EP0704825B1 - Device for authenticating coins, tokens or other flat metal objects - Google Patents

Device for authenticating coins, tokens or other flat metal objects Download PDF

Info

Publication number
EP0704825B1
EP0704825B1 EP95810150A EP95810150A EP0704825B1 EP 0704825 B1 EP0704825 B1 EP 0704825B1 EP 95810150 A EP95810150 A EP 95810150A EP 95810150 A EP95810150 A EP 95810150A EP 0704825 B1 EP0704825 B1 EP 0704825B1
Authority
EP
European Patent Office
Prior art keywords
coin
coil
side wall
values
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810150A
Other languages
German (de)
French (fr)
Other versions
EP0704825A1 (en
Inventor
Thomas Seitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPM INTERNATIONAL SA
Deutsche Telekom AG
Original Assignee
Landis and Gyr Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Technology Innovation AG filed Critical Landis and Gyr Technology Innovation AG
Priority to DE59501034T priority Critical patent/DE59501034D1/en
Priority to EP95810150A priority patent/EP0704825B1/en
Priority to ES95810150T priority patent/ES2109795T3/en
Priority to AT95810150T priority patent/ATE160639T1/en
Priority to DK95810150T priority patent/DK0704825T3/en
Priority to PL95310542A priority patent/PL177877B1/en
Priority to CZ952437A priority patent/CZ243795A3/en
Priority to NO953707A priority patent/NO308719B1/en
Priority to EE9500067A priority patent/EE03103B1/en
Priority to FI954442A priority patent/FI954442A/en
Priority to CN95116556.9A priority patent/CN1134000A/en
Priority to RO95-01644A priority patent/RO115994B1/en
Priority to TR95/01151A priority patent/TR199501151A2/en
Priority to RU95116434/09A priority patent/RU2155381C2/en
Priority to LVP-95-290A priority patent/LV11505B/en
Publication of EP0704825A1 publication Critical patent/EP0704825A1/en
Application granted granted Critical
Publication of EP0704825B1 publication Critical patent/EP0704825B1/en
Priority to GR970403232T priority patent/GR3025581T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F1/00Coin inlet arrangements; Coins specially adapted to operate coin-freed mechanisms
    • G07F1/04Coin chutes
    • G07F1/048Coin chutes with means for damping coin motion
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the invention relates to a device for checking the authenticity of coins, tokens or other flat metallic objects of the type mentioned in the preamble of claim 1.
  • Such facilities are suitable, for example, as cashier stations in public telephone stations, vending machines, energy meters, etc.
  • a device for checking the authenticity of coins of the type mentioned in the preamble of claim 1 is known from EP 304 535 B1.
  • the device has three inductive sensors working independently of one another for determining the thickness, the alloy composition and the diameter of the coin to be tested.
  • These inductive sensors are designed as double coils, which are arranged on both sides of the coin channel and are electrically connected in parallel or in series, so that measurement variations due to the coin jumping or jumping in the coin channel can be partially compensated for, with bouncing and jumping lifting off the bottom of the coin channel or a change in the position with respect to the side walls of the coin channel is meant.
  • the use of double coils has the disadvantage that the alloy composition and the thickness of the coin cannot be determined independently of one another.
  • the inductive sensors are part of a parallel resonance circuit, in which the shift in the resonance frequency caused by the coin and the changed quality are measured. The measured changes in these parameters serve as decision criteria for the acceptance or rejection of the coin. It is also envisaged to design an inductive sensor for determining the alloy composition as a simple coil, which is attached only on one side of the coin channel.
  • a coin detector with inductive sensors which are operated at frequencies from 3 kHz to 1 MHz.
  • the inductive sensors are arranged in resonant circuits and in bridge circuits.
  • the resonance frequency in the presence of the coin is used to characterize the coin.
  • energy absorbing elements are known in order to achieve rolling without jumping or jumping of the coin in the area of the sensors.
  • Such energy absorbing elements are preferably ceramic plates which are arranged in the coin channel in such a way that every coin thrown into the coin inlet opening impinges on them.
  • the invention has for its object to provide a device for checking the authenticity of coins, in which the alloy composition and the thickness of the coin can be determined independently of one another, in which jumping or jumping of the coin is firstly excluded as far as possible and secondly a remaining hopping or Jumping leads to the smallest possible measurement spread.
  • the coin channel 1 shows a device for checking the authenticity of coins, tokens or other metallic objects with a coin channel 1, which is preferably formed as a recess in a body 2 made of two plastic parts.
  • the coin channel 1 is delimited by the base 3, a lower and an upper side wall 4 or 5 and a ceiling 6.
  • the lower side wall 4 is provided with integrally formed ribs 7 which are formed in the running direction of the coin M.
  • the coin channel 1 is inclined in the running direction of a coin M to be checked and the two side walls 4 and 5 are inclined at an acute angle of typically 10 ° with respect to the vertical V, so that the coin M to be checked rolls down the floor 3 along the coin channel 1 or slides down and ideally lies flat with one side surface on the ribs 7 of the lower side wall 4.
  • the side walls 4 and 5 each have recesses on the side facing away from the coin channel 1 for receiving staggered coils 9 and 10 and, optionally, metallic plates 11, 12.
  • the coil 9 and the plate 12 are located on the lower side wall 4, which is why they are shown in dashed lines. For the sake of clarity, the recesses are only shown in FIG. 2.
  • the plates 11 and 12 are mounted opposite the coils 9 and 10, respectively. They are preferably round or square, but can also have any other geometric shape.
  • Each coil 9, 10 and possibly the metallic plate 11 or 12 arranged in the opposite side wall 5 or 4 form an inductive sensor.
  • the two coils 9 and 10 have two connections, one of which is led to a common electrical ground connection m, the other to a switch 13, so that they can be connected to an electronic circuit 14 for electrically independent operation.
  • the device further contains a control and evaluation unit 15, for example in the form of a microprocessor, for evaluating the output signal supplied by the electronic circuit 14 and for controlling the device.
  • the circuit 14 and the microprocessor 15 are designed to derive discrete values from the signals measured with the coils 9 and 10, which values are a measure of the alloy or the thickness d of the coin M.
  • the coin M is only considered to be genuine and accepted by the test device if these values match predetermined values within predetermined tolerances, otherwise it is rejected.
  • the shape of its surface facing the coin channel 1 is cylindrical, its radius of curvature R being of comparable size to the distance a: R ⁇ a.
  • R 8 mm is preferred.
  • the ribs 7 are naturally separated by depressions 16, the depth of which is approximately 0.5 mm.
  • the depressions 16 have a flat surface 17 in the area of the greatest depth between the ribs 7, so that the side wall 4 has a minimal wall thickness in the area of the recesses 8, which is only to be expected due to the material properties of the body 2 and the coins M to be expected mechanical loads, but can be determined independently of the radius of curvature R and the distance a.
  • a minimum wall thickness of 0.6 mm is preferably provided, so that the coil 9 mounted in the recess 8 in the lower side wall 4 is at a fixed distance of 1.1 mm from an ideally rolling coin M.
  • the ribs 7 are also there to prevent unwanted sticking or even sticking of a wet coin.
  • the formation of the ribs 7 as cylindrical surfaces with a comparatively large radius of curvature R results in a larger contact surface between the lower side wall 4 and the coin M than is the case with ribs according to the prior art.
  • the extent to which the jumping and jumping of the coin M can also be achieved with ribs 7, the radius of curvature R of which is smaller than the distance a and, for example, is only a / 2, can easily be determined by means of experiments. The shape does not have to be exactly that of a cylinder.
  • a plate parallel to the side wall 4 is loosely fixed in the lower side wall 4 in the area of the coils 9 and 10 instead of the ribs 7.
  • the plate has a comparatively small mass compared to the masses of the coins to be tested and consists e.g. made of metal or ceramic. It is used to absorb the energy of the jumping coin M if the coin strikes the plate and thereby dampens the jumping of the coin M.
  • a coil S means one of the coils 9 or 10.
  • the coil S is characterized electrically by its inductance L S and its ohmic internal resistance R S. It represents an inductive sensor.
  • the above-mentioned combination of the coil S with one of the plates 11 and 12 represents another inductive sensor.
  • the internal resistance R S contains a static component R S, DC and a dynamic component R S, AC ( ⁇ ), which depends on the angular frequency ⁇ of the current flowing through the coil S, of depends on the physical properties of the coin M, on the geometry of the coil S and, in particular, on the distance between the coil S and the coin M.
  • angular frequency
  • the diameter of the coil S is selected to be smaller than the diameter of the smallest coin M to be measured and the coil S is on the side wall 4 or 5 of the coin channel 1 is arranged at an appropriate height, so that the smallest coin M to be tested briefly completely covers the coil S during the passage.
  • the diameter of the coil S is, for example, 14 mm.
  • the resistance of the lead wires is comparatively low.
  • Coils 9 and 10 are particularly suitable for wound coils with a ferrite core. The design of the coils 9 and 10 as single coils arranged on only one side of the coin channel 1 and their complete electrical isolation avoids the loss of sensitivity associated with double coils.
  • the electronic circuit 14 operates the coil S in a series resonance circuit and delivers at its output an analog signal which is proportional to the internal resistance R S of the coil S.
  • R S internal resistance
  • the microprocessor 15 carries out a detailed analysis, which is explained below, the result of which are two values, for example the values K 1 and K 2 described below, which are used to decide whether to accept or reject the coin M.
  • the coil 9 is located on the lower side wall 4, on which the coin M moves lying along, so that the distance between the coil 9 and the side surface of the coin M is fixed and is, for example, 1.1 mm.
  • the coin M is made of either a single alloy or several alloys.
  • the internal resistance R 9 of the coil 9 measured in the presence of the coin M depends almost exclusively on the material of the coin M if the frequency ⁇ of the current flowing through the coil 9 is selected appropriately.
  • 3 shows the internal resistance R 9 as a function of the thickness d of the coin M for coins made from different alloys L1, L2 and L3, the coin M being in a symmetrical position in front of the coil 9 during the measurement. It can be seen from this that the internal resistance R 9 is practically independent of the thickness d. With the coil 9 is therefore an important first characteristic size of the coin M, which is almost exclusively from its Alloy or alloy composition depends, easily determinable.
  • the distance between the coil 10 and the coin M depends on its thickness d.
  • the internal resistance R 10 thus depends not only on the material of the coin M, but also on its thickness d.
  • the dependence on the thickness d in the region of interest is approximately linear for all alloys L1, L2 and L3 shown. If the alloy of the coin M is known, the thickness d of the coin M can be clearly determined.
  • the use of the two coils 9 and 10 with or without platelets 11 and 12 as simple coils, which are only arranged on one side wall 4 and 5, respectively, which are arranged on both sides of the coin channel 1 and are electrical are connected in parallel or in series, the mutually independent determination of two parameters of the coin M, which characterize the coin M on the basis of its alloy or alloy composition or thickness.
  • FIG. 5 shows the time course of the output signal of the electronic circuit 14 for three coins of the same type.
  • the coins come into the measuring range of first coil 9, which they leave again at time t 2 .
  • the measuring range of second coil 10 which they leave approximately at time t 4 .
  • the output signal of the coil 9 has two maxima M1 and M2 with values U1 and U2, the output signal of the coil 10 has two maxima m1 and m2 with values v1 and v2.
  • the solid line represents the output signal of a coin M, which rolls down the coin channel 1 (FIG. 1) without jumping or jumping and lies flat on the ribs 7.
  • the dash-dotted line shows the output signal of a coin M which jumped or jumped in the measuring range of the first coil 9: the values U1 and U2 are different.
  • the dashed line shows the output signal of a coin M which jumped or jumped in the measuring range of the second coil 10: the values v1 and v2 are different.
  • the value of the larger of the two maxima corresponds to the smallest distance between the coil 9 and the coin M, since the damping of the coil 9 is then greatest.
  • this is the second maximum M2 with the value U2 for both lines, which is also the more stable of the two maxima.
  • the microprocessor 15 is therefore programmed to determine the greatest value of the output signal in the first coil 9 and to store it as the value K 1 .
  • the damping of the second coil 10 is smaller, the greater the distance between the coil 10 and the coin M.
  • the maximum m2 corresponds to this case.
  • This described analysis of the output signals is carried out by the microprocessor 15 in a manner known per se by.
  • the greatest value of the output signal of the first coil 9 can be determined by numerical comparisons, the maxima m1 and m2 can be determined by forming the first and second derivatives of the sequence f2.
  • the reference resistances r 1 and r 2 are advantageously determined each time immediately before or after the passage of the coin M.
  • each coin M has two differently minted sides, which are called head and number in German.
  • This asymmetrical embossing of the coin M means that the characteristic sizes K 1 and K 2 determined for the coin M depend on the side with which the coin M rests on the side wall 4.
  • the scatter of sizes K 1 and K 2 in a given coin type is further increased by this effect.
  • the range of size K 1 remains sufficiently small to be able to clearly determine the alloy of the M coin.
  • the measurement of the thickness d is disturbed by this effect to an extent that makes it difficult to assess the authenticity of the coin M and / or to determine its value, since coins of different values made from the same alloy often differ very little in thickness.
  • the effect of this effect on the determination of the thickness d can be reduced.
  • the measurements of the coils 9 and 10 give, for example, a value K 1 and a value K 2 . If the coin M has an asymmetrical embossing and its head side faces the coil 9, the measurements give slightly changed values K 1 + ⁇ r 1 and K 2 - ⁇ r 2 .
  • An increase in the size K 1 leads to a decrease in the size K 2 , since a reduction in the distance between the coil 9 and the coin M results in an increase in the distance between the coin M and the coil 10.
  • FIG. 6 shows an advantageous electronic circuit 14 with a series resonance circuit RLC for the separate detection of the change in the ohmic resistance R S and the inductance L S of a coil S.
  • Series resonance circuit RLC represents a purely ohmic impedance Z S in the case of resonance, which is equal to the resistance R S of the coil S.
  • a parallel resonance circuit in the resonance case in which the coil S and the capacitive element C are connected in parallel, behaves like an impedance Z.
  • P j C * R S L S , which depends on the ratio of the resistance R S to the inductance L S of the coil S (j denotes the imaginary unit).
  • the electronic circuit 14 has a differential amplifier 18 with an inverting input 19 and a non-inverting input 20, a resistor 21, a two-stage amplifier circuit 22 and an amplitude detector 23.
  • the series resonance circuit RLC consists of the coil S and a capacitive element C, which are connected in series, and is connected to one terminal with ground m and the other terminal to the inverting input 19 of the differential amplifier 18.
  • the output of differential amplifier 18 is fed back via resistor 21 to inverting input 19 and via amplifier circuit 22 to non-inverting input 20.
  • the amplifier circuit 22 has the tasks of firstly causing the series resonance circuit RLC to oscillate when the circuit 14 is switched on and secondly of providing an amplitude-stabilized voltage U 3 (t) for exciting the series resonance circuit RLC.
  • This object is achieved by two inverters 24 and 25 connected in series and a voltage divider 26 connected in series.
  • a capacitor 27 and 28 is connected upstream of the input of the inverters 24 and 25 and the output of the inverters 24 and 25 is connected via a resistor 29 and 30 fed back to the input.
  • the capacitors 27 and 28 are used for DC decoupling.
  • the resistors 29 and 30 determine the DC operating point of the inverters 24 and 25, respectively.
  • the amplifier circuit 22 behaves like a linear AC voltage amplifier, so that because of the positive feedback of the output voltage U 1 (t) of the differential amplifier 18 thereon Input 20 of the series resonance circuit RLC begins to oscillate.
  • the amplification of the input signal U 1 (t) is chosen so high that the second inverter 25 is then always saturated, so that a rectangular voltage U 2 (t) is present at its output, the two voltage levels of which are positive and negative Voltage level correspond with which the entire electronic circuit 14 is fed in a manner known per se with respect to the mass m bipolar.
  • the ohmic voltage divider 26 which leads to ground m, the level of the voltage U 2 (t) is reduced.
  • a rectangular voltage U 3 (t) is thus present at the output of the amplifier circuit 22 and thus at the input 20 of the differential amplifier 18, which is in phase with the voltage U 1 (t), the amplitude of which is independent of the amplitude of the voltage U 1 ( t) is.
  • the voltage divider 26 has two resistors 31 and 32, the resistor 31 being of the order of magnitude of the resistance R S of the coil S.
  • the resistor 32 is dimensioned such that the level of the voltage U 3 (t) is a few tens to one hundred millivolts.
  • the amplitude detector 23 is used to measure the amplitude of the voltage U 1 (t) and to pass it on to the microprocessor 15 in a suitable form.
  • the resonance frequency ⁇ 0 (L S ) changes with the change in the inductance L S.
  • the circuit 14 described operates in such a way that the series resonance circuit RLC oscillates at a frequency ⁇ which is always equal to the resonance frequency ⁇ 0 (L S ).
  • the coin M passes the coil S, its resistance R S also changes .
  • the evaluation of the signal U 1 (t) is now carried out by the microprocessor 15 as previously described.
  • the frequency ⁇ of the square-wave voltage U 2 (t) present at the output of the second inverter 25 can be determined in a simple manner, not shown, for example with a counter module which is counted by the microprocessor 15 in accordance with the time course of the amplitude of the voltage U 1 (t) can be released while the coin M covers the coil S.
  • the frequencies ⁇ 1 and ⁇ 2 determined in this way in the coil 9 or in the coil 10 correspond to the resonance frequencies when the coin M passes and represent a third and fourth characteristic variable K 3 and K 4 , which are further decision criteria for the acceptance or reject the coin M can serve.
  • the sizes K 1 and K 2 and thus the alloy composition and the thickness d of the coin M can be determined with an accuracy which is sufficient to be able to distinguish a large number of coins M.
  • a coin M2 of a certain alloy and greater thickness d can be simulated with a coin M1 of small thickness d or with a thin metallic plate by deliberately increasing the distance of the coin M1 or the metallic plate from the coil 9 is, for example by inserting a non-metallic layer between the coin M1 and the coil 9, it is sufficient to determine whether the resonance frequency ⁇ 0 (L 2 ) of the coil 9 is greater or less during the passage of the coin M than in the absence of a coin.
  • the sign of the change in resonance frequency ⁇ 0 (L 2 ) of the coil 9 thus advantageously serves as a further decision criterion for the acceptance or rejection of the coin M.
  • a precise determination of the resonance frequency ⁇ 0 (L 2 ) in the presence of the coin M is not necessary.
  • the arrangement of the coil 9 or 10 in the series resonance circuit RLC offers the advantage that a quantity characterizing the alloy composition or the thickness d characterizing quantity can be determined with a simply constructed circuit which measures the damping of the series resonance circuit RLC in the presence of the coin M.
  • the series resonance circuit RLC therefore represents a particularly suitable means for measuring the change in resistance induced in the coil S. This also makes it possible to identify coins which, when using a parallel resonance circuit, result in no or an inadequate signal change if the changes in the inductance L S and the resistance R S compensate one another.
  • the inductance L S of the coil S and the value of the capacitive element C are selected such that the resonance frequency ⁇ 0 (L S ) of the resonant circuit RLC is in the range from 50 to 200 kHz, a typical value being 90 kHz. At these frequencies, the depth of penetration of the magnetic field generated by the coil S into the coin M is sufficiently large that the material composition of the coin M can be determined sufficiently selectively.
  • Inverters 24 and 25 can be, for example, inverters of the known type 4007.
  • at least one of the inverters 24 or 25 is replaced by a NAND or a NOR module with an additional input, the additional input being connected to an output of the microprocessor 15.
  • the circuit 14 can be switched on and off in a simple manner via the logic potential at this output of the microprocessor 15. The circuit 14 can therefore only be switched on for a short time just for checking a coin M.
  • the replacement of both inverters 24 and 25 by a NAND or a NOR module offers the advantage that the circuit 14 requires very little energy when switched off.
  • FIG. 6 shows only one example of an electronic circuit 14 which is suitable for detecting the change in the resistance R S of the coil S by means of a series resonance circuit RLC.
  • a series resonance circuit RLC In the technical literature there are countless other examples of electrical circuits of the series resonance circuit RLC which excite the series resonance circuit RLC with a voltage or a current.

