigidité limite Hk), Hk correspondant au champ démagnétisant réduisant l'induction à 90% de Br. La courbe (1) est représentative de l'art antérieur, la courbe (2) est représentative de l'invention.FIG. 5 illustrates a similar gain obtained in the family of Sm 2 Co 17 , in particular on the rectangularity of the curve (gain in field of stiffness limit Hk), Hk corresponding to the demagnetizing field reducing the induction to 90% of Br. The curve (1) is representative of the prior art, the curve (2) is representative of the invention.

Exemple 1 (selon l'art antérieur) Example 1 (according to the prior art )

Deux alliages ont été approvisionnés à l'extérieur pour constituer:

  • la base à 34,2% de terre rare (analyse fournisseur).
  • l'additif amenant l'excès de terre rare à 41,2% (analyse fournisseur).
Two alloys have been supplied from outside to constitute:
  • the base at 34.2% rare earth (supplier analysis).
  • the additive bringing the excess of rare earth to 41.2% (supplier analysis).

Ces alliages ont été broyés mécaniquement à environ 50 µm (passant tamis) puis mélangés pour fournir les teneurs portées en abcisse de la figure 2. Ces mélanges ont été broyés finement (4 à 5 µm Fischer), comprimés sous champ magnétique, frittés sous vide aux températures indiquées sur la figure 2, puis revenus vers 875°C pour 4 heures et trempés énergiquement, comme le prescrit le traitement classique de ce matériau (voir K.J. STRNAT).These alloys were mechanically ground to around 50 µm (passing sieve) and then mixed to provide the contents plotted on the abscissa of Figure 2. These mixtures were finely ground (4 to 5 µm Fischer), compressed under magnetic field, sintered under vacuum at the temperatures indicated in Figure 2, then returned to 875 ° C for 4 hours and vigorously quenched, as prescribed by conventional treatment of this material (see KJ STRNAT).

Une des compositions a été suivie en teneur en oxygène aux différentes étapes, pour donner les valeurs moyennes de la figure 1. Sur produit fritté, aux incertitudes de mesures près, on se place dans le niveau courant des 6000 à 6500 ppm en poids d'oxygène.One of the compositions was followed in oxygen content at the various stages, to give the average values of FIG. 1. On sintered product, apart from measurement uncertainties, we place ourselves in the current level of 6000 to 6500 ppm by weight of oxygen.

Les grandeurs physiques intéressantes sont reportées sur la figure 2. Quoique les alliages utilisés ne soient pas de la qualité maximale que délivre de temps en temps les fournisseurs, on retrouve le comportement habituel d'une situation extrêmement critique. Densité, rémanence et coercitivité d'induction plafonnent pour une teneur moyenne de 36,5% de Sm et sont un peu sensibles à la température de frittage; par contre, à cette teneur, le champ de rigidité limite Hk, gage de la stabilité thermique, est déjà effondré. Et les quatre grandeurs sont effrondrées à 36%. On se rend compte ainsi de la criticité de la fabrication, qui s'alignera sur un taux moyen de 37%, mais qui est à la merci d'une prise intempestive de 800 ppm en poids d'oxygène.The interesting physical quantities are shown in FIG. 2. Even though the alloys used are not of the maximum quality that the suppliers deliver from time to time, we find the usual behavior of an extremely critical situation. Density, remanence and coercivity of induction peak for an average content of 36.5% of Sm and are a little sensitive to the sintering temperature; on the other hand, at this content, the limit stiffness field H k , guarantee of thermal stability, is already collapsed. And the four sizes have collapsed to 36%. We thus realize the criticality of the manufacturing, which will be aligned on an average rate of 37%, but which is at the mercy of an untimely taking of 800 ppm by weight of oxygen.

L'explication classique de la littérature est que l'oxygène présent dans le matériau est labile et capture le samarium des phases présentes pour se stabiliser en Sm2 O3 réfractaire. Il n'y a plus alors suffisamment de samarium libre résiduel pour assister la densification grain à grain de la phase principale, ladite coalescence des grains pouvant même être gênée par les oxydes intergranulaires.The classic explanation from the literature is that the oxygen present in the material is labile and captures the samarium of the phases present to stabilize in refractory Sm 2 O 3 . There is then no longer sufficient residual free samarium to assist the grain-to-grain densification of the main phase, said coalescence of the grains being able to even be hampered by intergranular oxides.

Exemple 2 (selon l'invention). Example 2 (according to the invention) .

