EP0702701A1 - Method for polymerising or copolymerising propylene in liquid propylene, solid catalytic component, and method for making same - Google Patents

Method for polymerising or copolymerising propylene in liquid propylene, solid catalytic component, and method for making same

Info

Publication number
EP0702701A1
EP0702701A1 EP95908995A EP95908995A EP0702701A1 EP 0702701 A1 EP0702701 A1 EP 0702701A1 EP 95908995 A EP95908995 A EP 95908995A EP 95908995 A EP95908995 A EP 95908995A EP 0702701 A1 EP0702701 A1 EP 0702701A1
Authority
EP
European Patent Office
Prior art keywords
catalytic component
solid
hydrocarbon
propylene
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95908995A
Other languages
German (de)
French (fr)
Inventor
Corinne Gomez-Journaud
Jean-Michel Brusson
Roger Spitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Appryl SNC
Original Assignee
Appryl SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appryl SNC filed Critical Appryl SNC
Publication of EP0702701A1 publication Critical patent/EP0702701A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/61Pretreating the metal or compound covered by group C08F4/60 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/612Pretreating with metals or metal-containing compounds
    • C08F4/614Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6143Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/61Pretreating the metal or compound covered by group C08F4/60 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/612Pretreating with metals or metal-containing compounds
    • C08F4/616Pretreating with metals or metal-containing compounds with silicon or compounds thereof

Definitions

  • the present application relates to a process for the polymerization of propylene in liquid propylene or for the copolymerization of propylene with an alpha-olefin in liquid propylene in the presence of a cocatalystur and of a solid catalytic component containing magnesium atoms, halogen, aluminum, a transition metal and silicon.
  • the present application also relates to new solid catalytic components, in particular usable in the preceding process, as well as their manufacturing process.
  • the polymerization of propylene can be carried out either in suspension, or in the gas phase, or in liquid propylene.
  • this polymerization is carried out in the presence of a cocatalyst, which is usually an organic derivative of aluminum, in the presence of a solid catalytic component containing atoms of magnesium, halogen, aluminum, a metal of transition and possibly also containing an internal electron donor, and in the presence of an external electron donor, in other words of an electron donor not incorporated in the solid catalytic component, the role of this electron donor external being to raise the isotacticity index of the synthesized polypropylene.
  • Polypropylenes with a high isotacticity index have improved mechanical properties, in particular in terms of their rigidity.
  • the document EP0582943 describes the polymerization of propylene in the presence of a solid component containing silicon and titanium at a rate of 0.5 to 100 moles of silicon per gram of atom of titanium, which corresponds to 24 to 4800 moles of silicon per mole of titanium.
  • the insertion of silicon in the solid component is produced after prepolymerization of propylene on the other ingredients of the component. It is essential not to wash this component before using it in polymerization.
  • Document EP0501741 describes the polymerization of propylene in suspension between 150 and 300 ° C in the presence on the one hand of a solid component containing titanium and a silane and on the other hand of an organic derivative of aluminum, the ratio Al / Ti molar which cannot be greater than 1.
  • an alkoxysilane incorporated into a catalytic component exhibits, when said catalytic component is used in a process for the polymerization of propylene in liquid propylene, unpredictable behavior in terms of the isotacticity index of the polymer obtained as well as in terms of the productivity of the polymerization.
  • an alkoxysilane incorporated into a solid catalytic component will not have the same influence depending on whether this solid catalytic component is used in a process for the polymerization of propylene in liquid propylene or in a process for the polymerization of propylene in suspension.
  • the influence of an alkoxysilane incorporated into a solid catalytic component does not appear to be able to be easily extrapolated from the observation of its influence when the same alkoxysilane is present in polymerization in as an external electron donor, that is to say not incorporated into the solid catalytic component.
  • alkoxysilanes could be incorporated into a solid catalytic component containing magnesium, halogen, aluminum and transition metal atoms, and possibly containing an internal electron donor, said solid catalytic component leading, in polymerization of propylene in liquid propylene, to polymers with high indices of isotacticity with generally good productivity, without an external electron donor necessarily having to be present in the polymerization medium.
  • alkoxysilane in the present invention should not be assimilated to that of a conventional internal electron donor, the latter being always incorporated in solid catalytic component before or at the same time as the tm -.r-ion metal.
  • the invention conceives of a process for the polymerization of propylene in liquid propylene or for the copolymerization of propylene in liquid propylene with ethylene or an alpha-olefin containing from four to twelve carbon atoms, in the presence of a cocatalyst and a solid catalytic component obtained by bringing a into contact.
  • a dialkoxysilane (c) of formula R 1 R2si (OR 3 ) (OR 4 ) in which R3 and R ⁇ which may be identical or different represent hydrocarbon groups containing from 1 to 12 carbon atoms and preferably methyl or ethyl groups, R * 1 and R2, which may be identical or different, represent hydrocarbon groups, R " ! Being saturated and containing at least three carbon atoms.
  • R1 and R2 may each contain from 1 to 20 carbon atoms.
  • R2 preferably, the carbon atom of R1 linked to silicon is linked to two carbon atoms.
  • R1 preferably R2 is saturated and contains at least three carbon atoms. More preferably, R2 is saturated and its carbon atom linked to silicon is linked to two carbon atoms.
  • the halogen contained in the solid compound (a) is preferably chlorine.
  • the transition metal contained in the solid compound (a) can be zirconium, hafnium, vanadium or, preferably, titanium.
  • the solid compound (a) may be a catalytic component of the type
  • a catalytic component of the Ziegler-Natta type is generally in the form of a complex containing at least Mg, Ti and Cl, the titanium being in chlorinated form of Ti ⁇ v and / or Ti '"and optionally contains a donor d 'electrons.
  • a Ziegler-Natta type catalytic component is usually the result of the combination of at least one magnesium compound, a titanium compound, chlorine and possibly an electron donor as well as any other compound which can be used in this type of component.
  • the magnesium compound is usually chosen from the compounds of formula Mg (OR) n Cl2-n in which R represents hydrogen or a linear or cyclic hydrocarbon radical and n represents an integer ranging from 0 to 2.
  • the titanium compound is usually chosen from the chlorinated compounds of titanium of formula Ti- (OR) x Cl4_ x in which R represents an aliphatic or aromatic hydrocarbon radical containing from one to fourteen carbon atoms, or represents COR ' ' with Ri representing an aliphatic or aromatic hydrocarbon radical containing from one to fourteen atoms of carbon, and x represents an integer ranging from 0 to 3.
  • the chlorine present in the Ziegler-Natta type catalytic component can come directly from the titanium compound and / or the magnesium compound. It can also come from an independent chlorinating agent such as hydrochloric acid or an organic chloride such as butyl chloride.
  • the electron donor possibly contained in the catalytic component of the Ziegler-Natta type is a liquid or solid organic compound known to enter into the composition of these catalytic components.
  • the electron donor can be a mono or polyfunctional compound advantageously chosen from aliphatic or aromatic carboxylic acids and their alkyl esters, aliphatic or cyclic ethers, ketones, vinyl esters, acrylic derivatives, in particular alkyl acrylates or alkyl methacrylates and siianans.
  • Particularly suitable as electron donors are compounds such as methyl paratoluate, ethyl benzoate, ethyl or butyl acetate, ethyl ether, ethyl para-anisate, dibutylphthalate, dioctylphthalate, diisobutylphthalate, tetrahydrofuran, dioxane, acetone, methyl isobutyl ketone, vinyl acetate, methyl methacrylate.
  • compounds such as methyl paratoluate, ethyl benzoate, ethyl or butyl acetate, ethyl ether, ethyl para-anisate, dibutylphthalate, dioctylphthalate, diisobutylphthalate, tetrahydrofuran, dioxane, acetone, methyl isobutyl ketone, vinyl acetate, methyl methacrylate.
  • the organic aluminum derivative (b) may be a derivative of formula R 1 R 2 R 3 AI in which R 1 , R 2 and R 3 , which may be identical or different, each represent either a hydrogen atom, either a halogen atom or an alkyl group containing from 1 to 20 carbon atoms, at least one of R1, R2 or R 3 representing an alkyl group.
  • ethyl aluminum dichloride or dibromide or dihydride isobutyl aluminum dichloride or dibromide or dihydride, diethyl aluminum chloride or bromide or hydride, di-aluminum chloride or bromide or hydride n propylaluminium, chloride or bromide or hydride of diisobutylaluminium.
  • the organic aluminum derivative can also be an aluminoxane.
  • R representing for these two formulas an alkyl radical comprising from one to six carbon atoms, and n being a whole integer from 2 to 40, preferably from 10 to 20.
  • the aluminoxane may contain? S groups R of different nature. Preferably, the groups R all represent methyl groups.
  • a trialkylaluminum such as tri-n-hexylaluminum, triisobutylaluminum, trimethylaluminum or triethylaluminum is used, the latter compound being particularly preferred.
  • prepolymerization is not carried out before bringing ingredients (a), (b) and (c) into contact.
  • the contact between the compounds (a), (b) and (c) is preferably carried out in the presence of an H hydrocarbon, which is preferably a saturated aliphatic or saturated alicyclic hydrocarbon such as hexane, heptane or cyciohexane.
  • H hydrocarbon which is preferably a saturated aliphatic or saturated alicyclic hydrocarbon such as hexane, heptane or cyciohexane.
  • Compounds (b) and (c) can be added pure to a suspension of (a) in an H hydrocarbon or can be added in the form of solutions, a solution of (b) in an H hydrocarbon on the one hand and a solution of (c) in a hydrocarbon H on the other hand, to a suspension of (a) in a hydrocarbon H.
  • the suspension of (a) in hydrocarbon H preferably contains sufficient hydrocarbon H so that said suspension can _- ⁇ re agitated without attrition of (a).
  • the total amount of hydrocarbon H finally present with the mixture of (a), (b) and (-.,. Is less than 100 liters per kg of solid compound (a).
  • (B) is generally introduced in an amount such that the molar ratio [AI] / [M], that is to say aluminum supplied by (b) on the transition metal M supplied by (a) 0.5 to 100 and preferably 1 to 50 in the suspension mixture of (a), (b) and (c).
  • [Si] / [M] that is to say silicon supplied by (c) on the transition metal M supplied by (a) ranges from 0.5 to 20 and preferably from 1 to 10 in the mixture suspended from (a), (b) and (c).
  • the compounds (b) and (c) are first brought into contact, which are then brought into contact with the compound (a).
  • a solution of (b) and (c) is first prepared in an H hydrocarbon, then the solution of (b) and (c) is mixed with a suspension of (a) in a hydrocarbon H.
  • the suspension of (a) in hydrocarbon H preferably contains sufficient hydrocarbon H so that said suspension can be stirred without attrition of (a).
  • the solid catalytic component obtained by contacting (a), (b) and (c) can then be filtered and washed with an H hydrocarbon and dried. Washing of the solid component is recommended in particular when it is desired to store it before engaging it in polymerization. This washing is favorable to its stability.
  • the implementation of the process for the polymerization or copolymerization of propylene in liquid propylene according to the invention requires the introduction into the polymerization medium of a cocatalyst which can be chosen from the list of compounds of formula R 1 R2R 3 AI previously described for the choice of the organic aluminum derivative (b) in an amount such that the molar ratio of the cocatalyst to the transition metal M contained in the solid catalytic component ranges from 100 to 3000.
  • the cocatalyst is present in the medium of polymerization at a rate of 0.5 to 10 millimoles of cocatalyst per liter of liquid propylene.
  • the polymerization or copolymerization of propylene in liquid propylene can be carried out continuously or batchwise at temperatures up to the critical temperature, that is to say approximately 92 ° C., and at pressures which can be between atmospheric pressure and critical pressure.
  • the process according to the invention is used for the copolymerization of propylene with ethylene or an alpha-olefin containing from four to twelve carbon atoms, it is preferred to adjust the amounts of monomers so that the final polymer contains between 85 and 100% by weight of polymerized propylene.
  • the polymerization in liquid propylene can be carried out in the presence of a chain transfer agent so as to control the melt index of the polymer or copolymer to be produced.
  • the preferred chain transfer agent is hydrogen which is introduced in an amount of 0.01% to 5% by mole of the whole olefin (s) and hydrogen.
  • the polymerization in liquid propylene can be carried out continuously or batchwise in the presence or absence of an inert diluent which can be an aliphatic hydrocarbon such as hexane or an alicyclic hydrocarbon such as cyclohexane. ? _
  • an inert diluent which can be an aliphatic hydrocarbon such as hexane or an alicyclic hydrocarbon such as cyclohexane. ? _
  • the solid component talytiques obtainable in the manner previously de: -. And for which compounds (b) and (c) are first contacted in,.-Mbles then contacted with the compound (a), are also an object of the present invention. Their manufacturing process is also an object of the present invention.
  • These components can be used in a process for the polymerization of ethylene, propylene, an alpha-olefin containing from four to twelve carbon atoms or a mixture of some of these monomers, whether acts of a liquid phase or gas phase polymerization process, in the presence or absence of an inert diluent.
  • an inert diluent can be an aliphatic hydrocarbon such as hexane or an alicyclic hydrocarbon such as cyclohexane.
  • the polymerizations can be carried out continuously or batchwise.
  • the general techniques of these polymerization processes are well known to those skilled in the art.
  • These polymerizations are generally carried out in the presence of a cocatalyst, which can be an organic derivative of aluminum such as one of those listed above and, where appropriate, in the presence of a transfer agent, which can be the hydrogen.
  • a cocatalyst which can be an organic derivative of aluminum such as one of those listed above
  • a transfer agent which can be the hydrogen.
  • Examples 1, 2, 9 to 19 illustrate the invention.