Abstract

The coin testing system has the coins (M) introduced into a channel section that is inclined such that the coins roll past a pair of inductive sensors. The channel is of a rectangular cross section and is tilted such that the coins move against one side wall that is ridged to facilitate motion. The inductive sensors have coils (9, 10) set into one side wall and metallic discs (11, 12) set in the other wall such that the coins pass in between. The sensors provide inputs to an electronic circuit (14) that measures the time response of the resistance of each one and determine maximum values. The circuit uses the values to determine the coin thickness.

Description

Die Erfindung bezieht sich auf eine Einrichtung zur Prüfung der Echtheit von Münzen, Jetons oder anderen flachen metallischen Gegenständen der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to a device for checking the authenticity of coins, tokens or other flat metallic objects of the type mentioned in the preamble of claim 1.

Solche Einrichtungen eignen sich beispielsweise als Kassierstationen in öffentlichen Telefonstationen, Verkaufsautomaten, Zählern von Energie etc.Such facilities are suitable, for example, as cashier stations in public telephone stations, vending machines, energy meters, etc.

Eine Einrichtung zur Prüfung der Echtheit von Münzen der im Oberbegriff des Anspruchs 1 genannten Art ist bekannt aus der EP 304 535 B1. Die Einrichtung weist drei unabhängig voneinander arbeitende induktive Sensoren zur Bestimmung der Dicke, der Legierungszusammensetzung und des Durchmessers der zu prüfenden Münze auf. Diese induktiven Sensoren sind als Doppelspulen ausgebildet, die beidseitig des Münzkanals angeordnet und elektrisch parallel oder in Reihe geschaltet sind, so dass Messstreuungen infolge Hüpfens oder Springens der Münze im Münzkanal teilweise ausgeglichen werden können, wobei unter Hüpfen und Springen ein Abheben vom Boden des Münzkanals oder eine Veränderung der Lage bezüglich der Seitenwände des Münzkanals gemeint ist. Die Verwendung von Doppelspulen bringt jedoch den Nachteil mit sich, dass die Legierungszusammensetzung und die Dicke der Münze nicht unabhängig voneinander bestimmt werden können. Die induktiven Sensoren sind je Teil eines Parallelresonanzkreises, bei dem die durch die Münze hervorgerufene Verschiebung der Resonanzfrequenz sowie die veränderte Güte gemessen werden. Die gemessenen Änderungen dieser Parameter dienen als Entscheidungskriterien für die Annahme oder Zurückweisung der Münze. Es ist auch vorgesehen, einen für die Bestimmung der Legierungszusammensetzung dienenden induktiven Sensor als einfache Spule auszubilden, die nur auf einer Seite des Münzkanals angebracht ist.A device for checking the authenticity of coins of the type mentioned in the preamble of claim 1 is known from EP 304 535 B1. The device has three inductive sensors working independently of one another for determining the thickness, the alloy composition and the diameter of the coin to be tested. These inductive sensors are designed as double coils, which are arranged on both sides of the coin channel and are electrically connected in parallel or in series, so that measurement variations due to the coin jumping or jumping in the coin channel can be partially compensated for, with bouncing and jumping lifting off the bottom of the coin channel or a change in the position with respect to the side walls of the coin channel is meant. However, the use of double coils has the disadvantage that the alloy composition and the thickness of the coin cannot be determined independently of one another. The inductive sensors are part of a parallel resonance circuit, in which the shift in the resonance frequency caused by the coin and the changed quality are measured. The measured changes in these parameters serve as decision criteria for the acceptance or rejection of the coin. It is also envisaged to design an inductive sensor for determining the alloy composition as a simple coil, which is attached only on one side of the coin channel.

Aus der GB 1 397 083 ist ein Münzdetektor mit induktiven Sensoren bekannt, die mit Frequenzen von 3 kHz bis 1 MHz betrieben werden. Die induktiven Sensoren sind in Resonanzkreisen und in Brückenschaltungen angeordnet. Zur Charakterisierung der Münze dient die Resonanzfrequenz bei Anwesenheit der Münze.From GB 1 397 083 a coin detector with inductive sensors is known which are operated at frequencies from 3 kHz to 1 MHz. The inductive sensors are arranged in resonant circuits and in bridge circuits. The resonance frequency in the presence of the coin is used to characterize the coin.

Aus der EP 213 283 ist es bekannt, mehrere Oszillatorschaltungen mit induktiven Sensoren mit einem einzigen Verstärker zu betreiben, um den Abgleichaufwand und Driftprobleme zu reduzieren.From EP 213 283 it is known to operate several oscillator circuits with inductive sensors with a single amplifier in order to reduce the adjustment effort and drift problems.

Aus der GB 2 266 804 wie auch aus der DE-U1 G 90 13 836.8 ist die Verwendung Energie absorbierender Elemente bekannt, um ein Rollen ohne Hüpfen oder Springen der Münze im Bereich der Sensoren zu erreichen. Solche Energie absorbierende Elemente sind bevorzugt Plättchen aus Keramik, die im Münzkanal so angeordnet sind, dass jede in die Münzeinlassöffnung eingeworfene Münze darauf prallt.From GB 2 266 804 as well as from DE-U1 G 90 13 836.8 the use of energy absorbing elements is known in order to achieve rolling without jumping or jumping of the coin in the area of the sensors. Such energy absorbing elements are preferably ceramic plates which are arranged in the coin channel in such a way that every coin thrown into the coin inlet opening impinges on them.

Aus der DE 30 07 484 ist es bekannt, die untere Seitenwand eines gegenüber der Vertikalen um einen vorbestimmten Winkel geneigten Münzkanals entlang der Laufrichtung der Münze mit als Führungsschienen bezeichneten Rippen auszubilden.From DE 30 07 484 it is known to design the lower side wall of a coin channel inclined by a predetermined angle with respect to the vertical along the running direction of the coin with ribs referred to as guide rails.

Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zur Prüfung der Echtheit von Münzen zu schaffen, bei der die Legierungszusammensetzung und die Dicke der Münze unabhängig voneinander bestimmbar sind, bei der ein Hüpfen oder Springen der Münze erstens möglichst ausgeschlossen ist und zweitens ein verbleibendes Hüpfen oder Springen zu einer möglichst geringen Messstreuung führt.The invention has for its object to provide a device for checking the authenticity of coins, in which the alloy composition and the thickness of the coin can be determined independently of one another, in which jumping or jumping of the coin is firstly excluded as far as possible and secondly a remaining hopping or Jumping leads to the smallest possible measurement spread.

Die genannte Aufgabe wird erfindungsgemäss gelöst durch die Merkmale der Ansprüche 1 und 2.According to the invention, the stated object is achieved by the features of claims 1 and 2.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert, wobei unter dem Begriff der Münze M im folgenden auch Jetons oder andere flache metallische Gegenstände zu verstehen sind.Exemplary embodiments of the invention are explained in more detail below with the aid of the drawing, the term coin M also being used below to refer to tokens or other flat metallic objects.

Es zeigen:

Fig. 1
einen Münzkanal einer Prüfeinrichtung,
Fig. 2
den Münzkanal im Querschnitt,
Fig. 3, 4
Messwertdiagramme,
Fig. 5
ein Sensorsignal und
Fig. 6
eine elektronische Schaltung.
Show it:
Fig. 1
a coin channel of a test facility,
Fig. 2
the coin channel in cross section,
3, 4
Measurement diagrams,
Fig. 5
a sensor signal and
Fig. 6
an electronic circuit.

Die Fig. 1 zeigt eine Einrichtung zur Prüfung der Echtheit von Münzen, Jetons oder anderen metallischen Gegenständen mit einem Münzkanal 1, der bevorzugt als Ausnehmung in einem Körper 2 aus zwei Kunststoffteilen ausgebildet ist. Der Münzkanal 1 wird begrenzt durch den Boden 3, eine untere und eine obere Seitenwand 4 bzw. 5 und eine Decke 6. Die untere Seitenwand 4 ist mit angeformten Rippen 7 versehen, die in Laufrichtung der Münze M ausgebildet sind. Der Münzkanal 1 ist in Laufrichtung einer zu prüfenden Münze M geneigt und die beiden Seitenwände 4 und 5 sind gegenüber der Vertikalen V um einen spitzen Winkel von typischerweise 10° geneigt, so dass die zu prüfende Münze M auf dem Boden 3 entlang des Münzkanals 1 hinabrollt oder hinabgleitet und dabei mit einer Seitenfläche auf den Rippen 7 der unteren Seitenwand 4 idealerweise flach aufliegt. Die Seitenwände 4 und 5 weisen je auf der dem Münzkanal 1 abgewandten Seite Ausnehmungen zur Aufnahme von versetzt angeordneten Spulen 9 bzw. 10 und, fakultativ, metallischen Plättchen 11, 12 auf. Die Spule 9 und das Plättchen 12 befinden sich an der unteren Seitenwand 4, weshalb sie gestrichelt gezeichnet sind. Die Ausnehmungen sind der Übersichtlichkeit wegen nur in der Fig. 2 dargestellt. Die Plättchen 11 und 12 sind den Spulen 9 bzw. 10 gegenüberliegend angebracht. Sie sind vorzugsweise rund oder viereckig, können aber auch eine beliebige andere geometrische Form aufweisen. Je eine Spule 9, 10 und gegebenenfalls das in der gegenüberliegenden Seitenwand 5 oder 4 angeordnete metallische Plättchen 11 bzw. 12 bilden einen induktiven Sensor. Die beiden Spulen 9 und 10 weisen zwei Anschlüsse auf, von denen jeweils einer auf einen gemeinsamen elektrischen Masseanschluss m, der andere auf einen Schalter 13 geführt ist, so dass sie für einen elektrisch voneinander unabhängigen Betrieb mit einer elektronischen Schaltung 14 verbindbar sind. Die Einrichtung enthält weiter eine Steuer- und Auswerteeinheit 15 beispielsweise in Gestalt eines Mikroprozessors zur Auswertung des von der elektronischen Schaltung 14 gelieferten Ausgangssignals und zur Steuerung der Einrichtung. Die Schaltung 14 und der Mikroprozessor 15 sind dahingehend ausgebildet, aus den mit den Spulen 9 und 10 gemessenen Signalen diskrete Werte abzuleiten, die ein Mass für die Legierung bzw. die Dicke d der Münze M sind. Die Münze M wird nur dann als echt betrachtet und von der Prüfeinrichtung angenommen, falls diese Werte innerhalb vorgegebener Toleranzen mit vorbestimmten Werten übereinstimmen, andernfalls wird sie zurückgewiesen.1 shows a device for checking the authenticity of coins, tokens or other metallic objects with a coin channel 1, which is preferably formed as a recess in a body 2 made of two plastic parts. The coin channel 1 is delimited by the base 3, a lower and an upper side wall 4 or 5 and a ceiling 6. The lower side wall 4 is provided with integrally formed ribs 7 which are formed in the running direction of the coin M. The coin channel 1 is inclined in the running direction of a coin M to be checked and the two side walls 4 and 5 are inclined at an acute angle of typically 10 ° with respect to the vertical V, so that the coin M to be checked rolls down the floor 3 along the coin channel 1 or slides down and ideally lies flat with one side surface on the ribs 7 of the lower side wall 4. The side walls 4 and 5 each have recesses on the side facing away from the coin channel 1 for receiving staggered coils 9 and 10 and, optionally, metallic plates 11, 12. The coil 9 and the plate 12 are located on the lower side wall 4, which is why they are shown in dashed lines. For the sake of clarity, the recesses are only shown in FIG. 2. The plates 11 and 12 are mounted opposite the coils 9 and 10, respectively. They are preferably round or square, but can also have any other geometric shape. Each coil 9, 10 and possibly the metallic plate 11 or 12 arranged in the opposite side wall 5 or 4 form an inductive sensor. The two coils 9 and 10 have two connections, one of which is led to a common electrical ground connection m, the other to a switch 13, so that they can be connected to an electronic circuit 14 for electrically independent operation. The device further contains a control and evaluation unit 15, for example in the form of a microprocessor, for evaluating the output signal supplied by the electronic circuit 14 and for controlling the device. The circuit 14 and the microprocessor 15 are designed to derive discrete values from the signals measured with the coils 9 and 10, which values are a measure of the alloy or the thickness d of the coin M. The coin M is only considered to be genuine and accepted by the test device if these values match predetermined values within predetermined tolerances, otherwise it is rejected.

Die Fig. 2 zeigt den Münzkanal 1 im Querschnitt auf der Höhe der Spule 10. Die Rippen 7 sind in einem gegenseitigen Abstand a angeordnet, der vorzugsweise a = 7.25 mm beträgt. Die Form ihrer dem Münzkanal 1 zugewandten Oberfläche ist zylinderförmig, wobei deren Krümmungsradius R von vergleichbarer Grösse ist wie der Abstand a: R≅a. Bevorzugt ist ein etwas grösserer Wert von R = 8 mm. Die Rippen 7 sind natürlicherweise getrennt durch Vertiefungen 16, deren Tiefe etwa 0.5 mm beträgt. Die Vertiefungen 16 weisen im Bereich der grössten Tiefe zwischen den Rippen 7 eine flache Fläche 17 auf, so dass die Seitenwand 4 im Bereich der Ausnehmungen 8 eine minimale Wandstärke aufweist, die nur aufgrund der Materialeigenschaften des Körpers 2 und der durch die Münzen M zu erwartenden mechanischen Belastungen, jedoch unabhängig vom Krümmungsradius R und vom Abstand a festlegbar ist. Vorzugsweise ist eine minimale Wandstärke von 0.6 mm vorgesehen, so dass die in der Ausnehmung 8 in der unteren Seitenwand 4 angebrachte Spule 9 einen festen Abstand von 1.1 mm zu einer auf ideale Weise vorbeirollenden Münze M aufweist. Die Rippen 7 sind auch dazu da, um ein unerwünschtes Haften oder sogar Verkleben einer nassen Münze zu verhindern.2 shows the coin channel 1 in cross-section at the height of the coil 10. The ribs 7 are arranged at a mutual distance a, which is preferably a = 7.25 mm. The shape of its surface facing the coin channel 1 is cylindrical, its radius of curvature R being of comparable size to the distance a: R≅a. A somewhat larger value of R = 8 mm is preferred. The ribs 7 are naturally separated by depressions 16, the depth of which is approximately 0.5 mm. The depressions 16 have a flat surface 17 in the area of the greatest depth between the ribs 7, so that the side wall 4 has a minimal wall thickness in the area of the recesses 8, which is only to be expected due to the material properties of the body 2 and the coins M to be expected mechanical loads, but can be determined independently of the radius of curvature R and the distance a. A minimum wall thickness of 0.6 mm is preferably provided, so that the coil 9 mounted in the recess 8 in the lower side wall 4 is at a fixed distance of 1.1 mm from an ideally rolling coin M. The ribs 7 are also there to prevent unwanted sticking or even sticking of a wet coin.

Die Ausbildung der Rippen 7 als zylinderförmige Flächen mit einem vergleichsweise grossen Krümmungsradius R ergibt eine grössere Kontaktfläche zwischen der unteren Seitenwand 4 und der Münze M, als dies bei Rippen nach dem Stand der Technik der Fall ist. Dies führt dazu, dass ein gegen die untere Seitenwand 4 gerichteter Stoss einer Münze M, die noch nicht ideal flach aufliegt, mit einer relativ hohen Dämpfung verbunden ist, so dass ein Hüpfen und Springen der Münze M im Bereich der Spulen 9 und 10 nurmehr selten auftritt, selbst dann, wenn die Münze Beschädigungen wie Kratzer oder Zacken aufweist. Inwieweit das Hüpfen und Springen der Münze M auch mit Rippen 7 erreicht werden kann, deren Krümmungsradius R kleiner als der Abstand a ist, und beispielsweise nur a/2 beträgt, ist mittels Versuchen leicht ermittelbar. Auch muss die Form nicht genau die eines Zylinders sein.The formation of the ribs 7 as cylindrical surfaces with a comparatively large radius of curvature R results in a larger contact surface between the lower side wall 4 and the coin M than is the case with ribs according to the prior art. This means that an impact of a coin M directed against the lower side wall 4, which is not yet ideally flat, is associated with a relatively high damping, so that the coin M bounces and jumps in the area of the coils 9 and 10 only rarely occurs even if the coin is damaged such as scratches or peaks. The extent to which the jumping and jumping of the coin M can also be achieved with ribs 7, the radius of curvature R of which is smaller than the distance a and, for example, is only a / 2, can easily be determined by means of experiments. The shape does not have to be exactly that of a cylinder.

Die hohe Dämpfung der gegen die untere Seitenwand 4 prallenden Münze M hat auch wesentlich geringere Geräuschemissionen zur Folge als bei herkömmlicher Ausbildung der Rippen 7.The high damping of the coin M crashing against the lower side wall 4 also results in significantly lower noise emissions than with the conventional design of the ribs 7.

Bei einer anderen Ausführungsform der Erfindung ist in der unteren Seitenwand 4 im Bereich der Spulen 9 und 10 anstelle der Rippen 7 ein Plättchen parallel zur Seitenwand 4 lose befestigt. Das Plättchen weist eine gegenüber den Massen der zu prüfenden Münzen eine vergleichsweise geringe Masse auf und besteht z.B. aus Metall oder aus Keramik. Es dient dazu, gegebenenfalls bei einem Aufprall der Münze auf dem Plättchen die Energie der springenden Münze M zu absorbieren und dadurch das Springen der Münze M zu dämpfen.In another embodiment of the invention, a plate parallel to the side wall 4 is loosely fixed in the lower side wall 4 in the area of the coils 9 and 10 instead of the ribs 7. The plate has a comparatively small mass compared to the masses of the coins to be tested and consists e.g. made of metal or ceramic. It is used to absorb the energy of the jumping coin M if the coin strikes the plate and thereby dampens the jumping of the coin M.

Gemäss einer Weiterbildung der Erfindung sind neben den mechanischen Vorkehrungen zur Verhinderung des Hüpfens und/oder Springens der Münze M auch messtechnische Verbesserungen vorgesehen, die den Einfluss eines allfällig übrigbleibenden Hüpfens oder Springens auf die Messung der wichtigen Grössen Legierungszusammensetzung und Dicke der Münze M weiter verkleinern.According to a further development of the invention, in addition to the mechanical precautions to prevent the M jumping and / or jumping, metrological improvements are also provided which further reduce the influence of any remaining hopping or jumping on the measurement of the important alloy composition and coin M size.

Soweit die Überlegungen sowohl für die Spule 9 wie für die Spule 10 gelten, steht im folgenden der Einfachheit halber das Bezugszeichen S anstelle der Bezugszeichen 9 und 10. Mit einer Spule S ist also eine der Spulen 9 oder 10 gemeint. Die Spule S ist elektrisch charakterisiert durch ihre Induktivität LS und ihren ohmschen Innenwiderstand RS. Sie stellt einen induktiven Sensor dar. Die oben erwähnte Kombination der Spule S mit einem der Plättchen 11 bzw. 12 stellt einen weiteren induktiven Sensor dar. Bei der Passage der Münze M an der Spule S vorbei ändern die Werte LS und RS kurzzeitig aufgrund von physikalischen Wechselwirkungen zwischen der Spule S und der Münze M. Der Innenwiderstand RS enthält einen statischen Anteil RS,DC und einen dynamischen Anteil RS,AC(ω), der von der Kreisfrequenz ω des durch die Spule S fliessenden Stromes, von den physikalischen Eigenschaften der Münze M, von der Geometrie der Spule S und, insbesondere, vom Abstand zwischen der Spule S und der Münze M abhängt. Sobald die Münze M beim Rollen entlang des Münzkanals 1 in den Messbereich der Spule S gelangt, nimmt deren Innenwiderstand RS zu. Der typische zeitliche Verlauf des Innenwiderstand RS ist in der Fig. 5 dargestellt. Um einen Einfluss des Durchmessers der Münze M auf die Messungen der Dicke d und der Legierungszusammensetzung zu vermeiden, ist der Durchmesser der Spule S kleiner als der Durchmesser der kleinsten zu messenden Münze M gewählt und ist die Spule S auf der Seitenwand 4 oder 5 des Münzkanals 1 in einer entsprechenden Höhe angeordnet, so dass also die kleinste zu prüfende Münze M die Spule S während des Durchganges kurzzeitig vollständig abdeckt. Der Durchmesser der Spule S beträgt z.B. 14 mm. Der Widerstand der Zuleitungsdrähte ist vergleichsweise gering. Als Spulen 9 und 10 eignen sich besonders gewickelte Spulen mit einem Ferritkern. Die Ausführung der Spulen 9 und 10 als auf nur jeweils einer Seite des Münzkanals 1 angeordnete Einfachspulen und deren vollständige elektrische Trennung vermeidet den mit Doppelspulen verbundenen Empfindlichkeitsverlust.As far as the considerations apply to both the coil 9 and the coil 10, the following is the For the sake of simplicity, the reference symbol S instead of the reference symbols 9 and 10. A coil S means one of the coils 9 or 10. The coil S is characterized electrically by its inductance L S and its ohmic internal resistance R S. It represents an inductive sensor. The above-mentioned combination of the coil S with one of the plates 11 and 12 represents another inductive sensor. When the coin M passes the coil S, the values L S and R S change briefly due to of physical interactions between the coil S and the coin M. The internal resistance R S contains a static component R S, DC and a dynamic component R S, AC (ω), which depends on the angular frequency ω of the current flowing through the coil S, of depends on the physical properties of the coin M, on the geometry of the coil S and, in particular, on the distance between the coil S and the coin M. As soon as the coin M comes into the measuring range of the coil S while rolling along the coin channel 1, its internal resistance R S increases. The typical time course of the internal resistance R S is shown in FIG. 5. In order to avoid an influence of the diameter of the coin M on the measurements of the thickness d and the alloy composition, the diameter of the coil S is selected to be smaller than the diameter of the smallest coin M to be measured and the coil S is on the side wall 4 or 5 of the coin channel 1 is arranged at an appropriate height, so that the smallest coin M to be tested briefly completely covers the coil S during the passage. The diameter of the coil S is, for example, 14 mm. The resistance of the lead wires is comparatively low. Coils 9 and 10 are particularly suitable for wound coils with a ferrite core. The design of the coils 9 and 10 as single coils arranged on only one side of the coin channel 1 and their complete electrical isolation avoids the loss of sensitivity associated with double coils.

Die elektronische Schaltung 14 betreibt die Spule S in einem Serieresonanzkreis und liefert an ihrem Ausgang ein analoges Signal, das proportional zum Innenwiderstand RS der Spule S ist. Beim Durchgang einer Münze M durch den Messbereich der Spule S wird der zeitliche Verlauf dieses Ausgangssignals vom Mikroprozessor 15 mittels eines Analog/Digitalwandlers als eine Folge f1 digitaler Werte erfasst und gespeichert. Anschliessend führt der Mikroprozessor 15 eine detaillierte Analyse durch, die nachfolgend erläutert wird, deren Ergebnis zwei Werte, z.B. die nachfolgend beschriebenen Werte K1 und K2, sind, die zur Entscheidung über die Annahme oder Zurückweisung der Münze M dienen.The electronic circuit 14 operates the coil S in a series resonance circuit and delivers at its output an analog signal which is proportional to the internal resistance R S of the coil S. When a coin M passes through the measuring range of the coil S, the course of this output signal over time is recorded and stored by the microprocessor 15 by means of an analog / digital converter as a sequence f1 of digital values. The microprocessor 15 then carries out a detailed analysis, which is explained below, the result of which are two values, for example the values K 1 and K 2 described below, which are used to decide whether to accept or reject the coin M.

Die Spule 9 befindet sich an der unteren Seitenwand 4, an der sich die Münze M aufliegend entlangbewegt, so dass der Abstand zwischen der Spule 9 und der Seitenfläche der Münze M fest vorgegeben ist und z.B. 1.1 mm beträgt. Die Münze M ist materialmässig entweder aus einer einzigen Legierung oder aus mehreren Legierungen gefertigt. Der bei Anwesenheit der Münze M gemessene Innenwiderstand R9 der Spule 9 hängt bei geeigneter Wahl der Frequenz ω des durch die Spule 9 fliessenden Stromes annähernd ausschliesslich vom Material der Münze M ab. Die Fig. 3 zeigt den Innenwiderstand R9 in Funktion der Dicke d der Münze M für aus verschiedenen Legierungen L1, L2 und L3 hergestellte Münzen, wobei sich die Münze M bei der Messung in symmetrischer Lage ruhend vor der Spule 9 befand. Daraus ist ersichtlich, dass der Innenwiderstand R9 praktisch unabhängig von der Dicke d ist. Mit der Spule 9 ist somit eine wichtige erste charakteristische Grösse der Münze M, die fast ausschliesslich von deren Legierung oder Legierungszusammensetzung abhängt, auf einfache Weise bestimmbar.The coil 9 is located on the lower side wall 4, on which the coin M moves lying along, so that the distance between the coil 9 and the side surface of the coin M is fixed and is, for example, 1.1 mm. The coin M is made of either a single alloy or several alloys. The internal resistance R 9 of the coil 9 measured in the presence of the coin M depends almost exclusively on the material of the coin M if the frequency ω of the current flowing through the coil 9 is selected appropriately. 3 shows the internal resistance R 9 as a function of the thickness d of the coin M for coins made from different alloys L1, L2 and L3, the coin M being in a symmetrical position in front of the coil 9 during the measurement. It can be seen from this that the internal resistance R 9 is practically independent of the thickness d. With the coil 9 is therefore an important first characteristic size of the coin M, which is almost exclusively from its Alloy or alloy composition depends, easily determinable.

Der Abstand zwischen der Spule 10 und der Münze M ist abhängig von deren Dicke d. Bei der Spule 10 hängt der Innenwiderstand R10 somit nicht nur vom Material der Münze M ab, sondern auch von deren Dicke d. Wie die Fig. 4 zeigt, ist die Abhängigkeit von der Dicke d im interessierenden Bereich für alle gezeigten Legierungen L1, L2 und L3 annähernd linear. Falls die Legierung der Münze M bekannt ist, ist die Dicke d der Münze M eindeutig bestimmbar.The distance between the coil 10 and the coin M depends on its thickness d. In the coil 10, the internal resistance R 10 thus depends not only on the material of the coin M, but also on its thickness d. As shown in FIG. 4, the dependence on the thickness d in the region of interest is approximately linear for all alloys L1, L2 and L3 shown. If the alloy of the coin M is known, the thickness d of the coin M can be clearly determined.

Die Verwendung der beiden Spulen 9 und 10 mit oder ohne Plättchen 11 und 12 als einfache Spulen, die nur je an einer Seitenwand 4 bzw. 5 angeordnet sind, erlaubt im Gegensatz zur Verwendung von sogenannten Doppelspulen, die je beidseitig des Münzkanals 1 angeordnet und elektrisch parallel oder in Reihe geschaltet sind, die voneinander völlig unabhängige Bestimmung von zwei Parametern der Münze M, die die Münze M aufgrund ihrer Legierung bzw. Legierungszusammensetzung oder Dicke charakterisieren.In contrast to the use of so-called double coils, the use of the two coils 9 and 10 with or without platelets 11 and 12 as simple coils, which are only arranged on one side wall 4 and 5, respectively, which are arranged on both sides of the coin channel 1 and are electrical are connected in parallel or in series, the mutually independent determination of two parameters of the coin M, which characterize the coin M on the basis of its alloy or alloy composition or thickness.

Die Fig. 5 zeigt den zeitlichen Verlauf des Ausgangssignals der elektronischen Schaltung 14 für drei Münzen des gleichen Typs. Die Münzen kommen zum Zeitpunkt t1 in den Messbereich der ersten Spule 9, den sie etwa zum Zeitpunkt t2 wieder verlassen. Zum Zeitpunkt t3 geraten sie in den Messbereich der zweiten Spule 10, den sie etwa zum Zeitpunkt t4 verlassen. Das Ausgangssignal der Spule 9 weist zwei Maxima M1 und M2 mit Werten U1 bzw. U2 auf, das Ausgangssignal der Spule 10 zwei Maxima m1 und m2 mit Werten v1 bzw. v2. Die ausgezogene Linie stellt das Ausgangssignal einer Münze M dar, die ohne Hüpfen oder Springen den Münzkanal 1 (Fig. 1) hinabrollt und dabei auf den Rippen 7 flach aufliegt. In diesem Fall sind die Messwerte U1 und U2 wie auch die Werte v1 und v2 gleich: U1=U2, v1=v2. Die strichpunktierte Linie zeigt das Ausgangssignal einer Münze M, die im Messbereich der ersten Spule 9 hüpfte oder sprang: die Werte U1 und U2 sind verschieden. Die gestrichelte Linie zeigt das Ausgangssignal einer Münze M, die im Messbereich der zweiten Spule 10 hüpfte oder sprang: die Werte v1 und v2 sind verschieden. Versuche haben gezeigt, dass wenigstens einer der Werte U1 oder U2 bzw. v1 oder v2 relativ stabil ist, d.h. eine geringe Streuung aufweist, wohingegen das zwischen den entsprechenden Maxima liegende Minimum einer grösseren Streuung unterliegt. Im Fall der ersten Spule 9 entspricht der Wert des grösseren der beiden Maxima dem kleinsten Abstand zwischen der Spule 9 und der Münze M, da dann die Bedämpfung der Spule 9 am stärksten ist. Bei dem in der Fig. 5 gezeigten Beispiel ist dies für beide Linien das zweite Maximum M2 mit dem Wert U2, welches auch das stabilere der beiden Maxima ist. Der Mikroprozessor 15 ist deshalb dahingehend programmiert, bei der ersten Spule 9 den grössten Wert des Ausgangssignals zu bestimmen und als Wert K1 zu speichern. Die Bedämpfung der zweiten Spule 10 ist kleiner, je grösser der Abstand zwischen der Spule 10 und der Münze M ist. Der Mikroprozessor 15 ist deshalb dahingehend programmiert, bei der zweiten Spule 10 die Werte v1 und v2 der beiden Maxima m1 und m2 zu bestimmen und den kleineren der beiden Werte v1 und v2 als Wert K2 zu speichern: K2= min(v1, v2). Im Beispiel in der Fig. 5 entspricht diesem Fall das Maximum m2.5 shows the time course of the output signal of the electronic circuit 14 for three coins of the same type. At time t 1 , the coins come into the measuring range of first coil 9, which they leave again at time t 2 . At time t 3 , they enter the measuring range of second coil 10, which they leave approximately at time t 4 . The output signal of the coil 9 has two maxima M1 and M2 with values U1 and U2, the output signal of the coil 10 has two maxima m1 and m2 with values v1 and v2. The solid line represents the output signal of a coin M, which rolls down the coin channel 1 (FIG. 1) without jumping or jumping and lies flat on the ribs 7. In this case, the measured values U1 and U2 as well as the values v1 and v2 are the same: U1 = U2, v1 = v2. The dash-dotted line shows the output signal of a coin M which jumped or jumped in the measuring range of the first coil 9: the values U1 and U2 are different. The dashed line shows the output signal of a coin M which jumped or jumped in the measuring range of the second coil 10: the values v1 and v2 are different. Experiments have shown that at least one of the values U1 or U2 or v1 or v2 is relatively stable, that is to say has a small scatter, whereas the minimum lying between the corresponding maxima is subject to a larger scatter. In the case of the first coil 9, the value of the larger of the two maxima corresponds to the smallest distance between the coil 9 and the coin M, since the damping of the coil 9 is then greatest. In the example shown in FIG. 5, this is the second maximum M2 with the value U2 for both lines, which is also the more stable of the two maxima. The microprocessor 15 is therefore programmed to determine the greatest value of the output signal in the first coil 9 and to store it as the value K 1 . The damping of the second coil 10 is smaller, the greater the distance between the coil 10 and the coin M. The microprocessor 15 is therefore programmed to determine the values v1 and v2 of the two maxima m1 and m2 in the second coil 10 and to store the smaller of the two values v1 and v2 as the value K 2 : K 2 = min (v1, v2 ). In the example in FIG. 5, the maximum m2 corresponds to this case.

Diese beschriebene Analyse der Ausgangssignale führt der Mikroprozessor 15 auf an sich bekannte Weise durch. Um Rauscheffekte auszugleichen und die Streuung der zu ermittelnden Werte K1 und K2 zu verkleinern, ist es vorteilhaft, die Folge f1 in eine Folge f2 umzuwandeln, wobei jeder Wert der Folge f2 der über z.B. zehn aufeinanderfolgende Werte der Folge f1 gemittelte gleitende Mittelwert ist. Die Bestimmung des grössten Wertes des Ausgangssignals der ersten Spule 9 kann durch numerische Vergleiche, die Bestimmung der Maxima m1 und m2 kann durch Bildung der ersten und zweiten Ableitung der Folge f2 erfolgen.This described analysis of the output signals is carried out by the microprocessor 15 in a manner known per se by. In order to compensate for noise effects and to reduce the scatter of the values K 1 and K 2 to be determined, it is advantageous to convert the sequence f1 into a sequence f2, each value of the sequence f2 being the moving average averaged over, for example, ten successive values of the sequence f1 . The greatest value of the output signal of the first coil 9 can be determined by numerical comparisons, the maxima m1 and m2 can be determined by forming the first and second derivatives of the sequence f2.

Um Einflüsse weiterer physikalischer Faktoren wie Temperatur, Feuchtigkeit, etc. auf das Messergebnis möglichst auszuschliessen, ist es vorteilhaft, dass der Mikroprozessor 15 relative Werte P1 = r1/K1 und P2=r2/K2 bildet, wobei die Grössen r1 und r2 Bezugswiderstände darstellen, die gleich dem Innenwiderstand R9 der Spule 9 bzw. R10 der Spule 10 bei Abwesenheit der Münze M sind. Die Bezugswiderstände r1 und r2 werden mit Vorteil jedesmal unmittelbar vor oder nach der Passage der Münze M bestimmt.In order to exclude influences of other physical factors such as temperature, humidity, etc. as far as possible on the measurement result, it is advantageous that the microprocessor 15 forms relative values P 1 = r 1 / K 1 and P 2 = r 2 / K 2 , the sizes r 1 and r 2 represent reference resistances which are equal to the internal resistance R 9 of the coil 9 and R 10 of the coil 10 in the absence of the coin M. The reference resistances r 1 and r 2 are advantageously determined each time immediately before or after the passage of the coin M.

Jede Münze M hat bekanntlich zwei unterschiedlich geprägte Seiten, welche im deutschen Sprachgebrauch mit Kopf und Zahl bezeichnet werden. Diese unsymmetrische Prägung der Münze M führt dazu, dass die bei der Münze M bestimmten charakteristischen Grössen K1 und K2 davon abhängen, mit welcher Seite die Münze M auf der Seitenwand 4 aufliegt. Die bei einer bestimmten Münzensorte vorhandene Streuung der Grössen K1 und K2 wird durch diesen Effekt zusätzlich vergrössert. Der Streubereich der Grösse K1 bleibt jedoch hinreichend klein, um die Legierung der Münze M eindeutig bestimmen zu können. Hingegen wird die Messung der Dicke d durch diesen Effekt in einem Ausmass gestört, das die Beurteilung der Echtheit der Münze M und/oder die Bestimmung ihres Wertes erschwert, da sich aus gleichen Legierungen hergestellte Münzen unterschiedlichen Wertes in der Dicke oftmals nur sehr wenig unterscheiden. Mit einer weiteren Massnahme, die nun beschrieben wird, ist die Wirkung dieses Effektes auf die Bestimmung der Dicke d reduzierbar. Bei einer Münze M ohne Prägung ergeben die Messungen der Spulen 9 und 10 z.B. einen Wert K1 und einen Wert K2. Weist die Münze M eine unsymmetrische Prägung auf und ist deren Kopfseite der Spule 9 zugewandt, ergeben die Messungen leicht geänderte Werte K1 + δr1 und K2 - δr2. Eine Zunahme der Grösse K1 führt zu einer Abnahme der Grösse K2, da eine Verkleinerung des Abstandes zwischen der Spule 9 und der Münze M eine Vergrösserung des Abstandes zwischen der Münze M und der Spule 10 zur Folge hat. Wegen der Linearität der Grössen K1 und K2 in Funktion des Abstandes der Münze M von der entsprechenden Spule gilt bei Verwendung gleichartiger Spulen 9 und 10 und Verwendung der gleichen Frequenz ω zur Erregung der Spulen 9 und 10: δr1 = δr2 = δr. Falls bei der gleichen Münze M die Zahlseite der Spule 10 zugewandt ist, ergeben die Messungen hingegen Werte K1 - δr und K2 + δr. Als Mass für die Dicke d der Münze M und damit als Entscheidungskriterium für die Annahme oder Zurückweisung der Münze M dient somit mit Vorteil die Summe H2 = K1 + K2 oder die Summe I2 = P1 + P2. Die Summen H2 und I2 sind unabhängig davon, welche Seite der Münze M der Seitenwand 4 zugewandt ist, da sich die Werte -δr und +δr aufheben.As is known, each coin M has two differently minted sides, which are called head and number in German. This asymmetrical embossing of the coin M means that the characteristic sizes K 1 and K 2 determined for the coin M depend on the side with which the coin M rests on the side wall 4. The scatter of sizes K 1 and K 2 in a given coin type is further increased by this effect. However, the range of size K 1 remains sufficiently small to be able to clearly determine the alloy of the M coin. On the other hand, the measurement of the thickness d is disturbed by this effect to an extent that makes it difficult to assess the authenticity of the coin M and / or to determine its value, since coins of different values made from the same alloy often differ very little in thickness. With a further measure, which will now be described, the effect of this effect on the determination of the thickness d can be reduced. In the case of a coin M without minting, the measurements of the coils 9 and 10 give, for example, a value K 1 and a value K 2 . If the coin M has an asymmetrical embossing and its head side faces the coil 9, the measurements give slightly changed values K 1 + δr 1 and K 2 - δr 2 . An increase in the size K 1 leads to a decrease in the size K 2 , since a reduction in the distance between the coil 9 and the coin M results in an increase in the distance between the coin M and the coil 10. Because of the linearity of the quantities K 1 and K 2 as a function of the distance of the coin M from the corresponding coil, when using similar coils 9 and 10 and using the same frequency ω for exciting the coils 9 and 10: δr 1 = δr 2 = δr . If, for the same coin M, the number side is facing the coil 10, the measurements, on the other hand, give values K 1 - δr and K 2 + δr. The sum H 2 = K 1 + K 2 or the sum I 2 = P 1 + P 2 thus advantageously serves as a measure of the thickness d of the coin M and thus as a decision criterion for the acceptance or rejection of the coin M. The sums H 2 and I 2 are independent of which side of the coin M faces the side wall 4, since the values -δr and + δr cancel each other out.

Die Fig. 3 zeigt, dass sich die Messwerte K1 für verschiedene Legierungen deutlich unterscheiden. Die Legierung der Münze M ist somit vergleichsweise einfach bestimmbar, d.h. die Toleranzwerte, die angeben, ob die Münze M aufgrund ihrer gemessenen Legierung angenommen oder zurückgewiesen wird, können relativ gross eingestellt sein. Je enger die Toleranzgrenzen für die Grössen K2 oder P2 oder H2 oder I2 eingestellt sind, desto mehr Münzen M sind aufgrund ihrer Dicke d zuverlässig unterscheidbar. Die Verhinderung des Hüpfens oder Springens der Münzen im Bereich der induktiven Sensoren durch die neuartig ausgebildeten Rippen 7 in Kombination mit der beschriebenen, detaillierten Signalanalyse ermöglicht nun die Einstellung sehr enger Toleranzwerte für die Grössen K2 oder P2 oder H2 oder I2.3 shows that the measured values K 1 differ significantly for different alloys. The alloy of the coin M is thus comparatively easy to determine, ie the tolerance values that indicate whether the coin M is accepted or rejected based on its measured alloy, can be set relatively large. The narrower the tolerance limits for the sizes K 2 or P 2 or H 2 or I 2 are set, the more coins M can be reliably distinguished due to their thickness d. Preventing the coins from jumping or jumping in the area of the inductive sensors by means of the newly designed ribs 7 in combination with the described, detailed signal analysis now enables the setting of very narrow tolerance values for the sizes K 2 or P 2 or H 2 or I 2 .

Die Fig. 6 zeigt eine vorteilhafte elektronische Schaltung 14 mit einem Serieresonanzkreis RLC zur getrennten Erfassung der Änderung des ohmschen Widerstandes RS und der Induktivität LS einer Spule S. Ausgangspunkt ist die Erkenntnis, dass der aus der Spule S und einem kapazitiven Element C gebildete Serieresonanzkreis RLC im Resonanzfall eine rein ohmsche Impedanz ZS darstellt, die gleich dem Widerstand RS der Spule S ist. Im Gegensatz dazu verhält sich ein Parallelresonanzkreis im Resonanzfall, bei dem die Spule S und das kapazitive Element C parallel geschaltet sind, wie eine Impedanz Z P = j C*R S L S ,

Figure imgb0001
die vom Verhältnis des Widerstandes RS zur Induktivität LS der Spule S abhängt (j bezeichnet die imaginäre Einheit). Die Resonanzfrequenz ω0(LS) des Serieresonanzkreises RLC ist gegeben durch ω 0 (L S ) = 1 L S *C .
Figure imgb0002
6 shows an advantageous electronic circuit 14 with a series resonance circuit RLC for the separate detection of the change in the ohmic resistance R S and the inductance L S of a coil S. The starting point is the knowledge that the coil S and a capacitive element C are formed Series resonance circuit RLC represents a purely ohmic impedance Z S in the case of resonance, which is equal to the resistance R S of the coil S. In contrast, a parallel resonance circuit in the resonance case, in which the coil S and the capacitive element C are connected in parallel, behaves like an impedance Z. P = j C * R S L S ,
Figure imgb0001
which depends on the ratio of the resistance R S to the inductance L S of the coil S (j denotes the imaginary unit). The resonance frequency ω 0 (L S ) of the series resonance circuit RLC is given by ω 0 (L S ) = 1 L S * C .
Figure imgb0002

Die elektronische Schaltung 14 weist einen Differenzverstärker 18 mit einem invertierenden Eingang 19 und einem nicht invertierenden Eingang 20, einen Widerstand 21, eine zweistufige Verstärkerschaltung 22 und einen Amplitudendetektor 23 auf. Der Serieresonanzkreis RLC besteht aus der Spule S und einem kapazitiven Element C, die in Reihe geschaltet sind, und ist mit dem einen Anschluss mit Masse m und mit dem anderen Anschluss mit dem invertierenden Eingang 19 des Differenzverstärkers 18 verbunden. Der Ausgang des Differenzverstärkers 18 ist über den Widerstand 21 auf den invertierenden Eingang 19 und über die Verstärkerschaltung 22 auf den nicht invertierenden Eingang 20 rückgekoppelt.The electronic circuit 14 has a differential amplifier 18 with an inverting input 19 and a non-inverting input 20, a resistor 21, a two-stage amplifier circuit 22 and an amplitude detector 23. The series resonance circuit RLC consists of the coil S and a capacitive element C, which are connected in series, and is connected to one terminal with ground m and the other terminal to the inverting input 19 of the differential amplifier 18. The output of differential amplifier 18 is fed back via resistor 21 to inverting input 19 and via amplifier circuit 22 to non-inverting input 20.

Die Verstärkerschaltung 22 hat die Aufgaben, erstens den Serieresonanzkreis RLC beim Einschalten der Schaltung 14 zum Schwingen zu bringen und zweitens eine amplitudenstabilisierte Spannung U3(t) zur Erregung des Serieresonanzkreises RLC zur Verfügung zu stellen. Diese Aufgabe ist realisiert durch zwei in Reihe geschaltete Inverter 24 und 25 und einen nachgeschalteten Spannungsteiler 26. Dem Eingang der Inverter 24 und 25 ist je ein Kondensator 27 bzw. 28 vorgeschaltet und der Ausgang der Inverter 24 und 25 ist über je einen Widerstand 29 bzw. 30 auf den Eingang rückgekoppelt. Die Kondensatoren 27 und 28 dienen der gleichstrommässigen DC-Abkopplung. Die Widerstände 29 und 30 bestimmen den DC-Arbeitspunkt der Inverter 24 bzw. 25. Beim Einschalten der Schaltung 14 verhält sich die Verstärkerschaltung 22 wie ein linearer Wechselspannungsverstärker, so dass wegen der positiven Rückkopplung der Ausgangsspannung U1(t) des Differenzverstärkers 18 auf dessen Eingang 20 der Serieresonanzkreis RLC zu schwingen beginnt. Die Verstärkung des Eingangssignals U1(t) ist so hoch gewählt, dass daraufhin der zweite Inverter 25 immer in Sättigung gebracht wird, so dass an seinem Ausgang eine rechteckförmige Spannung U2(t) vorhanden ist, deren zwei Spannungspegel dem positiven und dem negativen Spannungspegel entsprechen, mit denen die ganze elektronische Schaltung 14 in an sich bekannter Weise bezüglich der Masse m bipolar gespeist ist. Mit Hilfe des ohmschen, gegen Masse m führenden Spannungsteilers 26 wird der Pegel der Spannung U2(t) verkleinert. Am Ausgang der Verstärkerschaltung 22 und damit am Eingang 20 des Differenzverstärkers 18 ist somit eine rechteckförmige Spannung U3(t) vorhanden, die in Phase mit der Spannung U1(t) ist, deren Amplitude jedoch unabhängig von der Amplitude der Spannung U1(t) ist. Der Spannungsteiler 26 weist zwei Widerstände 31 und 32 auf, wobei der Widerstand 31 von der Grössenordnung des Widerstandes RS der Spule S ist. Der Widerstand 32 ist so bemessen, dass der Pegel der Spannung U3(t) einige zehn bis hundert Millivolt beträgt. Der Amplitudendetektor 23 dient der Messung der Amplitude der Spannung U1(t) und der Weitergabe an den Mikroprozessor 15 in geeigneter Form.The amplifier circuit 22 has the tasks of firstly causing the series resonance circuit RLC to oscillate when the circuit 14 is switched on and secondly of providing an amplitude-stabilized voltage U 3 (t) for exciting the series resonance circuit RLC. This object is achieved by two inverters 24 and 25 connected in series and a voltage divider 26 connected in series. A capacitor 27 and 28 is connected upstream of the input of the inverters 24 and 25 and the output of the inverters 24 and 25 is connected via a resistor 29 and 30 fed back to the input. The capacitors 27 and 28 are used for DC decoupling. The resistors 29 and 30 determine the DC operating point of the inverters 24 and 25, respectively. When the circuit 14 is switched on, the amplifier circuit 22 behaves like a linear AC voltage amplifier, so that because of the positive feedback of the output voltage U 1 (t) of the differential amplifier 18 thereon Input 20 of the series resonance circuit RLC begins to oscillate. The amplification of the input signal U 1 (t) is chosen so high that the second inverter 25 is then always saturated, so that a rectangular voltage U 2 (t) is present at its output, the two voltage levels of which are positive and negative Voltage level correspond with which the entire electronic circuit 14 is fed in a manner known per se with respect to the mass m bipolar. With the help of the ohmic voltage divider 26, which leads to ground m, the level of the voltage U 2 (t) is reduced. A rectangular voltage U 3 (t) is thus present at the output of the amplifier circuit 22 and thus at the input 20 of the differential amplifier 18, which is in phase with the voltage U 1 (t), the amplitude of which is independent of the amplitude of the voltage U 1 ( t) is. The voltage divider 26 has two resistors 31 and 32, the resistor 31 being of the order of magnitude of the resistance R S of the coil S. The resistor 32 is dimensioned such that the level of the voltage U 3 (t) is a few tens to one hundred millivolts. The amplitude detector 23 is used to measure the amplitude of the voltage U 1 (t) and to pass it on to the microprocessor 15 in a suitable form.

Bei der Passage der Münze M an der Spule S vorbei ändert sich gegebenenfalls mit der Veränderung der Induktivität LS die Resonanzfrequenz ω0(LS). Die beschriebene Schaltung 14 arbeitet so, dass der Serieresonanzkreis RLC mit einer Frequenz ω schwingt, die immer gleich der Resonanzfrequenz ω0(LS) ist. Bei der Passage der Münze M an der Spule S vorbei ändert sich auch deren Widerstand RS. Da der Serieresonanzkreis RLC bei Resonanz die ohmsche Impedanz ZS = RS aufweist und da die Spannung U3(t), die der Erregung des Serieresonanzkreises RLC dient, eine periodische Spannung mit konstanter Amplitude ist, ist der durch den Serieresonanzkreis RLC fliessende Strom i(t) und damit die Amplitude der Spannung U1(t) am Ausgang des Differenzverstärkers 18 direkt ein Mass für den Widerstand RS der Spule S. Die Auswertung des Signales U1(t) erfolgt nun wie vorgängig beschrieben durch den Mikroprozessor 15.When the coin M passes the coil S, the resonance frequency ω 0 (L S ) changes with the change in the inductance L S. The circuit 14 described operates in such a way that the series resonance circuit RLC oscillates at a frequency ω which is always equal to the resonance frequency ω 0 (L S ). When the coin M passes the coil S, its resistance R S also changes . Since the series resonance circuit RLC has the ohmic impedance Z S = R S at resonance and since the voltage U 3 (t) which serves to excite the series resonance circuit RLC is a periodic voltage with constant amplitude, the current flowing through the series resonance circuit RLC is i (t) and thus the amplitude of the voltage U 1 (t) at the output of the differential amplifier 18 directly measures the resistance R S of the coil S. The evaluation of the signal U 1 (t) is now carried out by the microprocessor 15 as previously described.

Die Frequenz ω der am Ausgang des zweiten Inverters 25 vorhandenen Rechteckspannung U2(t) ist auf einfache, nicht dargestellte Weise bestimmbar, beispielsweise mit einem Zählbaustein, der entsprechend dem zeitlichen Verlauf der Amplitude der Spannung U1(t) vom Mikroprozessor 15 zum Zählen freigebbar ist, während die Münze M die Spule S bedeckt. Die so bei der Spule 9 oder bei der Spule 10 bestimmten Frequenzen ω1 bzw. ω2 entsprechen den Resonanzfrequenzen beim Durchgang der Münze M und stellen eine dritte und vierte charakteristische Grösse K3 bzw. K4 dar, die als weitere Entscheidungskriterien für die Annahme oder Zurückweisung der Münze M dienen können.The frequency ω of the square-wave voltage U 2 (t) present at the output of the second inverter 25 can be determined in a simple manner, not shown, for example with a counter module which is counted by the microprocessor 15 in accordance with the time course of the amplitude of the voltage U 1 (t) can be released while the coin M covers the coil S. The frequencies ω 1 and ω 2 determined in this way in the coil 9 or in the coil 10 correspond to the resonance frequencies when the coin M passes and represent a third and fourth characteristic variable K 3 and K 4 , which are further decision criteria for the acceptance or reject the coin M can serve.

Mit der beschriebenen Einrichtung sind die Grössen K1 und K2 und damit die Legierungszusammensetzung und die Dicke d der Münze M mit einer Genauigkeit bestimmbar, die ausreicht, um eine Vielzahl von Münzen M unterscheiden zu können. Um die Betrugsmöglichkeit auszuschliessen, dass mit einer Münze M1 kleiner Dicke d oder mit einem dünnen metallischen Plättchen eine Münze M2 einer bestimmten Legierung und grösserer Dicke d vorgetäuscht werden kann, in dem der Abstand der Münze M1 oder des metallischen Plättchens von der Spule 9 absichtlich vergrössert wird, beispielsweise durch Einschieben einer nichtmetallischen Schicht zwischen die Münze M1 und die Spule 9, genügt es festzustellen, ob die Resonanzfrequenz ω0(L2) der Spule 9 während des Durchganges der Münze M grösser oder kleiner als bei Abwesenheit einer Münze ist. Das Vorzeichen der Änderung der Resonanzfrequenz ω0(L2) der Spule 9 dient somit mit Vorteil als weiteres Entscheidungskriterium für die Annahme oder Zurückweisung der Münze M. Eine genaue Bestimmung der Resonanzfrequenz ω0(L2) bei Anwesenheit der Münze M ist nicht erforderlich.With the device described, the sizes K 1 and K 2 and thus the alloy composition and the thickness d of the coin M can be determined with an accuracy which is sufficient to be able to distinguish a large number of coins M. In order to exclude the possibility of fraud that a coin M2 of a certain alloy and greater thickness d can be simulated with a coin M1 of small thickness d or with a thin metallic plate by deliberately increasing the distance of the coin M1 or the metallic plate from the coil 9 is, for example by inserting a non-metallic layer between the coin M1 and the coil 9, it is sufficient to determine whether the resonance frequency ω 0 (L 2 ) of the coil 9 is greater or less during the passage of the coin M than in the absence of a coin. The sign of the change in resonance frequency ω 0 (L 2 ) of the coil 9 thus advantageously serves as a further decision criterion for the acceptance or rejection of the coin M. A precise determination of the resonance frequency ω 0 (L 2 ) in the presence of the coin M is not necessary.

Die Anordnung der Spule 9 bzw. 10 im Serieresonanzkreis RLC bietet den Vorteil, dass eine die Legierungszusammensetzung charakterisierende Grösse bzw. die Dicke d charakterisierende Grösse mit einer einfach aufgebauten Schaltung bestimmbar ist, welche die Bedämpfung des Serieresonanzkreises RLC bei Anwesenheit der Münze M misst. Der Serieresonanzkreis RLC stellt mithin ein besonders geeignetes Mittel dar, um die in der Spule S induzierte Widerstandsänderung zu messen. Damit sind auch Münzen erkennbar, die bei Verwendung eines Parallelresonanzkreises keine oder eine ungenügende Signaländerung ergeben, wenn sich die Änderungen der Induktivität LS und des Widerstandes RS gegenseitig kompensieren.The arrangement of the coil 9 or 10 in the series resonance circuit RLC offers the advantage that a quantity characterizing the alloy composition or the thickness d characterizing quantity can be determined with a simply constructed circuit which measures the damping of the series resonance circuit RLC in the presence of the coin M. The series resonance circuit RLC therefore represents a particularly suitable means for measuring the change in resistance induced in the coil S. This also makes it possible to identify coins which, when using a parallel resonance circuit, result in no or an inadequate signal change if the changes in the inductance L S and the resistance R S compensate one another.

Die Induktivität LS der Spule S und der Wert des kapazitiven Elementes C sind so gewählt, dass die Resonanzfrequenz ω0(LS) des Schwingkreises RLC im Bereich von 50 bis 200 kHz liegt, wobei ein typischer Wert 90 kHz ist. Bei diesen Frequenzen ist die Eindringtiefe des von der Spule S erzeugten Magnetfeldes in die Münze M ausreichend gross, so dass die materialmässige Zusammensetzung der Münze M genügend selektiv bestimmbar ist.The inductance L S of the coil S and the value of the capacitive element C are selected such that the resonance frequency ω 0 (L S ) of the resonant circuit RLC is in the range from 50 to 200 kHz, a typical value being 90 kHz. At these frequencies, the depth of penetration of the magnetic field generated by the coil S into the coin M is sufficiently large that the material composition of the coin M can be determined sufficiently selectively.

Schwankungen des Pegels der den Resonanzkreis RLC erregenden Spannung U3(t), die z.B. von Schwankungen der Betriebsspannung, die der Energieversorgung der Schaltung 14 dient, herrühren, haben keinen Einfluss auf die Grössen P1 und P2, da diese ein Verhältnis von zwei unmittelbar aufeinanderfolgenden Widerstandsmessungen darstellen.Fluctuations in the level of the voltage U 3 (t) which excites the resonance circuit RLC, which result, for example, from fluctuations in the operating voltage which serves to supply the circuit 14 with power, have no influence on the quantities P 1 and P 2 , since these have a ratio of two represent successive resistance measurements.

Die Inverter 24 und 25 können beispielsweise Inverter des bekannten Typs 4007 sein. Bei einer besonderen Ausführungsform der Schaltung 14 ist wenigstens einer der Inverter 24 oder 25 durch einen NAND- oder einen NOR-Baustein mit einem zusätzlichen Eingang ersetzt, wobei der zusätzliche Eingang mit einem Ausgang des Mikroprozessors 15 verbunden ist. Über das logische Potential an diesem Ausgang des Mikroprozessors 15 ist die Schaltung 14 auf einfache Weise ein- und ausschaltbar. Die Schaltung 14 ist somit bedarfsgerecht nur gerade zur Prüfung einer Münze M kurzzeitig einschaltbar. Der Ersatz beider Inverter 24 und 25 durch einen NAND- oder einen NOR-Baustein bietet den Vorteil, dass die Schaltung 14 im ausgeschalteten Zustand äusserst wenig Energie benötigt.Inverters 24 and 25 can be, for example, inverters of the known type 4007. In a special embodiment of the circuit 14, at least one of the inverters 24 or 25 is replaced by a NAND or a NOR module with an additional input, the additional input being connected to an output of the microprocessor 15. The circuit 14 can be switched on and off in a simple manner via the logic potential at this output of the microprocessor 15. The circuit 14 can therefore only be switched on for a short time just for checking a coin M. The replacement of both inverters 24 and 25 by a NAND or a NOR module offers the advantage that the circuit 14 requires very little energy when switched off.

Die Fig. 6 zeigt nur ein Beispiel einer elektronischen Schaltung 14, welche zur Erfassung der Änderung des Widerstandes RS der Spule S mittels eines Serieresonanzkreises RLC geeignet ist. In der Fachliteratur sind unzählige weitere Beispiele von elektrischen Beschaltungen des Serieresonanzkreises RLC zu finden, welche den Serieresonanzkreis RLC mit einer Spannung oder einem Strom erregen.FIG. 6 shows only one example of an electronic circuit 14 which is suitable for detecting the change in the resistance R S of the coil S by means of a series resonance circuit RLC. In the technical literature there are countless other examples of electrical circuits of the series resonance circuit RLC which excite the series resonance circuit RLC with a voltage or a current.

Claims (9)

  1. Device for testing the authenticity of coins (M), tokens or other flat metallic objects, having a coin channel (1) with a lower (4) and an upper (5) side wall, the coin channel (1) being inclined by a predetermined angle with respect to the vertical (V) and the coin (M), in the ideal case, moving along the lower side wall (4) in contact, having two inductive sensors arranged along the coin channel (1), an electronic circuit (14) and having a control and evaluation unit (15), characterised in that the first inductive sensor is a coil (9) fitted to the lower side wall (4), in that the second inductive sensor is a coil (10) fitted to the upper side wall (5), in that means (13, 14) are provided to operate the two coils (9, 10) electrically independently, in that the electronic circuit (14) is equipped to measure the variation with time of the ohmic resistance R9(t) and R10(t) of the two coils (9, 10) during the passage of a coin (M), in that the control and evaluation unit (15) determines the greatest value of the resistance R9(t) of the first coil (9) as the value K1, in that the control and evaluation unit (15) determines the local maxima (m1, m2) of the resistance R10(t) assumed by the second coil (10) and determines the greater of the two values (v1, v2) of the two maxima (m1, m2) as the value K2, and in that the values K1 and K2 or the values K1 and H2 = K1 + K2 serve to decide about the acceptance or rejection of the coin (M).
  2. Device for testing the authenticity of coins (M), tokens or other flat metallic objects, having a coin channel (1) with a lower (4) and an upper (5) side wall, the coin channel (1) being inclined by a predetermined angle with respect to the vertical (V) and the coin (M), in the ideal case, moving along the lower side wall (4) in contact, having two inductive sensors arranged along the coin channel (1), an electronic circuit (14) and having a control and evaluation unit (15), characterised in that the first inductive sensor is a coil (9) fitted to the lower side wall (4), in that the second inductive sensor is a coil (10) fitted to the upper side wall (5) in that means (13, 14) are provided to operate the two coils (9, 10) electrically independently, in that the electronic circuit (14) is equipped to measure the variation with time of the ohmic resistance R9(t) and R10(t) of the two coils (9, 10) during the passage of a coin (M), in that the control and evaluation unit (15) determines the greatest value of the resistance R9(t) of the first coil (9) as the value K1, in that the control and evaluation unit (15) determines the local maxima (m1, m2) of the resistance R10(t) assumed by the second coil (10) and determines the greater of the two values (v1, v2) of the two maxima (m1, m2) as the value K2, in that the control and evaluation unit (15) determines the internal resistance r1 of the first coil (9) and the internal resistance r2 of the second coil (10) directly before or after the passage of the coin (M), and in that the values P1 = r1/K1 and P2 = r2/K2 or the values P1 and I2 = P1 +P2 serve to decide about the acceptance or rejection of the coin (M).
  3. Device according to Claim 1 to 2, characterised in that the coils (9, 10) are arranged to measure the resistance in a series resonant circuit (RLC).
  4. Device according to Claim 3, characterised in that the electronic circuit (14) comprises a differential amplifier (18) and an amplifier circuit (22), the output of the differential amplifier (18) being fed back via a resistor (21) to the inverting input (19) and via the amplifier circuit (22) to the non-inverting input (20), and the amplifier circuit (22), firstly, on switching on the electronic circuit (14), brings the series resonant circuit (RLC) into oscillation and, secondly, makes available an amplitude-stabilised voltage (U3(t)) for exciting the series resonant circuit (RLC).
  5. Device according to Claim 4, characterised in that the amplifier circuit (22) has two inverters (24, 25) connected in series or NAND or NOR components.
  6. Device according to one of Claims 3 to 5, characterised in that means are provided in order, during the passage of the coin (M), to determine the sign of the change in the resonant frequency (ω0(LS)) in the first coil (9), and in that this sign serves as a further decision criterion for the acceptance or rejection of the coin (M).
  7. Device according to one of Claims 1 to 6, characterised in that a metallic platelet (11, 12) is fitted in each case on that side wall (5, 4) lying opposite the coils (9, 10).
  8. Device according to one of Claims 1 to 7, characterised in that the lower side wall (4) is provided with ribs (7) in the running direction of the coin and that the radius of curvature (R) of the ribs (7) is at least half as large as the spacing (a) of adjacent ribs (7).
  9. Device according to Claim 8, characterised in that the radius of curvature (R) of the ribs (7) is approximately comparable to the spacing (a) of adjacent ribs (7).
EP95810150A 1994-09-21 1995-03-08 Device for authenticating coins, tokens or other flat metal objects Expired - Lifetime EP0704825B1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
DE59501034T DE59501034D1 (en) 1994-09-21 1995-03-08 Device for checking the authenticity of coins, tokens or other flat metallic objects
EP95810150A EP0704825B1 (en) 1994-09-21 1995-03-08 Device for authenticating coins, tokens or other flat metal objects
ES95810150T ES2109795T3 (en) 1994-09-21 1995-03-08 DEVICE FOR VERIFICATION OF THE AUTHENTICITY OF COINS, TOKENS OR OTHER FLAT METAL OBJECTS.
AT95810150T ATE160639T1 (en) 1994-09-21 1995-03-08 DEVICE FOR CHECKING THE AUTHENTICITY OF COINS, TOKENS OR OTHER FLAT METALLIC OBJECTS
DK95810150T DK0704825T3 (en) 1994-09-21 1995-03-08 Device for testing the authenticity of coins, game marks or other flat metallic objects
CZ952437A CZ243795A3 (en) 1994-09-21 1995-09-19 Apparatus for testing genuineness of coins, jettons or other flat articles
PL95310542A PL177877B1 (en) 1994-09-21 1995-09-19 Apparatus for verifying authenticity of coins, tokens or other flat metal objects
FI954442A FI954442A (en) 1994-09-21 1995-09-20 Device for checking the authenticity of coins, chips or other flat metal objects
NO953707A NO308719B1 (en) 1994-09-21 1995-09-20 Device for testing the authenticity of coins, chips or other flat metallic objects
CN95116556.9A CN1134000A (en) 1994-09-21 1995-09-20 Device for testing authenticity of coins, tokens or other flat metallic objects
RO95-01644A RO115994B1 (en) 1994-09-21 1995-09-20 Device for checking the authenticity of coins, tokens or other flat metal objects
EE9500067A EE03103B1 (en) 1994-09-21 1995-09-20 Device for checking the authenticity of coins, tokens and other flat metal objects
RU95116434/09A RU2155381C2 (en) 1994-09-21 1995-09-21 Device for checking authenticity of coins, tokens and other flat metal objects
TR95/01151A TR199501151A2 (en) 1994-09-21 1995-09-21 A device for testing whether coins, tokens or other flat metal objects are real.
LVP-95-290A LV11505B (en) 1994-09-21 1995-09-21 Device for testing the authenticity of coins, tokens or other flat metallic objects
GR970403232T GR3025581T3 (en) 1994-09-21 1997-12-03 Authenticating device for coins, tokens and other flat, metallic objects

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP94810544 1994-09-21
EP94810544 1994-09-21
CH350/95 1995-02-08
CH35095 1995-02-08
EP95810150A EP0704825B1 (en) 1994-09-21 1995-03-08 Device for authenticating coins, tokens or other flat metal objects

Publications (2)

Publication Number Publication Date
EP0704825A1 EP0704825A1 (en) 1996-04-03
EP0704825B1 true EP0704825B1 (en) 1997-11-26

Family

ID=27172020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810150A Expired - Lifetime EP0704825B1 (en) 1994-09-21 1995-03-08 Device for authenticating coins, tokens or other flat metal objects

Country Status (16)

Country Link
EP (1) EP0704825B1 (en)
CN (1) CN1134000A (en)
AT (1) ATE160639T1 (en)
CZ (1) CZ243795A3 (en)
DE (1) DE59501034D1 (en)
DK (1) DK0704825T3 (en)
EE (1) EE03103B1 (en)
ES (1) ES2109795T3 (en)
FI (1) FI954442A (en)
GR (1) GR3025581T3 (en)
LV (1) LV11505B (en)
NO (1) NO308719B1 (en)
PL (1) PL177877B1 (en)
RO (1) RO115994B1 (en)
RU (1) RU2155381C2 (en)
TR (1) TR199501151A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0805423B1 (en) * 1996-04-03 2004-08-04 IPM International SA Device for checking the validity of coins, tokens or other flat metallic objects
GB9823970D0 (en) 1998-11-02 1998-12-30 Coin Controls Improved sensor for coin acceptor
ES2153770B1 (en) * 1999-03-31 2001-10-01 Normalizacion Europ S A "PASS SPEED CONTROLLER DEVICE CONTROLLER DEVICE"
GB2400223A (en) * 2003-04-04 2004-10-06 Money Controls Ltd Guiding coins in a coin acceptor
JP4545184B2 (en) * 2007-11-20 2010-09-15 東芝テック株式会社 Coin slope
JP5178243B2 (en) * 2008-03-05 2013-04-10 ローレル精機株式会社 Coin identification device
WO2013138152A1 (en) * 2012-03-14 2013-09-19 Mei, Inc. Coin sensor
EP3044766B1 (en) * 2013-09-11 2023-06-07 Blau Product Development Inc. A device for use in detecting counterfeit or altered bullion, coins or metal
RU2652644C2 (en) * 2017-03-28 2018-04-28 Дмитрий Владимирович Самойлов Device for platinum coins, tokens and medals of the russian empire manufactured in the period from 1826 to 1845 identification and determination of the authenticity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2408183A1 (en) * 1977-11-03 1979-06-01 Signaux Entr Electriques CONTROLLER OF METAL COINS, AND IN PARTICULAR COINS
DE3007484A1 (en) * 1980-02-28 1981-09-10 Löwen-Automaten Gerhard W. Schulze GmbH & Co KG, 6530 Bingen Coin tester inlet channel - has deflector forcing smaller dia. coins into recess in side wall for rejection
DE3485866T2 (en) * 1983-11-04 1992-12-10 Mars Inc DEVICE FOR DETECTING THE VALIDITY OF COINS.
GB8500220D0 (en) * 1985-01-04 1985-02-13 Coin Controls Discriminating between metallic articles
US4705154A (en) * 1985-05-17 1987-11-10 Matsushita Electric Industrial Co. Ltd. Coin selection apparatus
CH667546A5 (en) * 1985-07-26 1988-10-14 Autelca Ag COIN CHECKING DEVICE.
DK546087A (en) * 1987-10-19 1989-04-20 Gn Telematic A S METHOD AND APPARATUS FOR THE EXAMINATION OF MOUNTS

Also Published As

Publication number Publication date
EE03103B1 (en) 1998-06-15
EP0704825A1 (en) 1996-04-03
LV11505A (en) 1996-08-20
LV11505B (en) 1996-12-20
PL177877B1 (en) 2000-01-31
ES2109795T3 (en) 1998-01-16
FI954442A0 (en) 1995-09-20
NO953707L (en) 1996-03-22
RU2155381C2 (en) 2000-08-27
GR3025581T3 (en) 1998-03-31
NO953707D0 (en) 1995-09-20
FI954442A (en) 1996-03-22
ATE160639T1 (en) 1997-12-15
TR199501151A2 (en) 1996-06-21
DE59501034D1 (en) 1998-01-08
PL310542A1 (en) 1996-04-01
RO115994B1 (en) 2000-08-30
CZ243795A3 (en) 1996-04-17
DK0704825T3 (en) 1998-08-10
CN1134000A (en) 1996-10-23
NO308719B1 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
DE2935539C2 (en)
DE2654472C2 (en)
EP2121203B1 (en) Method and device for differentiating objects influencing an electromagnetic alternating field, particularly metal objects
DE3235114A1 (en) COIN CHECKER
DE2240145C2 (en) Device for checking coins
EP0704825B1 (en) Device for authenticating coins, tokens or other flat metal objects
EP2511736A1 (en) Method and device for detecting objects which conduct electricity
DE69819532T2 (en) METHOD AND DEVICE FOR CHECKING COINS
CH655810A5 (en) Coin validator that test a variety coin thicknesses AND / OR coin diameters and / OR coin alloys.
EP2040227B1 (en) Method for inspecting coins
DE3231116A1 (en) METHOD AND DEVICE FOR CHECKING COINS WITH LOW FREQUENCY PHASE SHIFT
DE10049390A1 (en) Coin testing by inspection of the coin surface and edges using a magnetic field generated on either side of the coin so that the surface impressions can be accurately scanned by changes in the magnetic field
DE2716740A1 (en) Automatic coin checking system - uses capacitive and/or inductive sensors generating signals compared with reference values relating to size, denomination and material
DE2916123A1 (en) Coin size and composition discriminator - has sensor with two windings over coin channel connected to separate circuits
EP0805423B1 (en) Device for checking the validity of coins, tokens or other flat metallic objects
DE4138018C1 (en)
DE4415283C2 (en) Device for detecting the fill level in tubes of a coin operated device
EP0818758B1 (en) Device for testing the validity of coins, tokens or other flat, metallic objects
DE4339543C2 (en) Procedure for checking coins
DE3436117C2 (en)
DE2012376A1 (en) Circuit arrangement for distinguishing between different metallic objects, in particular coins
EP0590381B1 (en) Apparatus and method for calibrating a coin tester
DE19548233C2 (en) Electronic coin validator
DE4035289C2 (en) Device for checking coins
EP0543200B1 (en) Coin tester

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 950830;SI

RAX Requested extension states of the european patent have changed

Free format text: LT PAYMENT 950830;SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

17Q First examination report despatched

Effective date: 19970214

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 950830;SI

REF Corresponds to:

Ref document number: 160639

Country of ref document: AT

Date of ref document: 19971215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971128

REF Corresponds to:

Ref document number: 59501034

Country of ref document: DE

Date of ref document: 19980108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2109795

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

RIN2 Information on inventor provided after grant (corrected)

Free format text: SEITZ, THOMAS * DE VRIES, JACOB DIPL.EI. ING. * VASCONCELOS MANUEL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

RIN2 Information on inventor provided after grant (corrected)

Free format text: SEITZ, THOMAS * DE VRIES, JACOB DIPL.EI. ING. * VASCONCELOS MANUEL

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980226

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LANDIS & GYR TECHNOLOGY INNOVATION AG TRANSFER- IP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ELECTROWATT TECHNOLOGY INNOVATION AG C-IPR, 4470

REG Reference to a national code

Ref country code: PT

Ref legal event code: PD4A

Free format text: ELECTROWATT TECHNOLOGY INNOVATION AG CH

Effective date: 19991227

Ref country code: PT

Ref legal event code: PC4A

Free format text: IP-TPG HOLDCO S.A.R.L. LU

Effective date: 19991215

NLS Nl: assignments of ep-patents

Owner name: IP-TPG HOLDCO S.A.R.L.

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ELECTROWATT TECHNOLOGY INNOVATION AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: JOEL WENGER

BECH Be: change of holder

Free format text: 20000104 *IP-TPG HOLDCO S.A.R.L.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20010417

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010514

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

LTLA Lt: lapse of european patent or patent extension
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020402

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: IP-TPG HOLDCO S.A.R.L. TRANSFER- IPM INTERNATIONAL

Ref country code: CH

Ref legal event code: NV

Representative=s name: LEMAN CONSULTING S.A.

BERE Be: lapsed

Owner name: *IP-TPG HOLDCO S.A.R.L.

Effective date: 20020331

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: IPM INTERNATIONAL S.A. CH

Effective date: 20021219

Ref country code: PT

Ref legal event code: PC4A

Free format text: DEUTSCHE TELEKOM AG DE

Effective date: 20021219

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040303

Year of fee payment: 10

NLS Nl: assignments of ep-patents

Owner name: DEUTSCHE TELEKOM A.G.

Owner name: IPM INTERNATIONAL S.A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050308

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: LEMAN CONSULTING S.A.;CHEMIN DE PRECOSSY 31;1260 NYON (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090323

Year of fee payment: 15

Ref country code: ES

Payment date: 20090324

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20090303

Year of fee payment: 15

Ref country code: NL

Payment date: 20090317

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090316

Year of fee payment: 15

Ref country code: GB

Payment date: 20090325

Year of fee payment: 15

Ref country code: CH

Payment date: 20090316

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090312

Year of fee payment: 15

Ref country code: DE

Payment date: 20090320

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090312

Year of fee payment: 15

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20100908

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100308

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100908

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100308

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101004

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100308

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100309