Les mêmes alliages ont été traités selon la procédure revendiquée. Après le broyage grossier, les mélanges ont été traités en alimentation continue dans un broyeur à jet de gaz d'azote où, selon le schéma de la figure 3, on introduisait dans l'azote principal débité à 100 m3/h une faible quantité d'azote chargé à 10% de fluor au moyen d'un ajutage calibré. Quelques expériences préliminaires sont nécessaires pour que le produit final contienne de 600 à 2000 ppm en poids de fluor. La suite des opérations est identique à celle de l'exemple 1, et dans les résultats présentés à la figure 4, on avait un niveau de 1000 ppm de fluor dans le produit fini. Il a été surprenant de constater que:

  • le produit final avait capté beaucoup moins d'oxygène, 3500 ppm environ.
  • ceci entraînait un glissement des fonctions de réponse vers les basses teneurs en terre rare (optimum à 35% en poids), avec un gain conséquent de 20 à 30 mT sur la rémanence.
  • et surtout, une bien plus grande stabilité du procédé en ce qui concerne les autres grandeurs.
The same alloys were treated according to the claimed procedure. After coarse grinding, the mixtures were treated in continuous feed in a nitrogen gas jet mill where, according to the diagram in Figure 3, a small amount of d was introduced into the main nitrogen delivered at 100 m3 / h nitrogen loaded with 10% fluorine by means of a calibrated nozzle. Some preliminary experiments are necessary so that the final product contains from 600 to 2000 ppm by weight of fluorine. The continuation of the operations is identical to that of Example 1, and in the results presented in FIG. 4, there was a level of 1000 ppm of fluorine in the finished product. It was surprising to find that:
  • the final product had captured much less oxygen, about 3500 ppm.
  • this resulted in a shift in the response functions towards low rare earth contents (optimum at 35% by weight), with a consequent gain of 20 to 30 mT on the afterglow.
  • and above all, a much greater stability of the process with regard to the other quantities.

On peut avancer une hypothèse explicative dans le blocage temporaire de sites actifs de samarium dénudés au broyage par la fixation d'un atome de fluor. Celui-ci empêche alors l'approche et la physi-sorbtion d'une molécule à deux oxygènes, laquelle pourrait faire évoluer vers l'oxyde néfaste Sm2 O3. Au contraire, la présence simultanée de samarium, de fluor et d'oxygène favoriserait, sous vide et haute température vers 900-1000°C, l'évolution vers un oxyfluorure stable Sm O F, dont la formation conserve de la mobilité au samarium dans l'opération de frittage.An explanatory hypothesis can be advanced in the temporary blocking of active samarium sites exposed to grinding by the fixation of a fluorine atom. This then prevents the approach and physi-sorbtion of a molecule with two oxygen, which could cause the harmful oxide Sm 2 O 3 to evolve. On the contrary, the simultaneous presence of samarium, fluorine and oxygen would favor, under vacuum and high temperature around 900-1000 ° C, the evolution towards a stable oxyfluoride Sm OF, the formation of which retains mobility in the samarium in the sintering operation.

Exemple 3 (selon l'invention) Example 3 (according to the invention)

Avant d'être comprimés, les produits broyés finement de l'exemple 2 ont été homogénéisés par agitation sous atmosphère de N2 contenant 200 ppm de fluor. Un léger gain sur la teneur en oxygène a été constaté, puisqusa teneur est tombée à 3000 ppm. Cela n'est pas suffisant pour se répercuter de façon sensible sur les propriétés finales. Mais la tenue en air humide a pu être augmentée passant de quelques heures à quelques jours.Before being compressed, the finely ground products of Example 2 were homogenized by stirring under an N 2 atmosphere containing 200 ppm of fluorine. A slight gain on the oxygen content was noted, since its content fell to 3000 ppm. This is not enough to have a significant effect on the final properties. However, the wet air resistance could be increased from a few hours to a few days.

Exemple 4 (selon l'invention) Example 4 (according to the invention)

De toutes les terres rares, le praséodyme dans Pr Co5 présente la plus forte aimantation (1200 mT) contre 1100 mT pour Sm Co5. Mais les tentatives pour utiliser cet élément plus abondant ont toujours échoué, probablement en liaison avec une oxydabilité accrue. Aussi ne l'utilise-t-on qu'en substitution partielle quand on veut monter légèrement l'aimantation, au prix d'une instabilité technique accrue.Of all the rare earths, the praseodymium in Pr Co 5 has the strongest magnetization (1200 mT) against 1100 mT for Sm Co 5 . But attempts to use this more abundant element have always failed, probably in connection with increased oxidizability. So we only use it as a partial substitution when we want to slightly increase the magnetization, at the cost of increased technical instability.

