EP0703600B1 - High pressure discharge lamp - Google Patents

High pressure discharge lamp Download PDF

Info

Publication number
EP0703600B1
EP0703600B1 EP95112861A EP95112861A EP0703600B1 EP 0703600 B1 EP0703600 B1 EP 0703600B1 EP 95112861 A EP95112861 A EP 95112861A EP 95112861 A EP95112861 A EP 95112861A EP 0703600 B1 EP0703600 B1 EP 0703600B1
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
pressure discharge
lamp according
cathode
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95112861A
Other languages
German (de)
French (fr)
Other versions
EP0703600A3 (en
EP0703600A2 (en
Inventor
Bernhard Dr. Altmann
Andreas Ponnier
Jürgen Begemann
Ralf Seedorf
Jürgen Dr. Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0703600A2 publication Critical patent/EP0703600A2/en
Publication of EP0703600A3 publication Critical patent/EP0703600A3/en
Application granted granted Critical
Publication of EP0703600B1 publication Critical patent/EP0703600B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/025Associated optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr

Definitions

  • the invention relates to a high-pressure discharge lamp according to the Preamble of Claim 1.
  • these are high-pressure mercury lamps low power (up to 250 W), e.g. for use in fluorescence microscopy, but also around high pressure xenon lamps similar services.
  • the application is for higher performances however not excluded.
  • a high-pressure discharge lamp is known from EP-A 299 230, in which the uneven arc is reduced in that the cathode at least in Area of their tapered tip coated with a carbide layer which either decreases continuously towards the tip or the discharge side Leaves third of the tip free. Any carburizing of the cylindrical electrode part with constant diameter was called classified as meaningless.
  • the object of the present invention is to improve the arc stability in generic lamps and at the same time to increase the maintenance of the luminance. This object is achieved by the characterizing features of claim 1. Preferred designs can be found in the dependent claims.
  • the arch stability can not only be maintained but can even increase if the carburization in the tapering region in front of the electrode tip is reduced under suitable framework conditions.
  • This behavior is achieved when the tapered area of the electrode is completely free of carbon, while a large part of the cylindrical base body of the electrode is covered by a carbide layer.
  • the easiest way to produce such an electrode is to carburize a cylindrical rod, as described in EP-A 299 230, and only then to produce the tapered tip by etching or grinding and / or polishing. The unsteadiness of the bow can be kept below 10% during the entire service life.
  • the carburization particularly advantageously interacts with a special material composition and structure of the cathode.
  • a special material composition and structure of the cathode In particular when using thin electrodes with a maximum of 5 mm diameter (values below 2 mm, particularly preferably below 1 mm are preferred), an electrode material has proven to be favorable which, in addition to tungsten, contains a maximum of 0.6% by weight ThO 2 (preferably 0.2 up to 0.45%). Additional doping with 50-100 ppm potassium, up to 20 ppm aluminum and up to 10 ppm silicon (in each case based on weight) is particularly preferred. This material is subjected to a special manufacturing process in order to form a distinctive long crystal structure and to achieve a finely divided thorium oxide distribution.
  • the each electrode diameter used is advantageous with the degree of Restriction of the hammering process coordinated. With particularly small ones Electrode diameters can U. be hammered entirely. After the rod is carburized, a tapered area becomes created by the tip to a truncated cone or the like. etched or sanded and then polished.
  • the basic body is advantageous at least more than 30%, preferably more than 50%, of its total length, starting from the approach of the tapered area, covered with carbide.
  • the truncated cone preferably has a maximum height of 5 mm; the optimal height depends on the opening angle and the cathode diameter. With large diameters (e.g. 4 mm) a large opening angle (e.g. 60 °) advantageous, corresponding to a truncated cone height of approx. 4 mm.
  • There is also a narrow area at the end facing away from the discharge of the base body is freed from the carbon layer for better contact.
  • the system is inherent Luminance decrease greatly reduced, which is due to the Electrode erosion.
  • the o.e. carburized cathode namely, the electron exit at the tip of the electrode facilitates, so that the required current density even at a lower operating temperature is reached, which in turn reduces the electrode erosion.
  • the average Electrode erosion increased the electrode distance by approx. 100% (from typically 0.6 to 1.3 mm)
  • the burn-off in the invention Lamp Lamp only 30 to 50%.
  • the Firing voltage increase during the service life is also small. He can are now limited to a maximum of 50% of the previously usual value.
  • the invention is applicable to high-pressure mercury lamps. Typical doses are 10 to 80 mg / cm 3 , an electrode spacing of 0.5 to 4 mm and burning voltages up to 50 V.
  • the invention can be used with particular advantage in the case of low-power mercury lamps (typical values are 50-200 W).
  • low-power mercury lamps typically values are 50-200 W.
  • the above measures create the prerequisite for optimizing the radiation intensity in the wavelength range relevant for the respective application. This happens primarily through a higher mercury dose.
  • the application of this measure known per se has hitherto failed at these low powers because it has caused lamp failures.
  • Due to the improved electrode, however, high doses between 70 and 130 mg / cm 3 of mercury are now particularly advantageous without impairing the service life.
  • the short-wave radiation intensity in particular the range between 400 and 500 nm
  • the invention makes it possible for the first time to produce high-pressure mercury lamps in conjunction with reflectors as an extremely small structural unit. These are used, for example, in endoscopy.
  • the elliptical discharge vessel 2 made of quartz glass is filled with mercury in an amount of 18 mg. The volume is 0.2 cm 3 . The total length of the vessel 2 is 73 mm.
  • the anode 3 and the cathode 4 are arranged axially at a distance of 0.6 mm from one another. Each electrode has a cylindrical shaft 5.
  • the electrical supply takes place in a known manner via molybdenum foils 6, which are connected to the metal sleeve bases (not shown) via pins are.
  • the molybdenum foils 6 are vacuum-tight in the two ends 7 of the discharge vessel 2 melted down.
  • molybdenum foils instead of melting with molybdenum foils another technique, e.g. Rod melting or cup melting, be used.
  • the anode 3 is made as a solid cylinder block from hammered tungsten and has a wide, slightly bevelled end face.
  • the comparatively small cathode 4, onto which a coil is pushed, is shown enlarged (but not to scale) in FIG. 2.
  • the cylindrical base body 8 of the cathode 4 tapers in the manner of a cone 9, the tip 10 of which is truncated.
  • the stump that forms the base for the arch has a diameter of 0.1 mm.
  • the cone forms an opening angle ⁇ of 15 ° and has an overall length of approximately 1.7 mm.
  • the cone 9 is free of carbide.
  • the cylindrical base body 8 is surrounded over its entire length by a layer 11 of tungsten carbide, with the exception of the end region 12 of 4.5 mm in length facing away from the discharge.
  • the cylindrical base body can also be only partially covered by carbide his.
  • the cylindrical body is at least 50% its total length, starting from the base of the truncated cone, carburized.
  • the cathode is preferably made of tungsten with a small amount of other substances (in addition to 0.4% by weight thorium dioxide 75 ppm potassium, 10 ppm Aluminum and 5 ppm silicon) is doped.
  • the carbide layer has one 5 ⁇ m thick. In general, the layer thickness can be between 1 and 15 ⁇ m, it is preferably between 3 and 8 pm.
  • the tapered area can be divided into several sections instead of a cone or a truncated cone, e.g. Truncated cones with different opening angles become.
  • Fig. 3 shows a comparison between the uneven arch of an inventive Lamp (Fig. 3a) and a previously used lamp (Fig. 3b). While the new version has an uneven arc of one percent When the burn time of 200 h is reached, the bow unrest in the old version is over an order of magnitude worse (Fig. 3b) and reaches values up to 100%.
  • FIG. 5 shows a comparison between the lamp spectrum of an old and a new version.
  • the higher intensity of the new version is particularly pronounced in the short-wave spectral range and is still clearly visible up to 600 nm.
  • the intensity in the new version is 10% higher in the 355 to 375 nm spectral band, 38% in the 450 to 500 nm band and 17% in the 535 to 555 nm range than in the old version.
  • the reflector lamp is characterized by a low overall height of only 83 mm and one Diameter of 67 mm.
  • the lamp 1 sits axially in an elliptical Reflector 15, which is provided with a dichroic coating 16.
  • the Reflector lamp mainly emits in the wavelength range 320 to 390 nm. It is used in particular for the curing of paints.
  • the cathode 4 of the Lamp 1 is adjacent to the top of the reflector.
  • a heat accumulation coating 18 covers approximately the lower third of the discharge vessel 2.
  • Fig. 7 shows a high-pressure xenon lamp with a power of 180 W.
  • Sie has a cathode 21 with a diameter of 1.5, which is at the tip a truncated cone with a height of 3.5 mm, corresponding to one Opening angle of 26 °.
  • the lamp 20 is axially in a reflector 22 placed, similar to that described in Fig. 6.

Description

Die Erfindung geht aus von einer Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1. Insbesondere handelt es sich dabei um Quecksilberhochdrucklampen kleiner Leistung (bis 250 W), z.B. zur Anwendung in der Fluoreszenzmikroskopie, aber auch um Xenonhochdrucklampen mit ähnlichen Leistungen. Grundsätzlich ist die Anwendung bei höheren Leistungen jedoch nicht ausgeschlossen.The invention relates to a high-pressure discharge lamp according to the Preamble of Claim 1. In particular, these are high-pressure mercury lamps low power (up to 250 W), e.g. for use in fluorescence microscopy, but also around high pressure xenon lamps similar services. Basically, the application is for higher performances however not excluded.

Aus der EP-A 299 230 ist eine Hochdruckentladungslampe bekannt, bei der die Bogenunruhe dadurch vermindert wird, daß die Kathode zumindest im Bereich ihrer sich verjüngenden Spitze mit einer Carbidschicht überzogen wird, die entweder zur Spitze hin kontinuierlich abnimmt oder das entladungsseitige Drittel der Spitze freiläßt. Ein etwaiges Karburieren des zylindrischen Elektrodenteils mit konstantem Durchmesser wurde als bedeutungslos eingestuft.A high-pressure discharge lamp is known from EP-A 299 230, in which the uneven arc is reduced in that the cathode at least in Area of their tapered tip coated with a carbide layer which either decreases continuously towards the tip or the discharge side Leaves third of the tip free. Any carburizing of the cylindrical electrode part with constant diameter was called classified as meaningless.

Es hat sich jedoch gezeigt, daß die damit erzielte Bogenstabilität für die Anforderungen bei speziellen photometrischen Anwendungen nicht ausreicht und außerdem die Herstellung dieser Elektroden sehr zeitaufwendig ist.However, it has been shown that the arch stability achieved in this way meets the requirements not sufficient for special photometric applications and in addition, the production of these electrodes is very time consuming.

Aufgabe der vorliegenden Erfindung ist es, die Bogenstabilität bei gattungsgemäßen Lampen zu verbessern und gleichzeitig die Maintenance der Leuchtdichte zu erhöhen.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Bevorzugte Ausführungen finden sich in den abhängigen Ansprüchen.
The object of the present invention is to improve the arc stability in generic lamps and at the same time to increase the maintenance of the luminance.
This object is achieved by the characterizing features of claim 1. Preferred designs can be found in the dependent claims.

Überraschenderweise hat sich gezeigt, daß die Bogenstabilität bei einer Verringerung der Karburierung im sich verjüngenden Bereich vor der Elektrodenspitze unter geeigneten Rahmenbedingungen nicht nur beibehalten werden, sondern sogar zunehmen kann. Dieses Verhalten wird erreicht, wenn der sich verjüngende Bereich der Elektrode völlig frei von Kohlenstoff ist, während ein Großteil des zylindrischen Grundkörpers der Elektrode von einer Carbidschicht überzogen ist. Eine derartige Elektrode läßt sich am einfachsten dadurch herstellen, daß ein zylindrischer Stab karburiert wird, wie in der EP-A 299 230 beschrieben, und danach erst die sich verjüngende Spitze durch Abätzen oder Abschleifen und/oder Polieren erzeugt wird.
Die Bogenunruhe kann während der gesamten Lebensdauer unter 10 % gehalten werden.
Surprisingly, it has been shown that the arch stability can not only be maintained but can even increase if the carburization in the tapering region in front of the electrode tip is reduced under suitable framework conditions. This behavior is achieved when the tapered area of the electrode is completely free of carbon, while a large part of the cylindrical base body of the electrode is covered by a carbide layer. The easiest way to produce such an electrode is to carburize a cylindrical rod, as described in EP-A 299 230, and only then to produce the tapered tip by etching or grinding and / or polishing.
The unsteadiness of the bow can be kept below 10% during the entire service life.

Besonders vorteilhaft wirkt die Karburierung mit einer speziellen Materialzusamensetzung und Struktur der Kathode zusammen. Insbesondere bei Verwendung dünner Elektroden mit maximal 5 mm Durchmesser (bevorzugt sind Werte unter 2 mm, besonders bevorzugt unter 1 mm) hat sich ein Elektrodenmaterial als günstig erwiesen, das neben Wolfram maximal 0,6 Gew.-% ThO2 (bevorzugt 0,2 bis 0,45 %) enthält. Besonders bevorzugt ist eine zusätzliche Dotierung mit 50 - 100 ppm Kalium, bis zu 20 ppm Aluminium und bis zu 10 ppm Silizium (jeweils bezogen auf Gewicht). Dieses Material wird einem speziellen Herstellprozeß unterworfen, um ein ausgeprägtes Langkristallgefüge auszubilden sowie eine möglichst feinverteilte Thoriumoxidverteilung zu erzielen.The carburization particularly advantageously interacts with a special material composition and structure of the cathode. In particular when using thin electrodes with a maximum of 5 mm diameter (values below 2 mm, particularly preferably below 1 mm are preferred), an electrode material has proven to be favorable which, in addition to tungsten, contains a maximum of 0.6% by weight ThO 2 (preferably 0.2 up to 0.45%). Additional doping with 50-100 ppm potassium, up to 20 ppm aluminum and up to 10 ppm silicon (in each case based on weight) is particularly preferred. This material is subjected to a special manufacturing process in order to form a distinctive long crystal structure and to achieve a finely divided thorium oxide distribution.

Mittels eines naßchemischen Verfahrens, ähnlich wie in der US-PS 5 284 614 beschrieben, ist es jetzt möglich, sehr wenig Thoriumoxid (früher ca. 3 %) zu verwenden. Dieses wird bereits dem Wolframpulver zugesetzt. Die Dotierung begünstigt die Ausbildung des gewünschten Langkristallgefüges, dessen Struktur der in der DE-AS 1 088 155 beschriebenen ähnelt. Als besonders vorteilhaft hat sich erwiesen, daß die übliche Verformungsarbeit, bestehend aus Walzen, Hämmern und Ziehen (vgl. z.B. DE-OS 40 02 974 und dortige Zitate), modifiziert wird, indem der übliche Hämmerprozeß eingeschränkt wird (vorteilhaft wird auf ihn ganz verzichtet) und der Ziehprozeß stattdessen verstärkt eingesetzt wird, um das Langkristallgefüge besonders stark auszuprägen, zu stabilisieren und in definierter Weise auszubilden. Der jeweils verwendete Elektrodendurchmesser ist vorteilhaft mit dem Grad der Einschränkung des Hämmerprozesses abgestimmt. Bei besonders kleinen Elektrodendurchmessern kann u. U. auf das Hämmern ganz verzichtet werden. Nach dem Karburieren des Stabes wird ein sich verjüngender Bereich geschaffen, indem die Spitze zu einem Kegelstumpf o.ä. abgeätzt oder abgeschliffen und dann poliert wird. Vorteilhaft ist der Grundkörper mindestens über mehr als 30%, bevorzugt mehr als 50%, seiner Gesamtlänge, ausgehend vom Ansatz des sich verjüngenden Bereichs, mit Carbid bedeckt. Der Kegelstumpf weist bevorzugt eine maximale Höhe von 5 mm auf; die optimale Höhe hängt vom Öffnungswinkel und dem Kathodendurchmesser ab. Bei großen Durchmessern (z.B. 4 mm) ist ein großer Öffnungswinkel (z.B. 60°) vorteilhaft, entsprechend einer Kegelstumpfhöhe von ca. 4 mm. Außerdem wird ein engbegrenzter Bereich am entladungsabgewandten Ende des Grundkörpers zur besseren Kontaktierungvon der Karbonschicht befreit.Using a wet chemical process similar to that described in U.S. Patent No. 5,284,614 described, it is now possible to add very little thorium oxide (previously around 3%) use. This is already added to the tungsten powder. The endowment favors the formation of the desired long crystal structure, its Structure similar to that described in DE-AS 1 088 155. To be particularly advantageous has proven that the usual deformation work, consisting of Rolling, hammering and drawing (see e.g. DE-OS 40 02 974 and others Citations), is modified by restricting the usual hammering process is (advantageously it is completely dispensed with) and the drawing process instead is increasingly used to make the long crystal structure particularly strong shape, stabilize and train in a defined manner. The each electrode diameter used is advantageous with the degree of Restriction of the hammering process coordinated. With particularly small ones Electrode diameters can U. be hammered entirely. After the rod is carburized, a tapered area becomes created by the tip to a truncated cone or the like. etched or sanded and then polished. The basic body is advantageous at least more than 30%, preferably more than 50%, of its total length, starting from the approach of the tapered area, covered with carbide. The truncated cone preferably has a maximum height of 5 mm; the optimal height depends on the opening angle and the cathode diameter. With large diameters (e.g. 4 mm) a large opening angle (e.g. 60 °) advantageous, corresponding to a truncated cone height of approx. 4 mm. There is also a narrow area at the end facing away from the discharge of the base body is freed from the carbon layer for better contact.

Dabei wird durch eine geeignete Wahl der Elektrodengeometrie der systemimmanente Leuchtdichterückgang stark verringert, der bedingt ist durch den Elektrodenabbrand. Durch den Einsatz der o.e. karburierten Kathode wird nämlich der Elektronenaustritt an der Spitze der Elektrode erleichtert, so daß bereits bei einer geringeren Betriebstemperatur die benötigte Stromdichte erreicht wird, was wiederum den Elektrodenabbrand vermindert. Während bisher, bei einer Lampenlebensdauer von 200 h, der durchschnittliche Elektrodenabbrand den Elektrodenabstand um ca. 100 % vergrößerte (von typisch 0,6 auf 1,3 mm), erreicht der Abbrand bei der erfindungsgemäßen Lampe lediglich noch 30 bis 50 %. Eine weitere Konsequenz ist, daß der Brennspannungsanstieg während der Lebensdauer ebenfalls gering ist. Er kann nunmehr auf höchstens 50 % des vorher üblichen Wertes begrenzt werden.Through a suitable choice of the electrode geometry, the system is inherent Luminance decrease greatly reduced, which is due to the Electrode erosion. By using the o.e. carburized cathode namely, the electron exit at the tip of the electrode facilitates, so that the required current density even at a lower operating temperature is reached, which in turn reduces the electrode erosion. While so far, with a lamp life of 200 h, the average Electrode erosion increased the electrode distance by approx. 100% (from typically 0.6 to 1.3 mm), the burn-off in the invention Lamp only 30 to 50%. Another consequence is that the Firing voltage increase during the service life is also small. He can are now limited to a maximum of 50% of the previously usual value.

Dieses insgesamt verbesserte Betriebsverhalten führt zu einer Verlängerung der Lampenlebensdauer um 50 % von 200 auf 300 Std. Die Erfindung ist bei Quecksilberhochdrucklampen anwendbar. Typische Dosierungen sind 10 bis 80 mg/cm3, ein Elektrodenabstand von 0,5 bis 4 mm und Brennspannungen bis 50 V.This overall improved operating behavior leads to an extension of the lamp life by 50% from 200 to 300 hours. The invention is applicable to high-pressure mercury lamps. Typical doses are 10 to 80 mg / cm 3 , an electrode spacing of 0.5 to 4 mm and burning voltages up to 50 V.

Besonders vorteilhaft läßt sich die Erfindung bei Quecksilberhochdrucklampen geringer Leistung (typische Werte sind 50 - 200 W) einsetzen. Die obigen Maßnahmen schaffen hier die Voraussetzung, um die Strahlungsintensität in dem für die jeweilige Anwendung relevanten Wellenlängenbereich zu optimieren. Dies geschieht vornehmlich durch eine höhere Quecksilberdosierung. Die Anwendung dieser an sich bekannten Maßnahme scheiterte bisher bei diesen niedrigen Leistungen daran, daß sie Lampenfrühausfälle zur Folge hatte. Besonders vorteilhaft sind jetzt aufgrund der verbesserten Elektrode jedoch hohe Dosierungen zwischen 70 und 130 mg/cm3 Quecksilber möglich, ohne die Lebensdauer zu beeinträchtigen. Insbesondere läßt sich jetzt gezielt die kurzwellige Strahlungsintensität (insbesondere der Bereich zwischen 400 und 500 nm) deutlich (20 - 40 %) erhöhen, ohne daß Einbußen bei anderen ebenfalls genutzten Wellenlängenbereichen auftreten.
Schließlich ermöglicht es die Erfindung, erstmals Quecksilberhochdrucklampen auch in Verbindung mit Reflektoren als extrem kleine bauliche Einheit herzustellen. Diese finden z.B. Anwendung in der Endoskopie.
The invention can be used with particular advantage in the case of low-power mercury lamps (typical values are 50-200 W). The above measures create the prerequisite for optimizing the radiation intensity in the wavelength range relevant for the respective application. This happens primarily through a higher mercury dose. The application of this measure known per se has hitherto failed at these low powers because it has caused lamp failures. Due to the improved electrode, however, high doses between 70 and 130 mg / cm 3 of mercury are now particularly advantageous without impairing the service life. In particular, the short-wave radiation intensity (in particular the range between 400 and 500 nm) can now be increased in a targeted manner (20-40%) without loss of other wavelength ranges which are also used.
Finally, the invention makes it possible for the first time to produce high-pressure mercury lamps in conjunction with reflectors as an extremely small structural unit. These are used, for example, in endoscopy.

Ein weiteres Anwendungsgebiet sind Xenonhochdrucklampen vornehmlich kleiner Leistung bis 250 W.Another area of application is high pressure xenon lamps small power up to 250 W.

Die Erfindung wird anhand mehrerer Ausführungsbeispiele erläutert. Es zeigt

Fig. 1
eine Quecksilberhochdrucklampe
Fig. 2
eine Kathode für die Lampe gemäß Fig. 1
Fig. 3
einen Vergleich der Bogenunruhe mit früheren Lampen
Fig. 4
den Elektrodenabstand einer Lampe gemäß Fig. 1 als Funktion der Brenndauer
Fig. 5
einen Vergleich des Spektrums erfindungsgemäßer und früher verwendeter Lampen
Fig. 6
eine Reflektorlampe
Fig. 7
eine Xenonhochdrucklampe
The invention is explained using several exemplary embodiments. It shows
Fig. 1
a high pressure mercury lamp
Fig. 2
a cathode for the lamp of FIG. 1st
Fig. 3
a comparison of the uneven arch with previous lamps
Fig. 4
1 as a function of the burning time
Fig. 5
a comparison of the spectrum of lamps according to the invention and previously used lamps
Fig. 6
a reflector lamp
Fig. 7
a high pressure xenon lamp

Fig. 1 zeigt eine gleichstrombetriebene 100 W-Quecksilberhochdrucklampe 1. Sie eignet sich für die Fluoreszenzmikroskopie und -endoskopie sowie für Lichtleiteranwendungen, Schlierenphotographie und die Wiedergabe von Hologrammen. Das elliptische Entladungsgefäß 2 aus Quarzglas ist mit Quecksilber in einer Menge von 18 mg gefüllt. Das Volumen beträgt 0,2 cm3. Die Gesamtlänge des Gefäßes 2 beträgt 73 mm. Im Entladungsgefäß 2 sind die Anode 3 und die Kathode 4 in einem Abstand von 0,6 mm zueinander axial angeordnet. Jede Elektrode besitzt einen zylindrischen Schaft 5.1 shows a DC-powered 100 W high-pressure mercury lamp 1. It is suitable for fluorescence microscopy and endoscopy as well as for light guide applications, Schlieren photography and the reproduction of holograms. The elliptical discharge vessel 2 made of quartz glass is filled with mercury in an amount of 18 mg. The volume is 0.2 cm 3 . The total length of the vessel 2 is 73 mm. In the discharge vessel 2, the anode 3 and the cathode 4 are arranged axially at a distance of 0.6 mm from one another. Each electrode has a cylindrical shaft 5.

Die elektrische Zuleitung erfolgt in bekannter Weise über Molybdänfolien 6, die über Stifte mit den metallischen Hülsensockeln (nicht gezeigt) verbunden sind. Die Molybdänfolien 6 sind vakuumdicht in die beiden Enden 7 des Entladungsgefäßes 2 eingeschmolzen. Statt einer Einschmelzung mit Molybdänfolien kann auch eine andere Technik, z.B. Stabeinschmelzung oder Bechereinschmelzung, verwendet werden.The electrical supply takes place in a known manner via molybdenum foils 6, which are connected to the metal sleeve bases (not shown) via pins are. The molybdenum foils 6 are vacuum-tight in the two ends 7 of the discharge vessel 2 melted down. Instead of melting with molybdenum foils another technique, e.g. Rod melting or cup melting, be used.

Die Anode 3 ist als massiver Zylinderblock aus gehämmertem Wolfram gefertigt und weist eine breite, außen leicht angeschrägte Stirnfläche auf.
Die vergleichsweise kleine Kathode 4, auf die eine Wendel aufgeschoben ist, ist in Fig. 2 vergrößert (jedoch nicht maßstäblich) wiedergegeben. Um eine hohe Bogenstabilität zu sichern verjüngt sich der zylindrische Grundkörper 8 der Kathode 4 (Durchmesser ca. 0,6 mm, Länge 16 mm) nach Art eines Kegels 9, dessen Spitze 10 abgestumpft ist. Der Stumpf, der die Ansatzfläche für den Bogen bildet, hat einen Durchmesser von 0,1 mm. Der Kegel bildet einen Öffnungswinkel α von 15° und weist eine Gesamtlänge von etwa 1,7 mm auf. Der Kegel 9 ist frei von Carbid. Der zylindrische Grundkörper 8 ist über seine gesamte Länge von einer Schicht 11 aus Wolframcarbid umgeben mit Ausnahme des entladungsabgewandten Endbereichs 12 von 4,5 mm Länge.
The anode 3 is made as a solid cylinder block from hammered tungsten and has a wide, slightly bevelled end face.
The comparatively small cathode 4, onto which a coil is pushed, is shown enlarged (but not to scale) in FIG. 2. In order to ensure high arc stability, the cylindrical base body 8 of the cathode 4 (diameter approx. 0.6 mm, length 16 mm) tapers in the manner of a cone 9, the tip 10 of which is truncated. The stump that forms the base for the arch has a diameter of 0.1 mm. The cone forms an opening angle α of 15 ° and has an overall length of approximately 1.7 mm. The cone 9 is free of carbide. The cylindrical base body 8 is surrounded over its entire length by a layer 11 of tungsten carbide, with the exception of the end region 12 of 4.5 mm in length facing away from the discharge.

Der zylindrische Grundkörper kann auch nur teilweise von Carbid bedeckt sein. Beispielsweise ist der zylindrische Grundkörper über mindestens 50 % seiner Gesamtlänge, ausgehend vom Ansatz des Kegelstumpfs, karburiert.The cylindrical base body can also be only partially covered by carbide his. For example, the cylindrical body is at least 50% its total length, starting from the base of the truncated cone, carburized.

Die Kathode besteht bevorzugt aus Wolfram, das mit einer geringen Menge an weiteren Stoffen (neben 0,4 Gew.-% Thoriumdioxid 75 ppm Kalium, 10 ppm Aluminium und 5 ppm Silicium) dotiert ist. Die Carbidschicht besitzt eine Dicke von 5 µm. Allgemein kann die Schichtdicke zwischen 1 und 15 µm betragen, bevorzugt liegt sie zwischen 3 und 8 pm. Der sich verjüngende Bereich kann statt durch einen Kegel oder einen Kegelstumpf auch durch mehrere Abschnitte, z.B. Kegelstümpfe mit unterschiedlichem Öffnungswinkel, erzeugt werden.The cathode is preferably made of tungsten with a small amount of other substances (in addition to 0.4% by weight thorium dioxide 75 ppm potassium, 10 ppm Aluminum and 5 ppm silicon) is doped. The carbide layer has one 5 µm thick. In general, the layer thickness can be between 1 and 15 µm, it is preferably between 3 and 8 pm. The tapered area can be divided into several sections instead of a cone or a truncated cone, e.g. Truncated cones with different opening angles become.

Fig. 3 zeigt einen Vergleich zwischen der Bogenunruhe einer erfindungsgemäßen Lampe (Fig. 3a) und einer früher verwendeten Lampe (Fig. 3b). Während die neue Version eine Bogenunruhe von wenigen Prozent bei einer Brenndauer von 200 h erreicht, ist die Bogenunruhe bei der alten Version um eine Größenordnung schlechter (Fig. 3b) und erreicht Werte bis zu 100 %. Fig. 3 shows a comparison between the uneven arch of an inventive Lamp (Fig. 3a) and a previously used lamp (Fig. 3b). While the new version has an uneven arc of one percent When the burn time of 200 h is reached, the bow unrest in the old version is over an order of magnitude worse (Fig. 3b) and reaches values up to 100%.

Fig. 4 zeigt den Elektrodenabstand in Abhängigkeit von der Brenndauer. Nach 200 Std. hat sich der Ausgangswert von 0,6 mm lediglich um 40 % erhöht auf 0,85 mm. Dagegen ist in der alten Version der ursprüngliche Elektrodenabstand von 0,5 mm auf knapp das Doppelte (0,95 mm) gestiegen. Direkt damit korreliert ist der mittlereBrennspannungsanstieg. Während er bei der alten Version mehr als 10 V betrug, ist er bei der erfindungsgemäßen neuen Version auf ca. 5 V begrenzt (von 23 V auf 28 V). Diese Eigenschaft ist besonders wichtig, weil Brennspannungen über 30 V das Vorschaltgerät überstrapazieren können.4 shows the electrode spacing as a function of the burning time. To After 200 hours, the initial value of 0.6 mm only increased by 40% 0.85 mm. In contrast, in the old version the original electrode distance is increased from 0.5 mm to almost double (0.95 mm). Directly correlated with this is the mean increase in the While at the old version was more than 10 V, it is in the new invention Version limited to approx. 5 V (from 23 V to 28 V). This property is especially important because the ballast has a burning voltage above 30 V. can overuse.

Schließlich zeigt Fig. 5 einen Vergleich zwischen dem Lampenspektrum einer alten und neuen Version. Die höhere Intensität der neuen Version ist im kurzwelligen Spektralbereich besonders ausgeprägt und bis 600 nm noch deutlich erkennbar.
Beispielsweise ist die Intensität bei der neuen Version im Spektralband 355 bis 375 nm um 10 %, im Band 450 bis 500 nm um 38 % und im Bereich 535 bis 555 nm 17 % höher als bei der alten Version.
Finally, FIG. 5 shows a comparison between the lamp spectrum of an old and a new version. The higher intensity of the new version is particularly pronounced in the short-wave spectral range and is still clearly visible up to 600 nm.
For example, the intensity in the new version is 10% higher in the 355 to 375 nm spectral band, 38% in the 450 to 500 nm band and 17% in the 535 to 555 nm range than in the old version.

Weiterhin zeigt Fig. 6 eine Baueinheit einer Quecksilberhochdrucklampe 1 mit einem Reflektor 15 zur Anwendung in der Endoskopie. Die Reflektorlampe zeichnet sich durch eine geringe Gesamthöhe von lediglich 83 mm und einem Durchmesser von 67 mm aus. Die Lampe 1 sitzt axial in einem elliptischen Reflektor 15, der mit einer dichroitischen Beschichtung 16 versehen ist. Die Reflektorlampe emittiert hauptsächlich im Wellenlängenbereich 320 bis 390 nm. Sie dient insbesondere zur Aushärtung von Lacken. Die Kathode 4 der Lampe 1 ist dem Scheitel des Reflektors benachbart. Eine Wärmestaubeschichtung 18 überdeckt ungefähr das untere Drittel des Entladungsgefäßes 2.6 also shows a structural unit of a high-pressure mercury lamp 1 a reflector 15 for use in endoscopy. The reflector lamp is characterized by a low overall height of only 83 mm and one Diameter of 67 mm. The lamp 1 sits axially in an elliptical Reflector 15, which is provided with a dichroic coating 16. The Reflector lamp mainly emits in the wavelength range 320 to 390 nm. It is used in particular for the curing of paints. The cathode 4 of the Lamp 1 is adjacent to the top of the reflector. A heat accumulation coating 18 covers approximately the lower third of the discharge vessel 2.

Fig. 7 zeigt eine Xenonhochdrucklampe mit einer Leistung von 180 W. Sie besitzt eine Kathode 21 mit einem Durchmesser von 1,5, die an der Spitze einen Kegelstumpf mit einer Höhe von 3,5 mm, entsprechend einem Öffnungswinkel von 26 °, aufweist. Die Lampe 20 ist axial in einem Reflektor 22 plaziert, ähnlich wie in Fig. 6 beschrieben.Fig. 7 shows a high-pressure xenon lamp with a power of 180 W. Sie has a cathode 21 with a diameter of 1.5, which is at the tip a truncated cone with a height of 3.5 mm, corresponding to one Opening angle of 26 °. The lamp 20 is axially in a reflector 22 placed, similar to that described in Fig. 6.

Claims (14)

  1. High-pressure discharge lamp having a discharge vessel (2), a cathode (4) and anode (3) arranged axially therein, as well as an ionizable filling, the cathode having a cylindrical basic body (8) which tapers (9) to a tip (10), and it being the case that the cathode is partially coated with a carbide layer, characterized in that the entire tapering region (9) between the tip (10) and basic body (8) of the cathode is free from carbide, while the basic body is at least partially covered with carbide.
  2. High-pressure discharge lamp according to Claim 1, characterized in that the lamp contains mercury in a quantity of 70 to 130 mg/cm3.
  3. High-pressure discharge lamp according to Claim 2, characterized in that the electrode spacing is approximately 0.4 - 0.8 mm.
  4. High-pressure discharge lamp according to Claim 2, characterized in that the operating voltage is approximately 20 to 29 V, in particular approximately 23 V.
  5. High-pressure discharge lamp according to Claim 1, characterized in that it forms an assembly with a reflector.
  6. High-pressure discharge lamp according to one of the preceding claims, characterized in that the lamp power is up to 250 W.
  7. High-pressure discharge lamp according to Claim 1, characterized in that the layer thickness of the carbide layer is 1 - 15 µm, in particular 3 - 8 µm.
  8. High-pressure discharge lamp according to Claim 1, characterized in that the length of the tapering region (9) is at most 5 mm.
  9. High-pressure discharge lamp according to one of the preceding claims, characterized in that the cathode consists of tungsten with an admixture of up to 0.6% by weight of ThO2, as well as, if appropriate, further additives, in particular potassium, aluminium and silicon, in smaller quantities.
  10. High-pressure discharge lamp according to Claim 9, characterized in that the cathode has an elongated crystal structure.
  11. High-pressure discharge lamp according to Claim 1, characterized in that the lamp contains xenon with a cold fill pressure of approximately 2 - 15 bars.
  12. High-pressure discharge lamp according to Claim 8, characterized in that the length of the tapering region is greater than or equal to the diameter of the cathode.
  13. High-pressure discharge lamp according to Claim 12, characterized in that the tapering region is a cone or conical frustum with a full opening angle of 10 to 30°.
  14. high-pressure discharge lamp according to Claim 1, characterized in that the basic body is covered with carbide over a part of its overall length, in particular 30%, preferably 50%, starting from its step at the tapering region.
EP95112861A 1994-09-21 1995-08-16 High pressure discharge lamp Expired - Lifetime EP0703600B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE9415217U 1994-09-21
DE9415217U DE9415217U1 (en) 1994-09-21 1994-09-21 High pressure discharge lamp

Publications (3)

Publication Number Publication Date
EP0703600A2 EP0703600A2 (en) 1996-03-27
EP0703600A3 EP0703600A3 (en) 1998-05-06
EP0703600B1 true EP0703600B1 (en) 2000-01-26

Family

ID=6913903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112861A Expired - Lifetime EP0703600B1 (en) 1994-09-21 1995-08-16 High pressure discharge lamp

Country Status (4)

Country Link
US (1) US5629585A (en)
EP (1) EP0703600B1 (en)
JP (1) JP3022910U (en)
DE (2) DE9415217U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137794B4 (en) * 2001-08-07 2008-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electrode for high pressure discharge lamps and high pressure discharge lamp

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215247B1 (en) * 1997-10-03 2001-04-10 Orc Manufacturing Co., Ltd. Construction of electrode for high pressure discharge lamp and process for producing the same
AU2956899A (en) 1998-03-20 1999-10-18 Hamamatsu Photonics K.K. Discharge tube for light source
US6492772B1 (en) * 1999-02-10 2002-12-10 Matsushita Electric Industrial Co., Ltd. High pressure discharge lamp, high pressure discharge lamp electrode, method of producing the high pressure discharge lamp electrode, and illumination device and image display apparatus respectively using the high pressure discharge lamps
JP2000306546A (en) * 1999-04-21 2000-11-02 Ushio Inc Short arc discharge lamp
JP3596453B2 (en) * 2000-09-28 2004-12-02 ウシオ電機株式会社 Short arc discharge lamp
JP3759498B2 (en) * 2001-03-30 2006-03-22 松下電器産業株式会社 Metal halide lamp for automotive headlamp
DE102005013760A1 (en) * 2005-03-22 2006-09-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Method for producing an electrode and discharge lamp with such an electrode
SE529053C2 (en) * 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
SE529056C2 (en) * 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
SE529058C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device, use of a plasma surgical device and method for forming a plasma
WO2007076141A2 (en) * 2005-12-27 2007-07-05 Advanced Lighting Technologies, Inc. Projection light source and methods of manufacture
US7928338B2 (en) * 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
DE102007013990A1 (en) * 2007-03-23 2008-09-25 Osram Gesellschaft mit beschränkter Haftung Material for electrodes or filament and electrode or filament
US8735766B2 (en) * 2007-08-06 2014-05-27 Plasma Surgical Investments Limited Cathode assembly and method for pulsed plasma generation
US7589473B2 (en) * 2007-08-06 2009-09-15 Plasma Surgical Investments, Ltd. Pulsed plasma device and method for generating pulsed plasma
DE102008014096A1 (en) * 2008-03-05 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Tungsten electrode for high-pressure discharge lamps and high-pressure discharge lamp with a tungsten electrode
WO2009146751A1 (en) * 2008-06-06 2009-12-10 Osram Gesellschaft mit beschränkter Haftung Cable bushing with a bent foil profile
JP5115396B2 (en) * 2008-08-20 2013-01-09 ウシオ電機株式会社 Cathode and discharge lamp for discharge lamp
JP5299132B2 (en) * 2009-07-07 2013-09-25 ウシオ電機株式会社 Xenon short arc lamp for digital projector
US8613742B2 (en) * 2010-01-29 2013-12-24 Plasma Surgical Investments Limited Methods of sealing vessels using plasma
US9089319B2 (en) 2010-07-22 2015-07-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
AT15459U1 (en) * 2016-04-11 2017-09-15 Plansee Se anode
CN111105985B (en) * 2019-11-28 2022-04-08 清远市欧瑞凯科技有限公司 Tungsten electrode, method for manufacturing the same, and high-pressure discharge lamp using the same
CA3191050A1 (en) 2020-08-28 2022-03-03 Nikolay Suslov Systems, methods, and devices for generating predominantly radially expanded plasma flow

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL253509A (en) * 1959-07-08
US3706000A (en) * 1970-05-11 1972-12-12 Westinghouse Electric Corp Current-rated short-arc lamp for light projection apparatus
NL175480C (en) * 1974-06-12 1984-11-01 Philips Nv ELECTRODE FOR A DISCHARGE LAMP, METHOD FOR MANUFACTURING SUCH ELECTRODE AND DISCHARGE LAMP PROVIDED WITH SUCH ELECTRODE.
US4724352A (en) * 1985-12-16 1988-02-09 Ilc Technology, Inc. Short-arc lamp with alternating current drive
DE3723271A1 (en) * 1987-07-14 1989-01-26 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CATHODE FOR A HIGH PRESSURE DISCHARGE LAMP
US4988918A (en) * 1988-06-23 1991-01-29 Toshiba Lighting And Technology Corporation Short arc discharge lamp
JP2601435B2 (en) * 1989-03-29 1997-04-16 ウシオ電機株式会社 Short arc mercury lamp for semiconductor wafer exposure
JPH02304857A (en) * 1989-05-19 1990-12-18 Ushio Inc Short arc type high pressure mercury vapor lamp
US5158709A (en) * 1990-02-01 1992-10-27 Patent Treuhand Gesellschaft Fur Elektrische Gluhlampen Mbh Electric lamp containing molybdenum material doped wtih aluminum and potassium, molybdenum material for such a lamp, and method of its manufacture
DE4002974A1 (en) 1990-02-01 1991-08-08 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Doped molybdenum material esp. for lamp mfr. - with controlled aluminium content for high quality and low reject rate
US5284614A (en) * 1992-06-01 1994-02-08 General Electric Company Method of forming fine dispersion of ceria in tungsten
DE4229317A1 (en) * 1992-09-02 1994-03-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure discharge lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137794B4 (en) * 2001-08-07 2008-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electrode for high pressure discharge lamps and high pressure discharge lamp

Also Published As

Publication number Publication date
US5629585A (en) 1997-05-13
EP0703600A3 (en) 1998-05-06
EP0703600A2 (en) 1996-03-27
DE59507686D1 (en) 2000-03-02
DE9415217U1 (en) 1996-01-25
JP3022910U (en) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0703600B1 (en) High pressure discharge lamp
EP0299230B1 (en) Cathode for a high-pressure discharge lamp
EP0834905B1 (en) Low power high pressure sodium lamp
EP1481418B8 (en) Short arc high-pressure discharge lamp-
DE10291427B4 (en) Metal halide lamp for a motor vehicle headlight
EP0451647B1 (en) High-pressure discharge lamp and method for its manufacture
EP0652586B1 (en) Metal-halide discharge lamp with a ceramic discharge tube and method of making the same
DE60033728T2 (en) High pressure discharge lamp
EP0736222A1 (en) Halogen incandescent lamp
DE3038993C2 (en) Metal vapor discharge lamp
EP0456907B1 (en) High-pressure discharge lamp
DE102006052715B4 (en) Process for producing a mercury-free arc tube, each having a single crystal at the electrode tips
EP1481417A1 (en) Mercury short arched lamp with a cathode containing lanthanum oxide
DE3429105A1 (en) METAL STEAM DISCHARGE LAMP
DE102006061375B4 (en) Mercury high-pressure discharge lamp with an anode containing tungsten and potassium, which has a grain count greater than 200 grains per mm 2 and a density greater than 19.05 g / cm 3
DE102004053094B4 (en) High-pressure discharge lamp
DE1287214B (en) Fluorescent lamp and process for its manufacture
EP1730766B1 (en) Electrode system for a high-pressure discharge lamp
EP3791417A1 (en) Electrode for a discharge lamp and method for producing an electrode
DE69911538T2 (en) LOW PRESSURE MERCURY VAPOR DISCHARGE LAMP
DE3044121C2 (en) High pressure sodium lamp
DE10200009A1 (en) Discharge lamp comprises a sealed discharge vessel surrounded by a wall of transparent material, and two electrodes embedded in the wall which partially protrude into the inside of the discharge vessel
DE60022428T2 (en) Electrode for a metal halogen lamp
EP1439567B1 (en) Electrode for high pressure discharge lamp
WO2005062343A2 (en) Electrode for a high pressure discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19980608

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990219

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59507686

Country of ref document: DE

Date of ref document: 20000302

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000330

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060803

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 12

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59507686

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59507686

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59507686

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140820

Year of fee payment: 20

Ref country code: FR

Payment date: 20140821

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59507686

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150815