  • the polymerization process according to the invention was carried out without the presence of an external electron donor in the polymerization medium.
  • Examples 4 to 8 and 20 to 22 are comparative examples describing polymerizations in the presence of alkoxysilanes as an external electron donor and in the presence of catalytic components not containing alkoxysilane.
  • Example 3 is comparative and shows that the introduction of phenyltrialkoxysilane into a solid catalytic component does not lead to satisfactory results.
  • Example 23 illustrates a process according to the invention in which the compounds (a) and (c) have been brought into contact beforehand before being brought into contact with (b).
  • This example is more particularly to be compared with Example 1 in which (a) and (b) have previously been brought into contact before contact with (c) and with Example 12 in which (b) and (c) have previously was put in contact before contact with (a).
  • Example 24 is comparative and shows that the introduction of diphenyldimethoxysilane into a catalytic component does not lead to good results.
  • Example 25 is comparative and shows that a polymerization with a molar ratio of the cocatalyst to the titanium contained in the solid component, of 1, does not lead to good results.
  • % Ti,% Mg,% Al and% Si represent the percentages by weight of titanium, magnesium, aluminum and silicon respectively contained in the solid catalytic components.
  • Si / Ti represents the molar ratio of silicon present in the polymerization medium to the titanium contained in the solid catalytic components, and this, of course, exclusively for the comparative examples involving an alkoxysilane as a donor 'external electrons.
  • Table 1 it represents the isotacticity index of the polymers obtained. This index was determined by measuring the heptane index, which is equal to the percentage by weight of polymer insoluble in heptane boiling in the polymer considered. It is measured by extraction of the soluble fraction with boiling heptane for two hours in a Kumagawa type device. In the case of pure polypropylene (homopolymer), the isotacticity index corresponds to the percentage by weight of isotactic polymer contained in the crude polymer.
  • melt indices were determined by ASTM method D1238, method 2.
  • the productivity of the polymerizations is expressed in Table 1 in grams of polymer per gram of solid catalytic component introduced into the polymerization.
  • THF tetrahydrofuran
  • the temperature is brought to 100 ° C. for 1 hour. Filtration is then carried out and this treatment is repeated with a mixture of TiCl 4 and toluene 4 times under the same conditions.
  • the solid is then washed with 64 ml of hexane at 60 ° C for 10 minutes and then filtered.
  • the solid is resuspended in 200 ml of hexane and the temperature is brought back to 20 ° C. 7.5 ml of a solution of 1 millimole per ml of triethylaluminum (TEA) are then introduced into hexane.
  • TSA triethylaluminum
  • the catalytic component is in the form of a pulverulent powder of particle size and morphology identical to that described by photo 5, of the patent application whose publication number is FR 2669915.
  • the catalytic component contains 1, 5 % by weight of titanium, 19.4% by weight of magnesium, 1.7% by weight of aluminum and 1.3% by weight of silicon. c) Polymerization in the presence of the catalytic component
  • Example 2 The reactor is then cooled and the pressure lowered to atmospheric pressure. 634 grams of a powder with an isotacticity index of 97.7% by weight are recovered. The melt index of the polymer obtained is 2.1 g / 10 min. The other results are collated in Table 1.
  • Example 2 The other results are collated in Table 1.
  • Example 1 The operation is carried out according to Example 1 except that the DCPDMS solution of Example 1 is replaced by 2.5 ml of a 1 millimole per ml solution of cyclohexylmethyldimethoxysilane (CHMDMS) in hexane during the preparation of the catalytic component.
  • the amount of hydrogen used during the polymerization of this catalytic component is 0.9 NI.
  • the melt index of the polymer obtained is 4.7 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 3 The procedure is as in Example 1 except that the solution of
  • the solid is then washed 3 times with 64 ml of hexane at 60 ° C for 10 minutes each time and then filtered. The solid is finally dried under a stream of nitrogen at 60 ° C for 2 hours.
  • the catalytic component is in the form of a powdery powder with a particle size and morphology identical to that described by photo 5 of the patent application, the publication number of which is FR 2669915.
  • the catalytic component contains 2% by weight of titanium and 19.6% by weight of magnesium.
  • Example 6 (comparative) In an 8 liter stainless steel reactor, fitted with magnetic stirring and thermal regulation by double jacket, the following are introduced at 30 ° C., in order: 3.2 NI of hydrogen, 6 liters of liquid propylene, 30 millimoles of triethylaluminum and 3 millimoles of dicyclopentyldimethoxysiiane (DCPDMS) as an external electron donor.
  • DCPDMS dicyclopentyldimethoxysiiane
  • the reactor is then cooled to room temperature and the pressure lowered to atmospheric pressure. 2150 grams of a powder with an isotacticity index of 97.8% by weight are recovered. The melt index of the polymer obtained is 3.8 g / 10 min. Table 1 groups the other results.
  • EXAMPLE 9 The procedure is as in Example 1 except that during the preparation of the catalytic component, 15 ml of triethylaluminum at 1 mmol / ml are introduced and no longer only 7.5 ml. In addition, 5 ml of a DCPDMS solution at 1 mmol / ml and no longer 2.5 ml are then introduced, in four times at 15-minute intervals, as in example 1.
  • the melt index of the polymer obtained is 1.4 g / 10 min. The results are collated in Table 1.
  • Example 10 The procedure is as in Example 1 except that during the preparation of the catalytic component, 30 ml of triethylaluminum at 1 mmol / ml are introduced and no longer only 7.5 ml. In addition, 10 ml of a DCPDMS solution at 1 mmol / ml and not 2.5 ml are then introduced in four times at 15-minute intervals. as in Example 1.
  • the melt index of the polymer obtained is 1.2 g / 10 min. The results are collated in Table 1.
  • Example 10 The procedure is as in Example 10 except that 10 ml of a 1 mmol / ml solution of CHMDMS are introduced in place of the DCPDMS solution.
  • the melt index of the polymer obtained is 5.3 g / 10 min.
  • the results are collated in Table 1.
  • Example 1 The procedure is as in Example 1 except that the preparation of the catalytic component is as follows: In a 300 ml nitrogen-purged reactor fitted with stirring rotating at 100 revolutions per minute, the following are introduced at 50 ° C. , 4 g of the solid prepared in a) of Example 1, 21 ml of toluene and 62 ml of pure TiCl4. The temperature is brought to 90 ° C. and 1.05 ml of dibutylphthalate (DBP) is then introduced. The mixture is left stirring for 2 hours. After filtration, a second series of treatments is carried out by introducing 4 ml of TiCl4 and 79 ml of toluene. The temperature is brought to 100 ° C. for 1 hour.
  • DBP dibutylphthalate
  • the 10 ml of this mixture are then introduced in four batches at intervals of 15 minutes. After the last introduction, it is left to react for an additional 15 minutes.
  • the solid is then filtered and then washed 4 times with 100 rr of hexane at 20 ° C. The solid is finally dried under a stream of nitrogen at 20 ° C for 2 hours.
  • the catalytic component is in the form of a pulverulent powder with a particle size and morphology identical to that described by photo No.
  • the catalytic component contains 1.8% by weight of titanium, 17.5% by weight of magnesium, 1.5% by weight of aluminum and 1.1% by weight of silicon.
  • the melt index of the polymer obtained is 2.2 g / 10 min. The results are collated in Table 1.
  • Example 13 The procedure is as in Example 12 except that the mixture of TEA and
  • DCPDMS is produced with 15 ml of triethylaluminum at 1 mmol / ml and 5 ml of DCPDMS at 1 mmol / ml. The two compounds are left to react for 10 minutes at room temperature. Then the 20 ml of this mixture are introduced four times, in 15-minute intervals.
  • the melt index of the polymer obtained is 1.3 g / 10 min. The results are collated in Table 1.
  • Example 12 The procedure is as for Example 12 except that the mixture of TEA and DCPDMS is produced with 3.75 ml of triethylaluminum at 1 mmol / ml and 1.25 ml of DCPDMS at 1 mmol / ml. The two compounds are left to react for 10 minutes at room temperature. Then the four ml of this mixture are introduced in four batches at intervals of 15 minutes.
  • the melt index of the polymer obtained is 2g / 10min. The results are collated in Table 1.
  • Example 1 The procedure is as in Example 1 except that 2.5 ml of a cyclopentyl n-hexyl dimethoxysilane solution (CPHDMS) are introduced in place of the DCPDMS solution during the preparation of the catalytic component.
  • CPHDMS cyclopentyl n-hexyl dimethoxysilane solution
  • the amount of hydrogen used during the polymerization of the catalytic component thus obtained is 0.9 NI.
  • the melt index of the polymer obtained is 3.2 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 1 The procedure is as for Example 1 except that 2.5 ml of a solution of isobutylisopropyldimethoxysiiane (iBiPDMS) are introduced in place of the solution of DCPDMS during the preparation of the catalytic component.
  • the amount of hydrogen used during the polymerization of the component catalytic thus obtained is 1, 2 NI.
  • the melt index of the polymer obtained is 3.6 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 17 The procedure is as in Example 1 except that 2.5 ml of a cyclopentylmethyidimethoxysilane solution (CPMDMS) are introduced in place of the DCPDMS solution during the preparation of the catalytic component.
  • CPMDMS cyclopentylmethyidimethoxysilane solution
  • the quantity of hydrogen used during the polymerization of the catalytic component thus obtained is 0.7 NI.
  • the melt index of the polymer obtained is 4.8 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 1 The procedure is as for Example 1 except that 2.5 ml of an isobutyl cyclohexyl dimethoxysilane solution (iBCHDMS) are introduced in place of the DCPDMS solution during the preparation of the catalytic component.
  • the amount of hydrogen used during the polymerization of the catalytic component thus obtained is 0.9 NI.
  • the melt index of the polymer obtained is 3.7 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 1 The procedure is as for Example 1 except that 2.5 ml of a solution of diisobutyldimethoxysilane (DiBDMS) are introduced in place of the solution of DCPDMS during the preparation of the catalytic component.
  • the amount of hydrogen used during the polymerization of the catalytic component thus obtained is 1.2 NI.
  • the melt index of the polymer obtained is 7.2 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 20 (comparative) a) Preparation of a support for a catalytic component In a 300 ml nitrogen-purged reactor fitted with mechanical paddle stirring, with temperature control by double jacket, 30 g of MgCl2 anhyd e r commercial, 4.5 g of 1-2-4-5- tetramethylbenzene and 200 ml of tetrahydro & nydrofurane (THF). The temperature is brought to 60 ° C. and the mixture is left to stir for 16 hours. The solid is then filtered and washed 3 times with 100 ml of hexane at 60 ° C for 15 minutes then dried at 60 ° C, 2 hours, under a stream of nitrogen.
  • MgCl2 anhyd e r commercial 4.5 g of 1-2-4-5- tetramethylbenzene
  • THF tetrahydro & nydrofurane
  • the solid is then washed 3 times with 64 ml of hexane at 60 ° C for 10 minutes and then filtered. The solid is finally dried under a stream of nitrogen at 60 ° C for 2 hours.
  • the catalytic component is in the form of a pulverulent powder with a particle size and morphology identical to that described by photo No. 5, of the patent application whose publication number is FR 2669915.
  • the catalytic component contains 2% by weight of titanium and 19.6% by weight of magnesium. c) Polymerization in the presence of the catalytic component
  • a 3.5 liter stainless steel reactor fitted with magnetic stirring and thermal regulation by double jacket, are introduced at 30 ° C, in order: 0.9 NI of hydrogen, 2.4 liters of liquid propylene, 12 millimoles of triethylaluminum and 0.017 millimoles of cyclopentyl n-hexyl dimethoxysilane (CPHDMS) as an external electron donor.
  • CPHDMS cyclopentyl n-hexyl dimethoxysilane
  • the reactor is cooled and the pressure lowered to atmospheric pressure. 519 grams of a powder with an isotacticity index of 63.1% by weight are recovered. The melt index of the polymer obtained is 24.1 g / 10 min. Table 1 collates the other results.
  • Example 21 (comparative) The procedure is as for Comparative Example 20 except that 0.017 millimole of isobutylisopropyldimethoxysilane (iBiPDMS) is introduced in place of cyclopentyl n-hexyl dimethoxysilane during the polymerization.
  • the amount of hydrogen used during the polymerization in the presence of the catalytic component thus obtained is 1.2 NI.
  • the melt index of the polymer obtained is 7.1 g / 10 min.
  • Table 1 The results are collated in Table 1.
  • Example 22 (comparative) The procedure is as for comparative example 20 except that one introduces
  • the temperature is brought to 90 ° C. and 1.05 ml of dibutylphthalate (DBP) is then introduced. The mixture is left stirring for two hours.
  • DBP dibutylphthalate
  • a second series of treatments is carried out by introducing 4 ml of TiCl 4 and 7 ⁇ m of toluene. The temperature is brought to 100 ° C. for 1 hour. Filtration is then carried out and this treatment is repeated four times under the same conditions.
  • the solid is then washed with 64 ml of hexane at 60 ° C for 10 minutes and then filtered. The solid is resuspended in 200 ml of hexane.
  • TEA and DCPDMS 7.5 ml of a TEA solution of 1 millimole per ml in hexane are then introduced and the mixture is left stirring for 15 minutes.
  • the solid is then filtered and then washed 4 times with 100 ml of hexane at 20 ° C. solid is finally dried at 20 ° C for two hours under nitrogen flow.
  • the catalytic component thus obtained is in the form of a powder with a morphology identical to that of photo N ° 5 of the patent application, the publication number of which is FR 2 669 915.
  • This catalytic component contains 1.8% in weight of titanium, 18.3% by weight of magnesium, 1.3% by weight of aluminum, 1% by weight of silicon. b) polymerization in the presence of the catalytic component.
  • Example 1 The procedure is as for c) of Example 1 except that the catalytic component is used, the preparation of which has just been described and that 2.4 NI of hydrogen are introduced instead of the 2.5 NI of Example 1.
  • the melt index of the polymer obtained is 2.8 g / 10 min. Table 1 collates the other results.
  • Example 1 The procedure is as for Example 1 except that for the preparation of the catalytic composition, the 2.5 ml of the DCPDMS solution is replaced by 2.5 ml of a 1 millimole solution per liter of diphenyldimethoxysilane in hexane and except that the amount of hydrogen used in the polymerization is 0.7 NI.
  • the melt index of the polymer obtained is 12.5 g / 10 min. Table 1 collates the other results.
  • EXAMPLE 25 (Comparative) The procedure is as for Example 1 except that 0.048 millimole of triethylaluminum is introduced instead of the 12 millimoles of Example 1 and except that 100 mg of solid catalytic component is introduced into the polymerization with instead of the 20 mg of example 1. Finally, 10 grams of polypropylene are recovered, which corresponds to a productivity of 100 g of polypropylene per gram of solid component.

Abstract

A method for polymerising or copolymerising propylene in liquid propylene in the presence of a cocatalyst and a solid catalytic component prepared by contacting (a) a solid compound containing magnesium, halogen and transition metal atoms, with (b) an organic aluminium derivative, and (c) a dialkoxysilane of formula R?1R2Si(OR3)(OR4¿), wherein R?3 and R4¿ are hydrocarbon groupings containing 1-12 carbon atoms and preferably methyl or ethyl groupings, and R?1 and R2¿ are hydrocarbon groupings, where one or both of R?1 and R2¿ contains at least three carbon atoms. A novel solid catalytic component for polymerising olefins, and a method for making same, are also disclosed.

Description

PROCEDE DE POLYMERISATION OU D: POLYMERISATION POLYMERIZATION PROCESS OR D: POLYMERIZATION
DU PROPYLENE DANS LE PROP . -i- E LIQUIDE, COMPOSANTE CATALYTIQUE SOLIDE ET SON PROCEDE DEPROPYLENE IN THE PROP. -i- E LIQUID, SOLID CATALYTIC COMPONENT AND PROCESS FOR PRODUCING THE SAME
FABRICATIONMANUFACTURING
* * * * * * * * * * * DOMAINE TECHNIQUE* * * * * * * * * * * TECHNICAL AREA
La présente demande concerne un procédé de polymérisa*- n du propylene dans le propylene liquide ou de copolymérisation du propylè vec une alpha-oléfine dans le propylene liquide en présence d'un cocatalystur et d'une composante catalytique solide contenant des atomes de magnésium, d'halogène, d'aluminium, d'un métal de transition et de silicium.The present application relates to a process for the polymerization of propylene in liquid propylene or for the copolymerization of propylene with an alpha-olefin in liquid propylene in the presence of a cocatalystur and of a solid catalytic component containing magnesium atoms, halogen, aluminum, a transition metal and silicon.
La présente demande concerne également de nouvelles composantes catalytiques solides, en particulier utilisables dans le procédé précédent, ainsi que leur procédé de fabrication.The present application also relates to new solid catalytic components, in particular usable in the preceding process, as well as their manufacturing process.
TECHNIQUE ANTERIEURE La polymérisation du propylene peut être effectuée soit en suspension, soit en phase gazeuse, soit dans le propylene liquide. Généralement, cette polymérisation est réalisée en présence d'un cocatalyseur, lequel est habituellement un dérivé organique de l'aluminium, en présence d'une composante catalytique solide contenant des atomes de magnésium, d'halogène, d'aluminium, d'un métal de transition et contenant également éventuellement un donneur d'électrons interne, et en présence d'un donneur d'électrons externe, autrement dit d'un donneur d'électrons non incorporé à la composante catalytique solide, le rôle de ce donneur d'électrons externe étant de relever l'indice d'isotacticite du polypropylène synthétisé. Les poiypropylènes à haut indice d'isotacticite présentent des propriétés mécaniques améliorées en particulier sur le plan de leur rigidité.PRIOR ART The polymerization of propylene can be carried out either in suspension, or in the gas phase, or in liquid propylene. Generally, this polymerization is carried out in the presence of a cocatalyst, which is usually an organic derivative of aluminum, in the presence of a solid catalytic component containing atoms of magnesium, halogen, aluminum, a metal of transition and possibly also containing an internal electron donor, and in the presence of an external electron donor, in other words of an electron donor not incorporated in the solid catalytic component, the role of this electron donor external being to raise the isotacticity index of the synthesized polypropylene. Polypropylenes with a high isotacticity index have improved mechanical properties, in particular in terms of their rigidity.
Il a déjà été tenté d'incorporer à une composante catalytique solide un alkoxysilane pour éviter de devoir introduire à la polymérisation un donneur d'électrons externe. Le brevet US 4,442,276 décrit de telles composantes contenant un trialkoxysilane. Ces composantes permettent l'obtention, avec une productivité relativement modeste, de polymères présentant de hauts indices d'isotacticite par polymérisation du propylene en suspension. La demanderesse a découvert qu'en polymérisation du propylene dans le propylene liquide, ces composantes ne mènent pas à des polymères à hauts indices d'isotacticite. Le document EP0582943 décrit la polymérisation du propylene en présence d'une composante solide contenant du silicium et du titane à raison de 0,5 à 100 moles de silicium par gramme d'atome de titane, ce qui correspond à 24 à 4800 moles de silicium par mole de titane. L'insertion du silicium dans la composante solide est réalisée après prépolymérisation du propylene sur les autres ingrédients de la composante. Il est indispensable de ne pas laver cette composante avant de l'utiliser en polymérisation.It has already been attempted to incorporate an alkoxysilane into a solid catalytic component in order to avoid having to introduce an external electron donor to the polymerization. US Patent 4,442,276 describes such components containing a trialkoxysilane. These components make it possible, with relatively modest productivity, to obtain polymers having high isotacticity indices by polymerization of propylene in suspension. The Applicant has discovered that in the polymerization of propylene in liquid propylene, these components do not lead to polymers with high indices of isotacticity. The document EP0582943 describes the polymerization of propylene in the presence of a solid component containing silicon and titanium at a rate of 0.5 to 100 moles of silicon per gram of atom of titanium, which corresponds to 24 to 4800 moles of silicon per mole of titanium. The insertion of silicon in the solid component is produced after prepolymerization of propylene on the other ingredients of the component. It is essential not to wash this component before using it in polymerization.
Le document EP0501741 décrit la polymérisation du propylene en suspension entre 150 et 300°C en présence d'une part d'une composante solide contenant du titane et un silane et d'autre part d'un dérivé organique de l'aluminium, le rapport molaire Al/Ti ne pouvant être supérieur à 1.Document EP0501741 describes the polymerization of propylene in suspension between 150 and 300 ° C in the presence on the one hand of a solid component containing titanium and a silane and on the other hand of an organic derivative of aluminum, the ratio Al / Ti molar which cannot be greater than 1.
EXPOSE DE L'INVENTIONSTATEMENT OF THE INVENTION
La demanderesse a découvert qu'un alkoxysilane incorporé dans une composante catalytique présente, lorsque ladite composante catalytique est mise en oeuvre dans un procédé de polymérisation du propylene dans le propylene liquide, un comportement imprévisible sur le plan de l'indice d'isotacticite du polymère obtenu ainsi que sur le plan de la productivité de la polymérisation.The Applicant has discovered that an alkoxysilane incorporated into a catalytic component exhibits, when said catalytic component is used in a process for the polymerization of propylene in liquid propylene, unpredictable behavior in terms of the isotacticity index of the polymer obtained as well as in terms of the productivity of the polymerization.
En effet, un alkoxysilane incorporé dans une composante catalytique solide n'aura pas la même influence suivant que cette composante catalytique solide est mise en oeuvre dans un procédé de polymérisation du propylene dans le propylene liquide ou dans un procédé de polymérisation du propylene en suspension. De plus, en polymérisation du propylene dans le propylene liquide, l'influence d'un alkoxysilane incorporé à une composante catalytique solide ne paraît pas pouvoir être facilement extrapolée à partir de l'observation de son influence lorsque le même alkoxysilane est présent en polymérisation en tant que donneur d'électrons externe, c'est-à-dire non incorporé à la composante catalytique solide.In fact, an alkoxysilane incorporated into a solid catalytic component will not have the same influence depending on whether this solid catalytic component is used in a process for the polymerization of propylene in liquid propylene or in a process for the polymerization of propylene in suspension. In addition, in the polymerization of propylene in liquid propylene, the influence of an alkoxysilane incorporated into a solid catalytic component does not appear to be able to be easily extrapolated from the observation of its influence when the same alkoxysilane is present in polymerization in as an external electron donor, that is to say not incorporated into the solid catalytic component.
Il a maintenant été trouvé qu'une sélection particulière d'alkoxysilanes pouvait être incorporée à une composante catalytique solide contenant des atomes de magnésium, d'halogène, d'aluminium et de métal de transition, et contenant éventuellement un donneur d'électrons interne, ladite composante catalytique solide menant, en polymérisation du propylene dans le propylene liquide, à des polymères à hauts indices d'isotacticite avec généralement de bonnes productivités, sans qu'un donneur d'électrons externe ne doive nécessairement être présent dans le milieu de polymérisation.It has now been found that a particular selection of alkoxysilanes could be incorporated into a solid catalytic component containing magnesium, halogen, aluminum and transition metal atoms, and possibly containing an internal electron donor, said solid catalytic component leading, in polymerization of propylene in liquid propylene, to polymers with high indices of isotacticity with generally good productivity, without an external electron donor necessarily having to be present in the polymerization medium.
Il est possible d'incorporer une bien plus faible quantité de ces aikoxysilanes dans les composantes catalytiques solides considérées qu'il ne serait nécessaire d'en introduire dans le milieu de polymérisation hors de la composante catalytique solide si ces aikoxysilanes devaient jouer leur rôle classique de donneur d'électrons externe.It is possible to incorporate a much smaller quantity of these aikoxysilanes in the solid catalytic components considered than it would be necessary to introduce them into the polymerization medium outside of the solid catalytic component if these aikoxysilanes were to play their conventional role of external electron donor.
Il convient de ne pas assimiler le rôle de l'alkoxysilane dans la présente invention à celui d'un classique donneur d'électrons interne, ce dernier étant toujours incorporé dans composante catalytique solide avant ou en même temps que le métal de tm -.r-ion.The role of the alkoxysilane in the present invention should not be assimilated to that of a conventional internal electron donor, the latter being always incorporated in solid catalytic component before or at the same time as the tm -.r-ion metal.
L'invention conce , _e un procédé de polymérisation du propylene dans le propylene liquide ou de copolymérisation du propylene dans le propylene liquide avec l'éthylène ou une alpha-oléfine contenant de quatre à douze atomes de carbone, en présence d'un cocatalyseur et d'une composante catalytique solide obtenue par mise en contact de a. un composé solide (a) contenant des atomes de magnésium, d'halogène et de métal de transition, b. un dérivé organique de l'aluminium (b), c. un dialkoxysilane (c) de formule R1 R2si(OR3)(OR4) dans laquelle R3 et R^ pouvant être identiques ou différents représentent des groupements hydrocarbonés contenant de 1 à 12 atomes de carbone et de préférence des groupements méthyl ou éthyl, R*l et R2, pouvant être identiques ou différents représentent des groupements hydrocarbonés, R"! étant saturé et contenant au moins trois atomes de carbone. R1 et R2 peuvent contenir chacun de 1 à 20 atomes de carbone.The invention conceives of a process for the polymerization of propylene in liquid propylene or for the copolymerization of propylene in liquid propylene with ethylene or an alpha-olefin containing from four to twelve carbon atoms, in the presence of a cocatalyst and a solid catalytic component obtained by bringing a into contact. a solid compound (a) containing magnesium, halogen and transition metal atoms, b. an organic aluminum derivative (b), c. a dialkoxysilane (c) of formula R 1 R2si (OR 3 ) (OR 4 ) in which R3 and R ^ which may be identical or different represent hydrocarbon groups containing from 1 to 12 carbon atoms and preferably methyl or ethyl groups, R * 1 and R2, which may be identical or different, represent hydrocarbon groups, R " ! Being saturated and containing at least three carbon atoms. R1 and R2 may each contain from 1 to 20 carbon atoms.
Pour un groupement R2 donné, de préférence, l'atome de carbone de R1 lié au silicium est lié à deux atomes de carbone. Pour un groupement R1 donné, de préférence R2 est saturé et contient au moins trois atomes de carbone. De manière encore préférée, R2 est saturé et son atome de carbone lié au silicium est lié à deux atomes de carbone.For a given R2 group, preferably, the carbon atom of R1 linked to silicon is linked to two carbon atoms. For a given group R1, preferably R2 is saturated and contains at least three carbon atoms. More preferably, R2 is saturated and its carbon atom linked to silicon is linked to two carbon atoms.
L'halogène contenu dans le composé solide (a) est de préférence le chlore. Le métal de transition contenu dans le composé solide (a) peut être le zirconium, le hafnium, le vanadium ou, de préférence, le titane.The halogen contained in the solid compound (a) is preferably chlorine. The transition metal contained in the solid compound (a) can be zirconium, hafnium, vanadium or, preferably, titanium.
Le composé solide (a) peut-être une composante catalytique de typeThe solid compound (a) may be a catalytic component of the type
Ziegler-Natta. Une composante catalytique de type Ziegler-Natta se présente généralement sous la forme d'un complexe contenant au moins Mg, Ti et Cl, le titane se trouvant sous forme chlorée de Tiιv et/ou de Ti'" et contient éventuellement un donneur d'électrons.Ziegler-Natta. A catalytic component of the Ziegler-Natta type is generally in the form of a complex containing at least Mg, Ti and Cl, the titanium being in chlorinated form of Ti ιv and / or Ti '"and optionally contains a donor d 'electrons.
Une composante catalytique de type Ziegler-Natta est habituellement le résultat de la combinaison d'au moins un composé du magnésium, un composé du titane, de chlore et éventuellement un donneur d'électrons ainsi que de tout autre composé utilisable dans ce type de composante. Le composé du magnésium est habituellement choisi parmi les composés de formule Mg(OR)nCl2-n dans laquelle R représente l'hydrogène ou un radical hydrocarboné linéaire ou cyclique et n représente un nombre entier allant de 0 à 2. Le composé du titane est choisi habituellement parmi les composés chlorés du titane de formule Ti-(OR)xCl4_x dans laquelle R représente un radical hydrocarboné aliphatique ou aromatique contenant de un à quatorze atomes de carbone, ou représente COR'' avec Ri représentant un radical hydrocarboné aliphatique ou aromatique contenant de un à quatorze atomes de carbone, et x représente un nombre entier allant de 0 à 3.A Ziegler-Natta type catalytic component is usually the result of the combination of at least one magnesium compound, a titanium compound, chlorine and possibly an electron donor as well as any other compound which can be used in this type of component. . The magnesium compound is usually chosen from the compounds of formula Mg (OR) n Cl2-n in which R represents hydrogen or a linear or cyclic hydrocarbon radical and n represents an integer ranging from 0 to 2. The titanium compound is usually chosen from the chlorinated compounds of titanium of formula Ti- (OR) x Cl4_ x in which R represents an aliphatic or aromatic hydrocarbon radical containing from one to fourteen carbon atoms, or represents COR ' ' with Ri representing an aliphatic or aromatic hydrocarbon radical containing from one to fourteen atoms of carbon, and x represents an integer ranging from 0 to 3.
Le chlore présent dans la composante catalytique de type Ziegler-Natta peut provenir directement du composé du titane et/ou du composé du magnésium. Il peut également provenir d'un agent chlorant indépendant tel que l'acide chlorhydrique ou un chlorure organique comme le chlorure de butyle. Le donneur d'électrons éventuellement contenu dans la composante catalytique de type Ziegler-Natta est un composé organique liquide ou solide connu pour entrer dans la composition de ces composantes catalytiques. Le donneur d'électrons peut être un composé mono ou polyfonctionnel avantageusement choisi parmi les acides carboxyliques aliphatiques ou aromatiques et leurs esters alcoyliques, les éthers aliphatiques ou cycliques, les cétones, les esters vinyliques, les dérivés acryliques, en particulier acrylates d'alkyle ou méthacrylates d'alkyle et les siianes. Conviennent notamment comme donneurs d'électrons les composés tels que paratoluate de méthyle, benzoate d'éthyle, acétate d'éthyle ou de butyle, éther éthylique, para-anisate d'éthyle, dibutylphtalate, dioctylphtalate, diisobutylphtalate, tétrahydrofuranne, dioxane, acétone, méthylisobutylcétone, acétate de vinyle, méthacrylate de méthyle.The chlorine present in the Ziegler-Natta type catalytic component can come directly from the titanium compound and / or the magnesium compound. It can also come from an independent chlorinating agent such as hydrochloric acid or an organic chloride such as butyl chloride. The electron donor possibly contained in the catalytic component of the Ziegler-Natta type is a liquid or solid organic compound known to enter into the composition of these catalytic components. The electron donor can be a mono or polyfunctional compound advantageously chosen from aliphatic or aromatic carboxylic acids and their alkyl esters, aliphatic or cyclic ethers, ketones, vinyl esters, acrylic derivatives, in particular alkyl acrylates or alkyl methacrylates and siianans. Particularly suitable as electron donors are compounds such as methyl paratoluate, ethyl benzoate, ethyl or butyl acetate, ethyl ether, ethyl para-anisate, dibutylphthalate, dioctylphthalate, diisobutylphthalate, tetrahydrofuran, dioxane, acetone, methyl isobutyl ketone, vinyl acetate, methyl methacrylate.
Le dérivé organique de l'aluminium (b) peut être un dérivé de formule R1 R2R3AI dans laquelle R1 , R2 et R3, pouvant être identiques ou différents, représentent chacun, soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe alkyl contenant de 1 à 20 atomes de carbone, l'un au moins de R1 , R2 ou R3 représentant un groupe alkyl. A titre d'exemple de composé adapté, on peut citer le dichlorure ou dibromure ou dihydrure d'éthylaluminium, le dichlorure ou dibromure ou dihydrure d'isobutylaluminium, le chlorure ou bromure ou hydrure de diéthylaluminium, le chlorure ou bromure ou hydrure de di-n propylaiuminium, le chlorure ou bromure ou hydrure de diisobutylaluminium.The organic aluminum derivative (b) may be a derivative of formula R 1 R 2 R 3 AI in which R 1 , R 2 and R 3 , which may be identical or different, each represent either a hydrogen atom, either a halogen atom or an alkyl group containing from 1 to 20 carbon atoms, at least one of R1, R2 or R 3 representing an alkyl group. As an example of a suitable compound, mention may be made of ethyl aluminum dichloride or dibromide or dihydride, isobutyl aluminum dichloride or dibromide or dihydride, diethyl aluminum chloride or bromide or hydride, di-aluminum chloride or bromide or hydride n propylaluminium, chloride or bromide or hydride of diisobutylaluminium.
Le dérivé organique de l'aluminium peut également être un aluminoxane. linéaire, de formuleThe organic aluminum derivative can also be an aluminoxane. linear, of formula
RR
II
R2 AI-0-(AI-0)n-AI R2 , ou cyclique de formule R2 AI-0- (AI-0) n -AI R2, or cyclic of formula
R représentant pour ces deux formules un radical alkyl comprenant de un à six atomes de carbone, et n étant un nombre entier ailant de 2 à 40, de préférence de 10 à 20. L'aluminoxane peut comporter ?s groupements R de nature différente. De préférence, les groupements R représentent tous des groupements méthyl.R representing for these two formulas an alkyl radical comprising from one to six carbon atoms, and n being a whole integer from 2 to 40, preferably from 10 to 20. The aluminoxane may contain? S groups R of different nature. Preferably, the groups R all represent methyl groups.
De préférence aux composés précités, on utilise un trialkylaluminium tel que le tri-n-hexylaluminium, le triisobutylaluminium, le triméthylaluminium ou le triéthylaluminium, ce dernier composé étant particulièrement préféré.Preferably to the abovementioned compounds, a trialkylaluminum such as tri-n-hexylaluminum, triisobutylaluminum, trimethylaluminum or triethylaluminum is used, the latter compound being particularly preferred.
De préférence, on ne réalise pas de prépolymérisation avant de mettre en contact les ingrédients (a), (b) et (c).Preferably, prepolymerization is not carried out before bringing ingredients (a), (b) and (c) into contact.
La mise en contact entre les composés (a), (b) et (c) est de préférence réalisée en présence d'un hydrocarbure H, lequel est de préférence un hydrocarbure aliphatique saturé ou alicyclique saturé tel que l'hexane, l'heptane ou le cyciohexane. Les composés (b) et (c) peuvent être ajoutés purs à une suspension de (a) dans un hydrocarbure H ou peuvent être ajoutés à l'état de solutions, une solution de (b) dans un hydrocarbure H d'une part et une solution de (c) dans un hydrocarbure H d'autre part, à une suspension de (a) dans un hydrocarbure H. La suspension de (a) dans l'hydrocarbure H contien* le préférence suffisamment d'hydrocarbure H pour que ladite suspension puisse _-ιre agitée sans attrition de (a).The contact between the compounds (a), (b) and (c) is preferably carried out in the presence of an H hydrocarbon, which is preferably a saturated aliphatic or saturated alicyclic hydrocarbon such as hexane, heptane or cyciohexane. Compounds (b) and (c) can be added pure to a suspension of (a) in an H hydrocarbon or can be added in the form of solutions, a solution of (b) in an H hydrocarbon on the one hand and a solution of (c) in a hydrocarbon H on the other hand, to a suspension of (a) in a hydrocarbon H. The suspension of (a) in hydrocarbon H preferably contains sufficient hydrocarbon H so that said suspension can _-ιre agitated without attrition of (a).
Généralement, la quantité totale d'hydrocarbure H finalement présent avec le mélange de (a), (b) et (-.,. est inférieure à 100 litres par kg de composé solide (a).Generally, the total amount of hydrocarbon H finally present with the mixture of (a), (b) and (-.,. Is less than 100 liters per kg of solid compound (a).
On introduit généralement (b) en quantité telle que le rapport molaire [AI]/[M], c'est-à-dire de l'aluminium apporté par (b) sur le métal de transition M apporté par (a) aille de 0,5 à 100 et de préférence de 1 à 50 dans le mélange en suspension de (a), (b) et (c). On introduit généralement (c) en quantité telle que le rapport molaire(B) is generally introduced in an amount such that the molar ratio [AI] / [M], that is to say aluminum supplied by (b) on the transition metal M supplied by (a) 0.5 to 100 and preferably 1 to 50 in the suspension mixture of (a), (b) and (c). We generally introduce (c) in an amount such that the molar ratio
[Si]/[M], c'est-à-dire du silicium apporté par (c) sur le métal de transition M apporté par (a) aille de 0,5 à 20 et de préférence de 1 à 10 dans le mélange en suspension de (a), (b) et (c).[Si] / [M], that is to say silicon supplied by (c) on the transition metal M supplied by (a) ranges from 0.5 to 20 and preferably from 1 to 10 in the mixture suspended from (a), (b) and (c).
De préférence, de façon à obtenir un bon compromis entre indice d'isotacticite des polymères et productivité de ces p oiymères, on met d'abord en contact les composés (b) et (c), lesquels sont ensuite mis en contact avec le composé (a). De préférence, pour ce faire, on prépare tout d'abord une solution de (b) et (c) dans un hydrocarbure H, puis on mélange la solution de (b) et (c) avec une suspension de (a) dans un hydrocarbure H. La suspension de (a) dans l'hydrocarbure H contient de préférence suffisamment d'hydrocarbure H pour que ladite suspension puisse être agitée sans attrition de (a).Preferably, in order to obtain a good compromise between the isotacticity index of the polymers and the productivity of these polymers, the compounds (b) and (c) are first brought into contact, which are then brought into contact with the compound (a). Preferably, to do this, a solution of (b) and (c) is first prepared in an H hydrocarbon, then the solution of (b) and (c) is mixed with a suspension of (a) in a hydrocarbon H. The suspension of (a) in hydrocarbon H preferably contains sufficient hydrocarbon H so that said suspension can be stirred without attrition of (a).
La composante catalytique solide obtenue par mise en contact de (a), (b) et (c) peut ensuite être filtrée et lavée par un hydrocarbure H et séchée. Le lavage de la composante solide est recommandé en particulier lorsqu'on souhaite la stocker avant de l'engager en polymérisation. Ce lavage est favorable à sa stabilité.The solid catalytic component obtained by contacting (a), (b) and (c) can then be filtered and washed with an H hydrocarbon and dried. Washing of the solid component is recommended in particular when it is desired to store it before engaging it in polymerization. This washing is favorable to its stability.
La mise en oeuvre du procédé de polymérisation ou de copolymérisation du propylene dans le propylene liquide selon l'invention nécessite l'introduction dans le milieu de polymérisation d'un cocatalyseur pouvant être choisi dans la liste des composés de formule R1 R2R3AI précédemment décrite pour le choix du dérivé organique de l'aluminium (b) en quantité telle que le rapport molaire du cocatalyseur sur le métal de transition M contenu dans la composante catalytique solide aille de 100 à 3000. Généralement, le cocatalyseur est présent dans le milieu de polymérisation à raison de 0,5 à 10 millimoles de cocatalyseur par litre de propylene liquide. La polymérisation ou copolymérisation du propylene dans le propylene liquide peut être menée en continu ou en discontinu à des températures pouvant aller jusqu'à la température critique, c'est-à-dire environ 92°C, et à des pressions pouvant être comprises entre la pression atmosphérique et la pression critique.The implementation of the process for the polymerization or copolymerization of propylene in liquid propylene according to the invention requires the introduction into the polymerization medium of a cocatalyst which can be chosen from the list of compounds of formula R 1 R2R 3 AI previously described for the choice of the organic aluminum derivative (b) in an amount such that the molar ratio of the cocatalyst to the transition metal M contained in the solid catalytic component ranges from 100 to 3000. Generally, the cocatalyst is present in the medium of polymerization at a rate of 0.5 to 10 millimoles of cocatalyst per liter of liquid propylene. The polymerization or copolymerization of propylene in liquid propylene can be carried out continuously or batchwise at temperatures up to the critical temperature, that is to say approximately 92 ° C., and at pressures which can be between atmospheric pressure and critical pressure.
Pour le cas où le procédé selon l'invention est utilisé pour la copolymérisation du propylene avec l'éthylène ou une alpha-oléfine contenant de quatre à douze atomes de carbone, on préfère ajuster les quantités de monomères de façon à ce que le polymère final contienne entre 85 et 100 % en poids de propylene polymérisé.In the case where the process according to the invention is used for the copolymerization of propylene with ethylene or an alpha-olefin containing from four to twelve carbon atoms, it is preferred to adjust the amounts of monomers so that the final polymer contains between 85 and 100% by weight of polymerized propylene.
La polymérisation dans le propylene liquide peut être réalisée en présence d'un agent de transfert de chaînes de manière à contrôler l'indice de fluidité du polymère ou copolymère à produire.The polymerization in liquid propylene can be carried out in the presence of a chain transfer agent so as to control the melt index of the polymer or copolymer to be produced.
L'agent de transfert de chaînes préféré est l'hydrogène que l'on introduit à raison de 0,01 % à 5 % en mole de l'ensemble oléfine(s) et hydrogène.The preferred chain transfer agent is hydrogen which is introduced in an amount of 0.01% to 5% by mole of the whole olefin (s) and hydrogen.
La polymérisation dans le propylene liquide peut être conduite en continu ou en discontinu en présence ou en l'absence d'un diluant inerte qui peut être un hydrocarbure aliphatique tel que l'hexane ou un hydrocarbure alicyclique tel que le cyclohexane. Les composante _?talytiques solides susceptibles d'être obtenues de la façon précédemment dé:- et pour lesquelles les composés (b) et (c) sont d'abord mis en contact en., .-mbles puis mis en contact avec le composé (a), sont également un objet de la présente invention. Leur procédé de fabrication est également un objet de la présente invention. Ces composantes peuvent être mises en oeuvre dans un procédé de polymérisation de l'éthylène, du propylene, d'une alpha-oléfine contenant de quatre à douze atomes de carbone ou d'un mélange de certains de ces monomères, qu'il s'agisse d'un procédé de polymérisation en phase liquide ou en phase gazeuse, en présence ou en l'absence d'un diluant inerte. Dans le cas d'un procédé de polymérisation en phase liquide, on peut utiliser les techniques de polymérisation en émulsion ou en solution. Le diluant inerte peut être un hydrocarbure aliphatique tel que l'hexane ou un hydrocarbure alicyclique tel que le cyclohexane.The polymerization in liquid propylene can be carried out continuously or batchwise in the presence or absence of an inert diluent which can be an aliphatic hydrocarbon such as hexane or an alicyclic hydrocarbon such as cyclohexane. ? _ The solid component talytiques obtainable in the manner previously de: -. And for which compounds (b) and (c) are first contacted in,.-Mbles then contacted with the compound (a), are also an object of the present invention. Their manufacturing process is also an object of the present invention. These components can be used in a process for the polymerization of ethylene, propylene, an alpha-olefin containing from four to twelve carbon atoms or a mixture of some of these monomers, whether acts of a liquid phase or gas phase polymerization process, in the presence or absence of an inert diluent. In the case of a liquid phase polymerization process, emulsion or solution polymerization techniques can be used. The inert diluent can be an aliphatic hydrocarbon such as hexane or an alicyclic hydrocarbon such as cyclohexane.
Les polymérisations peuvent être menées en continu ou en discontinu. Les techniques générales de ces procédés de polymérisation sont bien connues de l'homme du métier. Ces polymérisations sont généralement conduites en présence d'un cocatalyseur, lequel peut être un dérivé organique de l'aluminium tel que l'un de ceux listés précédemment et le cas échéant en présence d'un agent de transfert, lequel peut-être l'hydrogène. MANIERES DE REALISER L'INVENTIONThe polymerizations can be carried out continuously or batchwise. The general techniques of these polymerization processes are well known to those skilled in the art. These polymerizations are generally carried out in the presence of a cocatalyst, which can be an organic derivative of aluminum such as one of those listed above and, where appropriate, in the presence of a transfer agent, which can be the hydrogen. WAYS TO IMPLEMENT THE INVENTION
Les exemples 1 , 2, 9 à 19 illustrent l'invention. Dans ces exemples, le procédé de polymérisation selon l'invention a été mis en oeuvre sans la présence d'un donneur d'électrons externe dans le milieu de polymérisation. Les exemples 4 à 8 et 20 à 22 sont des exemples comparatifs décrivant des polymérisations en présence d'alkoxysilanes en tant que donneur d'électrons externe et en présence de composantes catalytiques ne contenant pas d'alkoxysilane. L'exemple 3 est comparatif et montre que l'introduction de phényltrialkoxysilane dans une composante catalytique solide ne mène pas à des résultats satisfaisants. Il mène pourtant à de bons résultats (exemple comparatif 8), au même titre que le dicyclopentyldiméthoxysilane (exemple comparatif 6) ou le cyclohexylméthyldi- méthoxysiiane (exemple comparatif 7) s'il est introduit en tant que donneur d'électrons externe.Examples 1, 2, 9 to 19 illustrate the invention. In these examples, the polymerization process according to the invention was carried out without the presence of an external electron donor in the polymerization medium. Examples 4 to 8 and 20 to 22 are comparative examples describing polymerizations in the presence of alkoxysilanes as an external electron donor and in the presence of catalytic components not containing alkoxysilane. Example 3 is comparative and shows that the introduction of phenyltrialkoxysilane into a solid catalytic component does not lead to satisfactory results. However, it leads to good results (comparative example 8), in the same way as dicyclopentyldimethoxysilane (comparative example 6) or cyclohexylmethyldimethoxysiiane (comparative example 7) if it is introduced as an external electron donor.
L'exemple 23 illustre un procédé selon l'invention dans lequel les composés (a) et (c) ont été mis préalablement en contact avant d'être mis en contact avec (b). Cet exemple est plus particulièrement à comparer avec l'exemple 1 dans lequel (a) et (b) ont préalablement été mis en contact avant contact avec (c) et avec l'exemple 12 dans lequel (b) et (c) ont préalablement été mis en contact avant contact avec (a). L'Exemple 24 est comparatif et montre que l'introduction de diphényldiméthoxysilane dans une composante catalytique ne mène pas à de bons résultats.Example 23 illustrates a process according to the invention in which the compounds (a) and (c) have been brought into contact beforehand before being brought into contact with (b). This example is more particularly to be compared with Example 1 in which (a) and (b) have previously been brought into contact before contact with (c) and with Example 12 in which (b) and (c) have previously was put in contact before contact with (a). Example 24 is comparative and shows that the introduction of diphenyldimethoxysilane into a catalytic component does not lead to good results.
L'Exemple 25 est comparatif et montre qu'une polymérisation avec un rapport molaire du cocatalyseur sur le titane contenu dans la composante solide, de 1 , ne mène pas à de bons résultats.Example 25 is comparative and shows that a polymerization with a molar ratio of the cocatalyst to the titanium contained in the solid component, of 1, does not lead to good results.
Dans le tableau 1 , % Ti, % Mg, % Al et % Si représentent les pourcentages en poids respectivement de titane, de magnésium, d'aluminium et de silicium contenus dans les composantes catalytiques solides. Dans le tableau 1 , Si/Ti représente le rapport molaire de silicium présent dans le milieu de polymérisation sur le titane contenu dans les composantes catalytiques solides, et ce, bien entendu, exclusivement pour les exemples comparatifs faisant intervenir un alkoxysilane en tant que donneur d'électrons externe.In Table 1,% Ti,% Mg,% Al and% Si represent the percentages by weight of titanium, magnesium, aluminum and silicon respectively contained in the solid catalytic components. In Table 1, Si / Ti represents the molar ratio of silicon present in the polymerization medium to the titanium contained in the solid catalytic components, and this, of course, exclusively for the comparative examples involving an alkoxysilane as a donor 'external electrons.
Dans le tableau 1 , Il représente l'indice d'isotacticite des polymères obtenus. Cet indice a été déterminé par mesure de l'indice d'heptane, lequel est égal au pourcentage en poids de polymère insoluble dans l'heptane bouillant dans le polymère considéré. Il est mesuré par extraction de la fraction soluble par l'heptane bouillant pendant deux heures dans un appareil de type Kumagawa. Dans le cas du polypropylène pur (homopolymère), l'indice d'isotacticite correspond au pourcentage en poids de polymère isotactique contenu dans le polymère brut.In Table 1, it represents the isotacticity index of the polymers obtained. This index was determined by measuring the heptane index, which is equal to the percentage by weight of polymer insoluble in heptane boiling in the polymer considered. It is measured by extraction of the soluble fraction with boiling heptane for two hours in a Kumagawa type device. In the case of pure polypropylene (homopolymer), the isotacticity index corresponds to the percentage by weight of isotactic polymer contained in the crude polymer.
Dans les exemples, les indices de fluidité ont été déterminés par la méthode ASTM D1238, méthode 2.In the examples, the melt indices were determined by ASTM method D1238, method 2.
La productivité des polymérisations est exprimée dans le tableau 1 en gramme de polymère par gramme de composante catalytique solide introduite à la polymérisation.The productivity of the polymerizations is expressed in Table 1 in grams of polymer per gram of solid catalytic component introduced into the polymerization.
On donne ci-après la signification des abréviations utilisées dans les exemples :The meanings of the abbreviations used in the examples are given below:
DCPDMS dicyclopentyldiméthoxysilane CHMDMS cyclohexylméthyldiméthoxysilaneDCPDMS dicyclopentyldimethoxysilane CHMDMS cyclohexylmethyldimethoxysilane
PTES phényltriéthoxysilane CPHDMS cyclopentylhexyldiméthoxysilane iBiPDMS isobutylisopropyldiméthoxysilane CPMDMS cyclopentylméthyldiméthoxysilane iBCHDMS isobutylcyclohexyldiméthoxysilanePTES phenyltriethoxysilane CPHDMS cyclopentylhexyldimethoxysilane iBiPDMS isobutylisopropyldimethoxysilane CPMDMS cyclopentylmethyldimethoxysilane iBCHDMS isobutylcyclohexyldimethoxysilane
DiBDMS diisobutyldiméthoxysiiane DPDMS diphényldiméthoxysilane DBP dibutylphtalate TEA triéthylaluminiumDiBDMS diisobutyldimethoxysiiane DPDMS diphenyldimethoxysilane DBP dibutylphthalate TEA triethylaluminium
Exemple 1 a) Préparation d'un support de composante catalytique Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation mécanique à pale et d'une régulation de température par double enveloppe, on introduit 30 g de MgCl2 anhydre commercial sous forme de grains de diamètre moyen de 2 mm environ, 4,5 g de 1-2-4-5-tétraméthylbenzène et 200 ml de tétrahydrofurane (THF). La température est portée à 60°C et on laisse agiter pendant 16 heures. Le solide est ensuite filtré et lavé 3 fois avec 100 ml d'hexane à 60°C pendant 15 minutes puis séché à 60°C, deux heures sous courant d'azote. On récupère 54,2 g d'un solide composé de 11 ,7% en poids de magnésium et de 54,3% en poids de THF. b) Préparation d'une composante catalytique Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation tournant à 100 révolutions par minute, on introduit à 50°C 6,4 g du solide obtenu en a), 21 ml de toluène et 62 ml de TiCl4 pur. La température est portée à 90°C et on introduit alors 1 ,05 ml de dibutylphtalate (DBP). On laisse sous agitation pendant 2 heures. Après filtration, on réalise une deuxième série de traitements en introduisant 4 ml de TiCl4 et 79 ml de toluène. La température est portée à 100°C pendant 1 heure. On procède ensuite à une filtration et on recommence ce traitement par un mélange de TiCl4 et de toluène 4 fois dans les mêmes conditions. Le solide est ensuite lavé avec 64 ml d'hexane à 60°C pendant 10 minutes puis filtré. Le solide est remis en suspension dans 200 ml d'hexane et l'on fait revenir la température à 20°C. On introduit alors 7,5 ml d'une solution à 1 millimole par ml de triéthylaluminium (TEA) dans l'hexane. On introduit ensuite 2,5 ml d'une solution à 1 millimole par ml de dicyclopentyldiméthoxysilane (DCPDMS) dans l'hexane, cette quantité étant introduite en quatre fractions par intervalles de 15 minutes. Après la dernière introduction, on laisse réagir pendant 15 minutes supplémentaires. Les quantités de TEA et de DCPDMS introduites lors de ce traitement respectent les rapports molaires suivants: [AI]/[Ti] = 6 et [Si]/[Ti] = 2, la quantité de titane dans le solide étant de 1 ,7% en poids. Le solide est alors filtré puis lavé 4 fois avec 100 ml d'hexane à 20°C. Le solide est enfin séché sous courant d'azote à 20°C pendant 2 heures. La composante catalytique se présente sous la forme d'une poudre pulvérulente de granulometrie et de morphologie identique à celle décrite par la photo n°5, de la demande de brevet dont le numéro de publication est FR 2669915. La composante catalytique contient 1 ,5% en poids de titane, 19,4% en poids de magnésium, 1 ,7% en poids d'aluminium et 1 ,3% en poids de silicium. c) Polymérisation en présence de la composante catalytiqueExample 1 a) Preparation of a support for a catalytic component 30 g of commercial anhydrous MgCl 2 are introduced into a 300 ml nitrogen-purged reactor equipped with mechanical paddle agitation and temperature regulation by double jacket. in the form of grains with an average diameter of approximately 2 mm, 4.5 g of 1-2-4-5-tetramethylbenzene and 200 ml of tetrahydrofuran (THF). The temperature is brought to 60 ° C. and the mixture is left to stir for 16 hours. The solid is then filtered and washed 3 times with 100 ml of hexane at 60 ° C for 15 minutes then dried at 60 ° C, two hours under a stream of nitrogen. 54.2 g of a solid composed of 11.7% by weight of magnesium and 54.3% by weight of THF are recovered. b) Preparation of a catalytic component 6.4 g of the solid obtained in a) is introduced at 50 ° C. Into a 300 ml reactor purged with nitrogen equipped with a stirring rotating at 100 revolutions per minute, 21 ml toluene and 62 ml of pure TiCl4. The temperature is brought to 90 ° C. and 1.05 ml of dibutylphthalate (DBP) is then introduced. The mixture is left stirring for 2 hours. After filtration, a second series of treatments is carried out by introducing 4 ml of TiCl4 and 79 ml of toluene. The temperature is brought to 100 ° C. for 1 hour. Filtration is then carried out and this treatment is repeated with a mixture of TiCl 4 and toluene 4 times under the same conditions. The solid is then washed with 64 ml of hexane at 60 ° C for 10 minutes and then filtered. The solid is resuspended in 200 ml of hexane and the temperature is brought back to 20 ° C. 7.5 ml of a solution of 1 millimole per ml of triethylaluminum (TEA) are then introduced into hexane. 2.5 ml of a 1 millimole solution per ml of dicyclopentyldimethoxysilane (DCPDMS) are then introduced into hexane, this quantity being introduced in four fractions at 15-minute intervals. After the last introduction, it is left to react for an additional 15 minutes. The amounts of TEA and DCPDMS introduced during this treatment comply with the following molar ratios: [AI] / [Ti] = 6 and [Si] / [Ti] = 2, the amount of titanium in the solid being 1.7 % in weight. The solid is then filtered and then washed 4 times with 100 ml of hexane at 20 ° C. The solid is finally dried under a stream of nitrogen at 20 ° C for 2 hours. The catalytic component is in the form of a pulverulent powder of particle size and morphology identical to that described by photo 5, of the patent application whose publication number is FR 2669915. The catalytic component contains 1, 5 % by weight of titanium, 19.4% by weight of magnesium, 1.7% by weight of aluminum and 1.3% by weight of silicon. c) Polymerization in the presence of the catalytic component
Dans un réacteur de 3,5 litres en inox, muni d'une agitation magnétique et d'une régulation thermique par double enveloppe, on introduit à 30 °C, dans l'ordre: 2,5 NI d'hydrogène, 2,4 litres de propylene liquide, 12 millimoles de triéthylaluminium.Into a 3.5 liter stainless steel reactor, fitted with magnetic stirring and thermal regulation by double jacket, are introduced at 30 ° C, in order: 2.5 NI of hydrogen, 2.4 liters of liquid propylene, 12 millimoles of triethylaluminum.
Après agitation environ de 10 minutes, 20 mg de la composante catalytique préparée en b) sont injectés dans le réacteur. La température est portée en 10 minutes à 70 °C et maintenue pendant une heure à cette valeur.After stirring for approximately 10 minutes, 20 mg of the catalytic component prepared in b) are injected into the reactor. The temperature is brought in 10 minutes to 70 ° C and maintained for one hour at this value.
Le réacteur est ensuite refroidi et la pression abaissée à la pression atmosphérique. On récupère 634 grammes d'une poudre d'indice d'isotacticite de 97,7% en poids. L'indice de fluidité du polymère obtenu est de 2,1 g/10min. Les autres résultats sont regroupés dans le tableau 1. Exemple 2The reactor is then cooled and the pressure lowered to atmospheric pressure. 634 grams of a powder with an isotacticity index of 97.7% by weight are recovered. The melt index of the polymer obtained is 2.1 g / 10 min. The other results are collated in Table 1. Example 2
On opère selon l'exemple 1 sauf que l'on remplace la solution de DCPDMS de l'exemple 1 par 2,5 ml d'une solution à 1 millimole par ml de cyclohexylméthyldiméthoxysilane (CHMDMS) dans l'hexane lors de la préparation de la composante catalytique. La quantité d'hydrogène mis en oeuvre lors de la polymérisation de cette composante catalytique est de 0,9 NI. L'indice de fluidité du polymère obtenu est de 4,7g/10min. Les résultats sont regroupés dans le tableau 1.The operation is carried out according to Example 1 except that the DCPDMS solution of Example 1 is replaced by 2.5 ml of a 1 millimole per ml solution of cyclohexylmethyldimethoxysilane (CHMDMS) in hexane during the preparation of the catalytic component. The amount of hydrogen used during the polymerization of this catalytic component is 0.9 NI. The melt index of the polymer obtained is 4.7 g / 10 min. The results are collated in Table 1.
Exemple 3 On opère selon l'exemple 1 sauf que l'on remplace la solution deExample 3 The procedure is as in Example 1 except that the solution of
DCPDMS de l'exemple 1 par 2,5 ml d'une solution à 1 millimole par ml de phényltriéthoxysilane (PTES) lors de la préparation de la composante catalytique. La quantité d'hydrogène mis en oeuvre lors de la polymérisation de cette composante catalytique est de 0,7 NI. L'indice de fluidité du polymère obtenu est de 10,6g/10min. Les résultats sont regroupés dans le tableau 1.DCPDMS of Example 1 with 2.5 ml of a solution of 1 millimole per ml of phenyltriethoxysilane (PTES) during the preparation of the catalytic component. The amount of hydrogen used during the polymerization of this catalytic component is 0.7 NI. The melt index of the polymer obtained is 10.6 g / 10 min. The results are collated in Table 1.
Exemple 4 (comparatif) a) Préparation d'une composante catalytiqueExample 4 (comparative) a) Preparation of a catalytic component
Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation tournant à 100 révolutions par minute, on introduit à 50°C 6,4 g du solide obtenu en a) de l'exemple 1 , 21 ml de toluène et 62 ml de TiCI4 pur. La température est portée à 90°C et on introduit alors 1 ,05 ml de dibutylphtalate (DBP). On laisse sous agitation pendant 2 heures. Après filtration, on réalise une deuxième série de traitements en introduisant 4 ml de TiCI4 et 79 ml de toluène. La température est portée à 100''J pendant 1 heure. On procède ensuite à une filtration et on recommence ce traitement par un mélange de TiCI4 et de toluène 4 fois dans les mêmes conditions. Le solide est ensuite lavé 3 fois avec 64 ml d'hexane à 60°C pendant 10 minutes à chaque fois puis filtré. Le solide est enfin séché sous courant d'azote à 60°C pendant 2 heures. La composante catalytique se présente sous la forme d'une poudre pulvérulente de granulometrie et de morphologie identique à celle décrite par la photo n°5 de la demande de brevet dont le numéro .- publication est FR 2669915. La composante catalytique contient 2% en poids de titane et 19,6% en poids de magnésium. b) Polymérisation en présence de la composante catalytique Dans un réacteur de 3,5 litres en inox, muni d'une agitation magnétique et d'une régulation thermique par double enveloppe, on introduit à 30 °C, dans l'ordre: 1 ,05 NI d'hydrogène, 2,4 litres de propylene liquide, 12 millimoles de triéthylaluminium et 0,017 millimole de dicyclopentyldimethoxysiiane (DCPDMS) comme donneur d'électrons externe. La quantité de DCPDMS introduite dans le réacteur a été déterminée de façon à respecter le rapport molaire [Si]/[Ti] de 2.6.4 g of the solid obtained in a) of example 1, 21 ml of toluene are introduced into a 300 ml nitrogen-purged reactor fitted with stirring rotating at 100 revolutions per minute. 62 ml of pure TiCI4. The temperature is brought to 90 ° C. and 1.05 ml of dibutylphthalate (DBP) is then introduced. The mixture is left stirring for 2 hours. After filtration, a second series is carried out treatments by introducing 4 ml of TiCI4 and 79 ml of toluene. The temperature is raised to 100''J for 1 hour. Filtration is then carried out and this treatment is repeated with a mixture of TiCl 4 and toluene 4 times under the same conditions. The solid is then washed 3 times with 64 ml of hexane at 60 ° C for 10 minutes each time and then filtered. The solid is finally dried under a stream of nitrogen at 60 ° C for 2 hours. The catalytic component is in the form of a powdery powder with a particle size and morphology identical to that described by photo 5 of the patent application, the publication number of which is FR 2669915. The catalytic component contains 2% by weight of titanium and 19.6% by weight of magnesium. b) Polymerization in the presence of the catalytic component In a 3.5 liter stainless steel reactor, fitted with magnetic stirring and thermal regulation by double jacket, the following are introduced at 30 ° C., in the order: 1, 05 NI of hydrogen, 2.4 liters of liquid propylene, 12 millimoles of triethylaluminum and 0.017 millimoles of dicyclopentyldimethoxysiiane (DCPDMS) as an external electron donor. The amount of DCPDMS introduced into the reactor was determined so as to respect the [Si] / [Ti] molar ratio of 2.
Après agitation environ 10 minutes, 20 mg de la composante catalytique dont la préparation vient d'être décrite sont injectés dans le réacteur. La température est portée en 10 minutes à 70 °C et maintenue pendant une heure à cette valeur.After stirring for approximately 10 minutes, 20 mg of the catalytic component, the preparation of which has just been described, are injected into the reactor. The temperature is brought in 10 minutes to 70 ° C and maintained for one hour at this value.
A la fin de la réaction, le réacteur est refroidi à la température ambiante et la pression abaissée à la pression atmosphérique. On récupère 700 αrammes d'une poudre d'indice d'isotacticite de 89,3% en poids. L'indice de fluidité du polymère obtenu est de 2,8 g/10 min .Les autres résultats sont regroupés dans le tableau 1.At the end of the reaction, the reactor is cooled to room temperature and the pressure lowered to atmospheric pressure. 700 αrammes of a powder with an isotacticity index of 89.3% by weight are recovered. The melt index of the polymer obtained is 2.8 g / 10 min. The other results are collated in Table 1.
Exemple 5 (comparatif)Example 5 (comparative)
On répète l'exemple comparatif 4 sauf que l'on n'introduit pas de dicyclopentyldimethoxysiiane lors de la polymérisation et que la quantité d'hydrogène introduite est 0,4 NI. L'indice de fluidité du polymère obtenu est de 8,1 g/10min. Les autres résultats sont regroupés dans le tableau 1.Repeat Comparative Example 4 except that no dicyclopentyldimethoxysiiane is introduced during the polymerization and that the amount of hydrogen introduced is 0.4 NI. The melt index of the polymer obtained is 8.1 g / 10 min. The other results are collated in Table 1.
Exemple 6 (comparatif) Dans un réacteur de 8 litres en inox, muni d'une agitation magnétique et d'une régulation thermique par double enveloppe, on introduit à 30 °C, dans l'ordre: 3,2 NI d'hydrogène, 6 litres de propylene liquide, 30 millimoles de triéthylaluminium et 3 millimoles de dicyclopentyldimethoxysiiane (DCPDMS) comme donneur d'électrons externe.Example 6 (comparative) In an 8 liter stainless steel reactor, fitted with magnetic stirring and thermal regulation by double jacket, the following are introduced at 30 ° C., in order: 3.2 NI of hydrogen, 6 liters of liquid propylene, 30 millimoles of triethylaluminum and 3 millimoles of dicyclopentyldimethoxysiiane (DCPDMS) as an external electron donor.
Après agitation 10 minutes, 40 mg de la composante catalytique préparée comme en a) de l'exemple comparatif 4 sont injectés dans le réacteur. La température est portée en 10 minutes à 70 °C et maintenue pendant une heure à cette valeur.After stirring for 10 minutes, 40 mg of the catalytic component prepared as in a) of Comparative Example 4 are injected into the reactor. The temperature is brought in 10 minutes to 70 ° C and maintained for one hour at this value.
Le réacteur est alors refroidi à la température ambiante et la pression abaissée à la pression atmosphérique. On récupère 2150 grammes d'une poudre d'indice d'isotacticite de 97,8% en poids. L'indice de fluidité du polymère obtenu est de 3,8g/10min. Le tableau 1 regroupe les autres résultats.The reactor is then cooled to room temperature and the pressure lowered to atmospheric pressure. 2150 grams of a powder with an isotacticity index of 97.8% by weight are recovered. The melt index of the polymer obtained is 3.8 g / 10 min. Table 1 groups the other results.
Exemple 7 (comparatif)Example 7 (comparative)
On répète l'exemple comparatif 6 sauf que l'on remplace les 3 millimoles de DCPDMS par 3 millimoles de CHMDMS. La quantité d'hydrogène mise en oeuvre est dans ce cas de 1 ,6 NI. L'indice de fluidité du polymère obtenu est de 4,6g/10min. Les résultats sont rassemblés dans le tableau 1.Repeat Comparative Example 6 except that the 3 millimoles of DCPDMS are replaced by 3 millimoles of CHMDMS. The amount of hydrogen used in this case is 1.6 NI. The melt index of the polymer obtained is 4.6 g / 10 min. The results are collated in Table 1.
Exemple 8 (comparatif)Example 8 (comparative)
On répète l'exemple comparatif 6 sauf que l'on remplace les 3 millimoles de DCPDMS par 3 millimoles de PTES. La quantité d'hydrogène mise en oeuvre est dans ce cas de 1 ,2 NI. L'indice de fluidité du polymère obtenu est de 7,2g/10min. Les résultats sont rassemblés dans le tableau 1.Repeat Comparative Example 6 except that the 3 millimoles of DCPDMS are replaced by 3 millimoles of PTES. The amount of hydrogen used in this case is 1.2 NI. The melt index of the polymer obtained is 7.2 g / 10 min. The results are collated in Table 1.
Exemple 9 On opère comme pour l'exemple 1 sauf que lors de la préparation de la composante catalytique, on introduit 15 ml de triéthylaluminium à 1mmol/ml et non plus seulement 7,5 ml. De plus, on introduit ensuite, en quatre fois par intervalles de 15 minutes, 5 ml d'une solution de DCPDMS à 1 mmol/ml et non plus 2,5 ml comme dans l'exemple 1. Les quantités de TEA et de DCPDMS introduites respectent ici les rapports molaires: [AI]/[Ti] = 12 et [Si]/[Ti] = 4, la quantité de titane sur le solide étant égale à 1 ,7% en poids. L'indice de fluidité du polymère obtenu est de 1 ,4g/10min. Les résultats sont rassemblés dans le tableau 1.EXAMPLE 9 The procedure is as in Example 1 except that during the preparation of the catalytic component, 15 ml of triethylaluminum at 1 mmol / ml are introduced and no longer only 7.5 ml. In addition, 5 ml of a DCPDMS solution at 1 mmol / ml and no longer 2.5 ml are then introduced, in four times at 15-minute intervals, as in example 1. The amounts of TEA and DCPDMS introduced here respect the molar ratios: [AI] / [Ti] = 12 and [Si] / [Ti] = 4, the amount of titanium on the solid being equal to 1.7% by weight. The melt index of the polymer obtained is 1.4 g / 10 min. The results are collated in Table 1.
Exemple 10 On opère comme pour l'exemple 1 sauf que lors de la préparation de la composante catalytique, on introduit 30 ml de triéthylaluminium à 1 mmol/ml et non plus seulement 7,5 ml. De plus, on introduit ensuite, en quatre fois par intervalles de 15 minutes, 10 ml d'une solution de DCPDMS à 1 mmol/ml et non plus 2,5 ml comme dans l'exemple 1. Les quantités de TEA et de DCPDMS introduites respectent ici les rapports molaires: [AI]/[Ti] = 24 et [Si]/[Ti] = 8, la quantité de titane sur le solide étant égale à 1 ,7% en poids. L'indice de fluidité du polymère obtenu est de 1 ,2g/10min. Les résultats sont rassemblés dans le tableau 1.Example 10 The procedure is as in Example 1 except that during the preparation of the catalytic component, 30 ml of triethylaluminum at 1 mmol / ml are introduced and no longer only 7.5 ml. In addition, 10 ml of a DCPDMS solution at 1 mmol / ml and not 2.5 ml are then introduced in four times at 15-minute intervals. as in Example 1. The amounts of TEA and DCPDMS introduced here respect the molar ratios: [AI] / [Ti] = 24 and [Si] / [Ti] = 8, the amount of titanium on the solid being equal at 1.7% by weight. The melt index of the polymer obtained is 1.2 g / 10 min. The results are collated in Table 1.
Exemple 11Example 11
On opère comme pour l'exemple 10 sauf que l'on introduit 10 ml d'une solution de CHMDMS à 1 mmol/ml à la place de la solution de DCPDMS. L'indice de fluidité du polymère obtenu est de 5,3g/10min. Les résultats sont rassemblés dans le tableau 1.The procedure is as in Example 10 except that 10 ml of a 1 mmol / ml solution of CHMDMS are introduced in place of the DCPDMS solution. The melt index of the polymer obtained is 5.3 g / 10 min. The results are collated in Table 1.
Exemple 12Example 12
On opère comme pour l'exemple 1 sauf que la préparation de la composante catalytique est la suivante: Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation tournant à 100 révolutions par minute, on introduit à 50°C 6,4 g du solide préparé en a) de l'exemple 1 , 21 ml de toluène et 62 ml de TiCI4 pur. La température est portée à 90°C et on introduit alors 1 ,05 ml de dibutylphtalate (DBP). On laisse sous agitation pendant 2 heures. Après filtration, on réalise une deuxième série de traitements en introduisant 4 ml de TiCI4 et 79 ml de toluène. La température est portée à 100°C pendant 1 heure. On procède ensuite à une filtration et on recommence ce traitement 4 fois dans les mêmes conditions. Le solide est ensuite lavé avec 64 ml d'hexane à 60°C pendant 10 minutes puis filtré. Le solide ainsi obtenu est remis en suspension dans 200 ml d'hexane. A 20°C, on prépare un mélange contenant 7,5 ml d'une solution de triéthylaluminium (TEA) à 1 mmol/ml dans l'hexane et 2,5 ml d'une solution de dicyclopentyldimethoxysiiane (DCPDMS) à 1 mmol/ml dans l'hexane. On agite le mélange pendant 10 minutes à température ambiante. On introduit ensuite, en quatre fois, par intervalles de 15 minutes, les 10 ml de ce mélange. Après la dernière introduction, on laisse réagir pendant 15 minutes supplémentaires. Les quantités de TEA et de DCPDMS introduites lors de ce traitement respectent les rapports molaires suivants: [AI]/[Ti] = 6 et [Si]/[Ti] = 2, la quantité de titane sur le solide étant égale à 1 ,7% en poids. Le solide est alors filtré puis lavé 4 fois avec 100 rr d'hexane à 20°C. Le solide est enfin séché sous courant d'azote à 20°C pendant 2 heures. La composante catalytique se présente sous la forme d'une poudre pulvérulente de granulometrie et de morphologie identique à celle décrite par la photo N°5 de la demande de brevet dont le numéro de publication est FR 2669915. La composante catalytique contient 1 ,8% en poids de titane, 17,5% en poids de magnésium, 1 ,5% en poids d'aluminium et 1 ,1 % en poids de silicium. L'indice de fluidité du polymère obtenu est de 2,2g/10min. Les résultats sont rassemblés dans le tableau 1.The procedure is as in Example 1 except that the preparation of the catalytic component is as follows: In a 300 ml nitrogen-purged reactor fitted with stirring rotating at 100 revolutions per minute, the following are introduced at 50 ° C. , 4 g of the solid prepared in a) of Example 1, 21 ml of toluene and 62 ml of pure TiCl4. The temperature is brought to 90 ° C. and 1.05 ml of dibutylphthalate (DBP) is then introduced. The mixture is left stirring for 2 hours. After filtration, a second series of treatments is carried out by introducing 4 ml of TiCl4 and 79 ml of toluene. The temperature is brought to 100 ° C. for 1 hour. Filtration is then carried out and this treatment is repeated 4 times under the same conditions. The solid is then washed with 64 ml of hexane at 60 ° C for 10 minutes and then filtered. The solid thus obtained is resuspended in 200 ml of hexane. At 20 ° C., a mixture is prepared containing 7.5 ml of a solution of triethylaluminum (TEA) at 1 mmol / ml in hexane and 2.5 ml of a solution of dicyclopentyldimethoxysiiane (DCPDMS) at 1 mmol / ml in hexane. The mixture is stirred for 10 minutes at room temperature. The 10 ml of this mixture are then introduced in four batches at intervals of 15 minutes. After the last introduction, it is left to react for an additional 15 minutes. The amounts of TEA and DCPDMS introduced during this treatment comply with the following molar ratios: [AI] / [Ti] = 6 and [Si] / [Ti] = 2, the amount of titanium on the solid being equal to 1, 7% by weight. The solid is then filtered and then washed 4 times with 100 rr of hexane at 20 ° C. The solid is finally dried under a stream of nitrogen at 20 ° C for 2 hours. The catalytic component is in the form of a pulverulent powder with a particle size and morphology identical to that described by photo No. 5 of the patent application whose publication number is FR 2669915. The catalytic component contains 1.8% by weight of titanium, 17.5% by weight of magnesium, 1.5% by weight of aluminum and 1.1% by weight of silicon. The melt index of the polymer obtained is 2.2 g / 10 min. The results are collated in Table 1.
Exemple 13 On opère comme pour l'exemple 12 sauf que le mélange de TEA et deExample 13 The procedure is as in Example 12 except that the mixture of TEA and
DCPDMS est réalisé avec 15 ml de triéthylaluminium à 1 mmol/ml et 5 ml de DCPDMS à 1 mmol/ml. On laisse réagir les deux composés pendant 10 minutes à température ambiante. Puis on introduit, en quatre fois, par intervalles de 15 minutes, les 20 ml de ce mélange. Les quantités de TEA et de DCPDMS introduites respectent ici les rapports molaires: [AI]/[Ti] = 12 et [Si]/[Ti] = 4, la quantité de titane sur le solide étant égaie à 1 ,7% en poids. L'indice de fluidité du polymère obtenu est de 1 ,3g/10min. Les résultats sont rassemblés dans le tableau 1.DCPDMS is produced with 15 ml of triethylaluminum at 1 mmol / ml and 5 ml of DCPDMS at 1 mmol / ml. The two compounds are left to react for 10 minutes at room temperature. Then the 20 ml of this mixture are introduced four times, in 15-minute intervals. The amounts of TEA and DCPDMS introduced here respect the molar ratios: [AI] / [Ti] = 12 and [Si] / [Ti] = 4, the amount of titanium on the solid being equal to 1.7% by weight . The melt index of the polymer obtained is 1.3 g / 10 min. The results are collated in Table 1.
Exemple 14Example 14
On opère comme pour l'exemple 12 sauf que le mélange de TEA et de DCPDMS est réalisé avec 3,75 ml de triéthylaluminium à 1 mmol/ml et 1 ,25 ml de DCPDMS à 1 mmol/ml. On laisse réagir les deux composés pendant 10 minutes à température ambiante. Puis on introduit, en quatre fois, par intervalles de 15 minutes, les 5 ml de ce mélange. Les quantités de TEA et de DCPDMS introduites respectent ici les rapports molaires: [AI]/[Ti] = 3 et [Si]/[Ti] = 1 , la quantité de titane sur le solide étant égale à 1 ,7% en poids. L'indice de fluidité du polymère obtenu est de 2g/10min. Les résultats sont rassemblés dans le tableau 1.The procedure is as for Example 12 except that the mixture of TEA and DCPDMS is produced with 3.75 ml of triethylaluminum at 1 mmol / ml and 1.25 ml of DCPDMS at 1 mmol / ml. The two compounds are left to react for 10 minutes at room temperature. Then the four ml of this mixture are introduced in four batches at intervals of 15 minutes. The amounts of TEA and DCPDMS introduced here respect the molar ratios: [AI] / [Ti] = 3 and [Si] / [Ti] = 1, the amount of titanium on the solid being equal to 1.7% by weight . The melt index of the polymer obtained is 2g / 10min. The results are collated in Table 1.
Exemple 15Example 15
On opère comme pour l'exemple 1 sauf que l'on introduit 2,5 ml d'une solution de cyclopentyl n-hexyl diméthoxysilane (CPHDMS) à la place de la solution de DCPDMS lors de la préparation de la composante catalytique. La quantité d'hydrogène mise en oeuvre lors de la polymérisation de la composante catalytique ainsi obtenue est de 0,9 NI. L'indice de fluidité du polymère obtenu est de 3,2g/10min. Les résultats sont regroupés dans le tableau 1.The procedure is as in Example 1 except that 2.5 ml of a cyclopentyl n-hexyl dimethoxysilane solution (CPHDMS) are introduced in place of the DCPDMS solution during the preparation of the catalytic component. The amount of hydrogen used during the polymerization of the catalytic component thus obtained is 0.9 NI. The melt index of the polymer obtained is 3.2 g / 10 min. The results are collated in Table 1.
Exemple 16Example 16
On opère comme pour l'exemple 1 sauf que l'on introduit 2,5 ml d'une solution d' isobutylisopropyldiméthoxysiiane (iBiPDMS) à la place de la solution de DCPDMS lors de la préparation de la composante catalytique. La quantité d'hydrogène mise en oeuvre lors de la polymérisation de la composante catalytique ainsi obtenue est de 1 ,2 NI. L'indice de fluidité du polymère obtenu est de 3,6g/10min. Les résultats sont regroupés dans le tableau 1.The procedure is as for Example 1 except that 2.5 ml of a solution of isobutylisopropyldimethoxysiiane (iBiPDMS) are introduced in place of the solution of DCPDMS during the preparation of the catalytic component. The amount of hydrogen used during the polymerization of the component catalytic thus obtained is 1, 2 NI. The melt index of the polymer obtained is 3.6 g / 10 min. The results are collated in Table 1.
Exemple 17 On opère comme pour l'exemple 1 sauf que l'on introduit 2,5 ml d'une solution de cyclopentylméthyidiméthoxysilane (CPMDMS) à la place de la solution de DCPDMS lors de la préparation de la composante catalytique. La quantité d'hydrogène mise en oeuvre lors de la polymérisation de la composante catalytique ainsi obtenue est de 0,7 NI. L'indice de fluidité du polymère obtenu est de 4,8g/10min. Les résultats sont regroupés dans le tableau 1.Example 17 The procedure is as in Example 1 except that 2.5 ml of a cyclopentylmethyidimethoxysilane solution (CPMDMS) are introduced in place of the DCPDMS solution during the preparation of the catalytic component. The quantity of hydrogen used during the polymerization of the catalytic component thus obtained is 0.7 NI. The melt index of the polymer obtained is 4.8 g / 10 min. The results are collated in Table 1.
Exemple 18Example 18
On opère comme pour l'exemple 1 sauf que l'on introduit 2,5 ml d'une solution de isobutyl cyclohexyl diméthoxysilane (iBCHDMS) à la place de la solution de DCPDMS lors de la préparation de la composante catalytique. La quantité d'hydrogène mise en oeuvre lors de la polymérisation de la composante catalytique ainsi obtenue est de 0,9 NI. L'indice de fluidité du polymère obtenu est de 3,7g/10min. Les résultats sont regroupés dans le tableau 1.The procedure is as for Example 1 except that 2.5 ml of an isobutyl cyclohexyl dimethoxysilane solution (iBCHDMS) are introduced in place of the DCPDMS solution during the preparation of the catalytic component. The amount of hydrogen used during the polymerization of the catalytic component thus obtained is 0.9 NI. The melt index of the polymer obtained is 3.7 g / 10 min. The results are collated in Table 1.
Exemple 19Example 19
On opère comme pour l'exemple 1 sauf que l'on introduit 2,5 ml d'une solution de diisobutyldiméthoxysilane (DiBDMS) à la place de la solution de DCPDMS lors de la préparation de la composante catalytique. La quantité d'hydrogène mise en oeuvre lors de la polymérisation de la composante catalytique ainsi obtenue est de 1 ,2 NI. L'indice de fluidité du polymère obtenu est de 7,2g/10min. Les résultats sont regroupés dans le tableau 1.The procedure is as for Example 1 except that 2.5 ml of a solution of diisobutyldimethoxysilane (DiBDMS) are introduced in place of the solution of DCPDMS during the preparation of the catalytic component. The amount of hydrogen used during the polymerization of the catalytic component thus obtained is 1.2 NI. The melt index of the polymer obtained is 7.2 g / 10 min. The results are collated in Table 1.
Exemple 20 (comparatif) a) Préparation d'un support de composante catalytique Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation mécanique à pale, d'une régulation de température par double enveloppe, on introduit 30 g de MgCI2 anhydre commercial, 4,5 g de 1-2-4-5- tétraméthylbenzène et 200 ml de tétr&nydrofurane (THF). La température est portée à 60°C et on laisse agiter pendant 16 heures. Le solide est ensuite filtré et lavé 3 fois avec 100 ml d'hexane à 60°C pendant 15 minutes puis séché à 60°C, 2 heures, sous courant d'azote. On récupère 54,2 g d'un solide composé de 11 ,7% en poids de magnésium et de 54,3% en poids de THF et dont la morphologie est identique à celle décrite par la photo N°3 de la demande de brevet dont le numéro de publication est FR 2669915. b) Préparation d'une composante catalytiqueExample 20 (comparative) a) Preparation of a support for a catalytic component In a 300 ml nitrogen-purged reactor fitted with mechanical paddle stirring, with temperature control by double jacket, 30 g of MgCl2 anhyd e r commercial, 4.5 g of 1-2-4-5- tetramethylbenzene and 200 ml of tetrahydro & nydrofurane (THF). The temperature is brought to 60 ° C. and the mixture is left to stir for 16 hours. The solid is then filtered and washed 3 times with 100 ml of hexane at 60 ° C for 15 minutes then dried at 60 ° C, 2 hours, under a stream of nitrogen. 54.2 g of a solid consisting of 11.7% by weight of magnesium and 54.3% by weight of THF are recovered, the morphology of which is identical to that described in photo No. 3 of the patent application, the publication number of which is FR 2669915. b) Preparation of a catalytic component
Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation tournant à 100 révolutions par minutes, on introduit à 50°C 6,4 g du support dont la préparation vient d'être décrite, 21 ml de toluène et 62 ml de TiCI4 pur. La température étant portée à 90°C, on introduit alors 1 ,05 ml de dibutylphtalate (DBP) et on laisse sous agitation pendant 2 heures. Après filtration, on réalise une deuxième série de traitements en introduisant 4 ml de TiCI4 et 79 ml de toluène. La température est portée à 100°C pendant 1 heure. On procède ensuite à une filtration et on recommence ce traitement 4 fois dans les mêmes conditions. Le solide est ensuite lavé 3 fois avec 64 ml d'hexane à 60°C pendant 10 minutes puis filtré. Le solide est enfin séché sous courant d'azote à 60°C pendant 2 heures. La composante catalytique se présente sous la forme d'une poudre pulvérulente de granulometrie et de morphologie identique à celle décrite par la photo N°5, de la demande de brevet dont le numéro de publication est FR 2669915.6.4 g of the support, the preparation of which has just been described, 21 ml of toluene and 62 g are introduced into a 300 ml nitrogen-purged reactor fitted with a stirrer rotating at 100 revolutions per minute. ml of pure TiCI4. The temperature being brought to 90 ° C., 1.05 ml of dibutylphthalate (DBP) are then introduced and the mixture is left stirring for 2 hours. After filtration, a second series of treatments is carried out by introducing 4 ml of TiCl4 and 79 ml of toluene. The temperature is brought to 100 ° C. for 1 hour. Filtration is then carried out and this treatment is repeated 4 times under the same conditions. The solid is then washed 3 times with 64 ml of hexane at 60 ° C for 10 minutes and then filtered. The solid is finally dried under a stream of nitrogen at 60 ° C for 2 hours. The catalytic component is in the form of a pulverulent powder with a particle size and morphology identical to that described by photo No. 5, of the patent application whose publication number is FR 2669915.
La composante catalytique contient 2% en poids de titane et 19,6% en poids de magnésium. c) Polymérisation en présence de la composante catalytiqueThe catalytic component contains 2% by weight of titanium and 19.6% by weight of magnesium. c) Polymerization in the presence of the catalytic component
Dans un réacteur de 3,5 litres en inox, muni d'une agitation magnétique et d'une régulation thermique par double enveloppe, on introduit à 30 °C, dans l'ordre: 0,9 NI d'hydrogène, 2,4 litres de propylene liquide, 12 millimoles de triéthylaluminium et 0,017 millimole de cyclopentyl n-hexyl diméthoxysilane (CPHDMS) comme donneur d'électrons externe. La quantité de CPHDMS introduite dans le réacteur a été déterminée de façon à respecter le rapport molaire [Si]/[Ti] de 2.Into a 3.5 liter stainless steel reactor, fitted with magnetic stirring and thermal regulation by double jacket, are introduced at 30 ° C, in order: 0.9 NI of hydrogen, 2.4 liters of liquid propylene, 12 millimoles of triethylaluminum and 0.017 millimoles of cyclopentyl n-hexyl dimethoxysilane (CPHDMS) as an external electron donor. The quantity of CPHDMS introduced into the reactor was determined so as to respect the [Si] / [Ti] molar ratio of 2.
Après agitation environ 10 minutes, 20 mg de la composante catalytique préparée précédemment sont injectés dans le réacteur. La température est portée en 10 minutes à 70 °C et maintenue pendant une heure à cette valeur.After stirring for approximately 10 minutes, 20 mg of the catalytic component prepared above are injected into the reactor. The temperature is brought in 10 minutes to 70 ° C and maintained for one hour at this value.
A la fin de la réaction, le réacteur est refroidi et la pression abaissée à la pression atmosphérique. On récupère 519 grammes d'une poudre d'indice d'isotacticite de 63,1 % en poids. L'indice de fluidité du polymère obtenu est de 24,1 g/10min. Le tableau 1 rassemble les autres résultats.At the end of the reaction, the reactor is cooled and the pressure lowered to atmospheric pressure. 519 grams of a powder with an isotacticity index of 63.1% by weight are recovered. The melt index of the polymer obtained is 24.1 g / 10 min. Table 1 collates the other results.
Exemple 21 (comparatif) On opère comme pour l'exemple comparatif 20 sauf que l'on introduit 0,017 millimole de isobutylisopropyldiméthoxysilane (iBiPDMS) à la place du cyclopentyl n-hexyl diméthoxysilane lors de la polymérisation. La quantité d'hydrogène mise en oeuvre lors de la polymérisation en présence de la composante catalytique ainsi obtenue est de 1 ,2 NI. L'indice de fluidité du polymère obtenu est de 7,1 g/10 min. Les résultats sont regroupés dans le tableau 1.Example 21 (comparative) The procedure is as for Comparative Example 20 except that 0.017 millimole of isobutylisopropyldimethoxysilane (iBiPDMS) is introduced in place of cyclopentyl n-hexyl dimethoxysilane during the polymerization. The amount of hydrogen used during the polymerization in the presence of the catalytic component thus obtained is 1.2 NI. The melt index of the polymer obtained is 7.1 g / 10 min. The results are collated in Table 1.
Exemple 22 (comparatif) On opère comme pour l'exemple comparatif 20 sauf que l'on introduitExample 22 (comparative) The procedure is as for comparative example 20 except that one introduces
0,017 millimole de isobutyl cyclohexyl diméthoxysilane (iBCHDMS) à la place du cyclopentyl n-hexyl diméthoxysilane lors de la polymérisation. La quantité d'hydrogène mise en oeuvre lors de la polymérisation de la composante catalytique ainsi obtenue est de 0,9 NI. L'indice de fluidité du polymère est de 10,9 grammes/10 minutes. Les résultats sont regroupés dans le tableau 1.0.017 millimole of isobutyl cyclohexyl dimethoxysilane (iBCHDMS) in place of cyclopentyl n-hexyl dimethoxysilane during the polymerization. The amount of hydrogen used during the polymerization of the catalytic component thus obtained is 0.9 NI. The melt index of the polymer is 10.9 grams / 10 minutes. The results are collated in Table 1.
Exemple 23 a) Préparation d'une composante catalytiqueExample 23 a) Preparation of a catalytic component
Dans un réacteur de 300 ml purgé à l'azote muni d'une agitation tournant à 100 révolutions par minute, on introduit à 50°C 6,4 g du solide obtenu au a) de l'exemple 1 , 21 ml de toluène et 62 ml de TiCl4 pur.6.4 g of the solid obtained in a) of Example 1, 21 ml of toluene are introduced into a 300 ml nitrogen-purged reactor fitted with a stirrer rotating at 100 revolutions per minute. 62 ml of pure TiCl4.
La température est portée à 90°C et on introduit alors 1 ,05 ml de dibutylphtalate (DBP). On laisse sous agitation pendant deux heures. Après filtration, on réalise une deuxième série de traitements en introduisant 4 ml de TiCl4 et 7Q m' de toluène. La température est portée à 100°C pendant 1 heure. On procède ensuite à une filtration et l'on recommence ce traitement quatre fois dans les mêmes conditions. Le solide est ensuite lavé avec 64 ml d'hexane à 60°C pendant 10 minutes puis filtré. Le solide est remis en suspension dans 200 ml d'hexane. La température étant redescendue à 20°C, on introduit 2,5 ml d'une solution de DCPDMS à 1 millimole par ml dans l'hexane, cette quantité étant introduite en quatre fractions par intervalles de 15 minutes. Après la dernière ' introduction, on laisse sous agitation pendant 15 minutes supplémentaires.The temperature is brought to 90 ° C. and 1.05 ml of dibutylphthalate (DBP) is then introduced. The mixture is left stirring for two hours. After filtration, a second series of treatments is carried out by introducing 4 ml of TiCl 4 and 7 μm of toluene. The temperature is brought to 100 ° C. for 1 hour. Filtration is then carried out and this treatment is repeated four times under the same conditions. The solid is then washed with 64 ml of hexane at 60 ° C for 10 minutes and then filtered. The solid is resuspended in 200 ml of hexane. The temperature having dropped to 20 ° C., 2.5 ml of a DCPDMS solution at 1 millimole per ml in hexane is introduced, this quantity being introduced in four fractions at 15-minute intervals. After the latest introduction, the mixture is stirred for 15 minutes.
On introduit ensuite 7,5 ml d'une solution de TEA à 1 millimole par ml dans l'hexane et on laisse sous agitation pendant 15 minutes. Les quantités de TEA et de DCPDMS introduites lors de ce traitement respectent les rapports molaires suivants : [AI]/[Ti] = 6 et [Si]/[Ti] = 2, la quantité de titane dans le solide étant de 1 ,7 % en poids. Le solide est alors filtré puis lavé 4 fois avec 100 ml d'hexane à 20°C. solide est enfin séché à 20°C, pendant deux heures sous courant d'azote. La composante catalytique ainsi obtenue se présente sous la forme d'une poudre de morphologie identique à celle de la photo N°5 de la demande de brevet dont le numéro de publication est FR 2 669 915. Cette composante catalytique contient 1 ,8 % en poids de titane, 18,3 % en poids de magnésium, 1 ,3 % en poids d'aluminium, 1 % en poids de silicium. b) polymérisation en présence de la composante catalytique.7.5 ml of a TEA solution of 1 millimole per ml in hexane are then introduced and the mixture is left stirring for 15 minutes. The amounts of TEA and DCPDMS introduced during this treatment comply with the following molar ratios: [AI] / [Ti] = 6 and [Si] / [Ti] = 2, the amount of titanium in the solid being 1.7 % in weight. The solid is then filtered and then washed 4 times with 100 ml of hexane at 20 ° C. solid is finally dried at 20 ° C for two hours under nitrogen flow. The catalytic component thus obtained is in the form of a powder with a morphology identical to that of photo N ° 5 of the patent application, the publication number of which is FR 2 669 915. This catalytic component contains 1.8% in weight of titanium, 18.3% by weight of magnesium, 1.3% by weight of aluminum, 1% by weight of silicon. b) polymerization in the presence of the catalytic component.
On procède comme pour le c) de l'exemple 1 sauf que l'on utilise la composante catalytique dont la préparation vient d'être décrite et que l'on introduit 2,4 NI d'hydrogène au lieu des 2,5 NI de l'exemple 1. L'indice de fluidité du polymère obtenu est de 2,8 g/10 min. Le tableau 1 rassemble les autres résultats.The procedure is as for c) of Example 1 except that the catalytic component is used, the preparation of which has just been described and that 2.4 NI of hydrogen are introduced instead of the 2.5 NI of Example 1. The melt index of the polymer obtained is 2.8 g / 10 min. Table 1 collates the other results.
Exemple 24 (comparatif)Example 24 (comparative)
On procède comme pour l'exemple 1 sauf que pour la préparation de la composition catalytique on remplace les 2,5 ml de la solution de DCPDMS par 2,5 ml d'une solution à 1 millimole par litre de diphényldiméthoxysilane dans l'hexane et sauf que la quantité d'hydrogène mise en oeuvre à la polymérisation est de 0,7 NI. L'indice de fluidité du polymère obtenu est de 12,5 g/10 min. Le tableau 1 rassemble les autres résultats. Exemple 25 (comparatif) On procède comme pour l'exemple 1 sauf que l'on introduit 0,048 millimole de triéthylaluminium au lieu des 12 millimoles de l'exemple 1 et sauf que l'on introduit 100 mg de composante catalytique solide à la polymérisation au lieu des 20 mg de l'exemple 1. On récupère finalement 10 grammes de polypropylène, ce qui correspond à une productivité de 100 g de polypropylène par gramme de composante solide. The procedure is as for Example 1 except that for the preparation of the catalytic composition, the 2.5 ml of the DCPDMS solution is replaced by 2.5 ml of a 1 millimole solution per liter of diphenyldimethoxysilane in hexane and except that the amount of hydrogen used in the polymerization is 0.7 NI. The melt index of the polymer obtained is 12.5 g / 10 min. Table 1 collates the other results. EXAMPLE 25 (Comparative) The procedure is as for Example 1 except that 0.048 millimole of triethylaluminum is introduced instead of the 12 millimoles of Example 1 and except that 100 mg of solid catalytic component is introduced into the polymerization with instead of the 20 mg of example 1. Finally, 10 grams of polypropylene are recovered, which corresponds to a productivity of 100 g of polypropylene per gram of solid component.
Composante catalytique solide Conditions et résultats de polymérisationSolid catalytic component Conditions and results of polymerization
nature de %Ti %Mg %AI %Si Naturedu Si/Ti II Productivité ï* -, UΞS l'alkoxysilane donneur (g/g) externenature of% Ti% Mg% AI% Si Naturedu Si / Ti II Productivity ï * -, UΞS external donor alkoxysilane (g / g)
1 DCPDMS 1,5 19,4 1,7 1,3 97,7 317001 DCPDMS 1.5 19.4 1.7 1.3 97.7 31,700
2 CHMDMS 1,6 19,5 1,7 1,3 93,4 199002 CHMDMS 1.6 19.5 1.7 1.3 93.4 19,900
3 (comparatif) PTES 1,8 19 1,4 1,2 87.8 126003 (comparative) PTES 1.8 19 1.4 1.2 87.8 12,600
4 (comparatif) 2 19,6 DCPDMS 2 89,3 350004 (comparative) 2 19.6 DCPDMS 2 89.3 35,000
5 (comparatif) 2 19,6 64,9 157005 (comparative) 2 19.6 64.9 15,700
6 (comparatif) 2 19,6 DCPDMS 350 97,8 537006 (comparative) 2 19.6 DCPDMS 350 97.8 53,700
7 (comparatif) 2 19,6 CHMDMS 350 96,8 297007 (comparative) 2 19.6 CHMDMS 350 96.8 29,700
8 (comparatif) 2 19,6 PTES 350 97,2 208008 (comparative) 2 19.6 PTES 350 97.2 20 800
9 DCPDMS 1,6 18,5 1,7 1,6 98,5 264009 DCPDMS 1.6 18.5 1.7 1.6 98.5 26,400
10 DCPDMS 1,6 17,8 1,6 1,7 98,5 2730010 DCPDMS 1.6 17.8 1.6 1.7 98.5 27,300
11 CHMDMS 1,6 18,4 1,5 1,8 94,6 1650011 CHMDMS 1.6 18.4 1.5 1.8 94.6 16,500
12 DCPDMS 1,8 17,5 1,5 1,1 97,6 3750012 DCPDMS 1.8 17.5 1.5 1.1 97.6 37,500
13 DCPDMS 1.8 14 1,5 1,4 98,4 3420013 DCPDMS 1.8 14 1.5 1.4 98.4 34 200
14 DCPDMS 1,9 17,7 1.2 1 96 3860014 DCPDMS 1.9 17.7 1.2 1 96 38 600
15 CPHDMS 1,6 17,3 2 "1 94,9 1550015 CPHDMS 1.6 17.3 2 "1 94.9 15500
16 iBiPDMS 1,8 18,4 1,5 • ,1 94,9 2140016 iBiPDMS 1.8 18.4 1.5 •, 1 94.9 21400
17 CPMDMS 2 18,4 1,6 1,2 90,1 2630017 CPMDMS 2 18.4 1.6 1.2 90.1 26,300
18 iBCHDMS 1,8 18,4 1,5 0,9 95,1 2010018 iBCHDMS 1.8 18.4 1.5 0.9 95.1 20,100
19 DiBDMS 1,5 18,8 1,5 1 91,6 3085019 DiBDMS 1.5 18.8 1.5 1 91.6 30 850
20 (comparatif) 2 19,6 CPHDMS 2 63,1 2595020 (comparative) 2 19.6 CPHDMS 2 63.1 25 950
21 (comparatif) 2 19,6 iBiPDMS 2 92,1 3660021 (comparative) 2 19.6 iBiPDMS 2 92.1 36 600
22 (comparatif) 2 19,6 iBCHDMS 2 84,9 3280022 (comparative) 2 19.6 iBCHDMS 2 84.9 32800
23 DCPDMS 1,8 18,3 1.3 1 95,8 3635023 DCPDMS 1.8 18.3 1.3 1 95.8 36 350
24 (comparatif) DPDMS 1,9 20,1 1,6 2,0 83,7 2150024 (comparative) DPDMS 1.9 20.1 1.6 2.0 83.7 21,500
TABLEAU 1 TABLE 1

Claims

R E V E N D I C A T I O N S
1. Procédé de polymérisation du propylene dans le propylene liquide ou de copolymérisation du propylene dans le propylene liquide avec l'éthylène ou une alpha-oléfine contenant de quatre à douze atomes de carbone, en présence d'un cocatalyseur et d'une composante catalytique solide obtenue après mise en contact de a. un composé solide (a) contenant des atomes de magnésium, d'halogène et de métal de transition b. un dérivé organique de l'aluminium (b) c. un dialkoxysilane (c) de formule R R2Si(OR3)(OR4) dans laquelle R3 et R4 pouvant être identiques ou différents représentent des groupements hydrocarbonés, R et R , pouvant être identiques ou différents, représentent des groupements hydrocarbonés, R étant saturé et contenant au moins trois atomes de carbone, caractérisé en ce qu'aucune prépolymérisation n'est réalisée avant la mise en contact entre (a), (b) et (c), et en ce que le rapport molaire du cocatalyseur sur le métal de transition M contenu dans la composante catalytique solide va de 100 à 3000.1. Process for the polymerization of propylene in liquid propylene or for the copolymerization of propylene in liquid propylene with ethylene or an alpha-olefin containing from four to twelve carbon atoms, in the presence of a cocatalyst and a catalytic component solid obtained after bringing a. a solid compound (a) containing magnesium, halogen and transition metal atoms b. an organic aluminum derivative (b) c. a dialkoxysilane (c) of formula RR 2 Si (OR 3 ) (OR 4 ) in which R 3 and R 4 which may be identical or different represent hydrocarbon groups, R and R, which may be identical or different, represent hydrocarbon groups, R being saturated and containing at least three carbon atoms, characterized in that no prepolymerization is carried out before bringing into contact between (a), (b) and (c), and in that the molar ratio of the cocatalyst to the transition metal M contained in the solid catalytic component ranges from 100 to 3000.
2. Procédé selon la revendication 1 caractérisé en ce que l'atome de carbone lié au silicium de R , est lié à deux atomes de carbone.2. Method according to claim 1 characterized in that the carbon atom bonded to the silicon of R, is bonded to two carbon atoms.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le groupement R est saturé et en ce que l'atome de carbone lié au silicium de R , est lié à deux atomes de carbone.3. Method according to claim 1 or 2 characterized in that the group R is saturated and in that the carbon atom bonded to the silicon of R, is bonded to two carbon atoms.
4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que (b) et (c) sont d'abord mis en contact ensemble puis mis en contact avec (a).4. Method according to one of claims 1 to 3 characterized in that (b) and (c) are first contacted together and then contacted with (a).
5. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que (a), (b) et (c) sont mis en contact dans un hydrocarbure. 5. Method according to one of claims 1 to 4 characterized in that (a), (b) and (c) are brought into contact in a hydrocarbon.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que6. Method according to one of claims 1 to 5 characterized in that
(b) et (c) sont d'abord mélangés en solution dans un hydrocarbure puis mélangés avec une suspension de (a) dans un hydrocarbure.(b) and (c) are first mixed in solution in a hydrocarbon and then mixed with a suspension of (a) in a hydrocarbon.
7. Procédé selon la revendication 5 ou 6 caractérisé en ce que le ou les hydrocarbures sont aliphatiques saturés ou alicycliques saturés. 7. Method according to claim 5 or 6 characterized in that the hydrocarbon or hydrocarbons are saturated aliphatic or saturated alicyclic.
8. Procédé selon l'une des revendications 1 à 7 caractérisé en ce que la mise en contact entre (a), (b) et (c) est réalisée de telle façon que le rapport molaire de l'aluminium apporté par (b) sur le métal de transition apporté par (a) aille de 0,5 à 100 et de préférence de 1 à 50. 8. Method according to one of claims 1 to 7 characterized in that the contacting between (a), (b) and (c) is carried out in such a way that the molar ratio of the aluminum provided by (b) on the transition metal supplied by (a) goes from 0.5 to 100 and preferably from 1 to 50.
9. Procédé selon l'une des revendications 1 à 8 caractérisé en ce que la mise en contact entre (a), (b) et (c) est réalisée de telle façon que le rapport molaire du silicium apporté par (c) sur le métal de transition apporté par (a) aille de 0,5 à 20 et de préférence de 1 à 10. 9. Method according to one of claims 1 to 8 characterized in that the contacting between (a), (b) and (c) is carried out in such a way that the molar ratio of the silicon supplied by (c) to the transition metal supplied by (a) ranges from 0.5 to 20 and preferably from 1 to 10.
10. Procédé selon l'une des revendications 1 à 9 caractérisé en ce que la composante catalytique solide est lavée par un hydrocarbure aliphatique saturé ou alicyclique saturé et éventuellement séchée avant la polymérisation ou copolymérisation du propylene.10. Method according to one of claims 1 to 9 characterized in that the solid catalytic component is washed with a saturated aliphatic hydrocarbon or saturated alicyclic and optionally dried before the polymerization or copolymerization of propylene.
11. Procédé selon l'une des revendications 1 à 10 caractérisé en ce que le cocatalyseur est un dérivé organique de l'aluminium de formule R R R3AI dans laquelle R1 , R2 et R3, pouvant être identiques ou différents, représentent chacun, soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe alkyl contenant de 1 à 20 atomes de carbone, l'un au moins de R , R2 ou R représentant un groupe alkyl. 11. Method according to one of claims 1 to 10 characterized in that the cocatalyst is an organic aluminum derivative of formula RR R3AI in which R1, R2 and R 3 , which may be identical or different, each represents either a hydrogen atom, either a halogen atom or an alkyl group containing from 1 to 20 carbon atoms, at least one of R, R2 or R representing an alkyl group.
12. Procédé de fabrication d'une composante catalytique solide contenant des atomes de magnésium, d'halogène, d'aluminium, d'un métal de transition et de silicium, obtenue après mise en contact de a. un composé solide (a) contenant des atomes de magnésium, d'halogène et de met.- de transition b. un dériver organique de l'aluminum (b) c. un dialkoxysilane (c) de formule Rl R2Si(OR3)(OR4) dans laquelle R3 et R , pouvant être identiques ou différents, représentent des groupements hydrocarbonés, R1 et R2, pouvant être identiques ou différents représentent des groupements hydrocarbonés, R1 étant saturé et contenant au moins trois atomes de carbone, caractérisé en ce que (b) et (c) sont d'abord mis en contact ensemble puis mis en contact avec (a).12. Method for manufacturing a solid catalytic component containing magnesium, halogen, aluminum atoms, a transition metal and silicon, obtained after contacting a. a solid compound (a) containing magnesium, halogen and met.- transition atoms b. an organic derivative of aluminum (b) c. a dialkoxysilane (c) of formula Rl R 2 Si (OR 3 ) (OR 4 ) in which R 3 and R, which may be identical or different, represent hydrocarbon groups, R1 and R2, which can be identical or different, represent hydrocarbon groups , R1 being saturated and containing at least three carbon atoms, characterized in that (b) and (c) are first contacted together and then contacted with (a).
13. Procédé selon la revendication 12, caractérisé en ce que (b) et (c) sont d'abord mélangés en solution dans un hydrocarbure puis mélangés avec une suspension de (a) dans un hydrocarbure. 13. Method according to claim 12, characterized in that (b) and (c) are first mixed in solution in a hydrocarbon and then mixed with a suspension of (a) in a hydrocarbon.
14. Procédé selon la revendication 13 caractérisé en ce que le ou les hydrocarbures sont aliphatiques saturés ou alicycliques saturés.14. The method of claim 13 characterized in that the hydrocarbon (s) are saturated aliphatic or saturated alicyclic.
15. Procédé selon l'une des revendications 12 à 14 caractérisé en ce que la mise en contact entre (a), (b) et (c) est réalisée de telle façon que le rapport molaire de l'aluminium apporté par (b) sur le métal de transition apporté par (a) aille de 0,5 à 100 et de préférence de 1 à 50.15. Method according to one of claims 12 to 14 characterized in that the contacting between (a), (b) and (c) is carried out in such a way that the molar ratio of the aluminum provided by (b) on the transition metal supplied by (a) goes from 0.5 to 100 and preferably from 1 to 50.
16. Procédé selon l'une des revendications 12 à 15 caractérisé en ce que la mise en contact entre (a), (b) et (c) est réalisée de telle façon que le rapport molaire du silicium apporté par (c) sur le métal de transition apporté par (a) aille de 0,5 à 20 et de préférence de 1 à 10.16. Method according to one of claims 12 to 15 characterized in that the contacting between (a), (b) and (c) is carried out in such a way that the molar ratio of the silicon supplied by (c) to the transition metal supplied by (a) ranges from 0.5 to 20 and preferably from 1 to 10.
17. Procédé selon l'une des revendications 12 à 16 caractérisé en ce que l'atome de carboné lié au silicium de R est lié à deux atomes de carbone. 17. Method according to one of claims 12 to 16 characterized in that the carbon atom bonded to the silicon of R is linked to two carbon atoms.
18. Procédé selon l'une des revendications 12 à 17 caractérisé en ce que le groupement R est saturé et en ce que l'atome de carbone lié au silicium de R2, est lié à deux atomes de carbone.18. Method according to one of claims 12 to 17 characterized in that the group R is saturated and in that the carbon atom bonded to the silicon of R 2 , is bonded to two carbon atoms.
19. Composante catalytique solide susceptible d'être obtenu par le procédé de l'une des revendications 12 à 18. 19. Solid catalytic component capable of being obtained by the process of one of claims 12 to 18.
EP95908995A 1994-02-18 1995-02-08 Method for polymerising or copolymerising propylene in liquid propylene, solid catalytic component, and method for making same Withdrawn EP0702701A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9401883 1994-02-18
FR9401883 1994-02-18
PCT/FR1995/000147 WO1995022568A1 (en) 1994-02-18 1995-02-08 Method for polymerising or copolymerising propylene in liquid propylene, solid catalytic component, and method for making same

Publications (1)

Publication Number Publication Date
EP0702701A1 true EP0702701A1 (en) 1996-03-27

Family

ID=9460233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95908995A Withdrawn EP0702701A1 (en) 1994-02-18 1995-02-08 Method for polymerising or copolymerising propylene in liquid propylene, solid catalytic component, and method for making same

Country Status (8)

Country Link
EP (1) EP0702701A1 (en)
JP (1) JPH08509263A (en)
KR (1) KR960701907A (en)
CN (1) CN1123552A (en)
CA (1) CA2160806A1 (en)
FI (1) FI954937A0 (en)
NO (1) NO954122D0 (en)
WO (1) WO1995022568A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058400B2 (en) * 1999-10-19 2012-10-24 出光興産株式会社 Propylene-based block copolymer production method and propylene-based block copolymer
JP4505085B2 (en) * 1999-10-19 2010-07-14 出光興産株式会社 Olefin polymerization catalyst, process for producing olefin polymer, and olefin polymer
JP5058401B2 (en) * 1999-10-19 2012-10-24 出光興産株式会社 Olefin polymerization catalyst, process for producing olefin polymer, and olefin polymer
CN1271093C (en) * 2000-04-24 2006-08-23 出光兴产株式会社 Catalyst for bulk polymerization, catalyst for gas phase polymerization, polymerization method using the catalyst, and olefin polymer obtained therefrom
JP2001302718A (en) * 2000-04-24 2001-10-31 Idemitsu Petrochem Co Ltd Catalyst for vapor phase polymerization, method for vapor phase polymerization using the same, and olefin polymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842604A (en) * 1981-09-08 1983-03-12 Ube Ind Ltd Polymerization of alpha-olefin
US4442276A (en) * 1982-02-12 1984-04-10 Mitsui Petrochemical Industries, Ltd. Process for polymerizing or copolymerizing olefins
FR2669915B1 (en) * 1990-11-29 1993-01-29 Atochem MAGNESIUM CHLORIDE PARTICLES WITH POLYHEDRAL STRUCTURE, CATALYTIC COMPONENT SUPPORTED ON THESE PARTICLES, METHODS OF MANUFACTURING THESE PRODUCTS AND POLYOLEFINS OBTAINED FROM THIS CATALYTIC COMPONENT.
JPH04272907A (en) * 1991-02-27 1992-09-29 Mitsubishi Petrochem Co Ltd Production of olefin polymer
JP3355657B2 (en) * 1992-08-10 2002-12-09 東ソー株式会社 Method for producing polyolefin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9522568A1 *

Also Published As

Publication number Publication date
JPH08509263A (en) 1996-10-01
CA2160806A1 (en) 1995-08-24
KR960701907A (en) 1996-03-28
CN1123552A (en) 1996-05-29
WO1995022568A1 (en) 1995-08-24
NO954122L (en) 1995-10-17
NO954122D0 (en) 1995-10-17
FI954937A (en) 1995-10-17
FI954937A0 (en) 1995-10-17

Similar Documents

Publication Publication Date Title
EP0373999B1 (en) Ethylene polymerisation process for producing linear polyethylene with a narrow molecular weight distribution
EP0127530B1 (en) Process for the preparation of a transition metal component for an olefin polymerisation catalytic system
EP0261727B1 (en) Catalytic solid to be used in stereospecific polymerization of alpha-olefins, process for its preparation and process for polymerizing alpha-olefins in its presence
EP0765881B1 (en) Alkoxysilacycloalkanes, their preparation and use in the polymerisation of olefin
BE1007698A3 (en) Catalyst system used for the polymerization of alpha-olefin polymerization and method for this.
BE1008702A3 (en) Process for olefin polymerization.
EP0478031B1 (en) Cocatalytic composition to use in alpha-olefin polymerisation
EP0717052B1 (en) Catalyst component for olefin polymerization, process for the production thereof and process for the polymerization of olefins using the same
WO1995022568A1 (en) Method for polymerising or copolymerising propylene in liquid propylene, solid catalytic component, and method for making same
BE1005792A3 (en) CATALYST SYSTEM USED FOR stereospecific polymerization OF ALPHA-OLEFINS, POLYMERIZATION PROCESS FOR THIS AND POLYMERS.
FR2812642A1 (en) PROCESS FOR THE PREPARATION OF A CATALYST SUPPORT FOR THE POYMERIZATION OF ETHYLENE AND ALPHA-OLEFINS, THE SUPPORT THUS OBTAINED AND THE CATALYST THEREFOR
CA2003055C (en) Ethylene polymerisation process for the further production of a polymer having widely distributed molecular masses
EP0771821B1 (en) Prepolymer for olefin polymerisation combining several solid catalyst components
EP0206893A1 (en) Process for preparing a transistion metal component for an olefin polymerization catalytic system
EP0580033A1 (en) Solid catalyst for use in stereospecific alpha-olefin polymerization, process of preparation and process using the same
JP2964424B2 (en) Olefin polymerization catalyst
EP0749983B1 (en) Particles containing magnesium chloride, method for obtaining them and polyolefin particles
EP0554141A1 (en) Process for activating a magnesium chloride support for an ethylene polymerization catalyst component
EP1072619A1 (en) Catalytic support and preparation thereof for alpha-olefin polymerisation
BE829416A (en) ETHYLENE POLYMERIZATION PROCESS
EP0288109A1 (en) Process for stereospecific alpha-olefin polymerization, and catalytic system to be used in this process
FR2796956A1 (en) Preparation of catalyst support for alpha-olefin polymerization, comprises reacting chlorinated organic compound and pre-mixture of alkyl magnesium and alkyl aluminosiloxane and/or alkyl aluminum with electron donor and activating
EP0755950A1 (en) Process for the polymerization of ethylene in presence of a phosphorous compound
EP0554140A1 (en) Process for production of MgCl2, MgO with small particle size distribution and its use as catalyst support for the polymerisation of olefins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19970307

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980909