Comme pour l'exemple 2, on a répété la préparation à partir d'un alliage de base Sm Co5 substitué à 33% par du praséodyme. Les mêmes avantages ont été obtenus, comme le tableau I l'illustre pour la rémanence (en compression isostatique). TABLEAU 1 Art antérieur Selon l'invention Alliage de base Sm Co5 Br = 0,92 - 0,95 T 0,96 - 0,98 T Alliage de base (Sm2/3 Pr 1/3 Co5) Br = 0,99 - 1,01 T 1,02 - 1,05 T As for Example 2, the preparation was repeated from an alloy base Sm Co 5 33% substituted by praseodymium. The same advantages have been obtained, as Table I illustrates for the remanence (in isostatic compression). TABLE 1 Prior art According to the invention Basic alloy Sm Co5 Br = 0.92 - 0.95 T 0.96 - 0.98 T Basic alloy (Sm2 / 3 Pr 1/3 Co5) Br = 0.99 - 1.01 T 1.02 - 1.05 T

Ces gains modestes en absolu sont très importants pour les applications. Bien plus importantes sont la fiabilité et la souplesse apportées en fabrication des produits, avec des traitements thermiques moins critiques, dont les vitesses de trempe, surtout quand on veut utiliser des teneurs en praséodyme plus élevées.These modest gains in absolute terms are very important for applications. Much more important are the reliability and flexibility provided in the manufacture of products, with less critical heat treatments, including the quenching speeds, especially when one wants to use higher praseodymium contents.

Exemple 5 (selon l'invention) Example 5 (according to the invention)

On a également appliqué le procédé à des alliages de la famille des Sm2 Co17. Pour cela, on a choisi une composition riche en Fe et pauvre en Sm avec l'espoir de monter la rémanence.The process was also applied to alloys of the Sm 2 Co 17 family . For this, we chose a composition rich in Fe and poor in Sm with the hope of increasing the afterglow.

Pour la composition en poids %
Sm = 25   Fe = 22   Cu = 4.5   Zr = 2.4   Co = solde
For composition by weight%
Sm = 25 Fe = 22 Cu = 4.5 Zr = 2.4 Co = balance

Le procédé habituel permet d'obtenir les excellentes performances de la figure 5, avec Br = 1160 mT, HcJ = 1070 kA/m, HcB = 770 kA/m, (BH) max = 240 kJ/m3. Mais ce produit est handicapé par le manque de rectangularité de la courbe, se traduisant par un Hk de 620 kA/m seulement. Un tel aimant comporte environ 4000 ppm d'oxygène.The usual process makes it possible to obtain the excellent performances of FIG. 5, with Br = 1160 mT, H cJ = 1070 kA / m, H cB = 770 kA / m, (BH) max = 240 kJ / m3. But this product is handicapped by the lack of rectangularity of the curve, resulting in an H k of 620 kA / m only. Such a magnet contains approximately 4000 ppm of oxygen.

Avec le procédé selon l'invention, et à un niveau de 700 ppm de fluor, il a été possible de ramener la teneur en oxygène à 2000 ppm et d'abaisser le samarium à 24,7% en poids. Deux effets bénéfiques ont été obtenus:

  • la montée de la rémanence à 1180 - 1190 mT
  • la meilleure rectangularité à Hk = 850 kA/m
With the process according to the invention, and at a level of 700 ppm of fluorine, it it was possible to reduce the oxygen content to 2000 ppm and to lower the samarium to 24.7% by weight. Two beneficial effects have been obtained:
  • the rise in remanence to 1180 - 1190 mT
  • the best rectangularity at H k = 850 kA / m

Claims (6)

