EP0703638B1 - Method and device for enlragement of the radiation diagram for an active antenna - Google Patents

Method and device for enlragement of the radiation diagram for an active antenna Download PDF

Info

Publication number
EP0703638B1
EP0703638B1 EP95402101A EP95402101A EP0703638B1 EP 0703638 B1 EP0703638 B1 EP 0703638B1 EP 95402101 A EP95402101 A EP 95402101A EP 95402101 A EP95402101 A EP 95402101A EP 0703638 B1 EP0703638 B1 EP 0703638B1
Authority
EP
European Patent Office
Prior art keywords
antenna
beams
phase
columns
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95402101A
Other languages
German (de)
French (fr)
Other versions
EP0703638A1 (en
Inventor
Jean-Pierre Marcy
Joseph Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0703638A1 publication Critical patent/EP0703638A1/en
Application granted granted Critical
Publication of EP0703638B1 publication Critical patent/EP0703638B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns

Definitions

  • the present invention relates to a method and a device broadening the radiation pattern of an active antenna.
  • Active antennas are used more and more in speed cameras because they provide many advantages over conventional electronic scanning antennas. Among these advantages are note in particular the use of solid state components, better yield and a gentle degradation of their characteristics.
  • Another advantage of active antennas is to be able to combine by calculation the signals received from the elementary sources of the antenna for simultaneously obtain the equivalent of a multitude of diagrams antenna. This is a technique known as “formation of beams by calculation ". This requires that the space covered by this set of beams was illuminated by the emission of the radar.
  • the present invention relates to a method for expanding the radiation pattern of an active radar antenna so that the enlargement factor can be much greater than 2, without as much decrease the range of the radar, and without modifying the regime of operation of the power amplifiers of this radar, while obtaining a correct radiation pattern.
  • the present invention also relates to a radar setting implements the process of the invention.
  • the object of the invention is therefore the process of widening the radiation pattern of a active antenna comprising k.n columns or rows, of active modules, k being an integer greater than or equal to 1, according to claim 1.
  • the radar according to the invention comprises a transmitter, a receiver and an antenna comprising k.n columns of active modules, and phase shifters according to claim 4.
  • an active antenna 1 comprising n * m active modules MA arranged in a Cartesian network of n columns C1 to Cn each comprising m modules referenced, in each column, MA1 to MAm.
  • the MA modules in each column are connected to a corresponding column distributor, respectively D1 to Dn.
  • Each of these distributors is connected by a receiver element, respectively R1 to Rn, to a beam-forming matrix 2, in a deposit for example.
  • This matrix 2 is either an analog beam forming matrix, or a beamforming matrix by calculation.
  • Matrix 2 is connected to a radar transmitter not shown.
  • FIG. 2 shows an example of a diagram of the phases of the signals applied, in transmission, to the antenna 1.
  • the number n of columns is a multiple of 3.
  • the antenna is divided into three adjacent thirds each with the same number of columns, referenced TG (left third), TC (central third) and TD (right third), on the figure 2.
  • TG left third
  • TC central third
  • TD right third
  • Each of these third parties receives a phase law varying linearly with the abscissa of the column considered, but the slope of these linear laws varies from one third to another.
  • Each third of the antenna thus generates a beam directive whose pointing direction is defined by the slope of its law of phase.
  • the slopes of the three phase laws must have a sufficient distance so that the three bundles supplied are well separated and do not interfere with each other. From a practical point of view, we can estimate that this condition is fulfilled when the separation between the axes of the beams exceed three times the 3 dB width of these beams. So the three beams are far enough from each other not to create mutual interference, while presenting an emission diagram widened (of total width equal to nine times the width of the nominal beam of the antenna).
  • the difference between the axis of the left lobe and the axis of the central lobe is equal to the difference between the axis of the central lobe and the axis of the right lobe.
  • each has a width substantially equal to the nominal angular width of the complete antenna.
  • matrix 2 of FIG. 1 which simultaneously implements nine laws of different phases, from linear preferences, which cover the angular range (in deposit in this case) in which the energy was radiated resignation.
  • Figure 4 we have shown in Figure 4 that four of these phase laws.
  • the phase laws are chosen to so as to obtain, for example, three groups of three adjacent beams, each group covering one of the enlarged lobes in which was carried out transmission.
  • the beams are generally moved (new, in this case) thus formed, in order to cover without "holes" the area angular (on site and / or in deposit) monitored. This move is made by simultaneously varying the phases of the groups of beams.
  • the method of the invention can be associated with conventional beam widening methods.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

La présente invention a pour objet un procédé et un dispositif d'élargissement du diagramme de rayonnement d'une antenne active.The present invention relates to a method and a device broadening the radiation pattern of an active antenna.

Les antennes actives sont de plus en plus utilisées dans les radars parce qu'elles apportent de nombreux avantages par rapport aux antennes à balayage électronique classiques. Parmi ces avantages, on notera en particulier l'utilisation de composants à l'état solide, un meilleur rendement et une dégradation douce de leurs caractéristiques.Active antennas are used more and more in speed cameras because they provide many advantages over conventional electronic scanning antennas. Among these advantages are note in particular the use of solid state components, better yield and a gentle degradation of their characteristics.

Un autre avantage des antennes actives est de pouvoir combiner par calcul les signaux reçus des sources élémentaires de l'antenne pour obtenir simultanément l'équivalent d'une multitude de diagrammes d'antenne. Il s'agit là d'une technique connue sous le nom de "formation de faisceaux par le calcul". Cela nécessite que l'espace couvert par cet ensemble de faisceaux ait été illuminé par l'émission du radar.Another advantage of active antennas is to be able to combine by calculation the signals received from the elementary sources of the antenna for simultaneously obtain the equivalent of a multitude of diagrams antenna. This is a technique known as "formation of beams by calculation ". This requires that the space covered by this set of beams was illuminated by the emission of the radar.

Cependant, on ne peut pas élargir sensiblement le faisceau d'émission de ces antennes actives sans dégrader leurs caractéristiques. Un tel faisceau élargi est souvent nécessaire en mode veille, en particulier afin d'assurer un temps de mesure suffisant pour obtenir des conditions favorables en mesures Doppler (pour l'élimination des échos fixes).However, you cannot significantly broaden the beam emission of these active antennas without degrading their characteristics. A such an extended beam is often necessary in standby mode, in particular in order ensure sufficient measurement time to obtain conditions favorable in Doppler measurements (for the elimination of fixed echoes).

Le procédé classique d'élargissement de faisceau par utilisation d'une loi de phase quadratique est limité à un élargissement de facteur 2 en raison de la loi d'illumination uniforme imposée par les amplificateurs de puissance des émetteurs radar, qui fonctionnent très généralement en classe C, afin d'obtenir un bon rendement.The classic beam widening process by use of a quadratic phase law is limited to a widening of factor 2 in because of the law of uniform illumination imposed by the amplifiers of power of radar transmitters, which generally operate in class C, in order to obtain a good yield.

On pourrait envisager d"'éteindre", à l'émission, une partie de l'antenne, mais une telle solution serait rédhibitoire pour des facteurs d'élargissement de faisceau élevés, car alors le produit : (puissance d'émission gain) s'écroule, et par voie de conséquence, la portée du radar également.We could consider "extinguishing", on emission, part of the antenna, but such a solution would be prohibitive for factors high beam widening, because then the product: (power gain) collapses, and consequently the range of the radar also.

La présente invention a pour objet un procédé permettant d'élargir le diagramme de rayonnement d'une antenne active de radar de façon que le facteur d'élargissement puisse être nettement supérieur à 2, sans pour autant diminuer la portée du radar, et sans modifier le régime de fonctionnement des amplificateurs de puissance de ce radar, tout en obtenant un diagramme de rayonnement correct.The present invention relates to a method for expanding the radiation pattern of an active radar antenna so that the enlargement factor can be much greater than 2, without as much decrease the range of the radar, and without modifying the regime of operation of the power amplifiers of this radar, while obtaining a correct radiation pattern.

La présente invention a également pour objet un radar mettant en oeuvre le procédé de l'invention.The present invention also relates to a radar setting implements the process of the invention.

L'invention a donc pour objet le procédé d'élargissement du diagramme de rayonnement d'une antenne active comportant k.n colonnes ou lignes, de modules actifs, k étant un entier supérieur ou égal à 1, selon la revendication 1.The object of the invention is therefore the process of widening the radiation pattern of a active antenna comprising k.n columns or rows, of active modules, k being an integer greater than or equal to 1, according to claim 1.

Le radar conforme à l'invention comporte un émetteur, un récepteur et une antenne comportant k.n colonnes de modules actifs, et des déphaseurs selon la revendication 4.The radar according to the invention comprises a transmitter, a receiver and an antenna comprising k.n columns of active modules, and phase shifters according to claim 4.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :

  • la figure 1 est un schéma simplifié d'une partie d'un radar conforme à l'invention,
  • la figure 2 est un diagramme des déphasages appliqués en émission, aux différentes parties de l'antenne de la figure 1, dans le cas où cette antenne est divisée en trois parties,
  • la figure 3 est un diagramme des faisceaux d'émission, en fonction du gisement, de l'antenne de l'invention, à laquelle sont appliqués les déphasages selon la figure 2,
  • la figure 4 est un diagramme des lois de phase appliquées en réception à l'antenne de l'invention, et
  • la figure 5 est un diagramme des faisceaux de réception, en fonction du gisement, de l'antenne de l'invention.
The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which:
  • FIG. 1 is a simplified diagram of part of a radar in accordance with the invention,
  • FIG. 2 is a diagram of the phase shifts applied in transmission, to the different parts of the antenna of FIG. 1, in the case where this antenna is divided into three parts,
  • FIG. 3 is a diagram of the transmission beams, as a function of the deposit, of the antenna of the invention, to which the phase shifts according to FIG. 2 are applied,
  • FIG. 4 is a diagram of the phase laws applied to reception on the antenna of the invention, and
  • FIG. 5 is a diagram of the reception beams, as a function of the deposit, of the antenna of the invention.

L'invention est décrite ci-dessous en référence à l'élargissement en gisement du diagramme d'une antenne, mais il est bien entendu que l'élargissement pourrait aussi être réalisé en site, au lieu du gisement ou en plus de celui-ci.The invention is described below with reference to the enlargement in the face of the diagram of an antenna, but it is understood that the enlargement could also be carried out on site, instead of the deposit or in more of it.

On a schématiquement représenté en figure 1 une antenne active 1 comportant n*m modules actifs MA disposés en un réseau cartésien de n colonnes C1 à Cn comportant chacune m modules référencés, dans chaque colonne, MA1 à MAm. Les modules MA de chaque colonne sont reliés à un distributeur de colonne correspondant, respectivement D1 à Dn. Chacun de ces distributeurs est relié par un élément de récepteur, respectivement R1 à Rn, à une matrice 2 de formation de faisceaux, en gisement par exemple. Cette matrice 2 est soit une matrice de formation de faisceaux analogique, soit une matrice de formation de faisceaux par le calcul. La matrice 2 est reliée à un émetteur radar non représenté.There is schematically shown in Figure 1 an active antenna 1 comprising n * m active modules MA arranged in a Cartesian network of n columns C1 to Cn each comprising m modules referenced, in each column, MA1 to MAm. The MA modules in each column are connected to a corresponding column distributor, respectively D1 to Dn. Each of these distributors is connected by a receiver element, respectively R1 to Rn, to a beam-forming matrix 2, in a deposit for example. This matrix 2 is either an analog beam forming matrix, or a beamforming matrix by calculation. Matrix 2 is connected to a radar transmitter not shown.

On a représenté en figure 2 un exemple de diagramme des phases des signaux appliqués, en émission, à l'antenne 1. Pour cet exemple, le nombre n de colonnes est un multiple de 3. On considère les colonnes dans l'ordre depuis un côté vers l'autre. L'antenne est divisée en trois tiers adjacents comportant chacun le même nombre de colonnes, référencés TG (tiers gauche), TC (tiers central) et TD (tiers droit), sur la figure 2. Chacun de ces tiers reçoit une loi de phase variant linéairement avec l'abscisse de la colonne considérée, mais la pente de ces lois linéaires varie d'un tiers à l'autre. Chaque tiers d'antenne génère ainsi un faisceau directif dont la direction de pointage est définie par la pente de sa loi de phase.FIG. 2 shows an example of a diagram of the phases of the signals applied, in transmission, to the antenna 1. For this example, the number n of columns is a multiple of 3. We consider the columns in order from side to side. The antenna is divided into three adjacent thirds each with the same number of columns, referenced TG (left third), TC (central third) and TD (right third), on the figure 2. Each of these third parties receives a phase law varying linearly with the abscissa of the column considered, but the slope of these linear laws varies from one third to another. Each third of the antenna thus generates a beam directive whose pointing direction is defined by the slope of its law of phase.

Sur la figure 3, on a représenté, en coordonnées cartésiennes, le diagramme, en fonction du gisement, des faisceaux produits par l'antenne alimentée de la façon décrite ci-dessus en référence à la figure 2. On obtient trois lobes de faisceaux sensiblement identiques, dont chacun présente une largeur angulaire L (à -3dB) égale à trois fois celle du lobe du faisceau nominal de l'antenne active classique complète. Sur cette figure 3, on a noté D les entraxes des trois lobes, D étant proportionnel à l'angle α (voir figure 2), et on a noté D1 la distance entre l'axe du lobe central et l'axe A de l'antenne, D1 étant proportionnelle à α0 (voir figure 2).In Figure 3, we have shown, in Cartesian coordinates, the diagram, depending on the location, of the beams produced by the antenna supplied as described above with reference to Figure 2. We obtain three substantially identical beam lobes, each of which has a angular width L (at -3dB) equal to three times that of the beam lobe nominal of the full conventional active antenna. In this figure 3, we noted D the centers of the three lobes, D being proportional to the angle α (see figure 2), and we denote by D1 the distance between the axis of the central lobe and the axis A of the antenna, D1 being proportional to α0 (see Figure 2).

Les pentes des trois lois de phases doivent avoir entre elles un écart suffisant pour que les trois faisceaux fournis soient bien séparés et n'interfèrent pas entre eux. D'un point de vue pratique, on peut estimer que cette condition est réalisée lorsque la séparation entre les axes des faisceaux excède trois fois la largeur à 3 dB de ces faisceaux. Ainsi, les trois faisceaux sont suffisamment éloignés les uns des autres pour ne pas créer d'interférences mutuelles, tout en présentant un diagramme d'émission élargi (de largeur totale égale à neuf fois la largeur du faisceau nominal de l'antenne).The slopes of the three phase laws must have a sufficient distance so that the three bundles supplied are well separated and do not interfere with each other. From a practical point of view, we can estimate that this condition is fulfilled when the separation between the axes of the beams exceed three times the 3 dB width of these beams. So the three beams are far enough from each other not to create mutual interference, while presenting an emission diagram widened (of total width equal to nine times the width of the nominal beam of the antenna).

Il est avantageux, sans que cela soit une obligation, que l'écart entre l'axe du lobe de gauche et l'axe du lobe central soit égal à l'écart entre l'axe du lobe central et l'axe du lobe de droite. Ceci implique que l'écart entre les pentes des lois de phase soit le même entre le tiers gauche et le tiers central qu'entre le tiers central et le tiers de droite (angle α sur la figure 2).It is advantageous, without this being an obligation, that the difference between the axis of the left lobe and the axis of the central lobe is equal to the difference between the axis of the central lobe and the axis of the right lobe. This implies that the gap between the slopes of the phase laws be the same between the left third and the central third than between the central third and the right third (angle α in the figure 2).

Pour illuminer tout l'espace dans lequel le radar est censé fonctionner, il suffit de maintenir constant l'angle α, ce qui impose l'espacement entre les trois lobe, et d'effectuer le balayage en azimut de l'espace souhaité à l'aide des trois faisceaux en faisant varier l'angle α0 (figure 2) qui définit le pointage du faisceau central.To illuminate all the space in which the radar is supposed to just keep the angle α constant, which requires the spacing between the three lobes, and perform the azimuth scan of the desired space using the three beams by varying the angle α0 (figure 2) which defines the pointing of the central beam.

A la réception, on forme simultanément neuf faisceaux dont chacun a une largeur sensiblement égale à la largeur angulaire nominale de l'antenne complète. Ceci est réalisé grâce à la matrice 2 de la figure 1 qui met en oeuvre simultanément neuf lois des phases différentes, de préférence linéaires, qui permettent de couvrir le domaine angulaire (en gisement dans le cas présent) dans lequel a été rayonnée l'énergie d'émission. Pour simplifier le dessin, on n' a représenté en figure 4 que quatre de ces lois de phases.At the reception, nine beams are formed simultaneously, each has a width substantially equal to the nominal angular width of the complete antenna. This is achieved thanks to the matrix 2 of FIG. 1 which simultaneously implements nine laws of different phases, from linear preferences, which cover the angular range (in deposit in this case) in which the energy was radiated resignation. To simplify the drawing, we have shown in Figure 4 that four of these phase laws.

Comme on le voit en figure 5, les lois de phases sont choisies de façon à obtenir, par exemple, trois groupes de trois faisceaux adjacents, chaque groupe recouvrant l'un des lobes élargis dans lequel s'est réalisée l'émission. En état de veille, on déplace globalement les faisceaux (neuf, dans le cas présent) ainsi formés, afin de couvrir sans "trous" le domaine angulaire (en site et/ou en gisement) surveillé. Ce déplacement est effectué en faisant varier simultanément les phases des groupes de faisceaux.As seen in Figure 5, the phase laws are chosen to so as to obtain, for example, three groups of three adjacent beams, each group covering one of the enlarged lobes in which was carried out transmission. In the standby state, the beams are generally moved (new, in this case) thus formed, in order to cover without "holes" the area angular (on site and / or in deposit) monitored. This move is made by simultaneously varying the phases of the groups of beams.

De façon générale, lorsqu'on divise une antenne comportant k.n colonnes (ou lignes) en n groupes égaux adjacents, on obtient, selon l'invention, un élargissement de la largeur du faisceau d'origine de n2. En pratique, ces élargissements peuvent être de 1, 4, 9, 16, 25...In general, when an antenna comprising kn columns (or rows) is divided into n adjacent equal groups, according to the invention, the width of the original beam of n 2 is widened. In practice, these enlargements can be 1, 4, 9, 16, 25 ...

Bien entendu, le procédé de l'invention peut être associé aux procédés classiques d'élargissement de faisceau.Of course, the method of the invention can be associated with conventional beam widening methods.

Claims (6)

  1. Method of broadening the radiation diagram of an active antenna having k.n columns or rows of active modules, k being an integer greater than or equal to 1, characterized in that it consists in dividing the antenna into n adjacent groups of k columns, in applying, during transmission, a signal with its own phase law to each of the n groups in order to form n transmission beams and, during reception, in forming n2 simultaneous beams, each having an angular width equal to the angular width of the nominal beam of the full antenna, the relative phase shifts of these beams each following a different law, this set of transmission and reception beams being moved as a whole in order to cover all of the desired angular range.
  2. Method according to Claim 1, characterized in that, during transmission, at least some of the phase laws are linear.
  3. Method according to one of Claims 1 and 2, characterized in that, during reception, at least some of the phase-shift laws are linear.
  4. Radar having a transmitter, a receiver and an antenna having k.n columns or rows of active modules and phase shifters, characterized in that the transmitter has circuits applying different control signals to the corresponding phase shifters (D1...Dn) for each of n adjacent groups of k columns of active modules (MA), the receiver is connected to a beam-formation matrix (2) and the said phase shifters and the matrix are controlled according to the method of Claims 1 to 3.
  5. Radar according to Claim 4, characterized in that the beam-formation matrix is of the type which forms beams by computation.
  6. Radar according to Claim 4, characterized in that the beam-formation matrix is of the analogue type.
EP95402101A 1994-09-23 1995-09-19 Method and device for enlragement of the radiation diagram for an active antenna Expired - Lifetime EP0703638B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9411377 1994-09-23
FR9411377A FR2725075B1 (en) 1994-09-23 1994-09-23 METHOD AND DEVICE FOR ENLARGING THE RADIATION DIAGRAM OF AN ACTIVE ANTENNA

Publications (2)

Publication Number Publication Date
EP0703638A1 EP0703638A1 (en) 1996-03-27
EP0703638B1 true EP0703638B1 (en) 2000-07-19

Family

ID=9467215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402101A Expired - Lifetime EP0703638B1 (en) 1994-09-23 1995-09-19 Method and device for enlragement of the radiation diagram for an active antenna

Country Status (4)

Country Link
US (1) US5774090A (en)
EP (1) EP0703638B1 (en)
DE (1) DE69518048T2 (en)
FR (1) FR2725075B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583760B2 (en) 1998-12-17 2003-06-24 Metawave Communications Corporation Dual mode switched beam antenna
US6198434B1 (en) 1998-12-17 2001-03-06 Metawave Communications Corporation Dual mode switched beam antenna

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509577A (en) * 1968-11-14 1970-04-28 Gen Electric Tandem series-feed system for array antennas
FR2101100B1 (en) * 1970-08-21 1973-11-23 Thomson Csf
FR2153164B1 (en) * 1971-09-22 1976-10-29 Thomson Csf
FR2646924B1 (en) * 1976-07-13 1991-10-25 Thomson Csf ANTI-SCALING METHOD AND DEVICE FOR ELECTROMAGNETIC SENSING EQUIPMENT COMPRISING A REFLECTOR ANTENNA, ANTENNA AND EQUIPMENT THUS OBTAINED
FR2638531B1 (en) * 1988-10-28 1992-03-20 Thomson Csf SUM AND DIFFERENCE INTEGRATION SYSTEM I.F.F. IN A RADAR SURVEILLANCE ANTENNA
FR2640821B1 (en) * 1988-12-16 1991-05-31 Thomson Csf ANTENNA WITH THREE-DIMENSIONAL COVERAGE AND ELECTRONIC SCANNING, OF THE RAREFIELD RANDOM VOLUME NETWORK TYPE
FR2649544B1 (en) * 1989-07-04 1991-11-29 Thomson Csf MULTI-BEAM ANTENNA SYSTEM WITH ACTIVE MODULES AND BEAM FORMATION THROUGH DIGITAL CALCULATION
FR2649490B1 (en) * 1989-07-07 1991-09-20 Thomson Csf ELECTROMAGNETIC ENERGY RADIATION SENSOR
FR2649543B1 (en) * 1989-07-07 1991-11-29 Thomson Csf HYPERFREQUENCY ENERGY DISTRIBUTOR THAT CAN RADIATE DIRECTLY
FR2654555B1 (en) * 1989-11-14 1992-06-19 Thomson Csf GUIDE TO RADIANT SLOTS NOT INCLINED WITH EXCITATION BY RADIATION PATTERN.
FR2655202B1 (en) * 1989-11-24 1992-02-07 Thomson Csf CIRCULAR POLARIZATION ANTENNA, ESPECIALLY FOR ANTENNA NETWORK.
FR2664985B1 (en) * 1990-07-20 1992-11-27 Thomson Csf DEVICE FOR MEASURING THE SITE ANGLE FOR A RADAR EQUIPPED WITH A REFLECTOR ANTENNA OF THE DOUBLE CURVED TYPE.
DE69319689T2 (en) * 1992-10-28 1999-02-25 Atr Optical And Radio Communications Research Laboratories, Kyoto Device and method for controlling a group antenna with a plurality of antenna elements
FR2697949B1 (en) * 1992-11-06 1995-01-06 Thomson Csf Antenna for radar, in particular for designation and trajectography.
US5414433A (en) * 1994-02-16 1995-05-09 Raytheon Company Phased array radar antenna with two-stage time delay units

Also Published As

Publication number Publication date
DE69518048D1 (en) 2000-08-24
DE69518048T2 (en) 2001-03-22
FR2725075A1 (en) 1996-03-29
US5774090A (en) 1998-06-30
FR2725075B1 (en) 1996-11-15
EP0703638A1 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
EP0651461B1 (en) Antenna with array of radiating elements
EP0497652B1 (en) Device for the electronic control of the radiation pattern of a single or multi beam antenna with variable direction and/or width
US5034752A (en) Multiple-beam antenna system with active modules and digital beam-forming
US4277787A (en) Charge transfer device phased array beamsteering and multibeam beamformer
FR2741750A1 (en) Phased array antenna e.g. for radar or communication applications
US3978482A (en) Dynamically focused thinned array
EP2296007B1 (en) Radar with beam agility, in particular for the function of detecting and avoiding obstacles
EP0307338B1 (en) Microwave plate antenna, especially for a Doppler radar
US20020013133A1 (en) Mixed signal true time delay digital beamformer
EP0723308A1 (en) Multibeam antenna of high capacity with electronic scanning in transmission
FR2766017A1 (en) ANTI-FOG NETWORK ANTENNA
US5257031A (en) Multibeam antenna which can provide different beam positions according to the angular sector of interest
FR2491686A1 (en) MULTIMODE RADAR DIRECTIVE ANTENNA WITH DOUBLE POWER SUPPLY
EP0451497B1 (en) Method for forming the radiation pattern of an active antenna for radar with electronic scanning, and antenna using this method
FR2679704A1 (en) NETWORK ANTENNA FOR MICROWAVE WAVES.
EP0703638B1 (en) Method and device for enlragement of the radiation diagram for an active antenna
EP3159965B1 (en) Antenna with transmitting network for monopulse radar system
FR2614471A1 (en) ADAPTIVE ANTENNA SYSTEM FOR RADIO WAVES, IN PARTICULAR MICROWAVE
EP0512487B1 (en) Antenna with shaped lobe and high gain
US6307506B1 (en) Method and apparatus for enhancing the directional transmission and reception of information
EP1533866B1 (en) Adaptive phased array antenna with digital beam forming
EP1351333A2 (en) Adaptive phased array antenna and radar using the same
EP2363917B1 (en) Analogue channel former that can be reconfigured for an array antenna
WO1986000760A1 (en) Multibeam antenna, which can provide different beam positions according to the angular sector of interest
US6255990B1 (en) Processor for two-dimensional array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19961107

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19991026

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69518048

Country of ref document: DE

Date of ref document: 20000824

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040916

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050919

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050919

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091012

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930