  1. Magnetic powder or permanent magnet of the SmCo5 or Sm2Co17 type Sm Co series, characterised in that it contains between 600 and 3,000 ppm by weight of fluorine.
  2. Magnetic powder or permanent magnet according to claim 1, characterised in that it contains between 600 and 2,000 ppm by weight of fluorine.
  3. Magnetic powder or permanent magnet according to claim 1 or 2, belonging to the Sm2Co17 series, characterised in that it contains between 600 and 1,500 ppm by weight of fluorine.
  4. Magnetic powder and permanent magnet according to one of claims 1 to 2, containing less than 36% by weight of rare earths in SmCo5 type alloys.
  5. Magnetic powder and permanent magnet according to claim 3, characterised in that it contains less than 25% by weight of rare earths.
  6. Process for obtaining magnetic powder or a permanent magnet according to one of claims 1 to 5, characterised in that a mixture of gases containing less than 250 ppm by volume of gaseous fluorine is introduced into the grinder and/or into the powder homogenisation stage.
EP94921696A 1993-07-08 1994-07-07 Cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets and process for the preparation thereof Expired - Lifetime EP0707739B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9308644A FR2707192B1 (en) 1993-07-08 1993-07-08 Process for the preparation of magnetic powders of the rare earth-cobalt type containing fluorine and corresponding densified permanent magnets.
FR9308644 1993-07-08
PCT/FR1994/000838 WO1995002252A1 (en) 1993-07-08 1994-07-07 Process for the preparation of cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets

Publications (2)

Publication Number Publication Date
EP0707739A1 EP0707739A1 (en) 1996-04-24
EP0707739B1 true EP0707739B1 (en) 1997-04-09

Family

ID=9449236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94921696A Expired - Lifetime EP0707739B1 (en) 1993-07-08 1994-07-07 Cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets and process for the preparation thereof

Country Status (4)

Country Link
EP (1) EP0707739B1 (en)
DE (1) DE69402551T2 (en)
FR (1) FR2707192B1 (en)
WO (1) WO1995002252A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032406B3 (en) * 2007-07-10 2008-10-23 Gkss-Forschungszentrum Geesthacht Gmbh Process to form an alloy for e.g. gas turbine engine by combination of molten titanium and aluminum in presence of halogen-enriched gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6803121A (en) * 1968-03-05 1969-09-09
JPS6057601A (en) * 1983-09-08 1985-04-03 Sumitomo Special Metals Co Ltd Material of permanent magnet
JPS60173804A (en) * 1984-02-17 1985-09-07 Seiko Instr & Electronics Ltd Manufacture of rare earth cobalt magnet
JPH02288306A (en) * 1989-04-28 1990-11-28 Seiko Electronic Components Ltd Manufacture of rare earth permanent magnet

Also Published As

Publication number Publication date
DE69402551T2 (en) 1997-09-11
WO1995002252A1 (en) 1995-01-19
FR2707192A1 (en) 1995-01-13
DE69402551D1 (en) 1997-05-15
FR2707192B1 (en) 1995-08-11
EP0707739A1 (en) 1996-04-24

Similar Documents

Publication Publication Date Title
EP2806438B1 (en) Method for producing r-t-b sintered magnet
WO2009150843A1 (en) R-t-cu-mn-b type sintered magnet
EP0153744A2 (en) Process for producing permanent magnets
EP1005050A2 (en) R-T-B sintered magnet and method for producing same
EP0248981B1 (en) Permanent magnet and permanent magnetic alloy
WO2009107397A1 (en) Process for producing r-fe-b rare-earth sintered magnet and rare-earth sintered magnet produced by the process
US5382303A (en) Permanent magnets and methods for their fabrication
WO2018096733A1 (en) Rare earth-iron-nitrogen system magnetic powder and method for producing same
EP0608188B1 (en) Protecting process for magnetic powders and densified permanent magnets of Nd-Fe-B type against oxidation and atmospheric corrosion
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
WO2021200873A1 (en) R-t-b-based permanent magnet and method for producing same, motor, and automobile
EP0707739B1 (en) Cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets and process for the preparation thereof
JPH1187118A (en) Material and manufacture of magnet and bond magnet using the same
EP0428718A1 (en) Improved magnetic materials and process for producing the same
Takahashi et al. High performance Nd–Fe–B sintered magnets made by the wet process
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
CN100442401C (en) Method for preparing sintered product, sintered product and magnetostriction material
US5733384A (en) Process for producing hard-magnetic parts
JPH045740B2 (en)
WO2014054163A1 (en) Sintered magnet and process for producing same
JPH0475304B2 (en)
JP6047328B2 (en) Coating material for sintered magnet
JP2000109908A (en) Production of alloy for rare heath-iron-boron magnet
JP2003003203A (en) Method for manufacturing high-density sintered compact, and the sintered compact

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960521

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970409

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69402551

Country of ref document: DE

Date of ref document: 19970515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST